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Abstract

The problem of completion of low-rank matrices is considered in a special set-
ting, where each element of the matrix may be erroneous with a limited probability.
Although such a perturbation is extremely sparse on a given mask of known elements,
it is not incoherent and may cause instabilities in the commonly used projected gradi-
ent method. A new iterative method is proposed that is insensitive to rare observation
errors and is more stable for ill-conditioned solutions. The method can also be used
for finding a matrix approximation in the format of a sum of a low-rank and a sparse
matrix.

Keywords Matrix completion - Restricted isometry property - Low rank plus sparse -
Projected gradient - SVD perturbation

Mathematics Subject Classification 15A83 - 65F55

1 Introduction

The problem of matrix completion generally refers to the problem of finding a low-rank
matrix under a condition that only a small fraction of its elements is known.

The ‘textbook’ application of this problem lies in the field of recommender systems
[1]; however, matrix completion algorithms recently found many other applications,
including machine learning [2, 3], signal processing [4, 5] and genomic data integration

[6].
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Mathematically, such a problem can be formulated in different ways, resulting in
problems and algorithms with different properties.
Consider an operator Ag : R"*" — R"*" of the form

X,',' ..
£, (1, j) e
Aa(X)ij ={ VP
0, (G, )) ¢«
where Q € N,, x N, is a subset of indices that define the mask of matrix elements
given as input, and p is the fraction of known elements p = @.

Using this definition, one of the possible mathematical formulation of the matrix
completion problem as an optimization problem looks as follows:

rank(X) — min,

AX) = A(X.).

This problem is NP-hard in general [7], and it is a common technique to replace
the functional to be minimized by its convex envelope, which is the nuclear norm. The
functional then can be optimized in polynomial time, and furthermore, this approach
allows to bound the number of matrix elements sufficient for completion [8]. This
number depends on the matrix size n as O (n log? n), and certain assumptions on the
rank and the non-sparsity of the unknown matrix are required for the bound.

However, the computational complexity of such an approach remains high, as
convex optimization is applied with the whole matrix unknown, resulting in O (n?)
variables to be optimized. In order to cope with that problem, alternative ‘fixed-rank’
approaches have also been studied, which consider the following optimization prob-
lem:

IAX) — A(X.)||% — min,
rank(X) <r. (1

The fixed-rank approach allows to either search for the unknown matrix in a fac-
torized form using gradient-based optimization [9, 10], or to use techniques based
on optimization on algebraic manifolds [11-14]. The latter approach allows to use
optimization methods with faster than linear (e.g. second order) convergence, but has
initial point restrictions and commonly does not have a direct estimate on the required
matrix element count; the former approach allows to build geometrically-convergent
methods that do not have strong initial point requirements, and keeps the same estimate
of O(nlog?n) matrix elements being sufficient for successful completion. Further-
more, recent results [15, 16] have shown that it is possible to substantially reduce
the computational complexity of such methods while maintaining provable geometric
convergence.

In this paper, one of the factorized-form iterative gradient-based optimization algo-
rithms called ‘Singular Value Projection’ (SVP) [9] will be considered under a special
setting with erroneous input data: it will be assumed that a small fraction of given ele-
ment values may be subject to errors. The theoretical bounds developed for the original
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SVP method have a certain requirement of the non-sparsity of the unknown matrix
and the residual on each iteration. Thus, the original SVP method, if applied directly
to the mask with erroneous elements, will generally not converge to the unaffected
matrix.

The main result of this paper is an algorithm that is able to solve the completion
problem with sparse errors. An alternative procedure, that introduces two independent
completion ‘masks’ and searches for the most ‘aligned’ parts of the resulting matrices,
is proposed and analyzed theoretically. The proposed procedure can also be formu-
lated as a ‘low-rank plus sparse’ approximation algorithm with provable theoretical
bounds under the assumptions commonly used in the analysis of the matrix completion
algorithms.

The organization of the paper is as follows. The second section contains brief
discussion of the concepts of ‘Restricted Isometry Property (RIP)’, canonical angles
between supspaces, and SVD perturbations, that are widely used throughout the paper.
In the third section, the matrix completion SVP method is discussed. Theoretical con-
vergence results, which are close to those from [9, 15], but provide a direct dependence
on the problem condition number, are provided in order to form a base for the new
algorithm. These results guarantee geometric convergence of the method in the case
when A is a general operator that satisfies the so-called ‘Restricted Isometry Prop-
erty’ (RIP). In the fourth section, a novel “Twin Completion’ approach, that is able to
solve the matrix completion problem in the setting of sparse measurement errors, is
proposed and analyzed. In the fifth section, numerical results are provided that show
the effectiveness of the proposed method.

2 Required concepts

In this section, some linear algebra and matrix completion concepts will be discussed,
that will be used throughout the rest of the paper.

2.1 Restricted isometry property

As the matrix completion problems, if posed directly, are commonly NP-hard [7], it
is common to impose additional constraints on the functional (1) and/or its solutions.
One way to do so is to suppose that the linear operator A fulfills the so-called RIP
property, which means that it approximately preserves the norm of the input.

Definition 2.1 (‘Restricted isometry property’, RIP)
A =8)IX17 < JAXIF < A +8)[X |7, rank(X) <r @)

The approximate relative norm preservation necessarily means absolute scalar product
preservation, which is shown in the following Lemma using the common scalar product
expression in terms of corresponding norm:
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Lemma 2.1 If a linear operator A € R™" — R"™" satisfies restricted isometry
property (2) for all matrices Z : rank(Z) < 2r, then

(X, V)F =/ IXIFIIY I F < (A(X), AX))F < (X, Y)F + 02, I XIIFIIY | F,
X,Y e RV : rank(X) < r,rank(Y) <r.

Proof As the Frobenius scalar product is induced by the Frobenius norm, by the
parallelogram identity

1
(X V)r = (X + Y2 —I1X - Y[3)

1
(AX), AN F = Z(JAX + VlE = IAX = V)7

Now, if || X|[r = [ Y][F = 1, then

1
(A, A F = (X, V)| < ZIIAX + D% = IX + Y5+
1 2 2
+ AKX = V)l = 1X = Y]

82 8
< IX+ Y%+ - Ix - Y%
4(X,Y)

< o < 8. (3)

In general case with arbitrary values of | X|| s, || Y || 7, the proof follows from applying
the considerations above to and scaling the result (3) by | X ||| Y|F. O

IX0F> 1Y lF>

While it is possible to provide an example of such an operator A € R"*" — R"*"
with an image dimensionality of O (n?), it is unclear if such operators with smaller
image dimensionalities m < n? even do exist. However, certain additional limitations
on the set of low-rank matrices on which the RIP constraint must hold allow one to
build some examples of such operators .4 with low image dimensionality [9, 15]. An
important example is the so-called ‘matrix completion’ operator.

Consider Ag € L(R"™" — R™") to be called a random ‘matrix completion’
operator, if it has the form

) Xij/Jp G ) € Q
A(X)ij = 0.G.1 £ &

where €2 is a set of indices corresponding to the known elements of a matrix, and p =
% is the sparsity parameter. Such an operator, with a minimal sparsity requirement
is known to satisfy RIP property on a subset of matrices of low rank.

This subset is defined using the so-called matrix p-incoherence condition, or essen-

tially ‘non-sparsity’ condition of the following form:

@ Springer



Matrix completion with sparse measurement errors Page50f32 9

Definition 2.2 (u-incoherent matrix) A matrix X, rank(X) = r is called u-
incoherent, if the SVD factors of this matrix satisfy
w w
[Uij| < £ [Vijl < £
Jn Jn
X=UZV* U,V e RV, 4)

Theorem 2.1 (Theorem 4.2, [9]) There exists a constant Cgrrp > 0 such that for any
0<$6 <1,any p > 1,n > 3, and a sparsity parameter

12r? log(n)

2 9
S n

p=Cgrip

a matrix completion operator Ag with Q selected randomly using uniform index
distribution

P{G, j) € @} =p, Vi, ],

with a probability not less than 1 — exp(—nlog(n)) satisfies RIP with parameter §,
on all pu-incoherent matrices of rank not larger than r.

Here and throughout the paper the logarithm is assumed to be natural (with base e),
but it is mostly insignificant for asymptotic analysis. It is notable that the incoherence
property can be translated to an elementwise bound of a matrix using a following
Lemma.

Lemma 2.2 If X is a rank-r matrix, that satisfies incoherence properties (4) with
constant [, then

1Xle < M
< " .

Proof The proof is given in [9], Lemma 4.7. O

2.2 Angles between subspaces

In this paper, we are going to analyze the convergence of matrix completion methods
using the idea of singular vector subspace stability to almost orthogonal perturbations.
The analysis will require the following common linear algebra concept of canonical
angles and vectors between linear subspaces. Consider two linear subspaces £ € R”
and M € R” such that dim(£) = dim(M) = r. Let Pz, Ppq denote the correspond-
ing orthogonal projectors. Then [17, 18],

e The singular values oy of the product P, Py belong to the interval [0, 1]. The left
and right sorted singular vector pairs of Py P4 are called the ‘canonical vectors’
between subspaces £, M. The sorted values ¢, € [0, %], such that cos ¢ =
o (Pz Parq), are known as the canonical angles between subspaces £, M.
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e The first canonical vector pair between subspaces has the meaning of the pair of
most correlated unit vectors of these subspaces:

{X1, Y1} =arg _ max (X, y)2.
Y g xeLl,yeM Y
All the other canonical vector pairs can be expressed iteratively with

{Xk, yi} = arg _ (X, )2,k <r.

mglx
Xel xLlxy..xp—1;yeM,yLyr...yp—1

e The eigenvalues of a symmetric matrix Pz — Pj, are equal to =+ sin ¢ (maxi-
mum total of 27 nonzero values), where ¢ denotes the canonical angles between
Pr, Pp.

2.3 SVD perturbations

Now, let us recall a singular base additive perturbation bound proved by Wedin, which
is close to the well-known Davis— bound. The theorem essentially guarantees that if
the perturbation is almost orthogonal to both left and right singular subspaces of the
original matrix, these subspaces are not changed much after the perturbation.

Throughout the paper, it will be commonly assumed that Py := UU* denotes
an orthogonal projection onto a subspace spanned by orthogonal columns of U, and
P-(X) € R™" denotes the optimal SVD-projection of a matrix X € R"*" onto the
set of matrices with a rank not larger than r.

Lemma 2.3 (Wedin, [19, 20]) Let X € R"*" be a rank-r matrix, and X = UX,V*
be its short SVD with U,V € R"*". Let E € R"*" be an additive error matrix that
fulfills max{||PyE||r, |EPyv|r} < n. Let y € R be a positive constant.

o Ify <0,(X) — |El2, and P,(X + E) = U, %, V%, then

n
max{[| Py — Py |lF. [Py — Py lIF} < 2;-

o More generally, if there exist size-r singular vector bases U,v of X + E
(which do not necessarily correspond to the top-r singular values), and y <
min; <, j|0; (X) — 0 (I — Py)(X + E)(I — Py))|, then

n
max{[| Py — Py |lF. [Py — Py [IF} < 2;-

Proof The statements are proved in [20] and also discussed in ~[19]. The claims are
obtained by plugging into Theorem 4, [19] the notations ¥, <> X1, 0 ((I — Pp)(X +
EY(I — Py)) < 0(X2),UJE < S, EV, < R. O

Now, let us prove an additional Lemma that uses the above theorem for the particular
case of a low-rank matrix perturbation.
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Lemma24 Let X € R"™" be a rank-r matrix, and UXV* be its short SVD
such that U,V € R"™7. Let E € R"™" be an additive error matrix that fulfills
max{|PyE|r. |EPy|r} < n, [Ell2 < 252,

Let k = gig((; be the ‘problem condition number’. Then,

[P-(X + E) = X|IF < n(8k +3).

Proof Defining P (X + E) := USV* APy := Py — Py, APy := Py — Py, where
U,V e R"™, we can use the previous Lemma to open the brackets as

1Pr(X + E) = X|lFp=IPy(X+ E)P; — PuXPy|r
= [[(Py + APy)(X + E)(Py + APy) — PuXPy|lF
< I(Py + APy)X(Py + APy) — PuXPy|lr (%)
+ I(Py + APy)E(Py + APy)| F. (6)

Let us define y := 0,(X) — | E||2; as | E]2 < “’gx), y > # Then, Lemma 2.3
gives the bound ||[A Py ||r < 2}/—’7, [APy|F < 2—", and we can bound the two additive

terms of (5), (6) by !

I(Py + APy)(X + E)(Py + APy) — PuXPy|
< |PuXAPyllr+ APy X Pyl F

<UAPyIF+ IAPyIIAIXI2
4n o1(X)

< —IIXl2=8n = 8nk
14 or(X)

and

I(Pu + APy)E(Py + APy)llF < |PUEPy|IF + [|APy EPy|lF
<IPUE|Fr+ IAPyFIE]2

2n
<n+ 7IIEI|2 <3n,

where we used |AB||r < ||Al|lr||Bll> multiple times, and the last inequality follows
from y > % > || E|l2. Summing the two additive terms finishes the proof. O
3 Exact restricted isometry SVP

The so-called ‘Singular Value Projection’ [9] method is essentially an iterative pro-
jected gradient method applied to the functional of the form

W(Y) = [AY) — A(X)||% — min,
rank(Y) <r. @)
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One iteration of the method can be described with equations

Wi = X — X,
X1 = Pr (X —a VW (Xp))
= P (Xy + a A" A(Wy))
= Pr(X — Wi + a A" A(Wp))
= P (X + (@ A" A = T)(Wp));
Xiy1 = P-(X + Ep),
Ep i= (@ A* A — I)(Wy).

where k is the iteration number, X; denotes the current approximation of the desired
unknown matrix X, Wy denotes current error, « > 0 is the step parameter, and Z €
R™" — R™" denotes the identity operator defined in the space of matrices.

In [9], it is proven that if the operator A : R"*" — R"*" satisfies the RIP property
(2) with a constant 0 < &3, < 1 for all matrices up to rank 2r, then the SVP method
with o = %(SZV ~ 1 attains geometric convergence in terms of the optimization
functional (7), regardless of the initial point X¢. Here, we will provide alternative
convergence theorems and proofs that are based on the analysis of a low-rank SVD
perturbation. In our paper, we will consider a fixed step size of « = 1. Our arguments
are based on the following Lemma.

Lemma 3.1 (Projected A*A — 7 residual) Let U,V € R™" be arbitrary bases with
orthogonal columns, andY € R"*", rank(Y) < r. Let A be an operator that satisfies
RIP with a constant 8>, on all matrices of rank up to 2r. Then

max{|| Py (A" A = DY) lr, [(A"A=DY)Pylr} < 82 lF,

where Py, Py denote orthogonal projectors UU*, VV* respectively.

Proof Using that rank(Py(A* A —T7)Y) < r, and rewriting the Frobenius norm with
a scalar product maximization, we have

Py (A*A—-DY| max (Py(A*A—=1)Y,LR"F

L,ReR"™ " |ILR*||p<1

= max ((A(Y), A(PyLR*))r — (Y, PyLR")F)
[[ILR*||[F<1

<& Y|r max |PyLR*|F
LR || F=1

=& IYlF.

where the inequality follows from a scalar product isometry Lemma 2.1. O

Lemma 3.1 brings the following idea: although the SVP iteration additive term
Er = (A* A — I) W itself may have a relatively ‘large’ norm compared to current
error Wy, it is almost orthogonal to the bases of the solution X. Thus, by Lemma
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2.3, addition of Ej should have a limited impact on the top singular bases of X, and
1P (X + Ex) — X|| < [IWill.

Recent studies [15, 16] have shown that the most numerically-complex operation
of the SVP algorithm, which is the SVD decomposition (that costs O (n*) operations
in general), can be reduced by using approximate partial SVP decomposition. Such an
approximate decomposition can be obtained using any algorithm P, that satisfies the
approximation condition: for any matrix Y, ﬁ,(Y) should be a rank-r matrix that in
some sense approximates the actual projection P.(Y). In [15], the following definition
of approximation is introduced:

Definition 3.1 (Approximate projector, [15]) The operator P is called an e-
approximate SVD projection operator if

1P-(Y) =Y} < A+OlY — (V). ¥ e R™. (8)

Same condition in expectation form is used in [16]. In this paper, we are going to
use a stronger version of such a condition compared to [15, 16]:

Definition 3.2 (Approximate projector) The operator P, is called an €-approximate
SVD projection operator if

12, (Y) — Po(V)llF < €llY — Po(V)llp. ¥ € R™. )
The Definitions 3.1, 3.2 are non-equivalent: if (9) holds, then

I12,(Y) = YIIp < |1P(Y) = Pe() | F + |1 P(Y) = Y]|F
<A +o|P(Y)=Y|F,

and (8) is fulfilled with 1 4+ € = /1 + €. If (8) holds instead, the Definition 3.2 may
not be fulfilled in general, which can be seen on the following example. Let

1.001 0 100107 5., [oo0].
Y:[ 0 1:|,Pr(Y)=|: 0 O},P,(Y)._[Ol]

Then, taking € = 0.001 we have
1Y = BN lr = A+ Y = P(N)r, 1PY) = B(WlF=[Y]F.

In the context of this paper, however, the matrices Y of interest are bounded by some
limitations. Lemma 2.4, for example, requires a gap in the singular valuesof ¥ = X+FE
of the form o, (Y) — 0,4+1(Y) > const. We will now show that imposing additional
constraints on the singular value decay of the considered matrix ¥ make the Definitions
3.1, 3.2 close-to-equivalent.

First, consider that if the rank-r matrix has an orthogonal column basis U e
R"™", P.(Y) = UZ, then |P,(Y) — Y||p = |PyY — Y| p, where Py = UU* is
the orthogonal projector. Since computing U*Y isa (relatively to the common SVD)
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9 Page100f32 S. Petrov, N. Zamarashkin

low-complexity operation, it can be assumed that the approximate projector Pr(Y)
always has the form Py ) Y, where U (Y) is some approximation to the top-r singular
columns of Y.

Lemma 3.2 (Approximate projector equivalence) Let Y € R ", and let P,(Y) =

PyY =UXV* U,V € R"™ - be its optimal SVD-projection onto the set of rank-r
matrices. Let Py Y be an approximate projection, which satisfies

IY = PyYllF <A+ e)|Y — PuY|F. (10)

Let the singular values of Y satisfy

D ok(¥) <2e Y oY), (11)
i=1 i=r+1
2r n
Y oi¥) e Y o). (12)
i=r+1 i=r+1

Then,
IPyY — PuYlp < (V2 +VO)VellY — PyY||F.

Proof By the approximation property 10, it can be seen that

n
(46 Y of (M) = It = Pp)YIg =Py = Pp)Y I + I = Py)T = Pp)Y I,
i=r+1
I = Py)U = Pp)Y I3 = I = Py)Y — (I = Py)PpY I3 = Y oY),
i=2r+1

where the last inequality follows from the bound on the optimal Frobenius-norm
residual between the matrix (I — Py)Y and a rank-r matrix. By subtraction, we have

2r n
1Py = P)YIIF < Y of(¥)+e Y of(Y)
i=r+1 i=r+1

=B2W)IIPyY %,
S 0P + e oY)
Yo () '

BA(Y) =

On the other hand, by the orthogonal projection properties and optimality of singular
subspace U, we have

I = P)YIF =Y 7 = 1P Y7 = 1YIF — I — Pu)PyY I3 — | PuPy Y7,
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I = P)YIIE = I — Po)Y I3

By rearranging the terms, we can bound
I — Py)P;YII% < Y15 — I = POYI5 — 1Py PsY % = | PuY 3 — | Py PrYII%
u)rpgtip = F U F vtrgtirE Utig utrgtip:

Now, we need to bound the value || Py Y ||% — Py PyY ||% using the previously obtained
| PyY — PyPyY|% < B*(Y)|PyY|%. The bound would be straightforward in the
absence of squares; in order to handle the squares, let us make an arithmetic substitution
a < |PyPyY|p. b < IPyY|r.b>a>0,(b—a)? < B> Then,
b? —a® =b> —2ab +a* + 2ab — 2a* = (b — a)> + 2a(b — a) < (B> +2B)b.
It = PPy Y (I3 < (B> +2B) I PUY |17

Now we can use the obtained bounds to obtain

1Py Y — PuYllr < |PuY — PuPypYllF + |1 PgY — PuPyYllF
=Pyl — Pp)Y|lr + |1Py(I — Py)Y|F

< B+ B+2BIPUYIF.

In order to finalize the proof, we need to use conditions (11), (12) to bound S(Y).
Inequality (12) gives

2r n n
Dot te Y ot () <2 Y ai(Y),
i=r+l1 i=r+l1 i=r+l

thus by (11) 8(Y) > 1. Then,

2r n
I1PyY = PuYllp < A+ V3)BIPyYIF =+ *@/Zi:m AR DN (0

SUHVH 2T 02N = (V34 VORI Py YI.

O

Now, we will sum up the SVP convergence theory results, similar to those in [9,
15], with a theorem. The theorem uses the Definition 3.2 and requires the RIP property
(2) to hold for all matrices of rank up to 4r, compared to 2r in [9, 15]. With these
more strict conditions it is possible to establish a short and understandable proof of
convergence using the concept of SVD perturbation analysis.

Theorem 3.1 (SVP convergence) Let X be a rank-r matrix and k = gig; Let A be
an operator that satisfies RIP with a constant 84, on all matrices of rank up to 4r.
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9 Page12o0f32 S. Petrov, N. Zamarashkin

Then the SVP algorithm attains local linear(geometric) convergence with constant
84, (8K + 3). .

Let |A*||F = maxyo % Additionally, let P, be an e-approximate SVD
projection operator in the sense of Definition 3.2, and let €||A*||p(1 + 84,) <
1 — 84,8k + 3). Then, approximate SVP with P, replaced by P, attains local lin-
ear(geometric) convergence.

Proof In the case of exact SVP projection, taking into account that rank(Wy) < 2r,

and assuming || Ex|l2 < ”"EX) , Lemmas 2.4, 3.1 give estimates

I PuErllF < arIWkllF, IEx Pyl F < 84rll Wil P
[Wirillr = 1P-(X + Ep) — X|IF < 84-(8k + 3)[[WillF-

The assumption || Ex|2 < %X) holds true locally when the error value of the current
iterate is small enough: as

IEkll2 = I1(Z — A" AW ll2 < IZIF Wil F + 1A F I AW | 7
= A+ A+ 8 AP I Well

it is sufficient to assume
Will2 < ! (X)
2[l A% F "

In the case of inexact SVP projection, it can be seen that

Wil = X — Bo(X + Ep)
=X - P(X+ E)+ P(X + Ex) — P(X + Ep),

and it suffices to bound | P, (X + Ey) — Isr(X + Ex)||F with

IP-(X + Ex) — Pr(X + E)llF < €l Pr(X + E) — (X + E)llp
= €| Pr(X; + A"A(W) — (Xi + A AW F
<e€lXi — Xk + A AW I F
= €| A"AWIIF < (1 + 84p)ell A*[| £ | Will £

where we replaced an optimal approximation with a suboptimal approximation Xy of
rank r in order to obtain an upper bound. O

Compared to the results of [9], Theorem 3.1 gives a convergence bound that depends on
the optimization condition number «, which is seen in numerical experiments. For the
purposes of this paper, let us generalize this theorem for the case of nonzero additive
error occurring on each gradient step. This would result in the following Lemma.
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Lemma 3.3 (SVP with errors) Consider the same conditions as in the previous theo-
rem, but assume each SVP iteration is done with an additive error matrices Sy present:

Xis1 i= Pr(Xp + A" AW + 80))
= P.(X + Ex + S,
Sk = .A*A(S'k)

Let the additive error matrices suffice the following bounds:

ISkllF < 1A pl| Wkl F, Yk (13)
| PuSillF < dar | WillF,
|Sk Py llF < 8ar | Wkl F, Vk. (14)

Then,

o If 2648k 4+ 3) < 1, the SVP algorithm with additive errors and exact SVD
projection attains local geometric convergence with constant 284, (8 + 3).

o Ife||A*||F(2 + 84r) < 1 — 284, (8k + 3), then the SVP algorithm with additive
errors and e-approximate SVD projection attains local geometric convergence.

Proof Again, in the case of exact SVP projection, Lemma 2.4 gives an estimate

[WirillF = 1P (X + Ex + S0) — X F
= max{|| Py (Ex + Sl F, [(Ex + Sk) Pyl F}(8k + 3).

By Lemma 3.1 and the theorem assumptions we can then bound

| Pu(Ex + SllF < 1PUEKIF + | PuSkllF < 284, | Will F,
ICEx + S PvilF < |ExPvilF + ISk Py llF < 2084 |WillF.

These bounds are true under locality assumption || E; + Skll2 < o,(X), for which,
taking into account the condition (13), it is sufficient to assume that the current error
is bounded by

1
Wi < — 0 (X).
Wil < o7 (0

In the case of approximate SVD projection and gradient additive error,

Wit1 = X — Po(X + Ex + Si)
=X —P(X+ Ex+ St) + P (X + Ex + Sx) — P (X + Ex + Si),

and it suffices to bound ||P-(X + Er + Sk) — 13,(X + Er + Si)||F using the e-
approximation property (9)

I1Pr(X + Ex + Sp) — Pr(X + Ex + Sl p <

@ Springer



9 Page 140f32 S. Petrov, N. Zamarashkin

<€lPr(X + Ep+ Sp) — (X + Ex + Sl F

= €|l Pr (X + A"AWg) + Sp) — (X + A"AWi) + Sp)ll

< €llXk — (X + AAW + Pl p = e (IATAWD I F + 15k F)
< €@+ 8 1AM FIWkl F-

O
4 Twin completion
4.1 Low-rank plus sparse problem setting
Assume a matrix ¥ € R"*" can be represented as a sum
Y =X+35, (15)

where the first term is a low-rank matrix, rank(X) = r < n, and the second term S
is sparse. The problem that will be considered in this section is finding both X and
S by knowing Y. In other terms, a two-part representation is computed for the input
matrix, where the two parts are known to have different structure types (‘low-rank’
and ‘sparse’). If one of these parts is known and the model decomposition (15) is
exact, the second part can be obtained by subtraction.

An algorithm that is based on the matrix completion concept will be proposed as a
solution. For the convergence analysis of the algorithm, it will be assumed that nonzero
elements of S are distributed uniformly among the set of all possible indices, with a
constant probability of order g B = const, which results in an average of fn nonzero

elements in S.

Referring to the Sect. 2 and Theorem 2.1, assume that the low-rank part X is pu-
incoherent. Algorithms for finding both the exact low-rank part X and the sparse
part S for a given Y based on convex relaxations are available under certain tangent-
space conditions for X [21], but involve numerically complex procedures because X
is handled as a vector of O (n2) unknowns. In our work, we will provide an algorithm
that maintains the low-parametric structure of approximations for both X (factorized
low-rank) and § iteratively. In order to achieve that, we will consider a problem in the
following form:

IZ =Pa)Y = X)llF =y, inf, ¥ e R"", |A| < CBn, C > 1. (16)

Here, A C {1...n} x{1...n},and P, € R — R"*" denotes an operator that
sets to zero all matrix elements with indices that do not belong to A. The functional
(16) suggests that an approximation for Y = X + S is searched in a form of a low-rank
and sparse matrix again, but the sparse part may have a constant times more elements
than the original S, thus we are looking for a possibly suboptimal approximation in
the original low-rank plus sparse format.

Then, consider the following iterative algorithm, starting with k = 0, Xg =
0, Wo = X, empty set A and a random mask € selected uniformly with sparsity

@ Springer



Matrix completion with sparse measurement errors Page150f32 9

uzrz log(n) . . . . . .
p > Crrp=——2-=, as in Theorem 2.1. Algorithm iterations are then is described

2 £
64r n
by:

Algorithm 1 One-masked matrix completion with errors

1: while |[(Z — PpA)(Y — X)||f > e do

2:  Tteration number k := k + 1. ) )

3:  Find the top CBn, C > 1 elements of the effective residual Wy_; + S = X + S — X} _1 in terms of
their absolute values. Define the set of corresponding indices as Y.

4: A =AUy, Q i=Qp—1/ Y.

50 Xp=Pr(Xp_y +A"§2kAgk(Wk_1 +9)).

6: end while

The value ¢ is a predefined threshold which the low-rank part of the approximation
should meet along matrix entries that do not belong to the sparse part of the approx-
imation. The logic behind this algorithm is essentially that by construction, additive
error matrices Sy := Ek.AQk (3‘), that arise in the iterative process, should fall under
the assumptions of Lemma 3.3, making the algorithm convergent. In order to prove
that, we need the following Lemmas characterizing Si. Firstly, S lies in an intersec-
tion of two random sparse subsets, defined by S and by 2; that means, that Sy must
be a very sparse matrix with high probability:

Lemma 4.1 (Sparse mask intersections) If C € (e, %) be a constant, and let each

index (i, j) have the same probability g to belong to the set supp(S') of nonzero
elements of S’, then:

o With probability not less than 1 — e~ (€ +1Bn, |supp(.§')| < CBn.
o With probability not less than 1 — e~ €+DBP2 |sypp(Si)| < Cppn, p € (0, 1).

Proof Note that |supp(Sx)| < |supp(Sp)|, and both |supp(3‘)| and |supp(Sp)| can be
considered random Binomial-distributed variables that correspond to n” experiments
with ‘success’ chances g and %, respectively. The Lemma then requires a bound on
two Binomial distributions

P(|lsupp(S)| > CBn) = F(n> — CPn;n* 1 — g)’

P(|supp(So)| > CBpn) = F(n® — CBon; n®, 1 — i_p),

where F(s;m, p) = P(X,;,, < s) denotes a cumulative distribution function of a
Binomial random variable X, , with m experiments and ‘success’ chance p. Thus,
we need a bound for the CDF of a Binomial distribution: such bound can be taken, for
example, from [22], where it is established that

F(s;m, p) < e*mD(%HP);
1—
1 —

q q
D(qllp) := qug; + (1 —¢q)log p; q,p€(0,1),
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where the notation D(g||p) denotes the so-called Kullback—Leibler divergence,
expressed directly for the particular case of two binary coins with probabilities ¢, p.
Then, the bound we need follows from

_nz(”zf# log 12 Cpn n2
n

F(n> —CBn;n*,1— E) <e n? n?
n

nZ—Cﬂn
nz—ﬂn e

_ ef(nszﬂn)log —ClogCBn

2
2_ n”—pn
e(n Cpn)log nz—Cﬁn E_C IOg Cpn

2 (C=1)pn
_ T Chmlog(I4 500D ,—Clog Cn

< ¢(C=1pn,~ClogChn _ ,~(C+Dpn.

where we used log(1 4+ x) < x and log C > 2. The second bound is obtained in the
same way by replacing B <> Bp in the derivation. The condition log C > 2 here can
be relaxed; it is used in order to obtain simpler probability bound formulas. O

4.2 Sparse error bounds

Now, we are going to establishabound on || Sk || r, || Pu Skl F, || Sk Py ||, where U, V €
R™ " are the singular bases of the p-incoherent bases of the low-rank part of the
solution X. The bound is based on the idea that the Y} exclusion step should remove
all ‘sharp’ sparse part elements except those that are not above the current residual in
absolute values. This is done in the following Lemma:

Lemma 4.2 (Sparse error exclusion) Let C € [e2, %). Assume Wy_1 is u-incoherent.
Then, with probability no less than 1 — e=CPe",

Cpr
ISkllF < 20, | ——[Wi-1llF,
on

"
max{|| Py Sillr, ISk PvF} < ZC,BM”\/;”Wk—IHP

Proof Assume |supp(§)| < CpBn and |supp(Sk)| < CPBpn; by previous Lemma,
the probability that both events hold is no less than 1 — e~CPPn Then, recalling
Sk = Ag, A, (5), we have

ISkl = 145, Aa, (Dllc = 14, Ag, (Wi—1 + 8) — A, Ag, (Wi—Dlic <
< AL, A, Wi—i + )llc + 4L, Ae, (WD e
[Wi—1+ Sl;,; 4 max (W1l
(i, J)€Q 1% (i, J) € Y
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Wi—1 + i, Wil j
| k—1 |l,]+ max | k llz,J

< min 1
(@i, j)eYk 1Y (i, )€1 P
[Wi—1li,;
<2 max —"J,
(@, 7)€Qk—1 14

where the last inequality follows from the set T having more elements than the support
ofS thus at least for one (i, j) € Y it holds that (Wy_; + S), .j = (Wi_1)i,j. Using
the incoherence assumption and Lemma 2.2, the bound then continues as

Wi 22U/ || Wi
ISl < 2! kpl”cf Wil

on

Now, let us use |[supp(Six)| < CBpn and the obtained elementwise bound on Sk in
order to establish Frobenius norm bounds on Si, Py Sk, Sk Py :

Cpr
ISkllF = vV CBpnllSklic = 2u,| p—HIIWk—lllF-

2 2 *= =T
IPuSKIE = 1U*Sklz =1 > sijU*ée] Ix
(@i, j)€supp(Sk)
<lsupp(Sl Y llsijUEET 1%
(i,j)esupp(Si)
< Isupp (S Selle max U3 <

"
< |supp(SOIPIISkI2 =

_ (C?Bp’n)@rp?) (ur)
(p?n?)(n)
B 4C2,32/,L37'2

2
Wie—1ll%

IWi—111%;
"
| PySkllF < 2C,3W,/;||Wk71 -

The derivation of the bound on || Si Py || r is based on the same considerations as those
for || Py Sk || F. O

The Lemma 4.2 combined with the proof of Lemma 3.3 now gives the following
insight: the proposed Algorithm 1 converges geometrically in terms of || (Z —Pp) (Y —
X) || F if the following conditions keep true for each iteration k:

e Both the current iterate X and residual Wy, are p-incoherent.
e The operator Ag, satisfies the ‘Restricted Isometry Property’ (2) on all u-
incoherent matrices with high probability.

The former condition is a complicated issue to prove: while Xy is guaranteed to
be incoherent when ||Wi|l2 < o,(X), the residual Wy is known to lose incoherence
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properties in practice even for the common SVP algorithm (without additive errors)
applied to completion operator in some cases [15] (this can, however, be resolved in
practice using heuristic rank-increasing techniques [15]). The latter statement though
can be proved using the following idea: despite €2 losing its randomness/uniformity
(because the excluded sets Y'; are not random and depend on X, S‘), . 1s obtained
from the initial set €2 by excluding a relatively small number of elements from the
mask, and the operator Ag, does satisfy RIP w.h.p. based on Theorem 2.1. We fill
finalize the analysis of the Algorithm 1 with the following Lemma.

Lemma 4.3 (Restricted isometry preservation) Let the initial set Qo of Algorithm I be
selected randomly using uniform index distribution

P{(@, j) € Q0} = p. Vi, J,

andlet p > Crrp % @. Then, with probability not less than 1 — exp(—n log(n)),

the operator Agq, (with the same scaling parameter p) that appears on iteration k of
the Algorithm 1—satisfies the RIP-property with a constant 6, y on all p-incoherent
matrices with rank not larger than r, and

Cpk

Srk =6+ —m—.
rk " Criprlogn

Proof By Theorem 2.1, the operator Ag, with probability not less than 1 —
exp(—nlog(n)) satisfies RIP-property on all -incoherent matrices with rank at most
k. Now consider an arbitrary p-incoherent matrix ¥ € R"*", rank(Y) < r. Note that

P 3
I Ay ()13 = Il Aq, (NI} + 22DNE and 190/ 94| < Ckfn. Then,
I Ao (DI < Ay (DIF < (L +8) 1Y I < (1+8,01Y I3

P, )|
e (DI = [ Agy (1) 1% — P20 Dl

CBkn||Y|?

> (1-8)|Y|F - ——<

5 CBku’r 2
> 1 =8IVl — ——IYI7

CBk

> (1 —=8)|Y|% — Y|
> (1 =8IV )13 Cmprlognn 1%
==& IYI%. o

As we are assuming geometric convergence, k = O (log ¢), where ¢ is the desired
solution residual threshold, and thus is not large. Better RIP constant §, ; can be
obtained via increasing p above theoretical minimum, as seen from the proof.
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4.3 Twin completion

The proposed Algorithm 1 has the following notable drawbacks:

1. The number of elements in the sparse part of an approximation returned by the
Algorithm 1 is not smaller than the true number of erroneous elements multiplied
by the number of iterations. Both the convergence analysis (Lemma 3.3) and prac-
tical results (see next section) suggest that although the convergence is geometric,
large values of the condition number « := ‘;:88 where X is the unknown low-
rank matrix, can greatly increase the required number of iterations, making the
sparse part of approximation have more elements.

2. In practice, if ¥k >> 1, on an early (e.g. first) iteration k of the Algorithm 1 it is
possible that || Sk |2 is below o1 (X) but is above o, (X) (which contradicts locality
assumption of convergence Lemma 3.3). In that case, the matrix X + E; + Sk
could have a set of singular vectors similar to those of X, but not all of them
would occupy positions among the top-r singular values. The matrix Wy, =
P (X + Ei + Si) — X then commonly loses it’s incoherence properties, because
one of the singular vectors P.(X + Eyx + Si) is largely affected by Sk, and the
Algorithm 1 diverges. The same problem arises in practice for ill-conditioned
matrices X even for the common SVP algorithm [15].

To deal with the discussed problems, a novel “Twin Completion’ approach is pro-
posed. The approach is based on the following ideas:

e If arandom sparse mask €2 projection Pq is applied to an already sparse matrix S,
the result Pq(S) can be considered a low-rank matrix, because it is Very sparse.

e If two random mask projections Pg,, Pq, are applied to an already sparse matrix,
both results Pg, (S’ ), Pq, (S' ) will be very sparse low-rank matrices, and they are
likely to have orthogonal column and row subspaces.

e Sparse subspaces are almost orthogonal to incoherent subspaces. A sum of an
incoherent matrix and a sparse matrix should have a set of (almost) incoherent
singular vectors and a set of (almost) sparse singular vectors.

e If two SVP steps, corresponding to two random masks, are carried out, the two
results should have a pair of close rank-r subspaces (close to the solution X sub-
spaces), and two sets of mutually orthogonal singular vectors.

Based on these considerations, it is proposed to generalize the Algorithm 1 so that it
can use two masks. On each iteration, two gradient steps along two masks are carried
out and SVP-projected onto the set of matrices with rank not larger than r 4 p, where
p is a parameter that should be an estimate to the number of elements in the two
assumingly orthogonal very sparse matrices.

The algorithm is initialized with k = 0, X¢ = 0, Wy = X, an empty set A and two
random masks €240, 25,0, both selected randomly and uniformly with equal sparsity

2.2
p=>Cgrrp "5—{ @, asin Theorem 2.1. The iterations are then described in Algorithm

2.

The proposed algorithm no longer relies on the construct P, (X + Ex + Si), which
considers only the top-r singular vectors, directly, thus making it more stable in the
case of ill-conditioned solutions. Furthermore, in practice, it is possible to relax the
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Algorithm 2 ‘Twin Completion’, two-mask matrix completion with errors

1: Initialize k = 0, Xy = 0, W = X; choose random 2, ¢, 225 0.

2: while |(Z — PpA)(Y — X)||f > e do

3:  Tteration number k := k + 1.

4:  Find the top CBn, C > 1 elements of the effective residual Wy_1 + S=Xx+38 - Xk—1in
terms of their absolute values. Define the set of corresponding indices as Y.

5: A ::AUT](,Q“’]( = Qu,k—l/Tstb,k = Qh,k—l/Tk

6:  Two SVD-projected gradient steps are made along the two masks:

Wit =X — X_1:
Eq k= (Ag,  Ag, — DWi-1),
Ep = (A, Ay = DWi-1);
Sak = A*Qa'kAQa_kS;
Spk 1= AD,  Agy i St
Xak = Pp(X+ Eq i+ Sa k)
=UakZak V) 1> Uaks Va €R"L,
Xpx = Pp(X + Ep i + Sp.k)
=UpkZpk Vi Ub ks Vo € RV,

7:  Top-r canonical angles and vectors between the found subspace pairs {U, k. Up i} and {V, &, Vi i}
are computed:

Pr(Ub*kau,k) = Ucoi Zcol VC*]; Ucol» Veor € RPX;

[

Pr(vljik Va,k) = Urow Zrow Vr*gw; Urow, Vrow € RPXT,

Ua,k = Ua,k Veol s Va,k = Vu,k Viow:
Upk := UpkUcol» Vb,k = Va,kUrow:

8:  Thetwo SVD-projected gradient steps are further projected (‘corrected’) onto the top-r corresponding
canonical vectors. The optimal rank-r approximation of the half-sum of the two results is then selected

as Xy.
( PUa,k Xak PVa,k + Pgb,kXb’k PVb.k )

Xp = Pr 2

9: end while

requirements on the norm of || Sk ||c, which is controlled by the Ty exclusion. That
means, exclusions can be carried out more rarely (or less elements can be excluded on
each iteration), resulting in smaller set A at the end of the algorithm, which corresponds
to smaller number of elements in the sparse part of the final approximation. In the
remainder of the paper, we will provide theoretical convergence background for the
Algorithm 2 .

Firstly, let us prove the following technical Lemma: if two column bases
span(U,), span(Up) have a pair of close and known rank-r subspaces span(U, ),
span(Up ), and the ‘remainders’ are almost orthogonal, then the canonical subspaces
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betweenspan(U,), span(Up) cannotbe much different from span(U, ), span(Up ),
respectively.

Lemma 4.4 (Canonical base distance bound) Let Uy, U, € R"TP*" be matrices with
orthogonal columns, that are decomposable into the following blocks:

U, = [Ua,r Ua,pfr] ,Up = [Ub,r Ub,pfr] ,

where Uq r, Up,r € R"". Let | Py, , — Py, Ilr < o, Uy ,_,Up,p—rllF < B. Then, if

the matrices U,, Uy, € R"™ " correspond to the top-r canonical vector pairs between
the subspaces span(U,), span(Uyp),

I Py, — Pu,, lIF < 120 + 4B,
| Py, — Pu,, IIF < 1200 + 4.

Proof Consider the following block-product:

U Ui Uar Up Uap-
Ub*Ua = |: bir :| [Ua,r Ua,p_r] = |: b,r=a.r b,r-a,p—r i| )

* * *
Ub,p—r Uh,p—rUas" Ub,p—rUavl’—"

Under the assumptions of the theorem, and considering the values of «, B to be small,
this block-product only has one large-norm block. The top-left element norm has a
lower bound of

Uy, UarllF = Pu,, Pu,, I F = I Pu,, + (Pu,, — Pu,,) Pu,,IIF =
> || Py,,IIF — I Py, — Pu,, IFIlPy,, Il = /7 —a,

while the remaining block norms can be estimated with

WUy p—rUarllF < I = Py,,)Pu,,IF = IIPy,, — Pu,, Pu,, IIF =
2 )
=Py, — Pu,, Pu., IF < Py, 12l Py, — Pu,, IF = a:
”U;,p—rUb,pfr”F S ﬂ

The structure of the matrix U, U, then implies that its top left block defines a close-
to-optimal rank-r approximation of the whole matrix. It can be seen that

Uf Uar O Up.rUar 0
1P (U Ua) — [ "o o] I < 1P Uy Ua) = Uy Uallp + 1U5Ua — [ "o 0] I
U Uar 0
<2||U;Uq — [ b 0] I < 4o +28.

Now, assuming that the optimal SVD-projection P.(U;U,) can be expressed as

UcotZeot Vs Ucols Veor € RP*7, then canonical vector column matrices Uy, Up can
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be expressed as
Ua = UaUcol, 0b = Uchol-
Using that, we can bound

Uy .Uy, 0 Uy Uur O
||Pr(U;:Ua)—[ @t 0} ||F=||Ub<Pr(U;‘Ua)—[ o 0]>U;:‘||F

= “UbUcolEcoth;]U: - Ub,rUb*,rUu,rU:,r”F

C

> |UpUr — Py, Pu,, IF — 1 Zcot — Il F.

Furthermore, X, is a diagonal matrix with values corresponding to the cosines of the r
smallest canonical angles between U,, Uj. By the structure of U,, Up, these canonical
angles cannot be larger than those between U, ,, Uy . Considering the expression,
which uses cos ¢ € [0, 1]

(1 —cos¢>)2 =1 —2005¢+cosz¢ <1 —2cos2¢+cos2¢ = sin2¢,

and taking into account that

2 s 2
1Py, = Py, 7 =) sin® ¢
k

where ¢ denote the canonical angles between U,, Uy, we have [|[Z.o — I||F < «,
and thus

10Uy = Pu,, Pu,, |F < 5a + 2.
Using that || Py,, — Py, |lF < «, again we have

1UUF — Py, Ilr = 1UU; — Py, lIF <6+ 28, (17)

a,r

1UUf — Py,, | F = 1UU; — Py, Ilr < 6c+28. (18)
Then, it suffices to bound

10sU; = Puy, \IF = 1PgL(UsUg = Pu, )IF = | PgL Py, lIF:
1P, Puy, e = Py, 15 = PG Pu, 17
> r — (6 +28)*;
1Py, Pu,, IIF = II(Pg, Pu,, — PG, )+ P, IIF
= ~1Pg, = Pu,, IF + 1Py, |l s

I Pg, — Pu,, IF = Vr—Jr — (6a +28)2.

\Y

A
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Bounding the square root difference, along with IPg, — Pu,,llF = Jro—
r — (6a + 2B)? obtained in a similar way, finalizes the proof. O

Now we are going to introduce two assumptions, under which we are going to
analyse the Algorithm 2 convergence.

Assumption 4.1 By Lemmas 3.1, 2.3, matrices X + E, x, X + Ep i should both have
singular subspaces (not necessarily top-r) close to those of the rank-r solution matrix
X. Let us define the corresponding column base pairs by {Ug r, Up r}, {Va.r, Vb.r}-
Then, with high probability, top p — r singular vectors of the remainder matrices

Pyt (X +Eai) Py, Pyt (X + Ep i) Pyr

are almost orthogonal to each other.

The assumption is motivated by the observation that

PUJ_

a(b)r(X + Ea(b),k)PVaL(b) o Pyr(X + Eapy k) Py = PyrEqp) .k PyL,

and, by definition E,p)x = (Z — Agkza(,,)kAQa(h).k)Wk- Now assume that Wy is a
residual of the common-SVP algorithm. Then, looking at Lemma 2.4 proof (opening
the brackets), we can write

PyiWiPyi = PyiAPy(X + Eqy ) APy Py ~ O(IAPyvy1?) = O(IWi—111?).

The top p—r singular vectors of P 1 E4(py k Py 1 canbe expressed with an optimization
functional

argmax z ycp(Pyt Eap) k PyL, ZY™)F
=argmaxy ycy(Eap).k» PyrZY* Pyi)F

= argmaxy yey p,z=0,y py=0(Ea(v)k> ZY)F,

where H = {B € R"", rank(B) < p —r, ||B|2 = 1}. Taking into account
(Eaw) ks ZY)F = (AQupy s Wis Ay 1 ZY ) F — (Wi, ZY ™) F, singular vectors of
the matrix Py Eqp) k Py L are then expressed as vectors that result in largest discrep-
ancy between a A-projected and non-projected versions of a scalar product of two
matrices almost orthogonal to each other. The assumption is based on intuition that
as the scalar product (Wy, ZY*)F is relatively small, then the corresponding vectors
are functions of the operator A, and are thus random among all vectors orthogonal to
U, V respectively.

Assumption 4.2 The addition of random sparse matrices S, k, Sp.x With not more than
p—r nonzero elements, do not damage the properties of Assumption 4.1. Itis supposed
that, with high probability, top p — r singular vectors of the remainder matrices

Pyp (X + Ea g+ Sa ) Py, Pyt (X + Ep i+ Spi) Pyt
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are also almost orthogonal to each other.

The matrices S, x, Spx are assumed to be very sparse: if p = 0(105 ), then by
Lemma 4.2 they both have O (log n) elements. Thus, S, x, Sp.x can be viewed as low-
rank matrices singular vectors close to one-element unit vectors with random positions
of the nonzero element. The probability that left (right) singular vectors of Sy . Sp.x
then have a matching index can be roughly estimated with

—\2 2
0<n<p r)>=0<log (n)>—>0,n—>oo.
n n

As the singular vectors of S,y « are sparse, and the bases U, V are incoherent, then
each singular vector of X + E4 ),k + Sa),x should be either close to a singular vector
of X, or to a singular vector of S, ) k., or be random (if || E4p k| >> |Sa) .k |l). which
explains the assumption.

Now let us finalize the analysis of the ‘Twin Completion’ Algorithm 2 with the
following theorem.

Theorem 4.1 (Twin completion convergence) Let Xy_1 be a current iterate of the pro-
posed ‘twin completion’ algorithm, and X be the unknown matrix. Using the notation
introduced in Algorithm 2, assume that both Xy_1, Wr_1 are u-incoherent. Assume
the Lemma 2.1 holds for all scalar products of -incoherent matrices with operators
Agq,, Ag,, and assume Lemma 3.1 holds for p-incoherent U, V. Let Assumptions
1,2 made above hold with an upper bound of XL|2 on the scalar products. Let the
second assumption variant of Lemma 2.3 hold for matrix X and two perturbations
(Eak + Sak)s (Epk + Spi) withy > C || X||2. Then,

IWellF < f (e r)Sar Wit | + 8, e,
where f , & are polynomial functions.

Proof By Lemma 2.3, the two projected gradient steps of the proposed ‘twin comple-
tion’ algorithm can be expressed as

Pp(X + Eqk + Sax) = Pu,, (X + Eqr + Sax) Py, ,+

+ Py, , (X + Eqk+ Sai)Pv,,..
Pp(X +Epk+ Spk) = PU,” X+ Epr+ Sb,k)Pva,-F

+ Py, , (X + Epik + Sp.k) Py, ,

2
where || Py, — Pullr < 7'7, and

n= TZIE}JX{IIU*(Ea(b),k + Su) O Fs 1(Eay.k + Saw) ) VIE}.
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Using Lemmas 2.2, 3.1, it is seen that

n< (54r +2C/3W\/g) Wi—illF.

2.2
As by Theorem 2.1 it can be assumed that 1 > W, thus
4r

N < Dby |Wi—1llF, D = const.
Now, we can apply Lemma 4.4 with

2[|Wi—illF A

1Py, — Puy, IF <2Durés .D=DC,,
1X1l2

€
”U[;|< — Ua,pfr”F < —
e IXMF

and obtain

F, r)oar |Willr + (e, r)e

Py . — Py, IlF < ,
Yatoy =0 112

f(“” 7)84r”Wk||F + g(l/«, F)G

”P‘_/a(h) - PVa(b)’,- ”F = ||X||2 s

where f, g denote some polynomial functions. The theorem then follows by observing

1Pg, o, Xaw ) Py, = XIF = 1P, (X + Ea@yk + Sa).0) Py, = XIF
S Qs r)oar 1WillF + g (1, r)e
=3 } X112 X + Eap) + Sall2

+ 1Pu(Eap).k + Saw),) PvIlF

< Fu r)Sar Wit | + 8w, e
Py (Xa i) Py + Pg, (Xp 1) Py,

Wil = 11 Pr( > )= XlF
Py (Xa ) Py, + Py, (Xp i) Py,
< 1P ( 7 )—
Py (Xa ) Py + Pg, (Xp 1) Py,
- 5 IlF
Py (Xak) Py + Py, (Xp i) Py
U, Ra.k)ly, + Ly, (Xp i) Py,
+ 1 > L L — X|lp
Py (Xg )Py + Pi (Xp i) Py
U, \Xa )y, T g, (Lb 1) Fy,
<2| > K L —Xlf

<Py, Xa )Py, — XIIF + |1 P, (Xp 1) Py, — XIlF
< 20 (y P)8ar | Wit Il + &1, 1)e).

O

@ Springer



9 Page 26 0of 32 S. Petrov, N. Zamarashkin

5 Numerical experiments
5.1 Artificial experiments

In order to numerically check the convergence theory and compare the proposed
one-mask based and two-mask based procedures, both the proposed one-mask and two-
mask Algorithms 1, 2 were tested on artificial data matrices that fit the required low-
rank plus sparse structure exactly. The test matrices were constructed in the following
way:

e Two matrices with orthogonal columns U, V € R"*" were generated as the top-r
singular bases of arandom matrix filled with normal variables with zero mean. Such
orthogonal columns empirically have logarithmic incoherence, thus are eligible to
original SVP completion algorithm.

e The solutions X were built as products of the form U X V*, where X is a diagonal
real matrix with positive entries such that the singular values of X are controlled
and decay with one of the following relations:

- o = %, which models a well-conditioned problem;
1

— 0k = 3z, which models an ill-conditioned problem.
e The sparse part S was built randomly using uniform distribution with probability
g for each element of the matrix to be nonzero; the corresponding nonzero values
of the matrix were also selected randomly using independent normal Gaussian

distribution scaled in such a way that \lllill‘li ~ 0.3.

For improved stability, heuristic sequential rank-increasing techniques as well as
step size control techniques were implemented in both one-mask and two-mask algo-
rithms, similar to those discussed in [15]; that means that the approximation starts
with a rank-one iterate X, and the iterate X rank is slowly increased up to r with
iteration number k.

These heuristic techniques, for example, can include residual tracking [15]: if
the residual relative difference % is smaller than a certain threshold
A =0.99 < 1, then the rank is unchanged and the step size slowly increases, else the
rank is increased and the step size is reduced.

In our experiments, similar heuristic approaches are used for sparse part handling
in order to control the size of the ‘excluded’ set A; the set Yy is set to an empty set
on each iteration that fulfills the steady convergence condition % <. If
the residual relative difference exceeds lambda, a decision should be made whether
to increase the rank of the approximation or the size of the sparse exclusion set A.
The two-mask algorithm allows a handy decision-making procedure: if the first ‘tail’
canonical angle ¢, 1 is smaller than a predefined constant (7 was used in experiments),
then the rank is increased; else the normally computed Yy is added to the sparse
exclusion set A.

With this heuristic sparse part enlargement procedure, the algorithm is quite flexible
in terms of the choice of the parameter C, which defines the size of the set Y} of indices
that are added to the mask of excluded elements A at once. While the theoretical
analysis suggests C > 1, it is possible to use smaller values of 0.2-0.5 in practice
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without any drawbacks (though, by the definition of C, the set A should be enlarged
in at least O(é) iterations, thus exceedingly small C should not be used).

As the one-mask algorithm cannot use canonical angles, the current approximation
X incoherence thresholding was used as the criterion for similar decision-making in
the one-mask algorithm.

The following paragraph describes the parameters of the carried out numerical
experiments in detail.

e Common scenario.
n=1024,r = 10,0, = ﬁ,p:S,p:O.ZS,,B: 10.0,C = 1.
The low-rank part is of rank 10, the sparse part consists of 10 nonzero elements per
row, and the sparse part enlargement coefficient C is set to one, which means that
the true number of elements in the unknown sparse matrix S corresponds directly
to the size of the index set Y added to the mask of locked matrix elements A at a
time. The result graphs are provided in Fig. 1. The graphs include the residual and
the sines of the column canonical angles: it can be seen that the canonical angles
numbered from 1 to r converge at the same rate as the residual, and the next angle
r 4+ 1 stays high throughout all the iterations, as supposed by the algorithm idea.
The ‘teeth-shaped’ sharp peaks in the sin(¢, (U, k. Up.x)) graph at early iterations
are caused by the heuristic rank increase procedures (the value of r is initialized by
1 and is increased step-by-step up to the true rank r). The convergence properties of
the one-mask and two-mask Algorithms 1, 2 are indistinguishable in this scenario.
The row canonical angles behave the same way as the column canonical angles do
here and in all further experiments.

e Smoothed scenario.
n = 1024,r = 10,0 = llﬂ p =3,p=025p8 = 10.0,C = 0.01. The
previous scenario experiments show that the residual graph is piecewise smooth,
with smoothness intervals corresponding to the iteration intervals during which
the set A is constant—each time a new sparse exclusion is made, the residual
falls rapidly for a few iterations and then settles at a lower value again. Such a
behavior can be controlled by the parameter C, which defines the number of indices
added to the sparse approximation mask A of once. On Fig. 2, results are shown
for C = 0.01: the residual graph is more smooth, but the overall convergence is
slower.

e [ll-conditioned scenario.
n=1024,r =10, o = %, p=3,p=0258=10.0,C = 1. In this scenario,
the low-rank unknown matrix is designed to have rapidly decaying singular values,
which causes differences in the one-mask and two-mask algorithm performance. In
this case, the low-rank column and row factors obtained by the one-mask Algorithm
1 commonly lose incoherence properties, which causes the algorithm to stagnate:
new elements are added to the mask of excluded elements until there are not enough
elements left for completion. The performance graphs are provided in Fig. 3, the
factor incoherence is measured in percents of the maximum value possible by
definition. The ‘Matrix locked’ graph shows the size of the set A as compared to
n?. The two-mask Algorithm 2 manages to keep the low-rank factor incoherence
low and maintain convergence. The corresponding graphs are provided in Fig. 4.
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Twin completion performance: Size 1024x1024, 6y = 1/k, r=10, p=3, p=0.250, =10.00
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o sin(oa(Uag Up) —— :
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E o sin(er+1(Ua ke Upk)) —— ]
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1.00e-06 : : : -
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Iteration (k)

Fig.1 Common scenario algorithm performance

Twin completion performance: Size 1024x1024, oy = 1/ k, r=10, p=3, p=0.250, $=10.00
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1.00e-06 : : ‘ ‘ ‘
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Iteration (k)

Fig.2 Smoothed scenario algorithm performance

e High-rank scenario.
n=1024,r =30,04 = 4z. p=7.p =025 =10.0,C = 1.
In the case of well-conditioned matrix with high rank, the convergence (both
for one-mask and two-mask based algorithms) is stable, yet the sequential rank
increase procedure may take a significant number of iterations. The corresponding
graph is provided on Fig. 5.
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Twin completion performance: Size 1024x1024, 0 = 1/ 3%, r=10, p=3, p=0.250, $=10.00
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Fig.3 Ill-conditioned scenario one-mask algorithm performance
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Fig.5 High-rank scenario two-mask algorithm performance
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Fig.6 Metasurface with a finite-element grid

5.2 Application to integral equations

The proposed algorithms were applied to the problem of compression of a structured
large-scale dense linear system, that stems from a finite element discretization of inte-
gral equations arising in scattering problems on metasurfaces. A metasurface consists
of conductor and dielectric parts, arranged in the form of blocks of the same shape:
an example is shown in Fig. 6.

The considered linear system is based on a discretization of Maxwell’s equations
using RWG-type basis functions; thus, two potential operators are involved, that corre-
spond to the electric (£(p))(x) and the magnetic (M (p))(x) fields of the metasurface:

ik
r r

1
E(PNX) =ik/p(y)Gk(x,y)dy - —foVr - p(MGr(x, y)dy,

(M(p)(x) = Vs x / P()Gi(x. )y,
r

where G (x, y) is the Green’s function for the Helmholtz equation with wavenumber
k

_ ,—ikr

Gi(x,y) = Gr(r) = ) ,
Tr

r=lx—=yl2.

A notable property of the considered equations is the invariance to a parallel transfer,
which, along with the metasurface structure, gives, up to a small number of ‘block
edge’ related equations, a block Toeplitz—Toeplitz structure to the considered linear
system, where each matrix block characterizes the physical relations between two
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Table 1 Large-scale dense matrix compression quality table

Block size Compression type Approximation error Compression (%)
2542 Toeplitz—toeplitz + symmetry 0 9.57
2542 TT + symmetry + ‘LR + Sparse’ 1.0e—4 2.02
2542 TT + symmetry + ‘LR + Sparse’ 1.0e—3 1.21

corresponding metasurface parts. That means, that if the metasurface is based on a
M x M, two-dimensional grid of similar blocks, and n is a block size, it is sufficient
to store (2M1 — 1)(2M, — 1) blocks of size C"*" that fully define the original matrix
of size CM1ManxMiMon

During this work, it was attempted to further compress the linear system matrix by
constructing the low-rank plus sparse approximations of the underlying n x n blocks;
notably, those that correspond to the relations between non-neighbor metasurface parts.

The experiments were carried out with a 4 x 4 metasurface discretization, with a
block size of n = 2542, which corresponds in a complex dense linear system of size
40672. Table 1 summarizes the compression results as compared to storing the matrix
as dense. The first line corresponds to the simple Toeplitz—Toeplitz structured matrix
storage, with taking system symmetry into account. The next two lines correspond to
using further compression of the underlying dense blocks with low-rank plus sparse
structures, using the ‘two-mask’ algorithm proposed in the paper, with rank and spar-
sity parameters adapted to obtain a predefined Frobenius norm approximation of the
full matrix.

6 Discussion

As suggested by theory, the provided numerical results show that the proposed two-
mask ‘twin completion’ Algorithm 2 offers a stable performance in ill-conditioned
cases where the simpler ‘one-mask’ Algorithm 1 commonly loses the required inco-
herence properties and thus either diverges or greatly increases the sparse ‘excluded’
part of the output low-rank plus sparse approximation.

It is notable that in all numerical experiments the ‘Twin completion’ algorithm
offered ‘exact’ convergence: if an iterate X; was taken after a sufficient number of
iterations has passed, and the residual X — X was computed, the locations of top
|X — X|;ij residual elements would fully match the locations of nonzero elements of
the true S.

However, in practice, the elements that are nonzero in S are generally not the first
to enter the set of ‘excluded’ elements A along with the iterations. This effect is most
clearly seen when the norm of S is much smaller than the norm of X, since the first
few iterations of both Algorithm 1, Algorithm 2 would then go as if no sparse errors
were present, and set A would be initialized with index pairs that are independent of
S.
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