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Abstract
Accelerating slowly convergent sequences is one of the main purposes of extrap-
olation methods. In this paper, we present a new tensor polynomial extrapolation
method, which is based on a modified minimisation problem and some ideas leading
to the recent Tensor GlobalMinimal ExtrapolationMethod (TG-MPE).We discuss the
application of our method to fixed-point iterative process. An efficient algorithm via
the higher order Singular Value Decomposition (HOSVD) is proposed for its imple-
mentation. The numerical tests show clearly the effectiveness and performance of the
proposed method.

Keywords Convergence acceleration · High-order SVD · N -mode product · Tensor
Extrapolation method

Mathematics Subject Classification 15A69 · 65B05 · 15A29

1 Introduction

Accelerating slowly convergent sequences is one of the primary objectives of extrap-
olation methods. A common source of such sequences, for example, is the numerical
solution of systems of linear or nonlinear equations using fixed-point iterativemethods
or sequences generated by quadrature techniques for integral computation. Typically,
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these sequences exhibit slow convergence towards the desired fixed point. As a result,
to attain a satisfactory approximation of the limits of these sequences with a prescribed
level of accuracy, a substantial number of iterations is necessary. This, in turn, results
in a considerable computational burden.

Formally, the principle of extrapolation methods consists of transforming the terms
of a certain slowly convergent sequence (sn) into a new sequence (tn) that converges
more rapidly to the same limit. In fact, each extrapolation method employs a specific
transformation T . For a given number k + 1 of elements from the basic sequence,
the transformation T produces a new term t (k)n as: t (k)n = T (sn, sn+1, . . . , sn+k) such

that, under certain assumptions,
‖t (k)n − s‖
‖sn − s‖ −→

n→∞ 0 where s is the limit of (sn) and

‖.‖ is a suitable norm. As demonstrated in [12], it is worth noting that a universal
transformation that accelerates the convergence of all sequences cannot exist. Actually,
each transformation is only able to accelerate the convergence of a limited class of
sequences. This implies that it will always be important to discover and study new
transformations.

For scalars, vector and matrix sequences, many extrapolation methods have been
introduced, see for example [7, 27] and the references therein. As for the tensor case
that interests us in this work, extrapolation methods have been recently proposed. See
for instance [2, 6, 10, 11, 16–18, 20, 22, 24, 25]. The primary reason for the interest in
generalizing extrapolationmethods to tensor sequences stems from the significant roles
they have played in various disciplines, such as color andmultispectral image andvideo
processing [28], psychometrics, chemometrics, biomedical signal processing, higher-
order statistics (HOS), and econometrics [1, 14]. Consequently, it becomes highly
intriguing to search for appropriate transformations that expedite the convergence of
tensor sequences.

In this paper, our aim is to introduce a new extrapolation method based on the
combination of Higher-Order Singular Value Decomposition (HOSVD) [13], and the
tensor global minimal polynomial extrapolation method (TG-MPE) [16]. A numeri-
cally stable algorithm is proposed for the implementation of the proposed method.

The outline of this paper is organized as follows. In Sect. 2, we provide the necessary
definitions, notations, and some results required for this work. In Sect. 3, after a brief
overview of the tensor global MPE (TG-MPE) method [16], we develop the new
HOSVD-TMPE (Higher-Order Singular Value Decomposition method which is based
on Tensor Minimal Polynomial Extrapolation). Section 4 outlines the algorithm for
implementing this method. We establish error analysis results in Sect. 5, and in Sect.
6, we present numerical experiments that confirm the effectiveness of the proposed
method.

2 Basic definitions

This section reviews some definitions and proprieties of tensors and uses notations
defined by [19]. A tensor is a multidimensional array of data. The elements of a tensor
are referred by usingmultiple indices. The required number of indices defines the order

123



HOSVD-TMPE: an extrapolation method for... Page 3 of 24    27 

of a tensor. For a given (N -order) tensor A ∈ R
I1×I2×I3×···×IN we use the notation

A = (Ai1i2...in−1in in+1...iN )1�in�In;1�n�N .

The values Ai1i2...in−1in in+1...iN are the entries of A.

Definition 1 [19] Given a tensorA ∈ R
I1×I2×I3×···×IN and a matrix M ∈ R

Jn×In , the
n-mode product of A by M , denoted by A ×n M , is the (I1 × I2... × In−1 × Jn ×
In+1 × · · · × IN )-tensor defined by

(A ×n M)i1i2...in−1 jn in+1...iN =
∑

in

Ai1i2...in−1in in+1...iN M jnin .

The n-mode product of the tensor A by a vector w ∈ R
In , denoted by A×̄nw, is the

subtensor of order (I1 × I2... × In−1 × In+1 × · · · × IN ) defined as

(A×̄nw)i1i2...in−1in+1...iN =
In∑

in=1

Ai1i2...in−1in in+1...iN win .

Definition 2 (n-mode unfolding matrix) For a given tensorA ∈ R
I1×I2×I3×···×IN and

1 ≤ n ≤ N , the n-mode unfolding matrix of A, is the (In × I1 I2 · · · In−1 In+1 · · · IN )
matrix, denoted by A(n) such that

A(n)(in, j) = Ai1...iN ,

where j = 1 + ∑N
k=1k �=n(ik − 1)Lk with Lk = ∏k−1

m=1m �=n Im . The columns of A(n)

are called the mode-n fibres of A.

Definition 3 Let A and B two tensors of the same size I1 × I2 × I3 × · · · × IN , the
(Frobenius) inner product of A and B is the scalar defined as

〈A,B〉 =
IN∑

iN=1

· · ·
I1∑

i1=1

Ai1...iNBi1...iN , and ‖ A ‖F= √〈A,A〉.

Proposition 1 [13] For A ∈ R
I1×I2×I3×···×IN , M1 ∈ R

Jn×In , M3 ∈ R
Jp×IN and

M2 ∈ R
Kn×Jn (n �= p), we have the following properties

1. (A ×n M1) ×p M3 = (A ×p M3) ×n M1 = A ×n M1 ×p M3.

2. (A ×n M1) ×n M2 = A ×n (M2M1).
3. If M1 is orthogonal, then ‖ A ×n M1 ‖F=‖ A ‖F .

4. If x ∈ R
In and Jn = In then (A ×n M1)×̄nx = A×̄n(MT

1 x).
5. For x ∈ R

In , A×̄nx = A ×n xT .
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Definition 4 [16]. The Einstein product of two tensors A ∈ R
I1×...×IN×J1×···×JM and

B ∈ R
J1×···×JM×K1×···×KL , is the I1 × . . . × IN × K1 × · · · × KL tensor denoted by

A ∗M B whose entries are given by

(A ∗M B)i1,...iN k1,...kM =
∑

j1... jM

Ai1,...iN j1... jMB j1... jMk1,...kL

Definition 5 [16]. The tensor product denoted �(N+1) of two (N + 1)-mode ten-
sors A = [A1,A2, . . . ,Am] ∈ R

I1×I2×I3×···×IN×m and B = [B1,B2, . . . ,Bn] ∈
R

I1×I2×I3×···×IN×n , where Ai ∈ R
I1×I2×I3×···×IN and Bi ∈ R

I1×I2×I3×···×IN , is the
m × n matrix whose (i, j) entries, i = 1, . . . ,m and j = 1, . . . , n, is given by

(A �(N+1) B)i, j = 〈Ai ,B j 〉.

Proposition 2 Let A, B ∈ R
I1×I2×I3×···×IN×IN+1 , C ∈ R

I1×I2×I3×···×IN and x ∈
R

IN+1 . Then we have

1. (A �(N+1) B)T = B �(N+1) A
2. (A �(N+1) B)x = A �(N+1) (B×̄(N+1)x).
3. 〈(A �N+1 B)x, x〉 = 〈B×̄(N+1)x,A×̄(N+1)x〉.
4. 〈C,A×̄(N+1)x〉 = (C �(N+1) A)x

Proof By definitions of the involved tensor products. ��

3 The HOSVD-TMPEmethod

First of all, let us recall the Tensor Global Minimal Extrapolation Method (TG-MPE)
proposed in [16] that is the starting point of this work.
Let S0,S1,S2... be a given sequence of real tensors of the same dimension
I1 × I2 × I3 × · · · × IN and set

Dn = Sn+1 − Sn, n = 0, 1, . . .

Define for some fixed n and k, the I1 × I2 × I3 × · · · × IN × IN+1 tensor D
(n)
k by

D
(n)
k = [

Dn,Dn+1, . . . ,Dn+k
]
with IN+1 = k + 1,

such that the i th frontal slice, obtained by fixing the last index at i , is
[
D

(n)
k

]

:,:,...,:,i =
Dn+i , 0 ≤ i ≤ k.

The TG-MPEmethod is based on the solution, for ᾱ(k) =
(
α

(k)
0 , α

(k)
1 , . . . , α

(k)
k−1

)
∈

R
k , of the problem

(D
(n)
k−1 �N+1

D
(n)
k−1)ᾱ

(k) = −(D
(n)
k−1 �N+1 Dn+k), (1)
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for which the authors adopt a tensor QR based approach to obtain the solution (see
[16] for details).
Once α

(k)
0 , α

(k)
1 , . . . , α

(k)
k−1 have been determined, set α

(k)
k = 1. Provided that

k∑

i=0

α
(k)
i �= 0, compute the coefficients δ

(k)
0 , δ

(k)
1 , . . . , δ

(k)
k as

δ
(k)
j = α

(k)
j

∑k
i=0 α

(k)
i

f or j = 0, . . . , k. (2)

Finally we set

T (n)
k =

k∑

j=0

δ
(k)
j Sn+ j (3)

as an approximation to the limit of the sequence (Sn).

Now, let us outline the approach we followed in developing our proposed method.
First, using assertion 1 of Proposition 2, we rewrite the problem in (1) as follows

D
(n)
k−1 �N+1 (D

(n)
k−1×̄(N+1)ᾱ

(k) + Dn+k) = 0. (4)

The next proposition allows us to transform the above problem to an equivalent min-
imisation one.

Proposition 3 The equation (4) is equivalent to the minimization least squares tensor
problem

ᾱ(k) = argmin
x∈Rk

‖ D
(n)
k−1×̄(N+1)x + Dn+k ‖F (5)

Proof We set g(x) =‖ D
(n)
k−1×̄(N+1)x +Dn+k ‖2F . For a vector h ∈ R

k and a non zero
scalar t , we have

g(x + th) =‖ D
(n)
k−1×̄(N+1)(x + th) + Dn+k ‖2F

= g(x) + 2t〈D(n)
k−1×̄(N+1)x + Dn+k,D

(n)
k−1×̄(N+1)h〉

+ t2 ‖ D
(n)
k−1×̄(N+1)h ‖2F

= g(x) + t〈D(n)
k−1 �N+1 (D

(n)
k−1×̄(N+1)x + Dn+k), h〉

+ t2 ‖ D
(n)
k−1×̄(N+1)h ‖2F

Therefore, the gradient of g at x is as 
g(x) = D
(n)
k−1 �N+1 (D

(n)
k−1×̄(N+1)x +Dn+k).

It is easy to check that the matrix D
(n)
k−1 �N+1

D
(n)
k−1 is positive semi-definite, which

guarantees the convexity of g. As a result

ᾱ(k) = argmin
x∈Rk

g(x) ⇐⇒ 
g(ᾱ(k)) = 0.

123



   27 Page 6 of 24 A. H. Bentbib et al.

��
Therefore, the problem in (4) is equivalent to

min
ᾱ(k)∈Rk

‖ D
(n)
k−1×̄(N+1)ᾱ

(k) + Dn+k ‖F , (6)

which can be expressed as the following constrained problem

min
α(k)∈Rk+1

‖D(n)
k ×̄(N+1)α

(k)‖F subject to α
(k)
k = 1, α(k) = (α

(k)
0 , . . . , α

(k)
k )T . (7)

Rewriting the basic problem as a constrained minimization problem is indeed the core
concept of this work. Specifically, for our proposed method (HOSVD-TMPE), we
have replaced the constraint α

(k)
k = 1 in (7) with the new constraint ‖ α(k) ‖2= 1,

resulting in the new constrained minimization problem

min
α(k)∈Rk+1

‖ D
(n)
k ×̄(N+1)α

(k) ‖F subject to ‖ α(k) ‖2= 1, α(k)

= (α
(k)
0 , α

(k)
1 , . . . , α

(k)
k )T . (8)

Again, with α
(k)
0 , α

(k)
1 , . . . , α

(k)
k determined and provided

∑k
i=0 α

(k)
i �= 0, we compute

similarly the scalars δ
(k)
0 , δ

(k)
1 , . . . , δ

(k)
k as in (2) and the new sequence term T (n)

k as in
(3).

Remark 1 The purpose of this new constraint choice is not to obtain a unit solution,
as it may seem, since we can achieve that simply through the normalization of the
result obtained by TG-MPE. Instead, as will be demonstrated, it enables us to easily
characterize the desired approximate solution and develop an efficient algorithm for
its determination.

The next theorem recalls the HOSVD decomposition [13], which is a highly valuable
tool for establishing the main result in this work.

Theorem 4 (HOSVD) [13] LetA be a real tensor of dimension I1× I2× I3×· · ·× IN .
Then A can be decomposed as

A = � ×1 V
(1) ×2 V

(2) ×3 V
(3) · · · ×N V (N ), (9)

where V (n) =
[
v

(n)
1 v

(n)
2 ...v

(n)
In

]
is a unitary In × In matrix (1 ≤ n ≤ N ), � is a real

tensor of the same dimension as A and the subtensors �in=m (1 ≤ m ≤ In) obtained
by fixing the nth index to m, have the following properties

• All-orthogonality 〈�in=m, �in=m′ 〉 = 0 f or m �= m′.
• ‖ �in=1 ‖F�‖ �in=2 ‖F� · · · ‖ �in=In ‖F� 0 for all possible values of n.

The quantity ‖ �in=i ‖F is called the i th n-mode singular value ofA, it is symbolized

by σ
(n)
i ; and the vector v

(n)
i is the i th n-mode singular vector.
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In the following main result, we provide a characterization of the solution α(k) of the
minimisation problem (8).

Theorem 5 Let σ (N+1)
1 , σ

(N+1)
2 , . . . , σ

(N+1)
k+1 be the (N + 1)-mode singular values of

D
(n)
k ordered as in

σ
(N+1)
1 ≥ σ

(N+1)
2 ≥ . . . ≥ σ

(N+1)
k+1 � 0,

and let {v(N+1)
i }k+1

i=1 be the corresponding (N + 1)-mode singular vectors obtained
from the HOSVD,

D
(n)
k = � ×1 V

(1) ×2 V
(2) ×3 V

(3) · · · ×(N+1) V
(N+1). (10)

If the smallest (N +1)-mode singular value σ
(N+1)
k+1 ofD(n)

k , is simple, in the sense that

σ
(N+1)
k �= σ

(N+1)
k+1 , then the solution α(k) to the minimization problem (8) is unique

(up to a multiplicative constant ρ, | ρ |= 1) and is given as α(k) = v
(N+1)
k+1 .

Proof First, let us show that

‖D(n)
k ×̄(N+1)v

(N+1)
k+1 ‖F = σ

(N+1)
k+1 .

In fact, by Assertion 4 of Proposition 1, we have

D
(n)
k ×̄(N+1)v

(N+1)
k+1 = � ×1 V

(1) ×2 V
(2) ×3 V

(3) · · ·
×(N+1) V

(N+1)×̄(N+1)v
(N+1)
k+1

= � ×1 V
(1) ×2 V

(2) ×3 V
(3) · · ·

×N V (N )×̄(N+1)((V
(N+1))T v

(N+1)
k+1 ).

Since V (N+1) is unitary, one has (V (N+1))T v
(N+1)
k+1 = (0, 0, . . . , 1)T = ek+1 ∈ R

k+1.

Therefore, using Assertion 1 and 5 of Proposition 1,

D
(n)
k ×̄(N+1)v

(N+1)
k+1 = � ×1 V

(1) ×2 V
(2) ×3 V

(3) · · · ×N V (N )×̄(N+1)ek+1

= (�×̄(N+1)ek+1) ×1 V
(1) ×2 V

(2) ×3 V
(3) · · · ×N V (N )

= �i(N+1)=k+1 ×1 V
(1) ×2 V

(2) ×3 V
(3) · · · ×N V (N ).

As a result, using Assertion 3 of Proposition 1, we get

‖D(n)
k ×̄(N+1)v

(N+1)
k+1 ‖F = ‖�i(N+1)=k+1‖F = σ

(N+1)
k+1 .

Now, let β be an arbitrary vector in R
k+1 such that ‖β‖2 = 1. Since V (N+1) =[

v
(N+1)
1 v

(N+1)
2 ...v

(N+1)
IN+1

]
is a unitary matrix in R

(k+1)×(k+1), then there exist scalars
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β1, . . . , βk+1 such that

β =
k+1∑

i=1

βiv
(N+1)
i with ‖β‖2 =

k+1∑

i=1

(βi )
2 = 1.

Taking into account the orthogonality of {�(N+1)
i }i=1,...,k+1, and the fact that σ

(N+1)
k+1

is the smallest (N + 1)-mode singular value, we can easily establish that

‖D(n)
k ×̄(N+1)β‖2F = ‖

k+1∑

j=1

β j� ×1 V
(1) ×2 V

(2) ×3 V
(3) · · · ×(N+1) V

(N+1)

×̄(N+1)v
(N+1)
j ‖2F

= ‖
k+1∑

j=1

β j� ×1 V
(1) ×2 V

(2) ×3 V
(3) · · · ×N V (N )×̄(N+1)e j‖2F

= ‖
k+1∑

j=1

β j (�×̄(N+1)e j ) ×1 V
(1) ×2 V

(2) ×3 V
(3) · · · ×N V (N )‖2F

= ‖
k+1∑

j=1

β j�i(N+1)= j ×1 V
(1) ×2 V

(2) ×3 V
(3) · · · ×N V (N )‖2F

= 〈
k+1∑

j=1

β j�i(N+1)= j ,

k+1∑

j=1

β j�i(N+1)= j 〉 (Orthognality of V (n), s)

=
k+1∑

j=1

β2
j 〈�i(N+1)= j , �i(N+1)= j 〉 (Orthognality of �i(N+1)= j , s)

=
k+1∑

j=1

β2
j (σ

(N+1)
j )2 ≥ (σ

(N+1)
k+1 )2(

k+1∑

j=1

β2
j ) = (σ

(N+1)
k+1 )2.

Therefore

‖D(n)
k ×̄(N+1)β‖F ≥ σ

(N+1)
k+1 ,

which leads to

min
‖α(k)‖=1

‖D(n)
k ×̄(N+1)α

(k)‖F = ‖D(n)
k ×̄(N+1)v

(N+1)
k+1 ‖F = σ

(N+1)
k+1 .

��
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4 Implementation of HOSVD-TMPE

As demonstrated in the previous section, determining the sequence term T n(k) in (3)
requires the computation of vk + 1, the (k + 1)th vector of the (N + 1)-mode matrix
V (N+1) corresponding to the smallest (N + 1)-mode singular value σ

(N+1)
k+1 from the

decomposition (10). Obtaining the matrix V (N+1) directly through HOSVD applied to
Dk(n) can be expensive. However, in this case, we employ a less computationally inten-
sive method to obtain the matrix V (N+1) and consequently, the vector vk + 1(N+1).
To begin, let us introduce the following lemma, which was proven in [3].

Lemma 1 [3] LetA be a real tensor of dimension I1× I2× I3×· · ·× IN , and consider
its HOSVD decomposition as

A = � ×1 V
(1) ×2 V

(2) ×3 V
(3) · · · ×N V (N ). (11)

Then a matrix representation of (11) can be obtained, for n ∈ {1, · · · , N }, as follows

A(n) = V (n)�(n)(V
(n+1) ⊗ V (n+2) ⊗ · · · ⊗ V (N ) ⊗ V (1) · · · ⊗ V (n−1))T , (12)

where ⊗ stands for the Kronecker product of matrices.

Proposition 6 For each n ∈ {1, . . . , N } we have:

A(n)AT
(n) = V (n)�(n)�

T
(n)(V

(n))T (13)

Proof We use (12) and the orthogonality of the matrices V (n), 1≤ n ≤ N . ��
The decomposition (13) is, in fact, the spectral decomposition of the symmetric
matrix A(n)AT

(n). Therefore, to get the n-mode matrix V (n) appearing the HOSVD-
decomposition of the tensor A, we can compute it throughout the eigenvalue
decomposition (EVD) of the In × In matrix A(n)AT

(n).

Now,we adopt this process to determine thematrixV (N+1) in (10).Wefirst compute
the unfolding matrix (D

(n)
k )(N+1) and the matrix M = (D

(n)
k )(N+1)(D

(n)
k )T(N+1) of size

(k + 1) × (k + 1). Therefore, applying the EVD decomposition on M allows us to
obtain the matrix V (N+1) ( we have M = V (N+1)�(V (N+1))T ). Then, the (k + 1)th

vector (solution α(k)) vk+1 = V (N+1)ek+1 where ek+1 = (0, 0, . . . , 1)T ∈ R
k+1.

Remark 2 In practice, the integer k is not typically large. Therefore, applying the
Eigenvalue Decomposition EVD to the symmetric positive semi definite (k+1)×(k+
1) matrix M = (D

(n)
k )(N+1)(D

(n)
k )T(N+1) is less computationally expensive compared

to performing the HOSVD decomposition of the tensor D(n)
k .

After obtaining the solution α(k), we used (2) and (3) for computing the extrapolated
tensor T (k)

n . We summarize the different steps of the implementation of HOSVD-
TMPE in Algorithm 1.
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Algorithm 1 HOSVD-TMPE
1: Input: n and k and Sn ,Sn+1, . . . ,Sn+k+1.

2: Output:. T (k)
n

3: Compute the tensors Dn ,Dn+1, . . . ,Dn+k and form the tensor D(n)
k = [

Dn ,Dn+1, . . . ,Dn+k
]
.

4: Compute the unfolding matrix (D
(n)
k )(N+1).

5: Compute the square matrix M := (D
(n)
k )(N+1)((D

(n)
k )(N+1))

T ∈ R
(k+1)×(k+1).

6: Compute the EVD of M : M = V�V T .

7: Determine α(k) = Vek+1 with ek+1 = (0, 0, . . . , 1)T ∈ R
k+1.

8: Determine δ(k) = (δ
(k)
0 , δ

(k)
1 , ..., δ

(k)
k ) via (2).

9: Set T (k)
n =

k∑

i=0

δ
(k)
i Sn+i .

It is clear that Algorithm 1 outlines only the computation of a single extrapolated
tensor T (k)

n (with fixed values for n and k), and does not provide any information
about the sequence (T (k)

n )n as n varies. To address this aspect, in the experimental
section of this work, we employ two distinct schemes following the manner in which
the sequence is generated.

Algorithm 2 HOSVD-TMPE for fixed-point problems
1: Input: i ter = 0, i termax , ε, k and Sn .
2: Output:. T (k)

n
3: for j = 1 : k + 1 do
4: Sn+ j = F(Sn+ j−1)

5: end for
6: With Sn ,Sn+1, . . . ,Sn+k+1 available, compute T (k)

n by Algorithm 1.

7: if error(T (k)
n ) < ε or i ter > i termax then stop

8: else
9: set Sn = F(T (k)

n ), i ter = i ter + 1 and go to Step 3.
10: end if

In case where the sequence (Sn) is produced by a some fixed-point process

Sn+1 = F(Sn), (14)

we apply our proposed algorithm 1 in the restarted acceleration scheme explained in
[10, 11]. That is, starting from an iterate Sn , we generate via the fixed-point process
14 a sequence of iterates {Sn}k+1

i=0 and then use Algorithm 1 to produce T (k)
n . Next, we

useF(T (k)
n ) as the starting point of (14) and the process continues. In the absence of a

specific convergencemeasurement tool, it is generally acceptable to stop computations
after a fixed number of iterations i termax or when the relative residual error

res(T (k)
n ) := ‖ T (k)

n − T (k)
n−1 ‖F

‖ T (k)
n ‖F

(15)
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Fig. 1 The acceleration scheme

is less than a given threshold ε.
We summarized that in Algorithm 2. The error in Step 7 can either represent the

relative residual res in (15) or some specific error depending on the studied problem.
Now, in cases where the sequence is not of a fixed-point type or when we lack

information about its production process, we can apply our method in the acceleration
scheme (see Fig. 1) as follows: we apply the extrapolation on the first k + 2 iterates to
produce the first term T (k)

0 . Next, we start from the second iterate S1 and consider a

set of k+2 iterates to produce the second term T (k)
1 via extrapolation and this process

continues. The following figure illustrates this acceleration scheme.
Now, through the following result, we reveal a class of sequences on which the

application of HOSVD-TMPE produces, just from a certain finite number of terms
and in one time, the sought limit S. Such property is known as finite termination
property, see [27].

Theorem 7 Let S be the limit of the tensor sequence (Sn) and let En = Sn − S
and Dn = Sn+1 − Sn. Assume that there exists a fixed number k such that, for all
n = 0, 1, . . .

k∑

i=0

α
(k)
i En+i = 0 wi th

k∑

i=0

α
(k)
i �= 0 and α

(k)
0 α

(k)
k �= 0, (16)

and the tensors {D0,D1, . . . ,Dk−1} are linearly independent. Then the tensor T (n)
k

obtained by applying HOSVD-TMPE to the k + 2 tensors Sn,Sn+1, . . . ,Sn+k+1,

satisfies T (n)
k = S for all n = 0, 1, . . ..

Proof Let us first show by induction on n the linear independence of Dn,Dn+1, . . . ,

Dn+k−1. For n = 0, it is true by the hypothesis. Assume now that that
Dn,Dn+1, . . . ,Dn+k−1 are linearly independent, and show that so is forDn+1,Dn+2,

. . . ,Dn+k . From (16), we get

k∑

i=0

α
(k)
i Dn+i = 0, n = 1, 2, . . . . (17)
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Since α
(k)
k �= 0, let us set α(k)

k = −1. Then (17) becomes

Dn+k =
k−1∑

i=0

α
(k)
i Dn+i (18)

To show that Dn+1,Dn+2, . . . ,Dn+k are independent, assume that there exist scalars
β1, β2, . . . , βk such that

k∑

i=1

βiDn+i = 0. (19)

Substituting (18) into (19) and rearranging terms leads to

βkα
(k)
0 Dn +

k−1∑

i=1

(βi + βkα
(k)
i )Dn+i = 0. (20)

The induction hypothesis implies that

βkα
(k)
0 = 0 and βi + βkα

(k)
i = 0 for i = 1, . . . , k − 1.

Since α
(k)
0 �= 0, it follows that

β1 = β2 = . . . = βk = 0

which implies the linear independence of Dn+1,Dn+2, . . . ,Dn+k .
On the other hand, using (16), we obtain

k∑

i=0

α
(k)
i (Sn+i − S) =

k∑

i=0

α
(k)
i Sn+i − (

k∑

i=0

α
(k)
i )S = 0,

from which it follows that

S =
∑k

i=0 α
(k)
i Sn+i

∑k
i=0 α

(k)
i

.

Therefore, setting δ̌
(k)
i = α

(k)
i∑k

i=0 α
(k)
i

, gives

S =
k∑

i=0

δ̌
(k)
i Sn+i , with

k∑

i=0

δ̌
(k)
i = 1. (21)

123



HOSVD-TMPE: an extrapolation method for... Page 13 of 24    27 

Again from (16), we have

D
(n)
k ×(N+1) α(k) =

k∑

i=0

α
(k)
i Dn+i =

k∑

i=0

α
(k)
i En+i+1 −

k∑

i=0

α
(k)
i En+i = 0.

The linear independence of {Dn,Dn+1, . . . ,Dn+k−1} implies that the problem
D

(n)
k ×(N+1) α(k) = 0 along with ‖α(k)‖ = 1 has a unique solution (up to a mul-

tiplicative constant ρ, | ρ |= 1). That is, the scalars δ̌
(k)
i in (21) are the same as δ

(k)
i in

T (k)
n = ∑k

i=0 δ
(k)
i Sn+i resulting from HOSVD-TMPE, and as a result T (k)

n = S. ��

5 Error analysis

In this section, we consider a convergent tensor sequence (Sn) with limit S obtained
via the fixed-point process (14):

Sn+1 = F(Sn),

where S0 is a given tensor and F is assumed to be a differentiable function from
R

I1×I2×···×IN into R
I1×I2×···×IN . We associate with the iterate Sn , the residual error

given as:
R(Sn) = F(Sn) − Sn = Sn+1 − Sn . (22)

The limit S satisfies the equations S = F(S) and R(S) = 0.
As examples of F , we consider the following cases:

1. F is linear:

• F(X ) = X ×N A + B, with B ∈ R
I1×I2×···×IN and A ∈ R

IN×IN such that
(I − A) is non-singular.

• F(X ) = A∗NX+BwithB ∈ R
I1×I2×···×IN andA ∈ R

I1×I2×···×IN×I1×I2×···×IN

and ∗N stands for the Einstein product (Definition 4).

2. F is not linear: F(X ) = X T ∗N A ∗N X + X T ∗N C with A, C ∈
R

I1×I2×···×IN×I1×I2×···×IN . Notice that in this case, one has

F(X ) = ∂F
∂X (S) ∗N (X − S) + F(S) + O(‖ X − S ‖2F ) as X −→ S

where the tensor
∂F
∂X (S) = A ∗N S − C is the gradient of F at S. Thus for a large

n, the sequence (Sn) can be generated as follows

Sn+1 = F(Sn) ≈ ∂F
∂X (S) ∗N (Sn − S) + F(S). (23)
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That is, the sequence (Sn) behaves as if it were being generated by approximate
linear system of the form (I − P) ∗N X ≈ B through

Xn+1 = P ∗N Xn + B

with P = ∂F
∂X (S) and B = (I − P) ∗N S.

Coming back to the general case, assume that F has a unique fixed point denoted by
S. Applying HOSVD-TMPE on (Sn), the residual R(T (k)

n ) = T (k)
n+1 − T (k)

n can be
expressed as

R(T (k)
n ) ∼=

k∑

i=0

δ
(k)
i Dn+i = D

(n)
k ×(N+1) δ(k), with δ(k) =

(
δ
(k)
0 , δ

(k)
2 , . . . , δ

(k)
k

)T
,

(24)
where ’∼=’ represents exact equality ’=’ when the sequence (Sn) is generated linearly,
while, it is just an approximation ’≈’ when F is non-linear.

Assume that (Sn) is generated linearly, the subsequent theorem demonstrates that
the computation of ‖R(T (k)

n )‖F can be achieved without incurring any additional
computational expense, relying solely on the quantities derived from our algorithm,
and without the need to directly compute R(T (k)

n ). The result remains true for the
nonlinear case when replacing = with ≈.

Theorem 8 The residual R(T (k)
n ) in (24) satisfies

‖R(T (k)
n )‖F = σ

(N+1)
k+1

|
k∑

i=0

α
(k)
i |

, (25)

where σ
(N+1)
k+1 is the smallest (N + 1)-mode singular value of D(n)

k .

Proof Using the relation (2), it follows that

D
(n)
k ×(N+1) δ(k) = (D

(n)
k ×(N+1) α(k))

k∑

i=0

α
(k)
k

with α(k) =
(
α

(k)
0 , α

(k)
2 , . . . , α

(k)
k

)T
is the solution of (8). Then, using Theorem 5, we

obtain

‖R(T (k)
n )‖F = 1

|
k∑

i=0

α
(k)
k |

‖D(n)
k ×(N+1) α(k)‖F = σ

(N+1)
k+1

|
k∑

i=0

α
(k)
k |

.
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��

6 Numerical experiments

In this section, we will illustrate, via some numerical experiments, the effectiveness
of our proposed method (HOSVD-TMPE). We compared it in the examples below, in
addition to the basic sequences (Basic-Iterations), with the TG-MPE method and the
Nesterov’s transformation [23] defined by

T Nv
n+1 = Xn+1 + ηn + 1

ηn+1
(Xn+1 − Xn),

where {ηn} is the scalar sequence given by ηn+1 =
√
4(ηn)2 + 1) + 1

2
with η1 = 1.

For Examples 1, 2, and 4, we implemented the HOSVD-TMPE and TG-MPE meth-
ods using the restarted acceleration scheme outlined in Algorithm 2. Since the exact
solution is known, we employed the relative error

e(T (k)
n ) = ‖ T (k)

n − S ‖F
‖ S ‖F , (26)

to illustrate the behaviour of the produced sequences.
For Example 3, we adopted the acceleration scheme outlined in Fig. 1, utilizing the
residual error-norm

Re(T (k)
n ) =‖ B − A ∗2 T (k)

n ‖, (27)

to assess the convergence behaviour of the methods.
In addition, in Example 4, which addresses image restoration problems, we used

the PSNR (Peak Signal-to-Noise Ratio) to assess the quality of the restored images.
Furthermore, in this specific example, we evaluated the convergence rates of TG-MPE

and HOSVD-TMPE by considering the ratio ‖T method
n −S‖F
‖Sn−S‖F .

As shown in Algorithm 2, the iteration process is terminated as soon as the norm
of the used error is less than predefined ε, or the number of iterations reaches a
given number i termax . We carried out the computations using MATLAB 2023a in HP
computer running Windows 11 with Intel Core i7 and 16 GB RAM.

Example 1

Weconsider tensor sequence (Sn)withSn ∈ R
d×d×d , obtained from the linear iterative

scheme

Sn+1 = Sn ×3 A + B, n = 0, 1, . . .

A = V�V T ∈ R
d×d where V is a random orthogonal matrix, and � is a diagonal

matrix such that �(i, i) = 1 − 0.95 × i
d , i = 1, .., d. The tensor B is such that the
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Fig. 2 The relative error for dimensions d = 25 (left) and d = 40 (right) for the Basic-iteration, Nesterov,
TG-MPE and HOSVD-TMPE (Example 1)

limit (exact solution) is the tensor S with all elements equal to one:

B = S ×3 (I − A).

Fig. 2 illustrates the relative error-norm versus the iteration index n for both the Basic
iteration and Nesterov process, TG-MPE, and our proposed method HOSVD-TMPE
with k = 3, considering different dimensions (d = 25 and 40). We set ε to 10−14. The
curves clearly reveal the acceleration effect of our method, showcasing its superiority
compared to TG-MPE and Nesterov.

Example 2

In this example, we consider the tensor sequence (Sn) fromR
N×N×N obtained by the

following linear iterative scheme

Sn+1 = A ∗N Sn + B, n = 0, 1, . . .

with A ∈ R
N×N×N×N×N×N such that

Ai, j,k,i, j,k = (i + j + k)/(3 ∗ N ) and Ai,i,i,i,i,i = 1 − 0.01 ∗ i .

The tensor right-hand B is such that the limit S is the tensor whose all elements equal
to one, and is given by

B = (I − A) ∗N S.

Fig. 3 illustrates the behavior of the relative error-norm for the basic sequence, the
Nesterov process, TG-MPE, and our method HOSVD-TMPE (k = 3) across different
dimensions (N = 10 and N = 15). We set ε to 10−13 as a stopping criterion. It is
evident that the application of TG-MPE and HOSVD-TMPE results in much faster
convergence compared toBasic Iterations and theNesterov process. As observed in the
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Fig. 3 The relative error-norm for dimensions N = 10 (left) and N = 15 (right) for the Basic-iteration,
TG-MPE, Nesterov and HOSVD-TMPE (Example 2)

previous example, the HOSVD-TMPE method the HOSVD-TMPE method exhibits
rapid convergence.

Example 3

In this example, we consider the partial differential equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2u

∂x2
+ ∂2u

∂ y2
= 0 � = ]0, 1[ × ]0, 1[ ,

u(0, y) = 0, u(1, y) = sin 3π y,

u(x, 0) = 0, u(x, 1) = sin 3πx cosπx .

(28)

The central finite difference discretization of (28) leads to the following tensor equation
with Einstein product (see Definition 4)

A ∗2 X = B, X = (xkl) ∈ R
N×N , (29)

with A = (αi jkl) ∈ R
N×N×N×N and B = (βi j ) ∈ R

N×N such that

αi jkl = qmn, m = ivec([i, j], [N , N ]), n = ivec([k, l], [N , N ]),
βi j = bt , t = ivec([i, j], [N , N ]) and Q = [qmn] := (F ⊗ IN + IN ⊗ E),

where ⊗ denotes the Kronecker product, ivec is the index mapping function
defined as follows: For given integers j1, j2 and dimensions N1, N2, the integer
ivec([i, j], [N1, N2]) is given by

ivec([ j1, j2], [N1, N2]) = j1 + ( j2 − 1)N1N2.
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F = tr idiag(1,−4, 1) and E = [ei j ] are tridiagonal and diagonal matrices of order

N and b = (bi ) ∈ R
N2
, defined by

ei j =
{
1, if | i − j |= 1,

0, otherwise,

bt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− sin
3t

N + 1
π if t = vN , v = 1, . . . , N ,

− sin
3t

N + 1
π cos

t

N + 1
π if t = (N − 1)N + w, w = 1, . . . , N − 1,

− sin
3N

N + 1
π(1 + cos

N

N + 1
π) if t = N 2,

0 otherwise.
We solve (29) using the following iterative scheme [29]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Xn+1 = Xn + Tr(PT
n ∗2 Rn)

Tr(PT
n ∗2 A ∗2 Pn)

Pn,

Rn+1 = B − A ∗2 Xn+1,

Pn+1 = Rn+1 − Tr(PT
n ∗2 A ∗2 Rn+1)

Tr(PT
n ∗2 A ∗2 Pn)

Pn .

(30)

with P0 = R0 = B − A ∗2 X0 where X0 is an initial tensor guess.
In Table 1, we present the iteration number n, the residual error-normRe(T (k)

n ) =‖
B − A ∗2 T (k)

n ‖F , and the CPU time for the four methods for different dimensions
N = 10, 40 and 100. Note that the stopping criterion ε is adjusted according to
the dimension N ( ε = 10−16 for N = 10, ε = 10−8 for N = 40 and ε = 10−2

for N = 100 ). The results highlight the acceleration effect of our proposed method
(HOSVD-TMPE).Across various dimensions (N = 10, 40, and100), both the number
of iterations and the associated CPU time for HOSVD-TMPE and TG-MPE are lower
compared to those obtainedwith the initial sequence (Basic Iteration) and theNesterov
process. We can also note the effectiveness of HOSVD-TMPE in comparison to TG-
MPE method, particularly when considering the case of N = 100.

In Fig. 4, we have plotted the residual error Re versus the iteration number n for
four methods: Basic Iterations, Nesterov, TG-MPE, and HOSVD-TMPE, considering
two different values of dimensions, N = 30 (left) and N = 50 (right). Iterations are
terminated when the residual Re reaches 10−8. The acceleration effect of HOSVD-
TMPE is evident, showcasing its competitiveness with TG-MPE for both N = 30 and
N = 50. They exhibit nearly similar behaviors, with a slight advantage observed for
HOSVD-TMPE.
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Table 1 Comparison of the required iteration number, residual errorRe, and CPU time for Basic Iterations
(Scheme (30)), Nesterov, TG-MPE, and HOSVD-TMPE (Example 3)

Dimensions Algorithms Iter ErrorRe CPU-time (s)

N = 10 scheme (30) (Basic-Iteration) 1575 9.78e−17 2.27

Nesterov 3249 9.83e−17 2.45

TG-MPE (k = 4) 644 9.53e−17 1.04

HOSVD-TMPE (k = 4) 646 7.95e−17 1.01

N=40 scheme (30) 5040 9.96e−09 14.61

Nesterov 9993 9.98e−09 28.83

TG-MPE (k = 4) 1199 9.99e−09 4.87

HOSVD-TMPE (k = 4) 1200 9.77e−09 5.11

N=100 scheme (30) 7873 9.95e−03 402.02

Nesterov 19,123 9.96e−03 733.06

TG-MPE (k = 4) 1096 9.92e−03 85.06

HOSVD-TMPE (k = 4) 1095 9.92e−03 83.02
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Fig. 4 The residual errorRe for dimensions N = 30 (left) and N = 50 (right) for the Basic-iteration (30),
Nesterov, TG-MPE and HOSVD-TMPE (Example 3)

Example 4

Image inpainting is the process of reconstructing missing regions in an image. This
task is crucial in computer vision and serves as an essential functionality in numerous
imaging and graphics applications; for more details, refer to [28].
The tensor total variation is one of the techniques employed for this purpose. In this
example, we address the regularization tensor-least squares problem

min
X

{‖PE(X ) − B‖F + λ‖∇X‖1} (31)

123



   27 Page 20 of 24 A. H. Bentbib et al.

Fig. 5 The original ’coloredChips.png’ image (left) and its text-added one (right)

Fig. 6 The recovered images byTDPG(left), TG-MPE (middle) andHOSVD-TMPE(right) in 500 iterations

wherePE is the tensor projectiononRI1×I2×I3×···×IN , such that forX ∈ R
I1×I2×I3×···×IN

the entries of PE(X ) are given as

(PE(X ))i1,i2,...,iN =
{
Xi1,i2,...,iN if (i1, i2, ..., iN ) ∈ E,

0 otherwise,

with E = {(i1, i2, ..., iN ) : Xi1,i2,...,iN observed } (see [8]).
Let X exact be the original image, and the tensor B represents its text-added version.
Utilizing the tensorial double proximal gradient algorithm (TDPG) proposed in [4],
we iteratively solve the problem (31).

For the first experiment, we consider the image ’coloredChips.png’ from the MAT-
LAB R2020a collection, with dimensions of (150 × 190 × 3). We corrupted it by
adding text, as shown in Fig. 5.
Fig. 6 displays the restored images using TDPG, TG-MPE, and the proposed method
(HOSVD-TMPE). It is evident that our proposed method successfully removed nearly
all the added text, a result not achieved by the basic iteration TDPG or the TG-MPE
method.

Table 2 presents the iteration number, relative error-norm, recovered image PSNR,
and the required CPU time for TDPG (Basic Iterations), TG-MPE, and HOSVD-
TMPE. We use ε = 5 × 10−2 as a stopping criterion for computations. The results
obtained confirm the superiority of our proposedmethod in terms of PSNR and relative
error-norm, as well as in terms of CPU time.
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Table 2 Comparison of the required iterations number, relative error, PSNR and CPU time for TDPG
(Basic-Iterations), TG-MPE and HOSVD-TMPE for the ’coloredChips’ image

Data size Algorithms Iter Error PSNR CPU-time (s)

150 × 190 × 3 TDPG (Basic-iterations) 1771 4.99e−02 30.27 21.44

TG-MPE (k = 4) 733 4.96e−02 30.30 10.06

HOSVD-TMPE (k = 4) 541 4.98e−02 31.64 7.22
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Fig. 7 The relative error-norm, the acceleration rate and the PSNR curves for ’coloredChips’ image

Fig. 8 The original "sherlock" image (left) and its painted one (right)

Figure7 displays the relative error-norm (on the left), the rate of acceleration (in
the middle), and PSNR (on the right) versus the iteration index for the three methods:
TDPG, TG-MPE, and HOSVD-TMPE. Compared to TDPG (Basic Iterations) and
TG-MPE, the curves confirm that our proposed algorithm is more effective.

Now, let us consider another color image obtained from ’sherlock.jpg’ in the MAT-
LAB R2020a collection. We corrupted it by adding a scribble, as illustrated in Fig. 8.

Figure9 illustrates the restored images obtained using TDPG, TG-MPE, and the
proposed algorithm (HOSVD-TMPE). It is evident that our proposed method and
TG-MPE yield nearly identical results, with a slight advantage observed for HOSVD-
TMPE. Compared to the basic iterative TDPG method, both HOSVD-TMPE and
TG-MPE methods have effectively removed most of the superimposed scribble.

Table 3 presents various values, including the iteration number, relative error, recov-
ered image PSNR, and required CPU time for TDPG (Basic Iterations), TG-MPE, and
HOSVD-TMPE. For the size 150 × 160 × 3, we stopped computations when the rel-
ative error was less than ε = 8 × 10−2, while for the size (325 × 300 × 3), we set
ε = 10−1. The obtained results confirm the advantage of our proposed method in
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Fig. 9 The recovered images byTDPG(left), TG-MPE (middle) andHOSVD-TMPE(right) in 520 iterations

Table 3 Comparison of the required iteration number, relative error, PSNR and CPU time for TDPG
(Basic-Iterations), TG-MPE and HOSVD-TMPE for different sizes of ’sherlok’ image

Data size Algorithms Iter Error PSNR CPU-time (s)

(150 × 160 × 3) TDPG (Basic-iterations) 1296 7.99e−02 27.58 13.71

TG-MPE (k = 6) 295 7.98e−02 27.59 3.55

HOSVD-TMPE (k = 6) 235 7.92e−02 27.65 2.73

(325 × 300 × 3) TDPG (Basic-iterations) 1850 1.02e−01 23.77 131.13

TG-MPE (k = 6) 1087 9.99-02 18.95 82.25

HOSVD-TMPE (k = 6) 589 9.99e−02 25.80 41.70
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Fig. 10 The relative error (left), the acceleration rate (middle) and the PSNR (right) curves for ’sherlok’
image

terms of PSNR, relative error, as well as the required number of iterations and CPU
time.

The curves depicted in Fig. 10 illustrate the superior performance of our proposed
method compared to TG-MPE. It is evident that HOSVD-TMPE excels in terms of
PSNR, relative error-norm, and convergence rate, highlighting its effectiveness

7 Conclusion

The acceleration of slowly convergent sequences is an interesting purpose of extrap-
olation methods. In this paper, we introduced a new tensor extrapolation method for
tensor sequences, namely HOSVD-TMPE. We presented an efficient algorithm that
is based on high-order singular value decomposition for implementing the proposed
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extrapolation method. The presented numerical tests show the performance and effec-
tiveness of the algorithm. Additionally, we provide some applications in color image
restoration and completion.
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