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Abstract
In this paper, we prove that a 3ρ-locally maximum volume submatrix Â ∈ R

r×r in
the matrix A ∈ R

M×N can be found in O
(
M Nr

(
log r + logρ r

))
operations, and a

ρ-locally maximum volume submatrix for ρ ≤ 3 can be found in O
(
M Nr3 logρ r

)

operations. Based on these submatrices, it is possible to construct a rank revealing
LU decomposition with guarantees for the approximation accuracy in spectral and
Chebyshev norms.

Keywords Locally maximum volume · Cross approximation · Rank revealing LU ·
Gaussian elimination

Mathematics Subject Classification 15A23 · 65F55 · 65Y20

1 Introduction

To quickly construct low-rank matrix approximations, it is advantageous to use CU R
(or CG R) cross approximation based on a small number of columns C ∈ R

M×r

and rows R ∈ R
r×N of the original matrix A ∈ R

M×N . Generator U is commonly
chosen as U = Â−1, where Â ∈ R

r×r is a submatrix at the intersection of rows R and
columns C .Approximation C Â−1R has an important interpretation: it is equivalent to
an incomplete LU decomposition of the matrix A with rows and columns rearranged
accordingly. In other words, it is given by the first r steps of Gaussian elimination,
with the choice of initial rows and columns corresponding to Â submatrix. In practice,
C Â−1R approximations are built using adaptive cross approximation (ACA) [1] or
maxvol [2] algorithm. They also play an important role in the construction of tensor
trains [3]. If the resulting submatrix turns out to be a submatrix of locally maximum
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volume (we will give the exact definition later), then there exist error bounds for the
C Â−1R approximation [4, 5].

Note that in many papers [4, 6, 7] the emphasis is placed on the submatrices of
maximum volume. On the other hand, in order to achieve the corresponding estimates,
it already suffices to find a submatrix of locally maximum volume. The difference
between them is very significant, since finding a submatrix of the maximum volume
or a volume close to the maximum is an NP-hard problem [8, 9]. Until now, it was
not clear whether there is an algorithm that can find a submatrix Â ∈ R

r×r of almost
locally maximum volume in the matrix A ∈ R

M×N of a general form in polynomial
time. In this paper, such an algorithm is presented for the first time, estimates for the
number of steps are given and the accuracy of the obtained approximation is proved.
Obtaining a submatrix of almost locally maximum volume allows us to construct cross
and incomplete LU decompositions with guaranteed accuracy in the spectral norm
and Chebyshev norms.

Before we go any further, it is important to mention, that for symmetric positive
semi-definite (SPSD) matrices locally maximum volume search is much easier, as
one can only consider principle submatrices. A ρ-locally maximum volume princi-
ple submatrix can be found using the strong rank revealing Cholesky factorization
algorithm [10]. Since any SPSD matrix A ∈ R

N×N can be written in the form BT B,

B ∈ R
N×N , the search of the locally maximum volume principle submatrix is equiv-

alent to the search for N × r locally maximum volume columns in B, which requires
O

(
r logρ r

)
column exchanges [11, Theorem 2]. Consequently, strong rank reveal-

ing Cholesky factorization can also be achieved in O
(
r logρ r

)
exchanges, which

require in total O
(
Nr2 logρ r

)
operations, when using the algorithm from [10]. This

complexity bound has been proven directly for SPSD matrices in [12] (Section 2.2.3).

2 Definitions

We will consider the problem of finding the submatrix Â in terms of constructing the
corresponding incomplete LU decomposition. Incomplete LU decomposition can
serve as a criterion to estimate the rank of a matrix if the rows and columns are chosen
appropriately. Such LU decompositions are called rank revealing LU (RRLU).

Similarly, RRQR is an abbreviation for the rank revealing QR decomposition.
Strong RRQR decomposition plays an important role in constructing estimates and
algorithms for RRLU decompositions.

Definition 1 Incomplete Q R decomposition with column pivoting

A� = Q

[
R B

C

]
∈ R

M×N ,

where Q ∈ R
M×M is orthogonal and R ∈ R

r×r is upper triangular is called “rank
revealing”, if

σr (R) ≥ σr (A)/p1(r , N )
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Polynomial time ρ-locally maximum volume search Page 3 of 26 42

and

σ1(C) ≤ σr+1(A)p2(r , N ),

where p1(r , N ) and p2(r , N ) are polynomials or some functionswhich canbebounded
by polynomials in r and N .

It is called “spectrum revealing” if also

σi (R) ≥ σi (A)/p1(r , N ), i = {1, . . . , r − 1} .

It is called “strong” [13] if also

σi (C) ≤ σr+i (A)p2(r , N ), i = {1, . . . ,min(M − r , N − r)}

and
∥∥∥R−1B

∥∥∥
C

≤ f = const,

where

‖A‖C = max
i, j

∣
∣Ai j

∣
∣

is the Chebyshev norm.

Similar definitions apply for R RLU .

Definition 2 Incomplete LU decomposition with row and column pivoting

�1A�2 =
[

L11
L21 IM−r

] [
U11 U12

U22

]
∈ R

M×N , (1)

where L11 ∈ R
r×r is unit lower triangular andU11 ∈ R

r×r is upper triangular is called
“rank revealing”, if

σr (L11U11) ≥ σr (A)/p1(r , M, N )

and

σ1(U22) ≤ σr+1(A)p2(r , M, N ),

where p1(r , M, N ) and p2(r , M, N ) are polynomials or some functions which can
be bounded by polynomials in r , M and N .

It is called “spectrum revealing” [14] if also

σi (L11U11) ≥ σi (A)/p1(r , M, N ), i = {1, . . . , r − 1} .
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It is called “strong” [15] if also

σi (U22) ≤ σr+i (A)p2(r , M, N ), i = {1, . . . ,min(M − r , N − r)} , (2)
∥∥∥L21L−1

11

∥∥∥
C

≤ f = const (3)

and
∥∥
∥U−1

11 U12

∥∥
∥

C
≤ f = const. (4)

Construction of RRQR and RRLU decompositions can be considered equivalent
to choosing r columns in the case of RRQR and r rows and columns in the case
of RRLU, which are given by permutations of �, �1 and �2 respectively. From
an algorithmic perspective, searching for these permutations usually takes more time
than constructing RRLU or RRQR based on rows and columns, which are already
given. In particular, after choosing columns, constructing an incomplete QR decom-
position takes O

(
nnz (A) r + Mr2

)
operations, where nnz (A) is the number of

nonzero elements of the matrix A. The construction of the factors L =
[

L11
L21

]
and

U = [
U11 U12

]
in the incomplete LU decomposition requires only O

(
(M + N ) r2

)

arithmetic operations (when the rows and columns, corresponding to L11 andU11, are
known). Due to the linear complexity of RRLU in terms of matrix sizes, algorithms for
finding a large volume submatrix are often used, which also have linear complexity [1,
2]. They do not, however, guarantee high approximation accuracy precisely because
that linear complexity does not allow them to consider the entire matrix and select
close to optimal rows and columns.

As will be shown, to achieve strong RRLU decomposition, it suffices to choose
permutations�1 and�2 so that the first r rows and columns correspond to a submatrix
of ρ-locally maximum volume, ρ = const. Thus, the problem of constructing a strong
RRLUdecomposition is reduced to finding a submatrix of ρ-locallymaximumvolume
and proving the “strong” properties of the corresponding decomposition.

Definition 3 The volume of the matrix Â ∈ R
n×r , n ≥ r , is the following quantity:

V
(

Â
)

=
√
det

(
AT A

)
.

In the case of a square matrix (n = r),

V
(

Â
)

=
∣∣∣det Â

∣∣∣ .

Definition 4 A full rank submatrix Â ∈ R
m×n of a matrix A ∈ R

M×N is said to have
ρ-locally maximum volume (hereinafter, estimates with ρ ≥ 1 are considered) if the
permutation of its arbitrary i-th row and/or j-th column with any other row k and/or
column l of the matrix A increases its volume by at most ρ times.

A submatrix is said to have locally maximum volume if ρ = 1.

123



Polynomial time ρ-locally maximum volume search Page 5 of 26 42

Note that, unlike the definition in [16], one row and one column can be replaced at
the same time.

Taking into account the definitions above, we can now formulate the main result of
this paper.

Theorem 1 Strong RRLU decomposition of rank r of the matrix A ∈ R
M×N can

be constructed on the basis of a submatrix of 3ρ-locally maximum volume of size
r × r . Moreover, such a submatrix can be found in O

(
M Nr

(
log r + logρ r

))

operations, and ρ-locally maximum volume submatrix with ρ ≤ 3 can be found
in O

(
M Nr3 logρ r

)
operations.

Before we move on to construct a decomposition, which satisfies Theorem 1, it is
worth paying attention to other existing methods for constructing RRQR and RRLU
decompositions with proven bounds on the number of steps and approximation error,
since they can also be used to obtain the required spectral norm approximation accu-
racy.

3 Strong RRQR

We start with RRQR decomposition, since it can be used as a first step to constructing
RRLU decomposition. The following theorem was proved in [13].

Theorem 2 [13] Let the submatrix A1 ∈ R
M×r consisting of r columns of the matrix

A ∈ R
M×N have ρ-locally maximum volume.

Then, based on the columns A1, one can construct strong RRQR decomposition
with

∥∥∥R−1B
∥∥∥

C
≤ ρ

and

p1(r , N ) = p2(r , N ) =
√
1 + ρ2r(N − r).

Moreover,aρ-locally maximal submatrix can be found in O
((

nnz(A)r + (M + N ) r2
)

(
1 + logρ r

))
operations, where nnz(A) is the number of nonzero elements in the

matrix A.

The complexity bound was first proved in [17] and then improved in [11].

4 Rank revealing LU

Nowwemove on to constructing RRLUdecomposition. Recall themain theorem from
[16] and an algorithm for obtaining bounds from it, based on strong RRQR [13]. Note
that an alternative algorithm suggested in [16] does not have a bound on the number
of steps.
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42 Page 6 of 26 A. Osinsky

Theorem 3 [16] Let the submatrix A1 ∈ R
M×r consisting of r columns of the matrix

A ∈ R
M×N have ρ-locally maximum volume in A. Let the submatrix Â ∈ R

r×r have
ρ-local maximum volume in A1.

Then, based on the columns A1 and the rows corresponding to Â, one can construct
a spectrum revealing LU decomposition with

p1(r , M, N ) = p2(r , M, N ) =
√
1 + ρ2r(N − r)

√
1 + ρ2r(M − r).

In addition,

∥
∥∥L21L−1

11

∥
∥∥

C
≤ ρ

and
∥∥∥A†

1A
∥∥∥

C
≤ ρ,

where A†
1 denotes the Moore–Penrose pseudoinverse of A1.

Moreover, submatrices A1 and Â can be found in O
(
(nnz(A)r + (M + N )r2)(

1 + logρ r
))

operations, where nnz(A) is the number of nonzero elements of the
matrix A.

The bound on the complexity follows directly from Theorem 2.
Since in [16] it was not proved that the decomposition is spectrum revealing, we

prove it here. To do this, we will apply spectrum revealing estimates for RRQR twice.
Using the spectrum revealing property ofQRbased on the submatrix A1 ofρ-locally

maximum volume (Theorem 2), we obtain the inequality

σi (A1) ≥ σi (A) /
√
1 + ρ2r(N − r). (5)

Next, columns AT
1 ∈ R

r×M contain the submatrix ÂT ∈ R
r×r of ρ-locally of maxi-

mum volume, and the QR decomposition AT
1 � = Q1 [R1 B1] , where Q1R1 = ÂT ,

according to Theorem 2 has the following spectrum revealing property:

σi

(
ÂT

)
≥ σi

(
AT
1

)
/
√
1 + ρ2(M − r). (6)

Since Â = L11U11, and A1 =
[

L11
L21

]
U11, then, combining (6) and (5) together leads

to the following inequality:

σi (L11U11) ≥ σi

([
L11
L21

]
U11

)
/
√
1 + ρ2r(M − r)

= σi (A1) /
√
1 + ρ2r(M − r))

≥ σi (A) /
(√

1 + ρ2r(M − r)
√
1 + ρ2r(N − r)

)
, (7)
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which proves the spectrum revealing property of the resulting RRLU decomposition.
The columns A1 can be found numerically using the RRQR algorithm from [13],

while the submatrix Â ∈ R
r×r in the already fixed columns A1 ∈ R

M×r can also be
found using the maxvol [2] algorithm.

Although we are not aware of an example, which shows that Theorem 3 may not
provide the strong RRLU bounds (2), it can definitely violate the condition (4), which,
as we will see later, is crucial for proving the bounds (2).

For example, consider the matrix

A =

⎡

⎢⎢⎢
⎣

1 + ε
√

N · · · √
N

1 0 · · · 0
...

...
. . .

...

1 0 · · · 0

⎤

⎥⎥⎥
⎦

∈ R
N×N

with arbitrary small ε and its rank 1 approximation, based on the Theorem 3. First,
we select the locally maximum volume column, i.e., the column with the maximum
length. This is always going to be the first column. Then we select 1 × 1 maximum
volume submatrix in this column, which is going to be the element 1+ε. It differs from
the locally maximum volume submatrix in the first row by a factor arbitrarily close
to

√
N . Namely, we have f = √

N/(1 + ε), which depends on the matrix size and
thus contradicts the “strong” property (4). Nevertheless, it does not directly prevent
(2), which may or may not hold.

5 Strong RRLU

As we have seen, rank revealing LU from the previous section provides reasonable
approximation accuracy in the spectral norm, from which the Chebyshev norm bound
can also be derived. Nevertheless, finding close to locallymaximum volume submatrix
not only additionally guarantees the “strong” properties (2)–(4), but also provides a
much better Chebyshev norm bound, which does not depend on matrix sizes [5].

For the first time, it was proposed to search for a submatrix of locally maximum
volume in the entire matrix in [15]. In addition, the following criterion was proved.
Here Eqs. (8) and (9) provide the same bounds as Eqs. (3) and (4).

Lemma 1 [15] Consider a matrix A ∈ R
M×N with the following block structure

A =
[

A11 A12
A21 A22

]
,

with

C =
[

A11
A21

]
∈ R

M×r ,
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and

R = [
A11 A12

] ∈ R
r×N .

Then submatrix Â = A11 ∈ R
r×r has ρ-locally maximum volume if and only if the

following inequalities are true:
∥∥∥ Â−1R

∥∥∥
C

≤ ρ, (8)
∥∥∥C Â−1

∥∥∥
C

≤ ρ, (9)

max
i, j,k,l

∣∣∣
∣
(

Â−1R
)

jl

(
C Â−1

)

ki
+ Â−1

j i

(
A − C Â−1R

)

kl

∣∣∣
∣ ≤ ρ. (10)

Moreover, when the i-th row of the submatrix Â is replaced by the k-th row of the matrix

A, the volume of the submatrix is multiplied by the factor
∣∣∣
(

C Â−1
)

ki

∣∣∣ ; when the j-th

column of the submatrix Â is replaced by the l-th column of the matrix A, the volume

is multiplied by the factor

∣∣∣∣
(

Â−1R
)

jl

∣∣∣∣ ; when replacing a row and a column, the

volume is multiplied by the factor

∣∣
∣∣
(

Â−1R
)

jl

(
C Â−1

)

ki
+ Â−1

j i

(
A − C Â−1R

)

kl

∣∣
∣∣ .

Hereinafter Â−1
j i denotes the ji-th element of Â−1.

Finally, the following theorem was proved.

Theorem 4 [15] Based on rows R ∈ R
r×N and columns C ∈ R

M×r corresponding to
submatrix Â ∈ R

r×r of matrix A ∈ R
M×N such that

∥∥∥ Â−1R
∥∥∥

C
≤ √

ρ,
∥∥∥C Â−1

∥∥∥
C

≤ √
ρ

and

∥
∥∥ Â−1

∥
∥∥

C

∥
∥∥A − C Â−1R

∥
∥∥

C
≤ 2ρ (11)

(it is also sufficient that Â has
√

ρ-locally maximum volume in the entire matrix) one
can construct a strong RRLU with

f = √
ρ,

p1(r , M, N ) = p2(r , M, N ) = √
(1 + 3ρr(M − r))(1 + 3ρr(N − r)).

In [15] the result was formulated less rigorously, so we repeat its proof here.
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Proof First, we prove that

σi (U22)≤
√

(1+3ρr (N −r)) (1+3ρr (N − r))σr+i (A) = σr+i (A) p2 (r , M, N ) .

Like in Lemma 1, we can assume Â is on the intersection of the first r rows and
columns, Â = A11, where the entire matrix A can be written in block form as

A =
[

A11 A12
A21 A22

]
.

Then U22 = A22 − A21A−1
11 A12 and submatrix Â = A11 corresponds to the rows

R = [
A11 A12

]
and columns C =

[
A11
A21

]
. The error of the corresponding cross

approximation is

A − C Â−1R =
[
0 0
0 A22 − A21A−1

11 A12

]
=

[
0 0
0 U22

]
.

Consider the matrix

D =
[

abA11 0
0 A22 − A21A−1

11 A12

]
, (12)

where

a = √
2ρr (M − r),

b = √
2ρr (N − r).

Observe that
∥
∥∥A−1

11

∥
∥∥
2
‖A22 − A21A−1

11 A12‖2 =
∥
∥∥ Â−1

∥
∥∥
2
‖A − C Â−1R‖2

≤ r
∥∥∥ Â−1

∥∥∥
C

· √
(M − r) (N − r)‖A − C Â−1R‖C

≤ 2ρr
√

(M − r) (N − r)

= ab, (13)

where we used condition (11). Hereinafter

‖A‖2 = σ1 (A)

denotes the spectral norm.
Then, using (13), we can write the following inequalities for the singular values,

corresponding to the submatrices of D:

σmin (abA11) = abσmin (A11) = ab/

∥∥∥A−1
11

∥∥∥
2

≥ ‖A22 − A21A−1
11 A12‖2.
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Since rank A11 = r , the first r largest singular values of D (12) correspond to the
submatrix abA11, so for the rest of its singular values

σr+i (D) = σi

(
A22 − A21A−1

11 A12

)
.

Now, let us factorize matrix D as follows:

D =
[

abA11 0
0 A22 − A21A−1

11 A12

]
=

[
aI 0
−A21A−1

11 I

] [
A11 A12
A21 A22

] [
bI −A−1

11 A12
0 I

]
.

Then

σi

(
A22 − A21A−1

11 A12

)
= σr+i (D)

≤
∥
∥∥∥

[
aI 0
−A21A−1

11 I

]∥
∥∥∥
2
σr+i

([
A11 A12
A21 A22

]) ∥
∥∥∥

[
bI −A−1

11 A12
0 I

]∥
∥∥∥
2
. (14)

Spectral norms of the block matrices can be estimated as

∥∥∥
∥

[
aI 0
−A21A−1

11 I

]∥∥∥
∥

2

2
≤ ‖aI‖22 +

∥∥∥−A21A−1
11

∥∥∥
2

2
+ ‖I‖22

≤ 1 + a2 + r(M − r)

∥∥∥A21A−1
11

∥∥∥
2

C

≤ 1 + 2ρr (M − r) + r (M − r) ρ

= 1 + 3ρr (M − r) . (15)

Similarly,

∥∥
∥∥

[
bI −A−1

11 A12
0 I

]∥∥
∥∥

2

2
≤ 1 + 3ρr (N − r) . (16)

Substituting (15) and (16) into (14) leads us to the desired inequality:

σi (U22) = σi

(
A22 − A21A−1

11 A12

)

≤ √
(1 + 3ρr (N − r)) (1 + 3ρr (N − r))σr+1 (A)

= p2 (r , M, N ) σr+i (A) .

Next,weprove the “spectrumrevealing”property for p1 (r , M, N ) = p2 (r , M, N ):

σi (L11U11) = σi (A11) ≥ σi (A) /
√

(1 + 3ρr (N − r)) (1 + 3ρr (N − r)). (17)
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To do that, we can use the following factorization:

A =
[

A11 A12
A21 A22

]
=

[
I 0
A21A−1

11 aI

] [
A11 0

0 1
ab

(
A22 − A21A−1

11 A12

)
] [

I A−1
11 A12

0 bI

]
.

Then

σi (A)

≤
∥
∥∥∥

[
I 0
A21A−1

11 aI

]∥
∥∥∥
2
σi

([
A11 0

0 1
ab

(
A22 − A21A−1

11 A12

)
])∥

∥∥∥

[
I A−1

11 A12
0 bI

]∥
∥∥∥
2
. (18)

We again estimate the spectral norms, similar to (15) and (16):

∥
∥∥∥

[
I 0
A21A−1

11 aI

]∥
∥∥∥

2

2
≤ 1 + 3ρr (M − r) (19)

and

∥∥∥∥

[
I −A−1

11 A12
0 bI

]∥∥∥∥

2

2
≤ 1 + 3ρr (N − r) . (20)

Moreover,

σi

([
A11 0

0 1
ab

(
A22 − A21A−1

11 A12

)
])

= σi

(
1

ab
D

)
= σi (A11) (21)

as now we have i ≤ r , and we have already shown that the first r singular values
correspond to the submatrix A11. Combining together Eqs. (18) through (21), we
obtain

σi (A) ≤ √
(1 + 3ρr (N − r)) (1 + 3ρr (N − r))σi (A11) . (22)

Equation (17) follows directly from (22). ��
However, it is still not clear how to find a submatrix of ρ-locally maximum volume

fast enough. The authors themselves state in [14] that there are still no effective algo-
rithms for its search. Let us show that it is possible to reach the bounds of Theorem 4
fairly quickly.

Wewill start from the initial r×r submatrix, constructed usingGaussian elimination
with complete pivoting. For our purposes, we will require the following result, which
is also useful for adaptive cross approximation [18].

Lemma 2 [18] Let the rows of the submatrix Â ∈ R
r×r be obtained by Gaussian

elimination with partial pivoting in the columns C ∈ R
M×r . Then

∥∥∥C Â−1
∥∥∥

C
≤ 2r−1.
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42 Page 12 of 26 A. Osinsky

Obviously, the same result will hold for complete pivoting. In complete pivoting,

wewill also have the inequality for
∥∥∥ Â−1R

∥∥∥
C

≤ 2r−1.Moreover, in [19] the following

result was proved.

Lemma 3 [19] Let the rows R ∈ R
M×r and columns C ∈ R

r×N corresponding to
submatrix Â ∈ R

r×r be the first r rows and columns selected by Gaussian elimination
with complete pivoting for the matrix A ∈ R

M×N . Then

∥∥∥A − C Â−1R
∥∥∥

C
≤ 4rγrσr+1 (A) ,

where γr ≤ 2
√

r + 1(r + 1)
ln(r+1)

4 is the growth factor.

Corollary 1 Under the conditions of Lemma 3,

∥
∥∥A − C Â−1R

∥
∥∥

C
≤ 4r−1/2r

2+ln r
4

∥
∥∥ Â−1

∥
∥∥

−1

2
.

Proof Consider the submatrix Ā ∈ R
(r−1)×(r−1), obtained after r−1 steps ofGaussian

elimination.ApplyingLemma3 to thematrix Â (instead of A), after r−1 steps (instead
of r ) we have

∥∥∥ Â − Ĉ Ā−1 R̂
∥∥∥

C
≤ 4r−1γr−1σr

(
Â
)

,

where R̂ ∈ R
(r−1)×r and Ĉ ∈ R

r×(r−1) are rows and columns of Â, corresponding to
Ā.

Then, by definition of the growth factor, we can estimate the error at the r -th step
of Gaussian elimination:

∥∥∥A − C Â−1R
∥∥∥

C
≤ γ1

∥∥∥ Â − Ĉ Ā−1 R̂
∥∥∥

C

≤ 2
∥∥∥ Â − Ĉ Ā−1 R̂

∥∥∥
C

≤ 4r−1/2γr−1σr

(
Â
)

≤ 4r−1/2r
2+ln r

4 σr

(
Â
)

= 4r−1/2r
2+ln r

4

∥∥∥ Â−1
∥∥∥

−1

2
.

��
Combining Lemma 2 and Corollary 1, we see that Gaussian elimination produces

a ρ-locally maximum volume submatrix, albeit with quite a large ρ.

Corollary 2 Let the rows R ∈ R
M×r and columns C ∈ R

r×N corresponding to sub-
matrix Â ∈ R

r×r be the first r rows and columns selected by Gaussian elimination
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with complete pivoting for the matrix A ∈ R
M×N . Then Â is a ρ-locally maximum

volume submatrix with

ρ ≤ 3 · 4r−1r
2+ln r

4 .

Proof Comparing Lemma 2 with the conditions (8) and (9) of Lemma 1, we see
that they are satisfied for ρ = 2r−1. Let us now check the last condition, where we
substitute the inequalities, provided by Lemma 2 and Corollary 1:

max
i, j,k,l

∣∣∣∣
(

Â−1R
)

ik

(
C Â−1

)

jl
+ Â−1

i j

(
A − C Â−1R

)

lk

∣∣∣∣

≤
∥∥∥C Â−1

∥∥∥
C

∥∥∥ Â−1R
∥∥∥

C
+

∥∥∥ Â−1
∥∥∥

C

∥∥∥A − C Â−1R
∥∥∥

C

≤ 4r−1 + 4r−1/2r
2+ln r

4

≤ 3 · 4r−1r
2+ln r

4 .

��
Finally, we will need a result on the closeness of the volume of a submatrix of

locally maximum volume to the volume of the maximum volume submatrix.

Lemma 4 Let Â ∈ C
r×r be a ρ-locally maximum volume in the matrix A ∈ C

M×N .

Let AM ∈ C
r×r be a submatrix of maximum volume in A. Then

V(AM ) ≤ V( Â)
(
1 + 3ρ2r2

)r
.

Proof Let us start with the observation, that there exists a submatrix Ã ∈ C
m×n with

m, n ≤ 2r , which contains the submatrices Â and AM .

According to Theorem 4, when constructing LU for Ã based on Â,

p1 (r , m, n) ≤
√(

1 + 3ρ2r(m − r)
) (
1 + 3ρ2r(n − r)

) ≤ 1 + 3ρ2r2,

and therefore

σi ( Â) ≥ σi ( Ã)/p1 (r , m, n) ≥ σi ( Ã)/(1 + 3ρ2r2), i = {1, . . . , r} .

Taking the product over all singular values, we get

V(AM ) =
r∏

i=1

σi (AM )

≤
r∏

i=1

σi

(
Ã
)
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≤
(
1 + 3ρ2r2

)r r∏

i=1

σi

(
Â
)

≤ V( Â)
(
1 + 3ρ2r2

)r
.

��

We are now ready to prove the main Theorem 1. To do that, we are going to use the
following Algorithm 1.

Algorithm 1 3ρ-locally maximum volume search

Input: Matrix A ∈ R
M×N , required rank r , parameter ρ ≥ 1.

Output: Submatrix Â ∈ R
r×r of 3ρ-locally maximum volume.

1: Run r steps of Gaussian elimination with full pivoting to find the starting submatrix Â ∈ R
r×r ,

containing the pivots
2: Let Â be on the intersection of rows R ∈ R

r×N and columns C ∈ R
M×r

3: loop
4: Find volume growth for a single row swap:

5: i1, k1 = argmax
i,k

∣∣
∣
(

C Â−1
)

ki

∣∣
∣ , j1 = l1 = 1

6: ρ1 = max
i,k

∣
∣∣
(

C Â−1
)

ki

∣
∣∣

7: Find volume growth for a single column swap:

8: j2, l2 = argmax
j,l

∣∣∣
∣
(

Â−1R
)

jl

∣∣∣
∣ , i2 = k2 = 1

9: ρ2 = max
j,l

∣∣∣
∣
(

Â−1R
)

jl

∣∣∣
∣

10: Find volume growth for the simultaneous swap of a row and a column:

11: i3, j3, k3, l3 = argmax
i, j ,k,l

∣∣
∣ Â−1

j i

∣∣
∣
∣∣
∣
(

A − C Â−1R
)

kl

∣∣
∣

12: ρ3 =
∣
∣∣∣
(

Â−1R
)

j3l3

(
C Â−1

)

k3i3
+ Â−1

j3i3

(
A − C Â−1R

)

k3l3

∣
∣∣∣

13: Select maximum estimated growth:
14: ρn = max (ρ1, ρ2, ρ3) , n ∈ {1, 2, 3} .

15: if ρn >
√

ρ then
16: Swap the rows in and kn
17: Swap the columns jn and ln
18: Update Â−1, C Â−1, Â−1R and A − C Â−1R
19: else
20: break
21: end if
22: end loop

It starts from Gaussian elimination, and then exchanges rows and columns based
on the best of three values ρ1, ρ2 and ρ3. They correspond to the estimated volume
increase after exchanging a row, a column, or both a row and a column respectively.
Note, that if it stops, the following inequalities are satisfied:
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∥∥
∥ Â−1R

∥∥
∥

C
≤ √

ρ,
∥∥
∥C Â−1

∥∥
∥

C
≤ √

ρ,
∥∥
∥ Â−1

∥∥
∥

C

∥∥
∥A − C Â−1R

∥∥
∥

C
≤ 2ρ. (23)

The first two follow directly from the fact that max (ρ1, ρ2) ≤ ρn ≤ √
ρ (inequality

on line 15 is false if “break” happened), and the third one follows from

ρ3 =
∣∣∣∣
(

Â−1R
)

j3l3

(
C Â−1

)

k3i3
+ Â−1

j3i3

(
A − C Â−1R

)

k3l3

∣∣∣∣

≥
∣
∣∣∣ Â−1

j3i3

(
A − C Â−1R

)

k3l3

∣
∣∣∣ −

∣
∣∣∣
(

Â−1R
)

j3l3

(
C Â−1

)

k3i3

∣
∣∣∣

= max
i, j

∣∣∣ Â−1
j i

∣∣∣max
k,l

∣∣∣
(

A − C Â−1R
)

kl

∣∣∣ −
∣∣∣∣
(

Â−1R
)

j3l3

(
C Â−1

)

k3i3

∣∣∣∣

≥ max
i, j

∣∣
∣ Â−1

j i

∣∣
∣max

k,l

∣∣
∣
(

A − C Â−1R
)

kl

∣∣
∣ − max

j2l2

∣∣
∣∣
(

Â−1R
)

j2l2

∣∣
∣∣max

i1k1

∣∣
∣∣
(

C Â−1
)

i1k1

∣∣
∣∣

= max
i, j

∣
∣∣ Â−1

j i

∣
∣∣max

k,l

∣
∣∣
(

A − C Â−1R
)

kl

∣
∣∣ − ρ2ρ1

=
∥∥∥ Â−1

∥∥∥
C

∥∥∥A − C Â−1R
∥∥∥

C
− ρ2ρ1,

so

∥∥∥ Â−1
∥∥∥

C

∥∥∥A − C Â−1R
∥∥∥

C
≤ ρ2ρ1 + ρ3 ≤ ρ + √

ρ ≤ 2ρ.

From the conditions (23) we also find that the output submatrix has 3ρ-locally maxi-
mum volume. According to Lemma 1, it is enough to satisfy the conditions (8)–(10).
First two follow directly from (23) and the last condition (with 3ρ in place of ρ)
follows from

max
i, j,k,l

∣
∣∣∣
(

Â−1R
)

jl

(
C Â−1

)

ki
+ Â−1

j i

(
A − C Â−1R

)

kl

∣
∣∣∣

≤ max
i, j,k,l

∣∣∣∣
(

Â−1R
)

jl

(
C Â−1

)

ki

∣∣∣∣ + max
i, j,k,l

∣∣∣ Â−1
j i

(
A − C Â−1R

)

kl

∣∣∣

≤
∥∥∥ Â−1R

∥∥∥
C

∥∥∥C Â−1
∥∥∥

C
+

∥∥∥ Â−1
∥∥∥

C

∥∥∥A − C Â−1R
∥∥∥

C
≤ ρ + 2ρ ≤ 3ρ.

Algorithm 1 also does eventually stop, as the volume is multiplied at least by a factor
max (ρ1, ρ2, ρ3) >

√
ρ ≥ 1 at each iteration. Thus, it can’t visit the same submatrix

twice, and there is a finite number of submatrices to check.
If we want to reach a ρ-locally maximum volume submatrix, we first run Algo-

rithm 1 with ρ = √
3 (although any constant greater than 1 would suffice) and then

improve itmaking exchanges followingLemma1.According toLemma1,Algorithm2
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eventually outputs a ρ-locally maximum volume submatrix. And it also eventually
stops for the same reason.

Algorithm 2 ρ-locally maximum volume search

Input: Matrix A ∈ R
M×N , required rank r , parameter ρ ≥ 1.

Output: Submatrix Â ∈ R
r×r of ρ-locally maximum volume.

1: Run Algorithm 1 with ρ = √
3

2: Let the output submatrix Â be on the intersection of rows R ∈ R
r×N and columns C ∈ R

M×r

3: loop
4: Find maximum volume growth (i = k and j = l are allowed):

5: i, j, k, l = argmax
i, j,k,l

∣
∣∣∣
(

Â−1R
)

jl

(
C Â−1

)

ki
+ Â−1

j i

(
A − C Â−1R

)

kl

∣
∣∣∣

6: ρmax =
∣
∣∣∣
(

Â−1R
)

jl

(
C Â−1

)

ki
+ Â−1

j i

(
A − C Â−1R

)

kl

∣
∣∣∣

7: if ρmax > ρ then
8: Swap the rows i and k
9: Swap the columns j and l
10: Update Â−1, C Â−1, Â−1R and A − C Â−1R
11: else
12: break
13: end if
14: end loop

Wenowestimate the number of steps required to reach 3ρ-locallymaximumvolume
and ρ-locally maximum volume submatrices in the following proposition.

Proposition 1 Algorithm 1 stops after O
(

r
(
1 + 1

log ρ

)
log r

)
iterations and has the

total computational cost of O
(

M Nr
(
1 + 1

log ρ

)
log r

)
.

Algorithm 2 performs no more than O
(
r logρ r

)
additional iterations and has the

total computational cost of O
(

M Nr
(
1 + r2

log ρ

)
log r

)
.

Proof The starting submatrix A(0) is chosen usingGaussian eliminationwith complete
pivoting. By Corollary 2, A(0) has ρ(0)-locally maximum volume with

ρ(0) ≤ 3 · 4r−1r
2+ln r

4 . (24)

Consider now the sequence of submatrices Â = A(s) obtained after s steps of
column and/or row exchanges. According to Lemma 4,

V(AM ) ≤ V(A(s))
(
3ρ2

(s)(r
2 + 1)

)r
,

ρ(s) ≥ 1
√
3(r2 + 1)

( V(AM )

V(A(s))

) 1
2r

, (25)

where AM ∈ R
r×r is the maximum volume submatrix.
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At each step of the Algorithm 1, we make an exchange according to the following
rule. We select a new row k and/or a new column l that match the value of

ρ′ = max

(∣
∣∣∣
(

Â−1R
)

j2l2

∣
∣∣∣ ,

∣
∣∣∣
(

C Â−1
)

k1i1

∣
∣∣∣ ,

∣
∣∣
∣ Â−1

j3i3

(
A − C Â−1R

)

k3l3
+

(
Â−1R

)

j3l3

(
C Â−1

)

k3i3

∣
∣∣
∣

)

≥ max

(
max

j,l

∣∣∣
∣
(

Â−1R
)

jl

∣∣∣
∣ ,max

i,k

∣
∣∣
(

C Â−1
)

ki

∣
∣∣ ,

max
i, j

∣
∣∣ Â−1

j i

∣
∣∣max

k,l

∣
∣∣
(

A − C Â−1R
)

kl

∣
∣∣ −

∣∣∣
∣
(

Â−1R
)

j3l3

∣∣∣
∣

∣∣∣
∣
(

Ĉ A−1
)

k3i3

∣∣∣
∣

)

≥ max

(
max

j,l

∣∣∣
∣
(

Â−1R
)

jl

∣∣∣
∣ ,max

i,k

∣
∣∣
(

C Â−1
)

ki

∣
∣∣ ,

max
i, j

∣∣∣ Â−1
j i

∣∣∣max
k,l

∣∣∣
(

A − C Â−1R
)

kl

∣∣∣ − max
j2,l2

∣∣
∣∣
(

Â−1R
)

j2l2

∣∣
∣∣max

i1,k1

∣∣
∣∣
(

Ĉ A−1
)

k1i1

∣∣
∣∣

)
, (26)

where we substituted the definitions of the indices i1, k1, j2, k2, i3, j3, k3, l3 from the
Algorithm 1.

Such a choice increases the volume by at least ρ′ times, since we have chosen
ρ′ = max (ρ1, ρ2, ρ3) .

Moreover, if at the s-th step we have exactly ρ(s)-locally maximum volume sub-

matrix with ρ(s) ≥ 3, then ρ′ ≥ √
ρ(s)/3. Indeed, if max

j,l

∣∣
∣ Â−1R

∣∣
∣

jl
<

√
ρ(s)/3 and

max
i,k

∣
∣∣C Â−1

∣
∣∣
ki

<
√

ρ(s)/3, then

max
i, j

∣∣
∣ Â−1

∣∣
∣

j i
max

k,l

∣∣
∣A − C Â−1R

∣∣
∣
kl

− max
j2,l2

∣∣∣
∣
(

Â−1R
)

j2l2

∣∣∣
∣max

i1,k1

∣∣∣
∣
(

C Â−1
)

k1i1

∣∣∣
∣

≥ max
i, j,k,l

∣
∣∣∣ Â−1

j i

(
A − C Â−1R

)

kl
+

(
Â−1R

)

jl

(
C Â−1

)

ki

∣
∣∣∣

−2max
j2,l2

∣∣∣∣
(

Â−1R
)

j2l2

∣∣∣∣max
i1,k1

∣∣∣∣
(

C Â−1
)

k1i1

∣∣∣∣

≥ ρ(s) − 2
ρ(s)

3
= ρ(s)/3 ≥ √

ρ(s)/3.

Taking (25) into account, we get that the ratio to the maximum volume changes as

V(AM )

V(A(s+1))
≤ V(AM )

V(A(s))
·
√

3

ρ(s)
≤

√
3
√
3(r2 + 1)

( V(AM )

V(A(s))

)1− 1
4r

. (27)

Let us denote

α(s) =
( V(AM )
V(A(s))

) 1
4r

√
3
√
3(r2 + 1)

. (28)
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From (24) and Lemma 4

α(0) ≤ √
ρ(0)/3 ≤ 2r−1r

2+ln r
8 ≤ 2r r

2+ln r
8 . (29)

Substituting α(s) (28) into (27), we can estimate how α(s) changes after each step:

(
27(r2 + 1)

)r
αr

(s+1) ≤
(
27(r2 + 1)

)r
α4r−1

(s) ,

α(s+1) ≤ α
1− 1

4r
(s) ,

α(s) ≤ α

(
1− 1

4r

)s

(0) ,

ln ln α(s) − ln ln α(0) ≤ s ln

(
1 − 1

4r

)
≤ − s

4r
. (30)

Thus, to reach, for instance, α(s) ≤ 31/4 < 2r r
2+ln r

8 , one would need

s1 ≤ 4r ln ln
(
2r r

2+ln r
8

)
− 4r ln ln 31/4 + 1

= O (r log r) (31)

steps. After that

V(AM )

V(A(s1))
≤

(√
3
√
3(r + 1)α(s1)

)4r

≤
(
81

(
r2 + 1

))r
.

Then, while ρ′ ≥ √
ρ, the Algorithm 1 increases the volume by at least a factor

of
√

ρ at every step. Since we cannot exceed the maximum volume, the algorithm
requires at most

s2 ≤ log√
ρ

(
81

(
r2 + 1

))r = O

(
r
log r

log ρ

)
(32)

steps until termination.
Each step of the algorithm is an update of rank no greater than 2 for the submatrices

Â, C, and R, since no more than one row and no more than one column is replaced.
It follows that the recalculation of C Â−1, Â−1R and C Â−1R is also of low rank and
requires a total of atmost O(M N ) operations per step, afterwhich the choice of indices
i, j, k, l based on ρ′ (26) also takes at most O (M N ) operations. Given the constraints

(31) and (32), the total number of steps is s1 + s2 = O
(

r
(
1 + 1

log ρ

)
log r

)
, and

the total computational complexity of the algorithm is O
(

M Nr
(
1 + 1

log ρ

)
log r

)
.

Gaussian elimination with complete pivoting takes O (M Nr) operations, which does
not affect the general asymptotics.
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If it is necessary to search for an ρ-locally maximum volume with ρ ≤ 3, then we
can also make exchanges of rows and columns after 3ρ-locally maximum volume is
reached for ρ = √

3 (which will take O (M Nr log r) operations), but then checking

max
i, j,k,l

∣
∣∣∣
(

Â−1R
)

jl

(
C Â−1

)

ki
+ Â−1

j i

(
A − C Â−1R

)

kl

∣
∣∣∣ > ρ,

which is what Algorithm 2 does.
Since in this case we guarantee an increase in volume by at least ρ times, with

Lemma 4 the number of additional steps can be bounded by

s3 ≤ logρ

(
1 + 3

(
3
√
3
)2

r2
)r

= logρ

(
1 + 81r2

)r = O
(
r logρ r

)
.

However, now at each step it is required to check all M Nr2 variants of the quadruple
i, j, k, l, so these (at most) s3 steps are r2 times more expensive. Thus, the total cost of

the search for ρ-locally maximum volume is O
(

M Nr
(
1 + r2

log ρ

)
log r

)
. For ρ ≤ 3

it simplifies to O
(
M Nr3 logρ r

)
. ��

Note that, as shown in [5], cross approximation based on a ρ-locally maximum
volume submatrix also allows achieving high accuracy in the Chebyshev norm (which
does not depend on matrix sizes). Let us formulate this fact in terms of the LU decom-
position.

Theorem 5 [5] Let an incomplete LU decomposition (1) be constructed based on the
submatrix Â = L11U11 ∈ R

r×r of ρ-locally maximal volume. Then

‖A − LU‖C ≤ ρ (r + 1)2 ‖E‖C , (33)

where matrix E is the error of the best approximation in the Chebyshev norm.

So, finding 3ρ-locally maximum volume submatrix also guarantees a good Cheby-
shev norm bound.

An algorithm, which allows to guarantee the bound (33) was recently suggested in
[20]. Namely, it was shown that a factor of ρ in the Chebyshev norm can be reached
without considering all M Nr2 possible exchanges. Following [20, Lemma 3.15], we
show that it is possible to quickly reach a factor of ρ instead of 3ρ in Chebyshev
norm, even when we only guarantee to find a 3ρ-locally maximum volume submatrix.
It should be noted, however, that the algorithm, described in [20], is asymptotically
slower and that reaching Chebyshev norm bound does not, by itself, guarantee either
“spectrum revealing” or “strong” RRLU properties (see Definition 2), which are nec-
essary to obtain a ρ-locally maximum volume submatrix (see Theorem 4).

To guarantee the bound (33), we calculate the value ρ3 in the Algorithm 1 more
efficiently, by directly finding the maximum possible volume multiplier over all i and
j . We write the result as Algorithm 3.
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Algorithm 3 3ρ-locally maximum volume search with better Chebyshev norm error
guarantees

Input: Matrix A ∈ R
M×N , required rank r , parameter ρ ≥ 1.

Output: Submatrix Â ∈ R
r×r of 3ρ-locally maximum volume.

1: Run r steps of Gaussian elimination with full pivoting to find the starting submatrix Â ∈ R
r×r ,

containing the pivots
2: Let Â be on the intersection of rows R ∈ R

r×N and columns C ∈ R
M×r

3: loop
4: Find volume growth for a single row swap:

5: i1, k1 = argmax
i,k

∣
∣∣
(

C Â−1
)

ki

∣
∣∣ , j1 = l1 = 1

6: ρ1 = max
i,k

∣∣∣
(

C Â−1
)

ki

∣∣∣

7: Find volume growth for a single column swap:

8: j2, l2 = argmax
j,l

∣∣
∣∣
(

Â−1R
)

jl

∣∣
∣∣ , i2 = k2 = 1

9: ρ2 = max
j,l

∣∣
∣∣
(

Â−1R
)

jl

∣∣
∣∣

10: Find volume growth for k and l corresponding to the maximum error:

11: k3, l3 = argmax
k,l

∣
∣∣
(

A − C Â−1R
)

kl

∣
∣∣

12: i3, j3 = argmax
i, j

∣∣∣
∣
(

Â−1R
)

jl3

(
C Â−1

)

k3i
+ Â−1

j i

(
A − C Â−1R

)

k3l3

∣∣∣
∣

13: ρ3 =
∣∣∣
∣
(

Â−1R
)

j3l3

(
C Â−1

)

k3i3
+ Â−1

j3i3

(
A − C Â−1R

)

k3l3

∣∣∣
∣

14: Select maximum estimated growth:
15: ρn = max (ρ1, ρ2, ρ3) , n ∈ {1, 2, 3} .

16: if ρn >
√

ρ then
17: Swap the rows in and kn
18: Swap the columns jn and ln
19: Update Â−1, C Â−1, Â−1R and A − C Â−1R
20: else
21: break
22: end if
23: end loop

Proposition 2 Algorithm 3 requires at most O
(

M Nr
(
1 + 1

log ρ

)
log r

)
operations,

guarantees the same bounds as Algorithm 1 and also allows to construct an incomplete
LU decomposition, such that

‖A − LU‖C ≤ ρ(r + 1)2‖E‖C . (34)

Proof In Algorithm 3, calculating ρ3 allows additionally checking the condition

∣
∣∣∣
(

Â−1R
)

jl3

(
C Â−1

)

k3i
+ Â−1

j i

(
A − C Â−1R

)

k3l3

∣
∣∣∣ ≤ √

ρ (35)

for all i and j and for

k3, l3 = argmax
k,l

∣
∣∣
(

A − C Â−1R
)

kl

∣
∣∣ .
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If, given k3 and l3, it is possible to find i and j such that the condition (35) is violated,
then the increase in volume with the corresponding replacement is at least

√
ρ times,

according to the Lemma 1. Only if this growth is higher than all other options for ρ′
(26), then we make this replacement. We note right away that this will not increase the
cost of the algorithm, since the cost of going through all pairs of i and j requires only
O

(
r2

)
arithmetic operations, which does not increase the asymptotic cost of one step

of the algorithm. In addition, the bound on the number of steps also does not change,
as each increase in volume is not lower than before.

Now we show that when the algorithm stops, the inequality (34) holds. We argue
from the contrary: if the inequality for the Chebyshev norm fails, then, in particular, it
fails for those k and l where the error reaches its maximum. It is these new row k3 and
new column l3 that we are checking. Consider the submatrix Ã ∈ R

(r+1)×(r+1),which
is the extension of the submatrix Â by the found row k3 and column l3. If inequality
(34) is false, then

∥∥∥ Ã − L̃Ũ
∥∥∥

C
> ρ(r + 1)2‖E‖C ≥ ρ(r + 1)2‖Ẽ‖C ,

where ‖Ẽ‖C is the error of the best approximation of Ã in Chebyshev norm, submatri-
ces L̃ ∈ R

(r+1)×r and Ũ ∈ R
r×(r+1) of L and U correspond to the rows and columns

of Ã. Then from Theorem 5 we get that the submatrix Â does not have ρ-locally
maximum volume inside Ã, and hence there is a replacement that includes only the
row k3 or only the column l3, increasing the volume by more than ρ times (which
contradicts (23)), or simultaneous replacement of some row i and column j by k3 and
l3,which increases the volume by more than ρ times, which contradicts the additional
check (35) that we introduced into the algorithm. This contradiction shows that after
termination the inequality (34) must be satisfied. ��

6 Numerical experiments

In this section, we demonstrate the effectiveness of various methods for constructing
rank revealing LU decompositions. The purpose of this chapter is to compare the
proposed method for finding submatrices of locally maximum volume with other
methods, which search for a large volume submatrix.

The fastest method based on volume maximization is the adaptive cross approxi-
mation (ACA) [1]. It uses an incomplete Gaussian elimination with partial pivoting.
Each new row and column are chosen corresponding to the search for the maximum
element in the current row/column of the error. At each step, only one row and one
column are searched, and the final row is chosen as the starting row for the next step.
The rows and columns thus added are used to construct the C Â−1R decomposition,
also known as the cross or skeleton [6].

As an alternative toACA, one can also use an incomplete Gaussian eliminationwith
the choice of the next maximum element in the entire matrix (complete pivoting).
This guarantees the stability of the method, but greatly increases its computational
complexity.

123



42 Page 22 of 26 A. Osinsky

Table 1 Estimates of the complexity and accuracy of approximation for various methods of incomplete LU
decomposition of the square matrix A ∈ R

N×N

Method ‖A−LU‖C‖Ebest‖C

‖A−LU‖2
σr+1(A)

Complexity

ACA [18] – – O
(

Nr2
)

maxvol [2], r swaps – – O
(

Nr2
)

Gauss, complete pivoting – – O
(

N2r
)

Theorem 3
(
1 + ρ2r(N − r)

)
N 1 + ρ2r(N − r) O

(
N2r logρ r

)

Algorithm 3 ρ (r + 1)2 1 + 3ρr(N − r) O
(

N2r logρ r
)

The parameter ρ is assumed to be bounded ρ = const > 1

The maxvol algorithm [2] is more efficient, but also slightly more expensive com-
pared to the ACA method. It allows replacing the chosen rows and columns of the
submatrix.After termination, it guarantees that the found submatrixwill haveρ-locally
maximumvolume inside its corresponding rows and columns. To limit its running time,
one can directly prohibit more than r row and column swaps.

Finally, wewill look at the rank revealing LUdecompositions, based on Theorems 3
and 4.

Complexities and known estimates for all the above methods are shown in Table 1
for the case of a square matrix A ∈ R

N×N . From Theorem 3 one can derive the
following bound on the Chebyshev norm

‖A − LU‖C ≤ ‖A − LU‖2
≤

(
1 + ρ2r(N − r)

)
σr+1 (A)

≤
(
1 + ρ2r(N − r)

)
‖Ebest‖2

≤
(
1 + ρ2r(N − r)

)
N ‖Ebest‖C ,

where Ebest is the matrix of the lowest rank r approximation error in the Chebyshev
norm.

To test these methods, we will use the RANDSVD ensemble [21], which consists
of matrices of the form

A = U SV , U , S, V ∈ R
N×N , (36)

where S is a fixed diagonalmatrix of singular values andU , V are independent random
orthogonal matrices.

Since in practice the algorithms stop after a small number of replacements even for
ρ = 1, we will use ρ = 1, although the obtained estimates for the number of steps do
not hold in this case.
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Table 2 Average errors and computation times of rank r = 20 approximation for 100 random matrices of
the form (36) of size N = 1000 with singular values as in (37)

Method ‖A − LU‖F ‖A − LU‖2 ‖A − LU‖C Time (s)

ACA [18] 3.37 × 10−6 3.13 × 10−6 3.88 × 10−8 1.14 × 10−3

maxvol [2], r swaps 1.68 × 10−6 1.52 × 10−6 1.87 × 10−8 3.28 × 10−3

maxvol [2], unlimited steps 1.36 × 10−6 1.21 × 10−6 1.45 × 10−8 6.57 × 10−3

Gauss, complete pivoting 1.46 × 10−6 1.27 × 10−6 1.52 × 10−8 4.61 × 10−2

Theorem 3, ρ = 1 1.23× 10−6 1.07× 10−6 1.31× 10−8 6.78 × 10−2

Algorithm 3, ρ = 1 1.26 × 10−6 1.10 × 10−6 1.35 × 10−8 7.83 × 10−2

Lowest average errors among the algorithms are indicated in bold

Table 2 shows the results of rank 20 approximations of randomRANDSVDmatrices
with singular values

σk(A) = 1/2k . (37)

It can be seen that, in order to achieve a high-quality approximation, it is usually
not necessary to iterate over all rows and columns, and the faster ACA and maxvol
algorithms are sufficient.At the same time, although the estimate ofTheorem3does not
imply achieving high accuracy in the Chebyshev norm, and the found submatrix may
differ from the submatrix of locally maximum volume, the corresponding algorithm
allows one to achieve approximations of higher accuracy and in less time than search
for a locally maximum volume in the entire matrix. At the moment, we do not have a
theoretical justification for this feature.

Despite the efficiency of ACA and maxvol on average, it is easy to give a lot of
examples where it is necessary to consider the entire matrix to build a high accu-
racy approximation. Consider, for example, an arbitrary matrix with a hidden block
structure

B = �1

[
B1 0
0 B2

]
�2 + E, (38)

where E is some noise and �1 and �2 are permutations of rows and columns. In
the worst case, when the starting submatrix is located entirely in one of the blocks,
replacing the row or column will not allow leaving the current block and moving
to another. This is due to the fact that any column in the rows corresponding to B1
submatrix will either be inside B1 or consist entirely of noise. Only the simultaneous
replacement of a row and a column allows the algorithm to “see” elements from
another block. Even if the initial submatrix is not entirely in one of the blocks, such a
structure still significantly complicates the search for the optimal submatrix and leads
to an increase in the approximation error.
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Table 3 Average errors and computation times of rank r = 20 approximations for 100 random matrices of
the form (38) of size N = 1000 with singular values of blocks as in (39)

Method ‖A − LU‖F ‖A − LU‖2 ‖A − LU‖C Time (s)

ACA [18] 5.41 × 10−1 4.69 × 10−1 1.05 × 10−2 1.20 × 10−3

maxvol [2], r swaps 5.39 × 10−3 4.82 × 10−3 1.02 × 10−4 3.39 × 10−3

maxvol [2], unlimited steps 4.42 × 10−3 3.87 × 10−3 8.01 × 10−5 7.73 × 10−3

Gauss, complete pivoting 1.55 × 10−3 1.06 × 10−3 2.26 × 10−5 4.90 × 10−2

Theorem 3, ρ = 1 1.41× 10−3 9.34× 10−4 2.06× 10−5 6.90 × 10−2

Algorithm 3, ρ = 1 1.45 × 10−3 9.97 × 10−4 2.19 × 10−5 8.64 × 10−2

Lowest average errors among the algorithms are indicated in bold

Wewill take the blocks B1 and B2 also from theRANDSVDensemblewith singular
values

σk (B1) = σk (B2) = 1/2k, (39)

and E as a randomGaussian matrix in which each element has zero mean and variance
E

∣∣Ei j
∣∣2 = 10−14, so that ‖E‖F ≈ 10−4. Let us again look for an approximation of

rank 20 of such a matrix. The optimum in this case is to take 10 rows and columns
from the submatrix B1 and 10 more from the submatrix B2, so that the error in the
spectral norm and the Frobenius norm will be about 10−3. The results of the same
algorithms for the matrix B are presented in Table 3. As we can see, the adaptive
cross and maxvol methods in this case work much worse and do not allow building an
approximation with high accuracy.

Overall, the choice of the rank revealing LU decomposition algorithm depends on
the requirements for the speed and accuracy of the method. Adaptive cross approxi-
mation [1] is significantly faster than all other methods, but also leads to the largest
error. The maxvol algorithm [2] reduces the error several times, while maintaining
the same asymptotic cost as the adaptive cross. On average, it can even outperform
complete pivoting in accuracy (see Table 2). However, like the adaptive cross, it does
not provide any guarantees for the accuracy of the approximation, and can partially
lose its accuracy if the approximated matrix has some hidden structure. The algorithm
corresponding to Theorem 3 guarantees the best accuracy in terms of the spectral norm
and also shows the best results in approximation accuracy among all the given algo-
rithms. However, the presence of the factor N in the Chebyshev norm error estimate
does not make this bound very useful. The algorithm for finding a locally maximum
volume, proposed in this paper, although looks a little less efficient in practice, allows
for high accuracy of the approximation in the Chebyshev norm, as well as the “strong”
property (Definition 2) of the resulting RRLU decomposition.

The algorithms from Tables 2 and 3 are realised in Fortran and are available in
https://github.com/RodniO/Projective-volume-low-rank (file ExampleLU.f90).
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7 Conclusion

The obtained estimates show that, in contrast to submatrices of almost maximum
volume, the search for which is anNP-hard problem [8, 9], submatrices close to locally
maximum volume can be found in polynomial time, which ensures that the various
bounds that are often associated with maximum volume submatrices are satisfied. In
particular, it is possible to quickly construct cross approximations with guarantees of
accuracy in the Chebyshev norm and the spectral norm.
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