
Vol.:(0123456789)

Calcolo (2023) 60:3
https://doi.org/10.1007/s10092-022-00498-x

1 3

Convergence of a Jacobi‑type method for the approximate
orthogonal tensor diagonalization

Erna Begović Kovač1 

Received: 8 September 2021 / Revised: 22 June 2022 / Accepted: 15 November 2022 /
Published online: 29 November 2022
© The Author(s) under exclusive licence to Istituto di Informatica e Telematica (IIT) 2022

Abstract
For a general third-order tensor A ∈ ℝ

n×n×n the paper studies two closely related
problems, an SVD-like tensor decomposition and an (approximate) tensor diagonali-
zation. We develop a Jacobi-type algorithm that works on 2 × 2 × 2 subtensors and,
in each iteration, maximizes the sum of squares of its diagonal entries. We show
how the rotation angles are calculated and prove convergence of the algorithm. Dif-
ferent initializations of the algorithm are discussed, as well as the special cases of
symmetric and antisymmetric tensors. The algorithm can be generalized to work on
higher-order tensors.

Keywords  Jacobi-type methods · Convergence · Tensor diagonalization · Tensor
decompositions · SVD

Mathematics Subject Classification  15A69 · 65F25 · 65F99

1  Introduction

Singular value decomposition is arguably the most powerful tool of numerical lin-
ear algebra. It is not surprising that, when compared to the matrix SVD, the tensor
generalization is significantly more complicated, see e.g. [5, 7, 8, 16]. We study the
SVD-like tensor decomposition in the Tucker format,

where A and S are tensors of order d and U1,U2,… ,Ud are orthogonal matrices.
Here, the tensor S mimics the diagonal matrix of singular values from the matrix
SVD. It is well known that, in the tensor case, one cannot expect to obtain a

(1.1)A = S ×1 U1 ×2 U2 ⋯ ×d Ud,

 *	 Erna Begović Kovač
	 ebegovic@fkit.hr

1	 Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19,
Zagreb 10000, Croatia

http://orcid.org/0000-0002-3213-1465
http://crossmark.crossref.org/dialog/?doi=10.1007/s10092-022-00498-x&domain=pdf

	 E. Begović Kovač

1 3

3  Page 2 of 20

diagonal core tensor S . Hence, our goal will be to get a decomposition (1.1) where S
is “as diagonal as possible”. This SVD-like tensor decomposition problem is closely
related to the tensor diagonalization problem. It has many applications in signal pro-
cessing, blind source separation, and independent component analysis [3, 4, 6].

Problem (1.1) for tensors of order d = 3 has been studied by Moravitz Martin
and Van Loan [14]. In their paper the authors use a Jacobi-type method to solve the
maximization problem stated in (1.2) below. Their numerical results suggest conver-
gence, although a convergence proof is not provided. If the tensor S from (1.1) is a
diagonal tensor, then A can be diagonalized using orthogonal transformations. Since
a general tensor cannot be diagonalized, we aim to achieve an approximate diago-
nalization. A similar problem for symmetric tensors has been studied in a series of
papers by Comon, Li and Usevich [12, 13, 15] where a Jacobi-type method is also a
method of choice.

In this paper we develop a Jacobi-type algorithm with the same idea as in [14],
to maximize the sum of squares of the diagonal, but the algorithm itself is different
from the one in [14]. Moreover, we prove the convergence of our algorithm. Our
convergence results are alongside those for the symmetric case from [12, 13, 15].
We are concerned with general tensors, that is, we do not assume any tensor struc-
ture, except in Section 5, where we discuss several special cases.

One can observe the problem (1.1) either as a minimization problem where the
goal is to minimize the off-diagonal norm of S,

or as a maximization problem,

where the square of the Frobenius norm of diagonal entries of S is maximized. We
are going to work with the formulation (1.2). We mainly focus on tensors of order
d = 3 and develop a block coordinate descent Jacobi-type algorithm for finding the
decomposition

such that

is maximized. We prove that the algorithm converges to a stationary point of the
objective function. As it will be explained later in the paper, the algorithm can easily
be generalized to tensors of order d > 3.

Our algorithm for an approximate tensor diagonalization can also be used for a low-
rank tensor approximation. We can approximate A by a rank-r tensor Ã in the follow-
ing way. Starting from the decomposition (1.1) we form a diagonal r × r ×⋯ × r order
d tensor D such that the diagonal elements of D are r diagonal elements of S with

off2
(S) = ‖S‖2

F
− ‖diag(S)‖2

F
→ min,

(1.2)‖diag(S)‖2
F
→ max,

A = S ×1 U ×2 V ×3 W,

‖diag(S)‖2
F
=

n�
i=1

S2
iii

1 3

Convergence of a Jacobi‑type method for the approximate… Page 3 of 20  3

the highest absolute values. Moreover, for i = 1,… , r , we take Ui,r as columns of Ui
corresponding to the selected diagonal elements. Then, the low-rank approximation is
obtained as

In Section 2 we describe the problem and construct the algorithm for solving the
maximization problem (1.2). We prove the previously mentioned convergence
results in Section 3, while in Section 4 we provide several numerical examples.
Moreover, in Section 5 we study the special cases of symmetric and antisymmetric
tensors.

2 � Orthogonal tensor decomposition

2.1 � Preliminaries and notation

We use the tensor notation from [10], which is commonly used in the papers dealing
with numerical algorithms for tensors. Notation from [11] is also commonly used in
multilinear algebra, but somewhat less frequently in its numerical aspects.

Tensors of order three or higher are denoted by calligraphic letters, e.g. X  . Tensor
fibers are vectors obtained from a tensor by fixing all indices but one. For a third-order
tensor, its fibers are columns, rows, and tubes. The mode-m matricization of a tensor
X ∈ ℝ

n1×n2×⋯×nd is an nm × (n1 ⋯ nm−1nm+1 ⋯ nd) matrix X
(m) obtained by arranging

mode-m fibers of X into columns of X
(m) . In this paper we mainly work with 3rd order

tensors. Thus, we will have m = 1, 2, 3.
The mode-m product of a tensor X ∈ ℝ

n1×n2×⋯×nd with a matrix A ∈ ℝ
p×nm is a ten-

sor Y ∈ ℝ
n1×⋯×nm−1×p×nm+1×⋯×nd,

Two important properties of the mode-m product are

The norm of X is a generalization of the matrix Frobenius norm. It is given by

To lighten the notation throughout the paper we are going to write this norm simply
as ‖X‖ . The inner product of two tensors X,Y ∈ ℝ

n1×n2×⋯×nd is given by

Ã = D ×1 U1,r ×2 U2,r ⋯ ×d Ud,r.

Y = X ×m A, such that Y
(m) = AX

(m).

(2.1)X ×m A ×n B = X ×n B ×m A, m ≠ n,

(2.2)X ×n A ×n B = X ×n (BA).

‖X‖F =

����
n1�
i1=1

n2�
i2=1

⋯

nd�
id=1

x2
i1i2…id

.

	 E. Begović Kovač

1 3

3  Page 4 of 20

It is straightforward to check that ⟨X,X⟩ = ‖X‖2.
The Tucker decomposition is a decomposition of a tensor X into a core tensor S

multiplied by a matrix in each mode,

Tensor X ∈ ℝ
n×n×n is diagonal when Xijk ≠ 0 only if i = j = k , that is, if off(X) = 0.

2.2 � Problem description

Let A ∈ ℝ
n×n×n . We are looking for an orthogonal Tucker decomposition

where U,V ,W ∈ ℝ
n×n are orthogonal matrices and S ∈ ℝ

n×n×n is a core tensor such
that

From relation (2.4) tensor S can be expressed as

Hence, in order to solve the problem defined by (2.4) and (2.5) for a given tensor A ,
we need to find orthogonal matrices U, V, W that maximize the objective function

We do this using a Jacobi-type method with a block coordinate descent approach.
For the sake of simplicity, our analysis is restricted to equal-sized modes. How-

ever, with a few technical adjustments, the same algorithm can be constructed for
A ∈ ℝ

n1×n2×n3 . Then, in (2.4) we have U ∈ ℝ
n1×n1 , V ∈ ℝ

n2×n2 , W ∈ ℝ
n3×n3 , and

S ∈ ℝ
n1×n2×n3.

2.3 � Jacobi‑type algorithm

We now describe the Jacobi-type algorithm for solving the maximization problem
defined by (2.6). This is an iterative algorithm. Its kth iteration has the form

where RU,k,RV ,k,RW,k are plane rotations with the following structure,

⟨X,Y⟩ =
n1�
i1=1

n2�
i2=1

⋯

nd�
id=1

xi1i2…id
yi1i2…id

.

(2.3)X = S ×1 M1 ×2 M2 ×3 ⋯ ×d Md.

(2.4)A = S ×1 U ×2 V ×3 W,

(2.5)‖diag(S)‖2 =
n�
i=1

S2
iii
→ max .

S = A ×1 U
T
×2 V

T
×3 W

T .

(2.6)f (U,V ,W) = ‖diag(A ×1 U
T
×2 V

T
×3 W

T
)‖2 → max .

(2.7)A(k+1)
= A(k)

×1 R
T
U,k

×2 R
T
V ,k

×3 R
T
W,k

, k ≥ 0, A(0)
= A,

1 3

Convergence of a Jacobi‑type method for the approximate… Page 5 of 20  3

 Index pair (i, j) in the rotation matrix (2.8) is called a pivot position. The set of
all possible pivot positions is {(i, j) ∶ 1 ≤ i < j ≤ n} . In the k-th step, matrices
RU,k,RV ,k,RW,k have the same pivot position (ik, jk) , while the rotation angle �k is, in
general, different for each matrix.

Our algorithm uses a block coordinate descent approach. This means that each itera-
tion consists of three microiterations where we hold two variables constant and vary the
third one. We have

Here, by B(k) and C(k) we denote the intermediate steps. Of course, if we combine all
three microiterations together, using the properties of mode-m product, namely (2.1)
and (2.2), we get back to the iteration step (2.7).

Let us see how the rotation angles in matrices RU,k,RV ,k,RW,k are computed. For a
fixed iteration step k we observe a 2 × 2 × 2 subproblem. Assume that (ik, jk) = (p, q) ,
1 ≤ p < q ≤ n . A subtensor of A corresponding to an index pair (p, q) is denoted by Â
and we can write it as

Then, the corresponding 2 × 2 × 2 subproblem is to find 2 × 2 rotations R̂U , R̂V , R̂W
such that

where

and

Taking only microiteration (2.9) we calculate rotation angles for matrix R̂U . We have

(2.8)R(i, j,�) =

⎡
⎢⎢⎢⎢⎣

I

cos� − sin�

I

sin� cos�

I

⎤
⎥⎥⎥⎥⎦

i

j

.

(2.9)B(k)
= A(k)

×1 R
T
U,k

,

(2.10)C(k) = B(k)
×2 R

T
V ,k

,

(2.11)A(k+1)
= C(k) ×3 R

T
W,k

.

Â(∶, ∶, 1) =

[
appp apqp
aqpp aqqp

]
, Â(∶, ∶, 2) =

[
appq apqq
aqpq aqqq

]
.

‖diag(Ŝ)‖2 = 𝜎2
ppp

+ 𝜎2
qqq

→ max,

Ŝ = Â ×1 R̂
T
U
×2 R̂

T
V
×3 R̂

T
W
,

Ŝ(∶, ∶, 1) =

[
𝜎ppp 𝜎pqp
𝜎qpp 𝜎qqp

]
, Ŝ(∶, ∶, 2) =

[
𝜎ppq 𝜎pqq
𝜎qpq 𝜎qqq

]
.

	 E. Begović Kovač

1 3

3  Page 6 of 20

The rotation angle � is chosen to maximize the function

Such � must satisfy relation g�
1
(�) = 0 . Taking the derivative of g1 we get

Dividing this relation by cos(2�) we obtain

Similarly, we find the rotation angles for matrices R̂V and R̂W as

and

respectively.
In the relations (2.13)–(2.15) it is possible that both the numerator and the

denominator are equal to zero. If that happens for one of those relations, we can
skip the rotation in the corresponding direction and move on to the next one. If
this is the case for all pairs, the algorithm will be terminated and it should be
restarted with preconditioning. This will be explained in Section 5 for the case of
antisymmetric tensors.

Rotation angles in R̂U , R̂V , R̂W do not need to be calculated explicitly. We only
need the sine and the cosine of the corresponding angles. However, once we have
formulas for computing tan(2�) , there is still a problem of calculating efficiently
sin� and cos� . We will show how it is done for the rotation in the first mode. The
procedure is the same in other modes. We go back to the relation (2.13). Denote

[
bppp bpqp bppq bpqq
bqpp bqqp bqpq bqqq

]
=

[
cos� sin�

− sin� cos�

][
appp apqp appq apqq
aqpp aqqp aqpq aqqq

]
.

(2.12)
g1(�) = b2

ppp
+ b2

qqq

= (appp cos� + aqpp sin�)
2
+ (−apqq sin� + aqqq cos�)

2.

g�
1
(�) = 2(cos�2

− sin�2
)(apppaqpp − apqqaqqq)

+ 2 cos� sin�(a2
pqq

+ a2
qpp

− a2
ppp

− a2
qqq

)

= 2 cos(2�)(apppaqpp − apqqaqqq)

+ sin(2�)(apqq
2
+ a2

qpp
− a2

ppp
− a2

qqq
)

= 0.

(2.13)tan(2�) =
2(apppaqpp − apqqaqqq)

a2
ppp

+ a2
qqq

− a2
pqq

− a2
qpp

.

(2.14)tan(2�) =
2(bpppbpqp − bqpqbqqq)

b2
ppp

+ b2
qqq

− b2
qpq

− b2
pqp

(2.15)tan(2�) =
2(cpppcppq − cqqpcqqq)

c2
ppp

+ c2
qqq

− c2
ppq

− c2
qqp

,

1 3

Convergence of a Jacobi‑type method for the approximate… Page 7 of 20  3

Moreover, we denote t = tan� . Using the double-angle formula for tangent,

relation (2.13) reads

This is a quadratic equation in t, �t2 + 2�t − � = 0, with solutions
t1 =

−�+
√
�2+�2

�
, t2 =

−�−
√
�2+�2

�
. Note that the equation for t1 is numerically unstable

because catastrophic cancellation may occur. Therefore, we multiply both numerator
and denominator by � +

√
�2 + �2 . That way we attain a numerically stable expres-

sion t1 =
�

�+
√
�2+�2

. Finally,

We calculate both solutions and use the one that gives the bigger value of the
function (2.12).

The order in which we choose pivot pairs is called pivot strategy. In our algo-
rithm the pivot strategy is assumed to be cyclic. We choose an ordering of pairs
(i, j), 1 ≤ i < j ≤ n , which makes one cycle. Then we repeat the same cycle of
pivot pairs until the convergence criterium is satisfied. Common examples of
cyclic pivot strategies are row-wise and column-wise strategies with correspond-
ing ordering of pivot pairs defined by

and

respectively. The convergence results from Section 3 hold for any cyclic strategy.
Nevertheless, to ensure convergence of the algorithm, pivot pairs should satisfy an
additional condition. We only take a pivot pair (i, j) such that (at least) one of the
following inequalities is true,

 where 0 < 𝜂 ≤
2

n
 , Ṙ(i, j, 0) denotes �

��
R(i, j,�)|�=0 , f is defined in (2.6), and the pro-

jected gradient ∇Qf will be defined in Subsection 3.1. If (i, j) does not satisfy any of
the conditions (2.18), then it will be skipped and we move to the next pair in the

� = 2(apppaqpp − apqqaqqq)sign(a
2
ppp

+ a2
qqq

− a2
pqq

− a2
qpp

),

� = |a2
ppp

+ a2
qqq

− a2
pqq

− a2
qpp

|.

tan(2�) =
2t

1 − t2
,

2t

1 − t2
=

�

�
.

cos�i =
1√
1 + t2

i

, sin�i =
ti√
1 + t2

i

= ti cos�i, i = 1, 2.

(2.16)Or = (1, 2), (1, 3),… , (1, n), (2, 3),… , (2, n),… , (n − 1, n)

(2.17)Oc = (1, 2), (1, 3), (2, 3),… , (1, n), (2, n),… , (n − 1, n),

(2.18)�⟨∇Qf ,QṘ(i, j, 0)⟩� ≥ 𝜂‖∇Qf‖2, for Q = U,V ,W,

	 E. Begović Kovač

1 3

3  Page 8 of 20

cycle. It will be shown in Lemma 3.2 that for each inequality (2.18) it is always pos-
sible to find an appropriate pivot pair.

In the kth step of the algorithm, when we have A(k) , Uk,Vk,Wk , we first com-
pute the sine and the cosine of the rotation angle in the rotation matrix RU,k . We
compute the auxiliary tensor B(k),

and

Then we repeat this procedure in the other modes. This is summarized in
Algorithm 2.1.

Algorithm 2.1. Jacobi-type algorithm for the approximate tensor diagonal-
ization

Input: A ∈ Rn×n×n.
Output: orthogonal matrices U, V,W
k = 0
A(0) = A
U0 = V0 = W0 = I
repeat

Choose pivot pair (i, j).
if (i, j) satisfies (2.18) for Q = U then

Find cosφk and sinφk for RU,k using (2.13).
B = A(k) ×1 RU,k

Uk+1 = UkRU,k

end if
if (i, j) satisfies (2.18) for Q = V then

Find cosφk and sinφk for RV,k using (2.14).
C = B ×2 RV,k

Vk+1 = VkRV,k

end if
if (i, j) satisfies (2.18) for Q = W then

Find cosφk and sinφk for RW,k using (2.15).
A(k+1) = C ×3 RW,k

Wk+1 = WkRW,k

end if
until convergence

We have several remarks regarding the Algorithm 2.1.

•	 Algorithm 2.1 employs the identity initialization U0 = V0 = W0 = I . This
is not necessarily done this way and it will be further discussed within the

B(k)
= A(k)

×1 R
T
U,k

= A ×1 (R
T
U,k

UT
k
) ×2 V

T
k
×3 W

T
k
,

Uk+1 = UkRU,k.

1 3

Convergence of a Jacobi‑type method for the approximate… Page 9 of 20  3

numerical examples in Section 4, as well as in relation with the antisymmetric
tensors in Section 5.

•	 It is not needed to explicitly form rotation matrices and tensor matricizations
in order to perform mode-n multiplications in the algorithm.

•	 Conditions on pivot pairs (2.18) can be simplified to lower the computa-
tional effort. This will be shown after Lemma 3.2. Moreover, the coefficient
0 < 𝜂 ≤

2

n
 can vary, which will be examined in Section 4.

This algorithm can be generalized for the order-d tensors where d > 3 . In that
case we need to obtain orthogonal matrices U1,U2,…Ud such that maximization
condition (1.2) holds. One iteration of the algorithm consists of d microiterations
that are analogues of those in (2.9), (2.10), and (2.11).

3 � Convergence results

3.1 � Gradient of the objective function

Before we move on to the convergence of the Algorithm 2.1, let us say something
about the gradient of the objective function f ∶ On × On × On → ℝ,

where On stands for the group of orthogonal matrices of order n. To calculate ∇f we
need an auxiliary function f̃ ∶ ℝ

n×n
×ℝ

n×n
×ℝ

n×n
→ ℝ defined by the same for-

mula (3.1) as f. In other words, function f̃ is such that f is the restriction of f̃ to the
set of triples of orthogonal matrices. Then ∇f is the projection of ∇f̃ onto the tan-
gent space at (U, V, W) to the manifold On × On × On . We have

where

To calculate ∇f (U,V ,W) we write f̃ as

Element-wise, we get

(3.1)f (U,V ,W) = ‖diag(A ×1 U
T
×2 V

T
×3 W

T
)‖2,

(3.2)

∇f (U,V ,W) =

[
∇Uf (U,V ,W) ∇Vf (U,V ,W) ∇Wf (U,V ,W)

]

= Proj
[
∇Uf̃ (U,V ,W) ∇V f̃ (U,V ,W) ∇Wf̃ (U,V ,W)

]

=

[
UΛ(U) VΛ(V) WΛ(W)

]
,

(3.3)Λ(Q) ∶=
QT

∇Qf̃ − (∇Qf̃)
TQ

2
.

f̃ (U,V ,W) = ‖diag(A ×1 U
T
×2 V

T
×3 W

T
)‖2 =

n�
l=1

�
n�

i,j,k=1

aijkuilvjlwkl

�2

.

	 E. Begović Kovač

1 3

3  Page 10 of 20

 Then, we can use the above relations together with (3.3) to get an explicit expres-
sion for Λ(U),

 Similarly we get the expressions for Λ(V) and Λ(W).
The gradient of the objective function will be needed in order to prove the fol-

lowing convergence result and also to check the pivot conditions (2.18).

3.2 � Convergence theorem

The convergence of Algorithm 2.1 is given in Theorem 3.1.

Theorem 3.1  Every accumulation point (U, V, W) obtained by Algorithm 2.1 is a
stationary point of the function f defined by (3.1).

The proof follows the idea from [9], which was also used in [13], as well
as in [1, 2]. The major obstacle is that here we have a function of three vari-
ables, while earlier this procedure was used with single-variable functions. We
prove Lemma 3.2, which is an adaptation of Lemma 3.1 from [13]. Then, using
Lemma 3.2 we prove Lemma 3.4, which is an essential step in the proof of
Theorem 3.1.

Lemma 3.2  For any differentiable function f ∶ On × On × On → ℝ , U,V ,W ∈ On ,
and 0 < 𝜂 ≤

2

n
 it is always possible to find index pairs (iU , jU) , (iV , jV) , (iW , jW) satis-

fying pivot condition (2.18).

Proof  Observe that

𝜕f̃

𝜕uml
= 2

(
n∑

i,j,k=1

aijkuilvjlwkl

)(
n∑

j,k=1

amjkvjlwkl

)

= 2
(
A ×1 U

T
×2 V

T
×3 W

T
)
lll

(
A ×2 V

T
×3 W

T
)
mll
,

𝜕f̃

𝜕vml
= 2

(
A ×1 U

T
×2 V

T
×3 W

T
)
lll

(
A ×1 U

T
×3 W

T
)
lml
,

𝜕f̃

𝜕wml

= 2
(
A ×1 U

T
×2 V

T
×3 W

T
)
lll

(
A ×1 U

T
×2 V

T
)
llm
.

(Λ(U))lp =
1

2

(
n∑

m=1

uml
𝜕f̃

𝜕ump
−

n∑
m=1

𝜕f̃

𝜕uml
ump

)

=

(
A ×1 U

T
×2 V

T
×3 W

T
)
ppp

(
A ×1 U

T
×2 V

T
×3 W

T
)
lpp

−

(
A ×1 U

T
×2 V

T
×3 W

T
)
lll

(
A ×1 U

T
×2 V

T
×3 W

T
)
pll
.

1 3

Convergence of a Jacobi‑type method for the approximate… Page 11 of 20  3

From the definition of the operator Λ we see that matrix Λ(U) is skew-symmetric.
Then, from the fact that the Euclidean norm is invariant under unitary transforma-
tions and from relation (3.2) we have

We can always find an index pair (iU , jU) such that

Inserting this into equation (3.4) with (i, j) = (iU , jU) , we get

which proves assertion (i). Since the matrices Λ(V) and Λ(W) are also skew-sym-
metric, in the same way we obtain

This proves assertions (ii) and (iii), respectively. 	� ◻

Remark 3.3  Conditions (2.18) are equivalent to

where Λ(⋅) is as in relation (3.3).

Lemma 3.4  Let Uk , Vk , Wk , k ≥ 0 be the sequences generated by Algorithm 2.1. Let
U,V ,W be a triple of orthogonal matrices satisfying ∇f (U,V ,W) ≠ 0 . Then there
exist 𝜖 > 0 and 𝛿 > 0 such that

implies

Proof  Let us fix the iteration step k. To shorten the notation set �U = �U,k , �V = �V ,k ,
�W = �W,k , and RU,k = R(ik, jk,�U) , RV ,k = R(ik, jk,�V) , RW,k = R(ik, jk,�W) . We
define three functions h(1)

k
, h

(2)

k
, h

(3)

k
∶ ℝ → ℝ,

Ṙ(i, j, 0) = eje
T
i
− eie

T
j
.

(3.4)
�⟨∇Uf (U,V ,W),UṘ(i, j, 0)⟩� = �⟨UΛ(U),UṘ(i, j, 0)⟩�

= �⟨Λ(U), Ṙ(i, j, 0)⟩� = 2�Λ(U)ij�.

�Λ(U)iU jU
� ≥ 1

n
‖Λ(U)‖2.

�⟨∇Uf (U,V ,W),UṘ(iU , jU , 0)⟩� ≥ 2

n
‖Λ(U)‖2 ≥ 𝜂‖Λ(U)‖2 = 𝜂‖∇Uf (U,V ,W)‖2,

�⟨∇Vf (U,V ,W),VṘ(iV , jV , 0)⟩� ≥ 2

n
‖Λ(V)‖2 ≥ 𝜂‖Λ(V)‖2 = 𝜂‖∇Vf (U,V ,W)‖2,

�⟨∇Wf (U,V ,W),WṘ(iW , jW , 0)⟩� ≥ 2

n
‖Λ(W)‖2 ≥ 𝜂‖Λ(W)‖2 = 𝜂‖∇Wf (U,V ,W)‖2.

2�Λ(Q)ij� ≥ �‖Λ(Q)‖2, for Q = U,V ,W,

‖Uk − U‖2 < 𝜖, ‖Vk − V‖2 < 𝜖, ‖Wk −W‖2 < 𝜖

(3.5)f (Uk+1,Vk+1,Wk+1) − f (Uk,Vk,Wk) ≥ �.

	 E. Begović Kovač

1 3

3  Page 12 of 20

Further on, we define yet another function hk ∶ ℝ ×ℝ ×ℝ → ℝ,

Since R(ik, jk, 0) = I,

From the construction of Algorithm 2.1 we know that

and the kth step of the algorithm is represented by

Moreover, it is easy to see from the algorithm that

In order to attain inequality (3.5) we need at least one sharp inequality in (3.6).
If ∇f (U,V ,W) ≠ 0 , then at least one partial gradient of f is not zero, that is

Let us assume that ∇Uf (U,V ,W) ≠ 0 . Then there exists 𝜖 > 0 such that

We use the Taylor expansion of the function h(1)
k

 around 0,

Set M1 = max |(h(1)
k
)
��
(𝜉)| < ∞ . Then we have

h
(1)

k
(�1) = f (UkR(ik, jk,�1),Vk,Wk),

h
(2)

k
(�2) = f (UkRU,k,VkR(ik, jk,�2),Wk),

h
(3)

k
(�3) = f (UkRU,k,VkRV ,k,WkR(ik, jk,�3)).

hk(�1,�2,�3) = f (UkR(ik, jk,�1),VkR(ik, jk,�2),WkR(ik, jk,�3)).

hk(0, 0, 0) = f (Uk,Vk,Wk).

max
�1

h
(1)

k
(�1) = h

(1)

k
(�U) = f (UkRU,k,Vk,Wk),

max
�2

h
(2)

k
(�2) = h

(2)

k
(�V) = f (UkRU,k,VkRV ,k,Wk),

max
�3

h
(3)

k
(�3) = h

(3)

k
(�W) = f (UkRU,k,VkRV ,k,WkRW,k),

hk(�U ,�V ,�W) = f (UkRU,k,VkRV ,k,WkRW,k) = f (Uk+1,Vk+1,Wk+1).

(3.6)

f (Uk+1,Vk+1,Wk+1) ≥ f (Uk+1,Vk+1,Wk)

≥ f (Uk+1,Vk,Wk)

≥ f (Uk,Vk,Wk).

∇Uf (U,V ,W) ≠ 0, ∇Vf (U,V ,W) ≠ 0, or ∇Wf (U,V ,W) ≠ 0.

(3.7)𝜇1 ∶= min{‖∇Uf (U,V ,W)‖2 ∶ ‖U − U‖2 < 𝜖} > 0.

h
(1)

k
(𝜙1) = h

(1)

k
(0) + (h

(1)

k
)
�
(0)𝜙1 +

1

2
(h

(1)

k
)
��
(𝜉)𝜙2

1
, 0 < 𝜉 < 𝜙1.

(3.8)h
(1)

k
(�1) − h

(1)

k
(0) ≥ (h

(1)

k
)
�
(0)�1 −

1

2
M1�

2
1
.

1 3

Convergence of a Jacobi‑type method for the approximate… Page 13 of 20  3

The derivative of h(1)
k

 is given by

In particular,

It follows from Lemma 3.2(i) and relation (3.9) that

Therefore, from (3.10) and (3.7) we get

We go back to the inequality (3.8). For �1 =
1

M1

(h
(1)

k
)
�
(0) , using the definition of the

function h(1)
k

 and relations (3.6) and (3.11), we obtain

Now we assume that ∇Uf (U,V ,W) = 0 and ∇Vf (U,V ,W) ≠ 0 . There is an 𝜖 > 0
such that

In this case we use the Taylor expansion of the function h(2)
k

 around 0. We have

for M2 = max |(h(2)
k
)
��
(𝜉)| < ∞ , and

Lemma 3.2(ii) and relation (3.12) imply

The assertion of the lemma follows from (3.13), (3.6), and (3.14) with
�2 =

1

M2

(h
(2)

k
)
�
(0).

(h
(1)

k
)
�
(𝜙1) = ⟨∇Uf (UkR(ik, jk,𝜙1),Vk,Wk),UkṘ(ik, jk,𝜙1)⟩.

(3.9)(h
(1)

k
)
�
(0) = ⟨∇Uf (Uk,Vk,Wk),UkṘ(ik, jk, 0)⟩.

(3.10)�(h(1)
k
)
�
(0)� ≥ �‖∇Uf (Uk,Vk,Wk)‖2.

(3.11)|(h(1)
k
)
�
(0)| ≥ 𝜂𝜇1 > 0.

f (Uk+1,Vk+1,Wk+1) − f (Uk,Vk,Wk)

≥ f (Uk+1,Vk,Wk) − f (Uk,Vk,Wk) = h
(1)

k
(𝜙1) − h

(1)

k
(0)

≥ (h
(1)

k
)
�
(0)𝜙1 −

1

2
M1𝜙

2
1
=

1

M1

((h
(1)

k
)
�
(0))2 −

1

2M1

((h
(1)

k
)
�
(0))2

≥
𝜂2𝜇2

1

2M1

= 𝛿 > 0.

(3.12)𝜇2 ∶= min{‖∇Vf (U,V ,W)‖2 ∶ ‖V − V‖2 < 𝜖} > 0.

(3.13)h
(2)

k
(�2) − h

(2)

k
(0) ≥ (h

(2)

k
)
�
(0)�2 −

1

2
M2�

2
1
,

(h
(2)

k
)
�
(0) = ⟨∇Vf (Uk,Vk,Wk),VkṘ(ik, jk, 0)⟩.

(3.14)�(h(2)
k
)
�
(0)� ≥ 𝜂‖∇Vf (Uk,Vk,Wk)‖2 ≥ 𝜂𝜇2 > 0.

	 E. Begović Kovač

1 3

3  Page 14 of 20

Finally, if ∇Uf (U,V ,W) = 0 and ∇Vf (U,V ,W) = 0 , since
∇f (U,V ,W)(U,V ,W) ≠ 0 , then it must be that ∇Wf (U,V ,W) ≠ 0 . Then, there is an
𝜖 > 0 such that

Here we need the Taylor expansion of h(3)
k

 around 0,

for M3 = max |(h(2)
k
)
��
(𝜉)| < ∞ . We repeat the same steps as for the preceding two

cases. We have

and, using Lemma 3.2(iii) and the relation (3.15), it follows that

We attain inequality (3.5) using (3.16), (3.6), and (3.17) with �3 =
1

M3

(h
(3)

k
)
�
(0) . 	� ◻

Using Lemma 3.4 we can now prove Theorem 3.1.

Proof of Theorem 3.1  Suppose that U , V  , W are, respectively, accumulation points of
the sequences {Uj}j≥1 , {Vj}j≥1 , {Wj}j≥1 generated by Algorithm 2.1. Then there are
subsequences {Uj}j∈KU

 , {Vj}j∈KV
 , {Wj}j∈KW

 such that

where KU ,KV ,KW ⊆ ℕ.
Assume that (U,V ,W) is not a stationary point of the function f, that is

Then, for any 𝜖 > 0, there are k(U)

0
∈ KU , k(V)

0
∈ KV , k(W)

0
∈ KW such that

for every k > k0 , k0 = max{k
(U)

0
, k

(V)

0
, k

(W)

0
} . Thus, Lemma 3.4 implies

f (Uk+1,Vk+1,Wk+1) − f (Uk,Vk,Wk) ≥ 𝛿 > 0 . It follows that

when k → ∞ . Since f is continuous, if (Uk,Vk,Wk) converges, then f (Uk,Vk,Wk)
should converge, too. This gives a contradiction. Therefore, assumption (3.18) can-
not hold and (U,V ,W) is a stationary point of f. 	� ◻

(3.15)𝜇3 ∶= min{‖∇Wf (U,V ,W)‖2 ∶ ‖W −W‖2 < 𝜖} > 0.

(3.16)h
(3)

k
(�3) − h

(3)

k
(0) ≥ (h

(3)

k
)
�
(0)�1 −

1

2
M3�

2
3
,

(h
(3)

k
)
�
(0) = ⟨∇Wf (Uk,Vk,Wk),WkṘ(ik, jk, 0)⟩,

(3.17)�(h(3)
k
)
�
(0)� ≥ 𝜂‖∇Wf (Uk,Vk,Wk)‖2 ≥ 𝜂𝜇3 > 0.

{Uj}j∈KU
→ U, {Vj}j∈KV

→ V , {Wj}j∈KW
→ W,

(3.18)∇f (U,V ,W) ≠ 0.

‖Uk − Û‖2 < 𝜖, ‖Vk − V̂‖2 < 𝜖, ‖Wk − Ŵ‖2 < 𝜖,

f (Uk,Vk,Wk) → ∞,

1 3

Convergence of a Jacobi‑type method for the approximate… Page 15 of 20  3

Note that all results from this section can be generalized to order-d tensors,
d > 3.

4 � Numerical examples

We illustrate the convergence of Algorithm 2.1 through several numerical exam-
ples. We observe the relative off-norm of a tensor A , which is given as

For a diagonal tensor, value (4.1) is equal to zero, while for a random tensor it is,
typically, close to one. Note that the off-norm is not a norm because it can be equal
to zero for a nonzero input.

Figure 1 shows the change of the relative off-norm. We distinguish two differ-
ent situations, one where a tensor can be completely diagonalized using orthogo-
nal transformations, and a more general one where orthogonal diagonalization is
not possible. For the first set of tensors we get off(A)

‖A‖ = 0 . Otherwise, we get the
convergence to some value between 0 and 1. A random diagonalizable tensor is
constructed by taking a diagonal tensor with random entries on the diagonal and
multiplying it in each mode by orthogonal matrices obtained from QR factoriza-
tions of three random matrices. The algorithm uses row-wise cyclic pivot order-
ing (2.16) with different values of the parameter �.

In Figure 2 we compare five different pivot orderings. In addition to the row-
wise top to bottom (2.16) and the column-wise left to right (2.17) ordering we
have the row-wise bottom to top

(4.1)
off(A)

‖A‖ .

0 2 4 6 8 10

cycle k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

cycle k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1   Change in the relative off-norm for two 30 × 30 × 30 tensors with different values of � . Left: Diag-
onalizable tensor. Right: Non-diagonalizable tensor

	 E. Begović Kovač

1 3

3  Page 16 of 20

the column-wise right to left

and the diagonal ordering of pivot pairs

O�

r
= (n − 1, n), (n − 2, n − 1), (n − 2, n), (n − 3, n − 2),…

… , (2, n), (1, 2),… , (1, n),

O�

c
= (1, n),… , (n − 1, n), (1, n − 1),… , (n − 2, n − 1),… , (1, 2),

Od = (1, 2), (2, 3),… , (n − 1, n), (1, 3), (2, 4),… , (n − 2, n), (1, 4),… , (1, n).

0 5 10 15 20

cycle k

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
row-wise top to bottom
column-wise left to right
row-wise bottom to top
column-wise right to left
diagonal

0 5 10 15 20

cycle k

0

0.05

0.1

0.15

0.2

0.25

0.3
row-wise top to bottom
column-wise left to right
row-wise bottom to top
column-wise right to left
diagonal

0 5 10 15 20

cycle k

0

0.05

0.1

0.15

0.2

0.25
row-wise top to bottom
column-wise left to right
row-wise bottom to top
column-wise right to left
diagonal

0 5 10 15 20

cycle k

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

row-wise top to bottom
column-wise left to right
row-wise bottom to top
column-wise right to left
diagonal

0 5 10 15 20

cycle k

0

0.1

0.2

0.3

0.4

0.5

row-wise top to bottom
column-wise left to right
row-wise bottom to top
column-wise right to left
diagonal

0 5 10 15 20

cycle k

0

0.1

0.2

0.3

0.4

0.5

row-wise top to bottom
column-wise left to right
row-wise bottom to top
column-wise right to left
diagonal

Fig. 2   Change in the relative off-norm for six 10 × 10 × 10 tensors with different pivot strategies

1 3

Convergence of a Jacobi‑type method for the approximate… Page 17 of 20  3

We run the algorithm on six random tensors, four of which cannot be diagonalized
by orthogonal transformations, all with � =

1

20n
 . As expected, different pivot strate-

gies are faster/slower on different tensors. However, no matter what pivot strategy
we choose, the algorithm converges to the same point.

In Figure 3 we compare two different initializations for our Jacobi-type algorithm.
The first one is identity initialization as it was done in Algorithm 2.1. There we have

The other initialization that can be used is coming from the HOSVD of A , see [5],
A = S̃ ×1 Ũ ×2 Ṽ ×3 W̃, where Ũ , Ṽ  , and W̃ are matrices of left singular vectors
of matricizations A

(1) , A(2) , and A
(3) , respectively, and S̃ = A ×1 Ũ

T
×2 Ṽ

T
×3 W̃

T .

Then, instead of the initialization (4.2), we set A(0)
= S̃ , U0 = Ũ , V0 = Ṽ  , W0 = W̃ .

We run the algorithm with � =
1

20n
 on two random tensors. We can see that the

HOSVD initialization is superior in the beginning cycles. This is the case because,
compared to the starting tensor A , the core tensor S̃ from the HOSVD of A is sig-
nificantly closer to a diagonal tensor. Nevertheless, after those first cycles, both ini-
tializations are equally good.

5 � Symmetric and antisymmetric tensors

We say that a tensor is symmetric if its elements remain constant under any permuta-
tion of indices. For a symmetric tensor X ∈ ℝ

n×n×n we have

Symmetric tensors were studied in details in [13] and [12], where the authors also
work with a Jacobi-type algorithm.

(4.2)A(0)
= A, U0 = V0 = W0 = I.

xijk = xikj = xjik = xjki = xkij = xkji.

0 5 10 15 20

cycle k

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18 identity initialization
HOSVD initialization

0 5 10 15 20

cycle k

0

0.05

0.1

0.15

0.2

identity initialization
HOSVD initialization

Fig. 3   Convergence of the algorithm with different initializations. Left: 20 × 20 × 20 tensor. Right:
10 × 10 × 10 tensor

	 E. Begović Kovač

1 3

3  Page 18 of 20

Our algorithm is not structure-preserving. In order to have a symmetry-preserv-
ing Jacobi-type algorithm, rotation matrices should be the same in all modes. Since
the rotations RU,k , RV ,k , and RW,k in the kth step are chosen depending on different
tensors, they are not all the same. Nevertheless, we have noticed in practice that
for smaller values of � from (2.18), after the convergence criterion is satisfied, the
Algorithm 2.1, in most of the cases, returns mutually equal matrices U, V, W and a
symmetric tensor S . However, this is not the case for larger � . We will illustrate this
behaviour on an example.

Departure from symmetry is measured as the distance in the Frobenius norm
between the tensor A and its symmetrization sym(A),

where, for a 3rd order tensor X  , we have

It is easy to check that, if X is symmetric, then sym(X) = X  , and the expres-
sion (5.1) is equal to zero. We applied Algorithm 2.1 with � =

1

2000n
 on a randomly

generated symmetric 20 × 20 × 20 tensor A . In the left picture in Figure 4 we can
see that after we start with a symmetric tensor, symmetry is lost already in the first
cycle, as expected, but the tensor becomes more and more symmetric through itera-
tions and the sequence (A(k)

)k converges to a symmetric tensor. In the right picture
we see that the distance between each pair of matrices Uk,Vk,Wk converges to zero,
that is, Uk,Vk,Wk converge to the same matrix. This does not happen for � =

1

20n
.

One should keep in mind that for a symmetric starting tensor the solution of the
maximization problem (2.5) is not necessary a symmetric tensor. One such example
is tensor T from [12, Example 5.5] that can be given by its matricization

First, we notice that neither identity nor HOSVD initialization work on this ten-
sor. In both cases the diagonal elements of T(0) are zero and all rotation angles are
zero, so the tensor is unchanged. Thus, here we do preconditioning with a random
orthogonal matrix Q by setting A(0)

= A ×1 Q ×2 Q ×3 Q. For the vast majority of
the choices of Q, Algorithm 2.1 with � =

1

2000n
 converges to the symmetric tensor S,

with transformation matrix U = V = W depending on Q. This is a stationary point
of the objective function (2.6), but not a point of its global maximum. In the other

(5.1)‖A − sym(A)‖,

sym(X) =
1

6
(xijk + xikj + xjik + xjki + xkij + xkji).

(5.2)T
(1) =

⎡⎢⎢⎣

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 0 0 0

⎤⎥⎥⎦
.

S
(1) =

[
0.8889 − 0.4444 − 0.4444 − 0.4444 − 0.4444 − 0.1111 − 0.4444 − 0.1111 − 0.4444

−0.4444 − 0.4444 − 0.1111 − 0.4444 0.8889 − 0.4444 − 0.1111 − 0.4444 − 0.4444

−0.4444 − 0.1111 − 0.4444 − 0.1111 − 0.4444 − 0.4444 − 0.4444 − 0.4444 0.8889

]
,

1 3

Convergence of a Jacobi‑type method for the approximate… Page 19 of 20  3

rare cases the algorithm converged to one of the better, but nonsymmetric, solutions
of the form S̄

On the other hand, a tensor is antisymmetric if its elements change sign when per-
muting pairs of indices. For an antisymmetric tensor X ∈ ℝ

n×n×n we have

In every antisymmetric tensor, elements on the positions where two or more indices
are the same are equal to zero. Hence, all elements on the diagonal of an antisym-
metric tensor are zero. This is the reason why, contrary to the symmetric case where
one may be interested in a structure-preserving algorithm, we are not interested in
preserving the antisymmetry. Here, by each iteration a tensor moves further from
the structure. Still, antisymmetric tensors need some special attention. If we apply
the algorithm directly in the form given in Algorithm 2.1, with the identity initiali-
zation, the algorithm will fail when computing the rotation angle. This happens
because for an antisymmetric tensor, when computing the tangent of the double rota-
tion angle (2.13), (2.14), and (2.15), we get both the numerator and the denominator
equal to zero. We can overcome this problem with a preconditioning step — instead
of the identity initialization (4.2) we use the HOSVD initialization as described in
Section 4.

Acknowledgements  This work has been supported in part by Croatian Science Foundation under the
project UIP-2019-04-5200. The author is grateful to the anonymous referees for their detailed comments
that improved the paper.

S̄
(1) =

⎡⎢⎢⎣

±1 0 0 0 0 0 0 ± 1 0

0 0 ± 1 0 ± 1 0 0 0 0

0 0 0 ± 1 0 0 0 0 ± 1

⎤⎥⎥⎦
.

xijk = xjki = xkij = −xikj = −xjik = −xkji.

0 2 4 6 8 10 12 14 16 18 20

cycle k

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20

cycle k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 4   Departure from the symmetry for a random symmetric 20 × 20 × 20 tensor

	 E. Begović Kovač

1 3

3  Page 20 of 20

References

	 1.	 Kovač, E.B.: Finding the closest normal structured matrix. Linear Algebra Appl. 617, 49–77 (2021)
	 2.	 Kovač, E.B., Kressner, D.: Structure-preserving low multilinear rank approximation of antisymmet-

ric tensors. SIAM J. Matrix Anal. Appl. 38(3), 967–983 (2017)
	 3.	 Comon, P.: Tensor diagonalization, a useful tool in signal processing. IFAC Proc. Vol. 27(8), 77–82

(1994)
	 4.	 Comon, P., Jutten, C. (eds.): Handbook of Blind Source Separation. Academic Press, Oxford (2010)
	 5.	 De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM

J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)
	 6.	 De Lathauwer, L., De Moor, B., Vandewalle, J.: Independent component analysis and (simultane-

ous) third-order tensor diagonalization. IEEE Trans. Signal Process. 49, 2262–2271 (2001)
	 7.	 Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl.

31(4), 2029–2054 (2010)
	 8.	 Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer Series in Computational

Mathematics 42 (2012)
	 9.	 Ishteva, M., Absil, P.-A., Van Dooren, P.: Jacobi algorithm for the best low multilinear rank approxi-

mation of symmetric tensors. SIAM J. Matrix Anal. Appl. 34(2), 651–672 (2013)
	10.	 Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500

(2009)
	11.	 Landsberg, J.M.: Tensors: Geometry and Applications. American Mathematical Society, New York

(2011)
	12.	 Li, J., Usevich, K., Comon, P.: On approximate diagonalization of third order symmetric tensors by

orthogonal transformations. Linear Algebra Appl. 576(1), 324–351 (2019)
	13.	 Li, J., Usevich, K., Comon, P.: Globally convergent Jacobi-type algorithms for simultaneous orthog-

onal symmetric tensor diagonalization. SIAM J. Matrix Anal. Appl. 39(1), 1–22 (2018)
	14.	 Moravitz Martin, C.D., Van Loan, C.F.: A Jacobi-type method for computing orthogonal tensor

decompositions. SIAM J. Matrix Anal. Appl. 30(3), 1219–11232 (2008)
	15.	 Usevich, K., Li, J., Comon, P.: Approximate matrix and tensor diagonalization by unitary transfor-

mations: convergence of Jacobi-type algorithms. SIAM J. Optim. 30(4), 2998–3028 (2020)
	16.	 Vannieuwenhoven, N., Vandebril, R., Meerbergen, K.: A new truncation strategy for the higher-

order singular value decomposition. SIAM J. Sci. Comput. 34(2), A1027–A1052 (2012)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	Convergence of a Jacobi-type method for the approximate orthogonal tensor diagonalization
	Abstract
	1 Introduction
	2 Orthogonal tensor decomposition
	2.1 Preliminaries and notation
	2.2 Problem description
	2.3 Jacobi-type algorithm

	3 Convergence results
	3.1 Gradient of the objective function
	3.2 Convergence theorem

	4 Numerical examples
	5 Symmetric and antisymmetric tensors
	Acknowledgements
	References

