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Abstract
This paper present an effective numerical approach for solving a class of space-time
fractional diffusion equations. By discretizing the time-fractional derivative, the origi-
nal problem is transformed to a semi-discrete problem, which was solved by using the
fractional reproducing kernel collocation method (FRKCM). Additionally, the stabil-
ity and convergence analysis are given and some numerical examples demonstrate the
feasibility and reliability of the method.

Keywords Space-time fractional diffusion equation · Fractional reproducing kernel ·
Collocation method · Stability · Convergence

1 Introduction

This paper focus on the numerical solution of the space-time fractional diffusion
equation

C
0 Dα

t u(x, t) = a(x, t)C
0 Dβ

x u(x, t) + f (x, t), x ∈ (0, 1), t ∈ (0, T ] (1.1)

with the initial condition

u(x, 0) = g(x), x ∈ (0, 1) (1.2)
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and the boundary conditions

u(0, t) = 0, u(1, t) = l(t), t ∈ (0, T ] (1.3)

where 0 < α < 1 and 1 < β < 2, a(x, t) is a nonngeative function, f (x, t) is the
source term, u(x, t) is the unknown function. C

0 Dα
t u(x, t) is the left Caputo time-

fractional derivative of order α defined as

C
0 Dα

t u(x, t) = 1

�(1 − α)

∫ t

0
(t − ξ)−α ∂u(x, ξ)

∂ξ
dξ, 0 < α < 1.

And C
0 Dβ

x u(x, t) is the left Caputo space-fractional derivatives of order β defined as

C
0 Dβ

x u(x, t) = 1

�(2 − β)

∫ x

0
(x − η)1−β ∂2u(η, t)

∂η2
dη, 1 < β < 2.

Fractional diffusion equations were introduced to describe anomalous diffusion phe-
nomena in the transport process of a complex or disordered system [1–7]. For flow in
porous media, fractional space derivative models large motions through highly con-
ductive layers or fractures, while fractional time derivative describes particles that
remain motionless for extended periods of time [4].

Recently the reaction-diffusion equation, also called the parabolic equation as a
standard and classical partial differential equation attracted much attention with the
research interests in the well-posedness of solution [8–14], especially for the model
with Caputo time-fractional derivative [9]. The authors [15] introduced a new hybrid
scheme based on a finite difference method and Chebyshev collocation method for
solving the space-time fractional advection–diffusion equation and the corresponding
convergence and stability are investigated. Baseri et al. [16] employed the shifted
Chebyshev and rational Chebyshev polynomials to obtain the approximate solution
of (1.1). In [17], the authors discussed such equation based on normalized Bernstein
polynomials. Feng et al. [18] applied the finite element method to obtain a numerical
solution of the space-time fractional diffusion equation.

Over the past 30 years, the numerical analysis theory of reproducing kernel has
been widely used in solving various differential equations [19–27]. The reproducing
kernel particle methods was proposed in 1995 by Liu et al. [28] as an extension to the
method Smooth Particle Hydrodynamics. Mahdavi et al. applied the gradient repro-
ducing kernel in conjunction with the collocation method to solve 2nd- and 4th-order
equations [29]. In solving fractional differential equations, the approximate solution
given by fractional reproducing kernel method is more accurate than the traditional
integer-order reproducing kernel method [30]. Therefore, it is crucial to seek efficient
numerical algorithms for solving fractional-order problems.Chen et al. [31] firstly con-
structed a new fractional weighted reproducing kernel space and presented the exact
representation of the reproducing kernel function. In 2021, the authors presented a
new numerical method to solve a class of fractional differential equations using the
fractional reproducing kernel method [32] which can lessen computation costs and
provide highly precise approximate solutions.
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In this paper, a new numerical algorithm is proposed to solve the space-time
fractional diffusion equation. First, the time-fractional derivative is discretized by
L1 scheme, which is a classical time-fractional derivative discretization method and
widely used inmany literatures [33–36].When the time-fractional derivative is approx-
imately discretized by difference, the information of the solution at all past time points
is considered, which ensures the stability of the discretization. After the above treat-
ment, the space-time fractional problem (1.1)–(1.3) is transformed into a semi-discrete
problem that only contains the spatial fractional derivative. Then the fractional repro-
ducing kernel collocation method is proposed to solve the semi-discrete problem.
According to the order of the space-fractional derivatives, a fractional reproducing
kernel function space is selected. We calculate the reproducing kernel function and its
fractional derivative. To obtain the approximate solution of the semi-discrete problem,
a set of fractional basis is constructed by using reproducing kernel and polynomial
functions. Compared with the traditional practice of using integer-order polynomials
as the basis, the use of fractional-order polynomial basis ismore effective for fractional
partial differential equation. Next, under three different types of collocation points, the
undetermined coefficients in the approximate solution are solved by the collocation
method. Compared with the traditional reproducing kernel method, FRCKM avoids
the Schmidt orthogonalization processing. Finally, the uniform convergence, stability
and error estimation of the approximate solution are analyzed. In addition, global error
estimation and stability analysis are carried out for the semi-discrete iterative scheme
which is obtained after the difference approximation of the time-fractional derivative.
Some numerical examples indicate the universality and flexibility of the method by
selecting multiple types of collocation points.

The remaining sections are organized as follows. Section2 investigated a new
numerical method to solve (1.1)–(1.3). In Sect. 3, stability and convergence analysis
are surveyed. Numerical examples are shown in Sect. 4 to demonstrate the efficiency
and accuracy. Section5 ends the paper with a brief conclusion.

2 Numerical method

In this section, we will study the construction process of numerical method to solve
the problem (1.1)–(1.3).

2.1 Construction of the basis

First, we adopted the L1 scheme that is described in [36] to approximate the time-
fractional derivative.

Let tn = n�t, n = 0, 1, ..., N , and �t = T
N is the time step, then

C
0 Dα

t u (x, tn) = 1

�(1 − α)

∫ tn

0
(tn − ξ)−α ∂u(x, ξ)

∂ξ
dξ

= 1

�(1 − α)

n−1∑
j=0

∫ t j+1

t j

(tn − ξ)−α ∂u(x, ξ)

∂ξ
dξ, (2.1)
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And using
u(x, t j+1) − u(x, t j )

�t
approximation for

∂u(x, ξ)

∂ξ
in (2.1). Explicitly, the

L1 approximation for the time fractional derivative of order α with respect to time at
t = tn is given by

C
0 Dα

t u (x, tn)

= 1

�(1 − α)

n−1∑
j=0

∫ t j+1

t j

(tn − ξ)−α
u
(
x, t j+1

)− u
(
x, t j

)
�t

dξ + Rn,u

= 1

�(2 − α)�tα

n−1∑
j=0

[
u
(
x, t j+1

)− u
(
x, t j

)] [
(n − j)1−α − (n − j − 1)1−α

]+ Rn,u

= 1

�(2 − α)�tα

n−1∑
j=0

bn− j−1
[
u
(
x, t j+1

)− u
(
x, t j

)]+ Rn,u

= 1

α0

⎡
⎣b0u (x, tn) − bn−1u(x, 0) −

n−1∑
j=1

(
b j−1 − b j

)
u
(
x, tn− j

)
⎤
⎦+ Rn,u,

(2.2)

where α0 = �(2 − α)�tα , b j = ( j + 1)1−α − j1−α and Rn,u is the truncation error.
It is easy to verify the following properties for the coefficients b j

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b j > 0, j = 0, 1, ..., n,

1 = b0 > b1 > · · · > bn, bn −→ 0, n −→ ∞,

n−1∑
j=1

(
b j−1 − b j

)+ bn−1 = 1.

(2.3)

Denote un(x) is approximate solution of u(x, tn), the semi-discrete form of (1.1)
at points {tn}N

n=0 is given by

un(x) − α0a (x, tn) C
0 Dβ

x un(x) = bn−1u0(x)

+
n−1∑
j=1

(
b j−1 − b j

)
un− j (x) + α0 f (x, tn) . (2.4)

The boundary conditions (1.3) can be discretized as follows

un(0) = 0, un(1) = l (tn) . (2.5)

Here, we introduce briefly some necessary knowledges of reproducing kernel which
will be used throughout the later work.

Definition 2.1 ([31]) The reproducing kernel space W 1
2 [0, 1] is defined by

W 1
2 [0, 1] =

{
u(x)|u(x) is absolute continuous f unction on [0, 1], u′(x) ∈ L2[0, 1]

}
,
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and endowed with the inner product and norm respectively

〈u, v〉W 1
2

= u(0)v(0) +
∫ 1

0
u′(x)v′(x)dx, u, v ∈ W 1

2 [0, 1],

‖u‖W 1
2

=
√

〈u, u〉W 1
2
.

Definition 2.2 ([31]) The fractional reproducing kernel space W β
2 [0, 1] is defined by

W β
2 [0, 1] =

{
u(x)|C0 Dβ

x u(x) ∈ W 1
2 [0, 1], u(i)(0) = 0, i = 0, 1

}
, (2.6)

and endowed with the inner product and norm respectively

〈u, v〉β =
〈
C
0 Dβ

x u, C
0 Dβ

x v
〉
W 1

2

= C
0 Dβ

x u(0)C
0 Dβ

x v(0)

+
∫ 1

0

(
C
0 Dβ

x u
)′

(s)
(

C
0 Dβ

x v
)′

(s)ds, u, v ∈ W β
2 [0, 1],

‖u‖β = √〈u, u〉β =
√〈

C
0 Dβ

x u, C
0 Dβ

x u
〉
W 1

2

.

Lemma 2.1 ([31]) The expression of the reproducing kernel function of W β
2 [0, 1] is

K (x, y) = xβ yβ

�2(β + 1)
+ 1

�2(β + 1)

⎧⎪⎪⎨
⎪⎪⎩

∫ x

0
(x − s)β(y − s)βds, x ≤ y,

∫ y

0
(x − s)β(y − s)βds, x > y.

(2.7)

with the corresponding left Caputo fractional derivative

C
0 Dβ

x K (x, y) = yβ

�(β + 1)
+ yβ+1

�(β + 2)
−
{

(y−x)β+1

�(β+2) , x ≤ y,

0, x > y.
(2.8)

Now, based on the reproducing kernel K (x, y) in fractional reproducing kernel space
W β

2 [0, 1], the approximate solution of (2.4)–(2.5) can be constructed.

Theorem 2.1 Suppose {xi }M
i=1 is a dense subset in [0, 1], then

{
1, x2, K (x, xi )

}M
i=1

are linearly independent on W β
2 [0, 1].

Proof Assume that there exits constants {μi }M+2
i=1 such that

μ1 + μ2x2 +
M∑

i=1

μi+2K (x, xi ) = 0. (2.9)
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Taking hk(x) ∈ W β
2 [0, 1] such that

h(3)
k (x j ) =

{
0, k 
= j,

1, k = j .

Then we have the third order derivative of (2.9) with respect to x

M∑
i=1

μi+2K (3)(x, xi ) = 0,

and

M∑
i=1

μi+2

〈
K (3)(x, xi ), hk(x)

〉
β

= 〈0, hk(x)〉β = 0.

Since
〈
K (3)(x, xi ), hk(x)

〉
β

= h(3)
k (xi ), we see

μi+2 = 0, i = 1, 2, . . . , M,

then

μ1 + μ2x2 = 0,

which means that μ1 = μ2 = 0, and completes the proof. ��
Define the approximate solution space

SM+2 = span
{
1, x2, K (x, x1), K (x, x2), . . . , K (x, xM )

}
.

Apparently, the number of basis functions in the space SM+2 is M + 2, and SM+2 is
a subspace of W β

2 [0, 1].

2.2 Approximatemethod

Define a linear operator L : W β
2 [0, 1] −→ W 1

2 [0, 1] as follows

Lun(x) := 1

α0

⎛
⎝b0un(x) − bn−1u0(x) −

n−1∑
j=1

(b j−1 − b j )u
n− j (x)

⎞
⎠

− a(x, tn)C
0 Dβ

x un(x) = f (x, tn).

(2.10)

Lemma 2.2 L : W β
2 [0, 1] −→ W 1

2 [0, 1] is a bounded linear operator.
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Proof In view of the definition of L , it is obvious that L is a linear operator.
According to reproducing property of K (x, y), we have

un(x) = 〈un(·), K (x, ·)〉
β

,

∂x Lun(x) = 〈un(·), ∂x L K (x, ·)〉
β

.

By virtue of the Cauchy-Schwarz inequality, we obtain

∣∣∂x Lun(x)
∣∣ =

∣∣∣〈un(·), ∂x L K (x, ·)〉
β

∣∣∣ ≤ ∥∥un(x)
∥∥

β
· ‖∂x L K‖β ≤ M1

∥∥un(x)
∥∥

β
,

where ∂x L K is continuous on [0, 1], and its norm is bounded.
Then

∥∥Lun(x)
∥∥2

W 1
2

= 〈Lun(x), Lun(x)
〉
W 1

2

= (Lun(0)
)2 +

∫ 1

0

(
∂x Lun(x)

)2 dx

≤
∫ 1

0
M2

1

∥∥un(x)
∥∥2

β
dx

= M
∥∥un(x)

∥∥2
β

.

The proof is completed. ��
Next, we set the process of solving the semi-discrete problem (2.4)–(2.5) by using the
presented FRKCM. We find the approximate solution of problem (2.4)–(2.5)

un
m(x) = a1 + a2x2 +

M∑
i=1

ai+2K (x, xi ) = a1 + a2x2 +
M∑

i=1

ai+2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xβ xβ
i

�2(β + 1)
+ 1

�2(β + 1)

∫ x

0
(x − s)β(xi − s)βds, x ≤ xi ,

xβ xβ
i

�2(β + 1)
+ 1

�2(β + 1)

∫ xi

0
(x − s)β(xi − s)βds, x > xi .

(2.11)

such that the collocation equations

Lun
m(xk) = a1L1 + a2Lx2k +

M∑
i=1

ai+2L K (xk, xi ) = f (xk, tn) , k = 1, . . . , M,

(2.12)

un
m(0) = a1 +

M∑
i=1

ai+2K (0, xi ) = 0, (2.13)
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un
m(1) = a1 + a2 +

M∑
i=1

ai+2K (1, xi ) = l(tn), (2.14)

where {xk}M
k=1 ∈ [0, 1] are collocation points as following.

In the numerical process later, we will choose three different collocation points

Case 1 :
{

x1 = 1

M
, x2 = 2

M
, . . . , xM = 1

}
, (2.15)

Case 2 : xi =
{
1

2
yi + 1

2

}M

i=1
, where yi = cos

(
2k − 1

2i
π

)
,

k = 1, 2, . . . , i, is the i th zero of Chebyshev polynomials, (2.16)

Case 3 : xi =
{
1

2
yi + 1

2

}M

i=1
,

where yi is the i th zero of Legendre polynomials PM (y) = 1

2nn!
dn

dxn
(x2 − 1)n .

(2.17)

As the undetermined coefficients {ai }M+2
i=1 can be obtained by solving (2.12)–(2.14),

the approximate solution un
m(x) is determined. Therefore, the algorithm for solving the

space-time fractional diffusion problem (1.1)–(1.3) can be divided into the following
two steps. First,we discretized the time-fractional derivative to obtain the semi-discrete
problem (2.4)–(2.5), and then we use FRKCM to solve this semi-discrete problem.
The above process is summarized as Algorithm 1.

Algorithm 1: Numerical algorithm

Input: Select the approximate collocation points {xk }M
k=1 from (2.15)–(2.17); the time step size

�t = T
N .

Step 1:
-Set the reproducing kernel function (2.7) of Wβ

2 [0, 1]: K (x, y), the corresponding left Caputo

fractional derivative: C
0 Dβ

x K (x, y) in (2.8).

-Set the basis functions: 1, x2, K (x, xi ), i = 1, 2, . . . , M .

-Compute the corresponding left Caputo fractional derivative of basis functions.
Step 2:
-For n = 1, 2, . . . , N .

(1) Set tn = n�t, b j = ( j + 1)1−α − j1−α, j = 0, 1, 2, . . . , n − 1 and u0m (x) = g(x).
(2) Compute the equations given by (2.5) (2.10).
(3) Construct the equations (2.12)–(2.14) by using collocation method.
(4) Compute the solution: a1, a2, . . . , aM+2.

(5) Calculate un
m(x) = a1 + a2x2 +∑M

i=1 ai+2K (x, xi ).

-Save un
m (x) and set it to be the initial value of the next time iteration.

-If n < N + 1, then repeat step (2)–(6). Else, stop the iteration.
Output: The approximate solution un

m (x) at the time t = tN .
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3 Stability and convergence analysis

3.1 The stability and convergence of the approximate solution

Wefirst investigate the stability analysis of the approximate solution given byFRKCM.

Theorem 3.1 Suppose f̃ (x, tn) = f (x, tn) + δ, where δ is a perturbation and
Lũn

m(x) = f̃ (x, tn), then

∥∥un
m(x) − ũn

m(x)
∥∥

β
≤ H‖δ‖β,

where H is a nonnegative constant.

Proof

∥∥un
m(x) − ũn

m(x)
∥∥

β
=
∥∥∥L−1 f (x, tn) − L−1 f̃ (x, tn)

∥∥∥
β

=
∥∥∥L−1 f (x, tn) − L−1( f (x, tn) + δ)

∥∥∥
β

=
∥∥∥L−1δ

∥∥∥
β

≤
∥∥∥L−1

∥∥∥
β

‖δ‖β

≤ H‖δ‖β,

where H is a nonnegative constant. The proof is completed. ��
Next, we present three lemmas for analysing the convergence of the approximate

solution.

Lemma 3.1 Suppose un(x) is the solution of the semi-discrete problem (2.4)–(2.5),
un

m(x) is the approximate solution of un(x), {xi }∞i=1 is a dense set in [0, 1], then

Lun
m(xi ) = Lun(xi ), i = 1, 2, . . . ,∞.

Proof Let R(x, y) be the reproducing kernel function of the reproducing kernel space
W 1

2 [0, 1]. From (2.10), there holds

Lun(x) = f (x, tn) . (3.1)

Taking the inner product of (3.1) with R(x, xi ), we obtain

〈
Lun(x), R(x, xi )

〉
W 1

2
= 〈 f (x, tn), R(x, xi )〉W 1

2
. (3.2)

Due to the reproducing property of reproducing kernel, (3.2) becomes

Lun(xi ) = f (xi , tn), i = 1, 2, . . . ,∞. (3.3)
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It follows from (2.12) to (2.14) that

Lun
m(xk) = f (xk, tn), k = 1, 2, . . . , M . (3.4)

Taking the inner product of (3.4) with R(xk, xi ), then we have

〈
Lun

m(xk), R(xk, xi )
〉
W 1

2
= 〈 f (xk, tn), R(xk, xi )〉W 1

2
,

also

Lun
m (xi ) = f (xi , tn) , i = 1, 2, . . . ,∞. (3.5)

Combining (3.3) and (3.5), it can be concluded

Lun
m (xi ) = Lun (xi ) , i = 1, 2, . . . ,∞.

The proof is completed. ��
Lemma 3.2 ([37]) X = {

un
m(x)| ‖un

m(x)‖β ≤ γ
}

is a compact set of C[0, 1], where
γ is a constant.

Lemma 3.3 Suppose that un(x) is the solution of the semi-discrete problem (2.4)–
(2.5), un

m(x, tn) is the approximate solution of un(x), {xi }∞i=1 is dense set in [0, 1],
then ‖un

m(x) − un(x)‖β → 0.

Proof Sinceun
m(x) = a1+a2x2+∑M

i=1 ai+2K (x, xi ) is continuous on [0, 1], we know
‖un

m(x)‖β ≤ γ , whereγ is a constant. FromLemma3.2, it is known that X is a compact
set, hence there exists a convergent subsequence

{
un

ml
(x)
}∞

l=1
⊂ {un

m(x)
}∞

m=1 ⊂ X .
Assume subsequence {un

ml
(x)}∞l=1 converges to u(x, tn) ∈ X , i.e.

un
ml

(x) −→ un(x), l −→ ∞.

According to Lemma 3.1, we have

Lun
m (xi ) = Lun (xi ) = f (xi , tn) , i = 1, 2, . . . ,∞.

Hence,

Lun
ml

(xi ) = f (xi , tn) . (3.6)

As l → ∞, take the limit of (3.6) to get

Lun (xi ) − f (xi , tn) = 0.

Due to the fact that Lun(x) − f (x, tn) is a continuous function and {xi }∞i=1 is a dense
set, we have

Lun (x) − f (x, tn) = 0.
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Thus, un(x) is the solution of the semi-discrete problem (2.4)–(2.5).
Since L is a bounded linear operator,

Lun
ml

(x) −→ Lun(x). (3.7)

As l → ∞, take the limit of (3.7) to get

Lun
m(x) −→ f (x, tn).

Since L−1 : W 1
2 [0, 1] → W β

2 [0, 1] exists, we have
∥∥un

m(x) − un(x)
∥∥
β

=
∥∥∥L−1(Lun

m(x) − Lun(x))

∥∥∥
β

=
∥∥∥L−1 (Lun

m(x) − f (x, tn)
)∥∥∥

β
−→ 0.

��

Now, we prove that the approximate solution uniformly converges to the solution of
the semi-discrete problem (2.4)–(2.5).

Theorem 3.2 Suppose that un(x) is the solution of the semi-discrete problem (2.4)–
(2.5), un

m(x) is the approximate solution of un(x), then un
m(x) is uniformly convergent

to un(x).

Proof From the reproducing properties and Lemma 3.3 we have,

∣∣un
m(x) − un(x)

∣∣ =
∣∣∣ 〈un

m(·) − un(·), Kx (·)
〉
β

∣∣∣
≤ ∥∥un

m(·) − un(·)∥∥
β

· ‖Kx (·)‖β

≤ η
∥∥un

m(x) − un(x)
∥∥

β
−→ 0, m → ∞

where ‖Kx (·)‖β = √〈Kx (·), Kx (·)〉β = √
Kx (x) < η. Namely, un

m(x) uniformly
converges to un(x). ��

Here, we establish error estimation for the approximate solution given by FRKCM.

Theorem 3.3 Let �x = 1
M , where M is a nonnegative integer, un(x) is the solution of

the semi-discrete problem (2.4)–(2.5) and un
m(x) is the approximate solution of un(x),

then |un
m(x) − un(x)| ≤ o (�x).

Proof There exists xi ∈ [0, 1], such that |x − xi | ≤ �x . From Lemma 3.1, we obtain

Lun
m(xi ) = Lun(xi ),
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31 Page 12 of 27 R. Sun et al.

thus,

Lun
m(x) − Lun(x) = Lun

m(x) − Lun
m(xi ) − (Lun(x) − Lun

m(xi )
)

= Lun
m(x) − Lun

m(xi ) − (Lun(x) − Lun(xi )
)

= 〈un
m(·), L K (x, ·)〉

β
− 〈un

m(·), L K (xi , ·)
〉
β

− 〈un(·),
L K (x, ·)〉β + 〈un(·), L K (xi , ·)

〉
β

= 〈un
m(·), L K (x, ·) − L K (xi , ·)

〉
β

− 〈un(·),
L K (x, ·) − L K (xi , ·)〉β
= 〈un

m(·) − un(·), L K (x, ·) − L K (xi , ·)
〉
β

.

As L−1 exists,

∣∣un
m(x) − un(x)

∣∣ =
∣∣∣∣
〈
un

m(·) − un(·), L−1 (L K (x, ·) − L K (xi , ·))
〉
β

∣∣∣∣
≤ ‖L−1‖β · ‖un(x) − un

m(x)‖β · ‖L K (x, ·) − L K (xi , ·)‖β .

From Lagrange mean value theorem, we have

L K (x, ·) − L K (xi , ·) = ∂L K (ξ, ·)
∂ξ

(x − xi ), ξ ∈ (x, xi ).

Therefore,

∣∣un(x) − un
m(x)

∣∣ ≤
∥∥∥L−1

∥∥∥
β

· ∥∥un(x) − un
m(x)

∥∥
β

·
∥∥∥∥∂L K (ξ, ·)

∂ξ

∥∥∥∥
β

· ‖x − xi‖β

≤ �x ·
∥∥∥L−1

∥∥∥
β

· ∥∥un(x) − un
m(x)

∥∥
β

·
∥∥∥∥∂L K (ξ, ·)

∂ξ

∥∥∥∥
β

.

Making use of Lemma 3.3 and the bounded properties of ‖L−1‖ and

∥∥∥∥ ∂

∂ξ

L K (ξ, ·)
∥∥∥∥,

it is easy to verify that

∣∣un(x) − un
m(x)

∣∣ = o (�x) .

The proof is completed. ��

3.2 The stability and convergence of the semi-discrete scheme

Now, we introduce the following lemmas for the stability of the semi-discrete scheme
(2.4).

Lemma 3.4 Suppose u(x) ∈ W β
2 [0, 1], then u(x) ∈ W

β
2
2 [0, 1].
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Proof It is enough to show that
∂

∂x

(
C
0 D

β
2
x u(x)

)
∈ L2[0, 1]. In fact

∂

∂x

(
C
0 D

β
2
x u(x)

)
= ∂

∂x

1

�
(
1 − β

2

)
∫ x

0
(x − t)−

β
2 u′(t)dt

= ∂

∂x

1

�
(
1 − β

2

)
∫ x

0
s− β

2 u′(x − s)ds

= 1

�
(
1 − β

2

)u′(0)x− β
2 + 1

�(1 − β
2 )

∫ x

0
s− β

2 u′′(x − s)ds

= 1

�
(
1 − β

2

)u′(0)x− β
2 + 1

�
(
1 − β

2

)
∫ x

0
(x − t)−

β
2 u′′(t)dt .

Obviously,
1

�(1 − β
2 )

u′(0)x− β
2 ∈ L2[0, 1], and

∫ 1

0

⎛
⎝ 1

�
(
1 − β

2

)
∫ x

0
(x − t)−

β
2 u′′(t)dt

⎞
⎠ dx

= 1

�
(
1 − β

2

)
∫ 1

0

∫ 1

t
(x − t)−

β
2 u′′(t)dxdt

= 1

�
(
2 − β

2

)
∫ 1

0
(1 − t)1−

β
2 u′′(t)dt

≤ 1

�
(
2 − β

2

) (u′(1) − u′(0))

< ∞,

thereby
1

�(1 − β
2 )

∫ x
0 (x − t)−

β
2 u′′(t)dt ∈ L1[0, 1].

According to the fact,
1

�(1 − β
2 )

∫ x
0 (x − t)−

β
2 u′′(t)dt ∈ L2[0, 1], we have

∂

∂x

(
C
0 D

β
2
x u(x)

)
∈ L2[0, 1]. From the definition of W

β
2
2 [0, 1] given by (2.6), we

know that u(x) ∈ W
β
2
2 [0, 1]. ��
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31 Page 14 of 27 R. Sun et al.

Lemma 3.5 ([38, 39]) For u, v ∈ W
β
2
2 [0, 1], we have

〈
C
0 Dβ

x u, C
x Dβ

1 u
〉

L2
= cos(βπ)

∥∥∥C
0 Dβ

x u
∥∥∥2

L2
= cos(βπ)

∥∥∥C
x Dβ

1 u
∥∥∥2

L2
, β > 0

〈
C
0 Dβ

x u, v
〉

L2
=
〈

C
0 D

β
2
x u, C

x D
β
2
1 v

〉
L2

,
〈
C
x Dβ

1 u, v
〉

L2
=
〈

C
x D

β
2
1 u, C

0 D
β
2
x v

〉
L2

, β ∈ (1, 2)

Lemma 3.6 Let un(x) ∈ W β
2 [0, 1](n = 1, 2, . . . , N ) be the solution of the semi-

discrete problem (2.4)–(2.5), then

∥∥un(x)
∥∥

L2 ≤
∥∥∥u0(x)

∥∥∥
L2

+ C max
0≤x≤1
0≤l≤N

‖ f (x, tl)‖L2 , (3.8)

where C > 0.

Proof Here we use induction to prove (3.8). First (2.4) can be transformed into the
following equivalent form in case of n = 1.

u1(x) − α0a(x, t1)
C
0 Dβ

x u1(x) = u0(x) + α0 f (x, t1). (3.9)

Multiplying (3.9) by u1(x) and integrating on [0, 1] gives
〈
u1(x), u1(x)

〉
L2

− α0a (x, t1)
〈
C
0 Dβ

x u1(x), u1(x)
〉

L2

=
〈
u0(x), u1(x)

〉
L2

+ α0

〈
f (x, t1), u1(x)

〉
L2

.
(3.10)

According to Lemma 3.5, we see

〈
C
0 Dβ

x u1(x), u1(x)
〉

L2
=
〈

C
0 D

β
2
x u1(x), C

x D
β
2
1 u1(x)

〉
L2

= cos

(
β

2
π

)∥∥∥C
0 Dβ

x u1(x)

∥∥∥2
L2

< 0, ∀ 1 < β < 2.

(3.11)

By using the properties of b j given by (2.3) and (3.11), (3.10) can be rewritten as
follows

∥∥u1(x)
∥∥

L2 ≤ ∥∥u0(x)
∥∥

L2 + α0 max
0≤x≤1

‖ f (x, t1)‖L2 ≤ ∥∥u0(x)
∥∥

L2 + C max
0≤x≤1

‖ f (x, t1)‖L2 ,

where C > 0, which demonstrates that (3.8) is valid for the case n = 1.
Now, assuming that the inequality (3.8) is true for n = 1, 2, . . . , N − 1. Taking

n = N for (2.4), we obtain
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uN (x) − α0a (x, tN ) C
0 Dβ

x uN (x)

=
N−1∑
j=1

(
b j−1 − b j

)
uN− j (x) + bN−1u0(x) + α0 f (x, tN ) . (3.12)

Multiplying (3.12) by uN (x) and integrating on [0, 1] gives
〈
uN (x), uN (x)

〉
L2

− α0a(x, tN )
〈
C
0 Dβ

x uN (x), uN (x)
〉

L2

=
N−1∑
j=1

(b j−1 − b j )
〈
uN− j (x), uN (x)

〉
L2

+ bN−1

〈
u0(x), uN (x)

〉
L2

+ α0

〈
f (x, tN ), uN (x)

〉
L2

.

(3.13)

By Lemma 3.5, the properties of b j given by (2.3) and the Cauchy-Schwarz inequality,
we arrive at

∥∥∥uN (x)

∥∥∥
L2

≤ bN−1

∥∥∥u0(x)

∥∥∥
L2

+
N−1∑
j=1

(b j−1 − b j )

∥∥∥uN− j (x)

∥∥∥
L2

+ �(2 − α) max
0≤x≤1

‖ f (x, tN )‖L2

≤ bN−1‖u(x, 0)‖L2 +
N−1∑
j=1

(b j−1 − b j )

(
‖u0(x)‖L2 + C max

0≤x≤1

∥∥ f (x, tN− j ))
∥∥

L2

)

+ �(2 − α) max
0≤x≤1

‖ f (x, tN )‖L2

≤
⎛
⎝bN−1 +

N−1∑
j=1

(b j−1 − b j )

⎞
⎠ ‖u0(x)‖L2

+ C
N−1∑
j=1

(b j−1 − b j ) max
0≤x≤1

∥∥ f (x, tN− j ))
∥∥

L2 + �(2 − α) max
0≤x≤1

‖ f (x, tN )‖L2

≤ ‖u0(x)‖L2 + C max
0≤x≤1
0≤l≤N

‖ f (x, tl)‖L2 ,

(3.14)

where C > 0. ��

Here, we prove that the semi-discrete scheme (2.4) is unconditionally stable.

Theorem 3.4 Suppose that un(x) ∈ W β
2 [0, 1] is the solution of the semi-discrete prob-

lem (2.4)–(2.5) at t = tn. Then, the semi-discrete scheme (2.4) is unconditionally
stable.
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31 Page 16 of 27 R. Sun et al.

Proof Suppose that vn(x) is the solution of (2.4) with corresponding initial condition
v(x, 0), therefore v(x, tn), n = 1, 2, . . . , N is also the solution of the semi-distcrete
problem (2.4)–(2.5). Similar to (2.4), there exists

vn(x) − α0a(x, tn)C
0 Dβ

x vn(x)

= bn−1v(x, 0) +
n−1∑
j=1

(
b j−1 − b j

)
vn− j (x) + α0 f (x, tn). (3.15)

Let εn = un(x) − vn(x) be the error, then subtracting (2.4) from (3.15) gives

εn − α0a(x, tn)C
0 Dβ

x εn = bn−1ε
0 +

n−1∑
j=1

(
b j−1 − b j

)
εn− j . (3.16)

Further, with the help of Lemma 3.6 and (3.16), we obtain

∥∥εn
∥∥

L2 ≤ ‖ε0‖L2 , n = 1, 2, . . . , N ,

which means that the semi-distrete problem (2.4)–(2.5) is unconditionally stable. ��

Next, we introduce a lemma to prove the convergence order of the semi-discrete
scheme (2.4).

Lemma 3.7 ([40]) Suppose θ be a nonnegative constant, sm and rk are nonnegative
sequences that the sequence vm satisfies

{
vm ≤ θ, m = 0,
vm ≤ θ +∑m−1

k=0 rk +∑m−1
k=0 skvm, m ≥ 1,

then vm satisfies

vm ≤
(

θ +
m−1∑
k=0

rk

)
exp

(
m−1∑
k=0

sk

)
.

Finally, we obtain the convergence order of the semi-discrete scheme (2.4) is O(�t).

Theorem 3.5 Suppose u(x, t) is the exact solutions of (1.1)–(1.3), and ηn = u(x, tn)−
un(x), (n = 1, 2, . . . , N ) is the error function, then the semi-discrete scheme (2.4)
has convergence order O(�t).

Proof First (1.1) can be rewritten as
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u (x, tn) − α0a (x, tn) C
0 Dβ

x u (x, tn) = bn−1u(x, 0)

+
n−1∑
j=1

(
b j−1 − b j

)
u
(
x, tn− j

)+ α0 f (x, tn) + α0Rn,u, (3.17)

where Rn,u is the truncation error satisfying Rn,u ≤ Cu O(�t2−α)(see pages 1535–
1538, [35]), and Cu is a constant depending only on u.

Subtracting (2.4) from (3.17), we obtain

ηn − α0a(x, tn)C
0 Dβ

x ηn =
n−1∑
j=1

(
b j−1 − b j

)
ηn− j + α0Rn,u . (3.18)

The following formulation can be obtained bymultiplying (3.18) by εn and integrating
on [0, 1],

〈
ηn, ηn 〉

L2 − α0a(x, tn)
〈
C
0 Dβ

x ηn, ηn
〉

L2
=

n−1∑
j=1

(b j−1 − b j )〈ηn− j , ηn〉L2 + α0
〈
Rn,u, ηn 〉

L2 .

By virtue of the Cauchy–Schwarz inequality, Lemma 3.5 and the properties of b j

given by (2.3), we obtain

∥∥ηn
∥∥

L2 ≤
n−1∑
j=1

(
b j−1 − b j

) ∥∥∥ηn− j
∥∥∥

L2
+ α0‖Rn,u‖L2

= (1 − b1)
∥∥∥ηn−1

∥∥∥
L2

+
n−1∑
j=2

(
b j−1 − b j

) ∥∥∥ηn− j
∥∥∥

L2
+ α0‖Rn,u‖L2

≤
∥∥∥ηn−1

∥∥∥
L2

+
n−1∑
j=2

(
b j−1 − b j

) ∥∥∥ηn− j
∥∥∥

L2
+ α0‖Rn,u‖L2 ,

which leads to

∥∥ηn
∥∥

L2 −
∥∥∥ηn−1

∥∥∥
L2

≤
n−1∑
j=2

(
b j−1 − b j

) ∥∥∥ηn− j
∥∥∥

L2
+ α0‖Rn,u‖L2 .

Summing up for n from 1 to M , and due to ‖η0‖L2 = 0, we have

∥∥∥ηN
∥∥∥

L2
≤

N∑
n=1

n−1∑
j=2

(
b j−1 − b j

) ∥∥∥ηn− j
∥∥∥

L2

+ α0

N∑
n=1

‖Rn,u‖L2 =
N−1∑
n=2

(bn−1 − bn)

∥∥∥ηN−n
∥∥∥

L2
+ α0

N∑
n=1

‖Rn,u‖L2 .

(3.19)
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and also, the inequality (3.19) can be rewritten as

∥∥∥ηN
∥∥∥

L2
≤
∥∥∥ηN

∥∥∥
L2

+ (1 − b1)
∥∥∥ηN−1

∥∥∥
L2

≤
N−1∑
n=1

(bn−1 − bn)

∥∥∥ηN−n
∥∥∥

L2
+ α0

N−1∑
n=1

‖Rn,u‖L2

=
N−1∑
n=0

(bn − bn+1)

∥∥∥ηN−n−1
∥∥∥

L2
+ α0

N−1∑
n=0

‖Rn+1,u‖L2 .

Employing Lemma 3.7 and the properties of b j given by (2.3), we have

‖ηN ‖ ≤
(

α0

N−1∑
n=0

‖Rn+1,u‖L2

)
exp

(
N−1∑
n=0

(bn − bn+1)

)

≤
(

�(2 − α)�tα
N−1∑
n=0

‖Rn+1,u‖L2

)
exp (1)

≤
(

�(2 − α)�tα N max
1≤n≤N

‖Rn,u‖L2

)
exp(1)

=
(

�(2 − α)�tα−1T max
1≤n≤N

‖Rn,u‖L2

)
exp(1)

≤ C O(�t),

where C > 0. The proof is completed. ��

4 Numerical results

In this section, three examples are solved to verify our theoretical findings.WriteuN
m (x)

as the approximate solutions determined by themethod provided in the paper. Example
4.1 is taken from [15, 16], andExample 4.2–4.3 are taken from [17, 18] respectively and
we construct numerical results with them. All computations were performed by using
Mathematica 9.0. The accuracy of the proposed method is measured using the ‖e‖abs ,
‖e‖L2 and ‖e‖L∞ error norms for the test problems. The error norms, convergence
rates in both time and space direction are respectively defined as

‖e‖abs =
∣∣∣uN

m (x) − u(x, T )

∣∣∣ , ‖e‖L∞ = max
1≤k≤M

|uN
m (xk) − u(xk, T )|, ‖e‖L2

=
(

M∑
k=1

|uN
m (xk) − u(xk, T )|2

) 1
2

.
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C Rt = log n2
n1

max
1≤k≤M

|un1
m (xk) − u(xk, T )|

max
1≤k≤M

∣∣un2
m (xk) − u(xk, T )

∣∣ ,

C Rs = log m2
m1

max
1≤k≤M

∣∣un
m1

(xk) − u(xk, T )
∣∣

max
1≤k≤M

∣∣un
m2

(xk) − u(xk, T )
∣∣ .

Example 4.1 Consider the following space-time fractional diffusion problem

⎧⎪⎨
⎪⎩

C
0 Dα

t u(x, t) = �(1.2)x1.8C
0 D1.8

x u(x, t) + 3x2(2x − 1)e−t ,

u(x, 0) = x2(1 − x),

u(0, t) = u(1, t) = 0.

The exact solution is u(x, t) = x2(1− x)e−t . ‖e‖abs is compared with [15, 16] when
N = M = 3 and for different values of α at T = 1. Numerical results are presented
in Table 1 indicates that when the error order is the same, the calculation speed of the
present method is fast and only a few nodes are needed. Table 2 shows the maximum
absolute error |Lun

m(x) − Lu(x, T )| for N = 2, M = 2 with collocation points for
three cases at T = 1. Note that in these tables, we provide CPU time consumed in the
algorithms for obtaining the numerical solution, our method acting in a short time.

Example 4.2 Consider the following space-time fractional diffusion problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
0 Dα

t u(x, t) = �(2.2)

6
x2.8C

0 D1.8
x u(x, t) + f (x, t),

u(x, 0) = x3,

u(0, t) = 0, u(1, t) = e−t .

The exact solution is u(x, t) = x3e−t for suitable source term. Table 3 compares
‖e‖L∞ with the Galerkin method in [17] for N = 30, M = 4 and different values of
α ∈ (0, 1). Table 4 shows the maximum absolute errors |Lun

m(x) − Lu(x, T )| with
N = 2, M = 4 for different values of α with collocation points for three cases at
T = 1, and we calculated CPU time for a number of different α which is a very short
time. The numerical results of this example demonstrate that our methods are more
accurate and faster.

Example 4.3 Consider the following space-time fractional diffusion problem

⎧⎪⎨
⎪⎩

C
0 Dα

t u(x, t) = C
0 D1.6

x u(x, t) + f (x, t),

u(x, 0) = 0,

u(0, t) = 0, u(1, t) = t2.
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Table 4 Themaximum absolute error of Lun
m (x)with N = 2, M = 4 for different α at T = 1 for Example

4.2

α = 0.2 CPU time(s) α = 0.8 CPU time(s)

case 1 8.61609 × 10−13 6.703 2.19172 × 10−12 6.735

case 2 6.92798 × 10−14 7.516 1.49261 × 10−13 7.642

case 3 3.47646 × 10−13 7.156 4.23661 × 10−13 7.155

Fig. 1 ‖e‖abs of Example 4.3 for N = 10 (left side) and N = 20 (right side)

Fig. 2 ‖e‖abs of Example 4.3 for α = 0.3

The exact solution is u(x, t) = t2x2. ‖e‖L2 of our method and the existing approach
in [18] which is used finite element method for solving this problem are compared in
Table 5. We can see from this table that the maximum error absolute order obtained
by the present method is one order higher than the method [18]. ‖e‖abs for α =
0.3, 0.6, 0.9 based on M = 4 and N = 10, 20 at T = 1, which are shown in Fig. 1.
Figure2 depicts ‖e‖abs for M = 4 and N = 10, 20, 50, 100, α = 0.3 at T = 1.
This illustrates that the accuracy of the approximate solution will be getting best as N
increases, it implies that the method proposed in this paper is stable. Table 6 reports
the convergence order with α = 0.9 at T = 1, M = 3, 4 and different values of
N . From this table, one can observe that the obtained convergence orders are in close
agreement with the theoretical order O(�t) in time direction.
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Table 6 ‖e‖L∞ and C Rt with
α = 0.9 at T = 1 for Example
4.3

N M = 3 M = 4
‖e‖L∞ C Rt ‖e‖L∞ C Rt

2 0.02793 – 0.03084 –

4 0.01433 0.962 0.01502 1.038

8 0.00682 1.074 0.00712 1.067

16 0.00321 1.088 0.00334 1.091

32 0.00150 1.088 0.00156 1.096

Table 7 ‖e‖abs with N = 2, M = 4 for different β at T = 1 for Example 4.4

x β = 1.4 β = 1.6 β = 1.8

0.2 8.18586 × 10−3 7.81468 × 10−4 1.37092 × 10−2

0.4 1.54934 × 10−2 6.11690 × 10−3 1.41954 × 10−3

0.6 3.85454 × 10−4 4.25891 × 10−3 6.56950 × 10−3

0.8 1.29790 × 10−2 7.03608 × 10−3 6.06069 × 10−3

1 2.20039 × 10−12 1.38556 × 10−13 6.68185 × 10−13

Table 8 ‖e‖L∞ and C Rs with N = 2 for different α and M at T = 1 for Example 4.4

α = 0.4 α = 0.6 α = 0.8

M = 2 5.59943 × 10−2 5.58240 × 10−2 5.58953 × 10−2

M = 4 6.66156 × 10−3 6.64764 × 10−3 6.65282 × 10−3

C Rs 3.071 3.070 3.071

Example 4.4 Consider the following space-time fractional diffusion problem

⎧⎪⎨
⎪⎩

C
0 Dα

t u(x, t) = C
0 Dβ

x u(x, t) + f (x, t),

u(x, 0) = 0,

u(0, t) = 0, u(1, t) = 0.

The exact solution is u(x, t) = t xsin(πx). Tables 7, 8 display the results of the
FRKCM. Table 7 lists the ‖e‖abs of the present method for N = 2, M = 4 and
β = 1.4, 1.6, 1.8 at T = 1. The convergence orders and ‖e‖L∞ are shown in Table 8
at T = 1 with α = 0.9, N = 2 for different values α and M . It is clear that the space
order of convergence supports the theoretical result o(�x).

5 Conclusion

In this paper, the semi-discrete process and FRKCMhave been used for approximating
the solution of the space-time fractional diffusion equations. We established stability
and convergence analysis of the approximate solution. The unconditional stability
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of the semi-discrete scheme is rigorously discussed, and we have proved that the
semi-discrete scheme is of O(�t) convergence. Numerical examples demonstrate the
feasibility and reliability of our algorithm.

References

1. Donatelli, M., Krause, R.,Mazza,M., Trotti, K.: All-at-oncemultigrid approaches for one-dimensional
space-fractional diffusion equations. Calcolo 58, 45 (2021)

2. Jiang, D., Li, Z.: Coefficient inverse problem for variable order time-fractional diffusion equations
from distributed data. Calcolo 59(4), 1–28 (2022)

3. del Teso, F.: Finite differencemethod for a fractional porousmedium equation. Calcolo 51(4), 615–638
(2014)

4. Meerschaert, M.M., Benson, D.A., Scheffler, H.P., Baeumer, B.: Stochastic solution of space-time
fractional diffusion equations. Phys. Rev. E 65, 041103 (2002)

5. Che, H., Wang, Y., Li, Z.: Novel patterns in a class of fractional reaction-diffusion models with the
Riesz fractional derivative. Math. Comput. Simul. 202, 149–163 (2022)

6. Cartea, A., del Castillo-Negrete, D.: Fractional diffusionmodels of option prices inmarketswith jumps.
Phys. A 374(2), 749–763 (2007)

7. Ding, Y., Ye, H.: A fractional-order differential equation model of hiv infection of cd4+ t-cells. Math.
Comput. Model. 50(3), 386–392 (2009)

8. Xu,R.,Chen,Y.,Yang,Y.,Chen, S., Shen, J.:Globalwell-posedness of semilinear hyperbolic equations,
parabolic equations and Schrodinger equations. Electron. J. Differ. Equ. 2018(55), 1–52 (2018)

9. Tuan, N.H., Au, V.V., Xu, R.: Semilinear caputo time-fractional pseudo-parabolic equations. Commun.
Pure Appl. Anal. 20(2), 583–621 (2021)

10. Wang, X., Xu, R.: Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic
equation. Adv. Nonlinear Anal. 10(1), 261–288 (2021)

11. Lian, W., Wang, J., Xu, R.: Global existence and blow up of solutions for pseudo-parabolic equation
with singular potential. J. Differ. Equ. 269(6), 4914–4959 (2020)

12. Xu, R., Wang, X., Yang, Y.: Blowup and blowup time for a class of semilinear pseudo-parabolic
equations with high initial energy. Appl. Math. Lett. 83, 176–181 (2018)

13. Xu, R., Wei, L., Yi, N.: Global well-posedness of coupled parabolic systems. Sci. China Math. 63,
321–356 (2020)

14. Xu, R., Yang, Y., Chen, S., Su, J., Shen, J., Hang, S.: Nonlinear wave equations and reaction-diffusion
equations with several nonlinear source terms of different signs at high energy level. ANZIAM J. 54(3),
153–170 (2013)

15. Aghdam, Y.E., Mesgrani, H., Javidi, M., Nikan, O.: A computational approach for the space-time
fractional advection-diffusion equation arising in contaminant transport through porous media. Eng.
Comput. 37(4), 3615–3627 (2021)

16. Baseri, A., Abbasbandy, S., Babolian, E.: A collocation method for fractional diffusion equation in a
long time with chebyshev functions. Appl. Math. Comput. 322, 55–65 (2018)

17. Baseri, A., Babolian, E., Abbasbandy, S.: Normalized Bernstein polynomials in solving space-time
fractional diffusion equation. Adv. Differ. Equ. 2017(1), 346 (2017)

18. Feng, L.B., Zhuang, P., Liu, F., Turner, I., Gu, Y.T.: Finite element method for space-time fractional
diffusion equation. Numer. Algorithm 72(3), 749–767 (2016)

19. Hu, H.Y., Chen, J.S., Hu,W.: Error analysis of collocationmethod based on reproducing kernel approx-
imation. Numer. Methods Partial Differ. Equ. 27(3), 554–580 (2011)

20. Chi, S.W., Chen, J.S., Hu, H.Y., Yang, J.P.: A gradient reproducing kernel collocation method for
boundary value problems. Int. J. Numer. Methods Eng. 93(13), 1381–1402 (2013)

21. Wang, D., Wang, J., Wu, J.: Superconvergent gradient smoothing meshfree collocation method. Com-
put. Methods Appl. Mech. Eng. 340, 728–766 (2018)

22. Yang, J., Yao, H., Wu, B.: An efficient numerical method for variable order fractional functional
differential equation. Appl. Math. Lett. 76, 221–226 (2018)

23. Du, H., Chen, Z., Yang, T.: A stable least residue method in reproducing kernel space for solving a
nonlinear fractional integro-differential equation with a weakly singular kernel. Appl. Numer. Math.
157, 210–222 (2020)

123



Numerical solution of the space-time fractional... Page 27 of 27 31

24. Aluru, N.R.: A point collocation method based on reproducing kernel approximations. Int. J. Numer.
Methods Eng. 47(6), 1083–1121 (2000)

25. Li, X., Wang, H., Wu, B.: A stable and efficient technique for linear boundary value problems by
applying kernel functions. Appl. Numer. Math. 172, 206–214 (2022)

26. Zhang, X., Du, H.: A generalized collocation method in reproducing kernel space for solving a weakly
singular fredholm integro-differential equations. Appl. Numer. Math. 156, 158–173 (2020)

27. Geng, F.:Anewhigher order accurate reproducing kernel-based approach for boundary value problems.
Appl. Math. Lett. 107, 106494 (2020)

28. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Methods Fluids
20(8–9), 1081–1106 (1995)

29. Mahdavi, A., Chi, S.W., Zhu, H.: A gradient reproducing kernel collocation method for high order
differential equations. Comput. Mech. 64(5), 1421–1454 (2019)

30. Abbaszadeh, M., Dehghan, M.: A galerkin meshless reproducing kernel particle method for numerical
solution of neutral delay time-space distributed-order fractional dampeddiffusion-wave equation.Appl.
Numer. Math. 169, 44–63 (2021)

31. Chen, Z., Wu, L., Lin, Y.: Exact solution of a class of fractional integro-differential equations with the
weakly singular kernel based on a new fractional reproducing kernel space. Math. Methods Appl. Sci.
41(10), 3841–3855 (2018)

32. Zhang, R., Lin, Y.: A new algorithm for fractional differential equation based on fractional order
reproducing kernel space. Math. Methods Appl. Sci. 44(2), 2171–2182 (2021)

33. Oldham, K., Spanier, J.: The fractional calculus, theory and applications of differentiation and inte-
gration to arbitrary order. Dover Publications (2006)

34. Langlands, T., Henry, B.: The accuracy and stability of an implicit solution method for the fractional
diffusion equation. J. Comput. Phys. 205(2), 719–736 (2005)

35. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J.
Comput. Phys. 225(2), 1533–1552 (2007)

36. hua Gao, G., zhong Sun, Z., wei Zhang, H.: A new fractional numerical differentiation formula to
approximate the caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

37. Wang, Y., Chaolu, T., Chen, Z.: Using reproducing kernel for solving a class of singular weakly
nonlinear boundary value problems. Int. J. Comput. Math. 87(2), 367–380 (2010)

38. Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded
domains in R

d . Numer. Methods Partial Differ. Equ. 23(2), 256–281 (2007)
39. Huang, J., Nie, N., Tang, Y.: A second order finite difference-spectral method for space fractional

diffusion equations. Sci. China Math. 57(6), 1303–1317 (2014)
40. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, vol. 23. Springer

Science & Business Media (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Numerical solution of the space-time fractional diffusion equation based on fractional reproducing kernel collocation method
	Abstract
	1 Introduction
	2 Numerical method
	2.1 Construction of the basis
	2.2 Approximate method

	3 Stability and convergence analysis
	3.1 The stability and convergence of the approximate solution
	3.2 The stability and convergence of the semi-discrete scheme

	4 Numerical results
	5 Conclusion
	References




