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Abstract
For a general third-order tensor A ∈ ℝ

n×n×n the paper studies two closely related 
problems, an SVD-like tensor decomposition and an (approximate) tensor diagonali-
zation. We develop a Jacobi-type algorithm that works on 2 × 2 × 2 subtensors and, 
in each iteration, maximizes the sum of squares of its diagonal entries. We show 
how the rotation angles are calculated and prove convergence of the algorithm. Dif-
ferent initializations of the algorithm are discussed, as well as the special cases of 
symmetric and antisymmetric tensors. The algorithm can be generalized to work on 
higher-order tensors.

Keywords Jacobi-type methods · Convergence · Tensor diagonalization · Tensor 
decompositions · SVD

Mathematics Subject Classification 15A69 · 65F25 · 65F99

1 Introduction

Singular value decomposition is arguably the most powerful tool of numerical lin-
ear algebra. It is not surprising that, when compared to the matrix SVD, the tensor 
generalization is significantly more complicated, see e.g. [5, 7, 8, 16]. We study the 
SVD-like tensor decomposition in the Tucker format,

where A and S are tensors of order d and U1,U2,… ,Ud are orthogonal matrices. 
Here, the tensor S mimics the diagonal matrix of singular values from the matrix 
SVD. It is well known that, in the tensor case, one cannot expect to obtain a 

(1.1)A = S ×1 U1 ×2 U2 ⋯ ×d Ud,
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diagonal core tensor S . Hence, our goal will be to get a decomposition (1.1) where S 
is “as diagonal as possible”. This SVD-like tensor decomposition problem is closely 
related to the tensor diagonalization problem. It has many applications in signal pro-
cessing, blind source separation, and independent component analysis [3, 4, 6].

Problem  (1.1) for tensors of order d = 3 has been studied by Moravitz Martin 
and Van Loan [14]. In their paper the authors use a Jacobi-type method to solve the 
maximization problem stated in (1.2) below. Their numerical results suggest conver-
gence, although a convergence proof is not provided. If the tensor S from (1.1) is a 
diagonal tensor, then A can be diagonalized using orthogonal transformations. Since 
a general tensor cannot be diagonalized, we aim to achieve an approximate diago-
nalization. A similar problem for symmetric tensors has been studied in a series of 
papers by Comon, Li and Usevich [12, 13, 15] where a Jacobi-type method is also a 
method of choice.

In this paper we develop a Jacobi-type algorithm with the same idea as in [14], 
to maximize the sum of squares of the diagonal, but the algorithm itself is different 
from the one in [14]. Moreover, we prove the convergence of our algorithm. Our 
convergence results are alongside those for the symmetric case from [12, 13, 15]. 
We are concerned with general tensors, that is, we do not assume any tensor struc-
ture, except in Section 5, where we discuss several special cases.

One can observe the problem (1.1) either as a minimization problem where the 
goal is to minimize the off-diagonal norm of S,

or as a maximization problem,

where the square of the Frobenius norm of diagonal entries of S is maximized. We 
are going to work with the formulation (1.2). We mainly focus on tensors of order 
d = 3 and develop a block coordinate descent Jacobi-type algorithm for finding the 
decomposition

such that

is maximized. We prove that the algorithm converges to a stationary point of the 
objective function. As it will be explained later in the paper, the algorithm can easily 
be generalized to tensors of order d > 3.

Our algorithm for an approximate tensor diagonalization can also be used for a low-
rank tensor approximation. We can approximate A by a rank-r tensor Ã in the follow-
ing way. Starting from the decomposition (1.1) we form a diagonal r × r ×⋯ × r order 
d tensor D such that the diagonal elements of D are r diagonal elements of S with 

off2
(S) = ‖S‖2

F
− ‖diag(S)‖2

F
→ min,

(1.2)‖diag(S)‖2
F
→ max,

A = S ×1 U ×2 V ×3 W,

‖diag(S)‖2
F
=

n�
i=1

S2
iii
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the highest absolute values. Moreover, for i = 1,… , r , we take Ui,r as columns of Ui 
corresponding to the selected diagonal elements. Then, the low-rank approximation is 
obtained as

In Section 2 we describe the problem and construct the algorithm for solving the 
maximization problem  (1.2). We prove the previously mentioned convergence 
results in Section  3, while in Section  4 we provide several numerical examples. 
Moreover, in Section 5 we study the special cases of symmetric and antisymmetric 
tensors.

2  Orthogonal tensor decomposition

2.1  Preliminaries and notation

We use the tensor notation from [10], which is commonly used in the papers dealing 
with numerical algorithms for tensors. Notation from [11] is also commonly used in 
multilinear algebra, but somewhat less frequently in its numerical aspects.

Tensors of order three or higher are denoted by calligraphic letters, e.g. X  . Tensor 
fibers are vectors obtained from a tensor by fixing all indices but one. For a third-order 
tensor, its fibers are columns, rows, and tubes. The mode-m matricization of a tensor 
X ∈ ℝ

n1×n2×⋯×nd is an nm × (n1 ⋯ nm−1nm+1 ⋯ nd) matrix X
(m) obtained by arranging 

mode-m fibers of X  into columns of X
(m) . In this paper we mainly work with 3rd order 

tensors. Thus, we will have m = 1, 2, 3.
The mode-m product of a tensor X ∈ ℝ

n1×n2×⋯×nd with a matrix A ∈ ℝ
p×nm is a ten-

sor Y ∈ ℝ
n1×⋯×nm−1×p×nm+1×⋯×nd,

Two important properties of the mode-m product are

The norm of X  is a generalization of the matrix Frobenius norm. It is given by

To lighten the notation throughout the paper we are going to write this norm simply 
as ‖X‖ . The inner product of two tensors X,Y ∈ ℝ

n1×n2×⋯×nd is given by

Ã = D ×1 U1,r ×2 U2,r ⋯ ×d Ud,r.

Y = X ×m A, such that Y
(m) = AX

(m).

(2.1)X ×m A ×n B = X ×n B ×m A, m ≠ n,

(2.2)X ×n A ×n B = X ×n (BA).

‖X‖F =

����
n1�
i1=1

n2�
i2=1

⋯

nd�
id=1

x2
i1i2…id

.
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It is straightforward to check that ⟨X,X⟩ = ‖X‖2.
The Tucker decomposition is a decomposition of a tensor X  into a core tensor S 

multiplied by a matrix in each mode,

Tensor X ∈ ℝ
n×n×n is diagonal when Xijk ≠ 0 only if i = j = k , that is, if off(X) = 0.

2.2  Problem description

Let A ∈ ℝ
n×n×n . We are looking for an orthogonal Tucker decomposition

where U,V ,W ∈ ℝ
n×n are orthogonal matrices and S ∈ ℝ

n×n×n is a core tensor such 
that

From relation (2.4) tensor S can be expressed as

Hence, in order to solve the problem defined by (2.4) and (2.5) for a given tensor A , 
we need to find orthogonal matrices U, V, W that maximize the objective function

We do this using a Jacobi-type method with a block coordinate descent approach.
For the sake of simplicity, our analysis is restricted to equal-sized modes. How-

ever, with a few technical adjustments, the same algorithm can be constructed for 
A ∈ ℝ

n1×n2×n3 . Then, in  (2.4) we have U ∈ ℝ
n1×n1 , V ∈ ℝ

n2×n2 , W ∈ ℝ
n3×n3 , and 

S ∈ ℝ
n1×n2×n3.

2.3  Jacobi‑type algorithm

We now describe the Jacobi-type algorithm for solving the maximization problem 
defined by (2.6). This is an iterative algorithm. Its kth iteration has the form

where RU,k,RV ,k,RW,k are plane rotations with the following structure,

⟨X,Y⟩ =
n1�
i1=1

n2�
i2=1

⋯

nd�
id=1

xi1i2…id
yi1i2…id

.

(2.3)X = S ×1 M1 ×2 M2 ×3 ⋯ ×d Md.

(2.4)A = S ×1 U ×2 V ×3 W,

(2.5)‖diag(S)‖2 =
n�
i=1

S2
iii
→ max .

S = A ×1 U
T
×2 V

T
×3 W

T .

(2.6)f (U,V ,W) = ‖diag(A ×1 U
T
×2 V

T
×3 W

T
)‖2 → max .

(2.7)A(k+1)
= A(k)

×1 R
T
U,k

×2 R
T
V ,k

×3 R
T
W,k

, k ≥ 0, A(0)
= A,
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 Index pair (i,  j) in the rotation matrix  (2.8) is called a pivot position. The set of 
all possible pivot positions is {(i, j) ∶ 1 ≤ i < j ≤ n} . In the k-th step, matrices 
RU,k,RV ,k,RW,k have the same pivot position (ik, jk) , while the rotation angle �k is, in 
general, different for each matrix.

Our algorithm uses a block coordinate descent approach. This means that each itera-
tion consists of three microiterations where we hold two variables constant and vary the 
third one. We have

Here, by B(k) and C(k) we denote the intermediate steps. Of course, if we combine all 
three microiterations together, using the properties of mode-m product, namely (2.1) 
and (2.2), we get back to the iteration step (2.7).

Let us see how the rotation angles in matrices RU,k,RV ,k,RW,k are computed. For a 
fixed iteration step k we observe a 2 × 2 × 2 subproblem. Assume that (ik, jk) = (p, q) , 
1 ≤ p < q ≤ n . A subtensor of A corresponding to an index pair (p, q) is denoted by Â 
and we can write it as

Then, the corresponding 2 × 2 × 2 subproblem is to find 2 × 2 rotations R̂U , R̂V , R̂W 
such that

where

and

Taking only microiteration (2.9) we calculate rotation angles for matrix R̂U . We have

(2.8)R(i, j,�) =

⎡
⎢⎢⎢⎢⎣

I

cos� − sin�

I

sin� cos�

I

⎤
⎥⎥⎥⎥⎦

i

j

.

(2.9)B(k)
= A(k)

×1 R
T
U,k

,

(2.10)C(k) = B(k)
×2 R

T
V ,k

,

(2.11)A(k+1)
= C(k) ×3 R

T
W,k

.

Â(∶, ∶, 1) =

[
appp apqp
aqpp aqqp

]
, Â(∶, ∶, 2) =

[
appq apqq
aqpq aqqq

]
.

‖diag(Ŝ)‖2 = 𝜎2
ppp

+ 𝜎2
qqq

→ max,

Ŝ = Â ×1 R̂
T
U
×2 R̂

T
V
×3 R̂

T
W
,

Ŝ(∶, ∶, 1) =

[
𝜎ppp 𝜎pqp
𝜎qpp 𝜎qqp

]
, Ŝ(∶, ∶, 2) =

[
𝜎ppq 𝜎pqq
𝜎qpq 𝜎qqq

]
.
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The rotation angle � is chosen to maximize the function

Such � must satisfy relation g�
1
(�) = 0 . Taking the derivative of g1 we get

Dividing this relation by cos(2�) we obtain

Similarly, we find the rotation angles for matrices R̂V and R̂W as

and

respectively.
In the relations  (2.13)–(2.15) it is possible that both the numerator and the 

denominator are equal to zero. If that happens for one of those relations, we can 
skip the rotation in the corresponding direction and move on to the next one. If 
this is the case for all pairs, the algorithm will be terminated and it should be 
restarted with preconditioning. This will be explained in Section 5 for the case of 
antisymmetric tensors.

Rotation angles in R̂U , R̂V , R̂W do not need to be calculated explicitly. We only 
need the sine and the cosine of the corresponding angles. However, once we have 
formulas for computing tan(2�) , there is still a problem of calculating efficiently 
sin� and cos� . We will show how it is done for the rotation in the first mode. The 
procedure is the same in other modes. We go back to the relation (2.13). Denote

[
bppp bpqp bppq bpqq
bqpp bqqp bqpq bqqq

]
=

[
cos� sin�

− sin� cos�

][
appp apqp appq apqq
aqpp aqqp aqpq aqqq

]
.

(2.12)
g1(�) = b2

ppp
+ b2

qqq

= (appp cos� + aqpp sin�)
2
+ (−apqq sin� + aqqq cos�)

2.

g�
1
(�) = 2(cos�2

− sin�2
)(apppaqpp − apqqaqqq)

+ 2 cos� sin�(a2
pqq

+ a2
qpp

− a2
ppp

− a2
qqq

)

= 2 cos(2�)(apppaqpp − apqqaqqq)

+ sin(2�)(apqq
2
+ a2

qpp
− a2

ppp
− a2

qqq
)

= 0.

(2.13)tan(2�) =
2(apppaqpp − apqqaqqq)

a2
ppp

+ a2
qqq

− a2
pqq

− a2
qpp

.

(2.14)tan(2�) =
2(bpppbpqp − bqpqbqqq)

b2
ppp

+ b2
qqq

− b2
qpq

− b2
pqp

(2.15)tan(2�) =
2(cpppcppq − cqqpcqqq)

c2
ppp

+ c2
qqq

− c2
ppq

− c2
qqp

,
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Moreover, we denote t = tan� . Using the double-angle formula for tangent,

relation (2.13) reads

This is a quadratic equation in t, �t2 + 2�t − � = 0, with solutions 
t1 =

−�+
√
�2+�2

�
, t2 =

−�−
√
�2+�2

�
. Note that the equation for t1 is numerically unstable 

because catastrophic cancellation may occur. Therefore, we multiply both numerator 
and denominator by � +

√
�2 + �2 . That way we attain a numerically stable expres-

sion t1 =
�

�+
√
�2+�2

. Finally,

We calculate both solutions and use the one that gives the bigger value of the 
function (2.12).

The order in which we choose pivot pairs is called pivot strategy. In our algo-
rithm the pivot strategy is assumed to be cyclic. We choose an ordering of pairs 
(i,  j), 1 ≤ i < j ≤ n , which makes one cycle. Then we repeat the same cycle of 
pivot pairs until the convergence criterium is satisfied. Common examples of 
cyclic pivot strategies are row-wise and column-wise strategies with correspond-
ing ordering of pivot pairs defined by

and

respectively. The convergence results from Section  3 hold for any cyclic strategy. 
Nevertheless, to ensure convergence of the algorithm, pivot pairs should satisfy an 
additional condition. We only take a pivot pair (i,  j) such that (at least) one of the 
following inequalities is true,

 where 0 < 𝜂 ≤
2

n
 , Ṙ(i, j, 0) denotes �

��
R(i, j,�)|�=0 , f is defined in (2.6), and the pro-

jected gradient ∇Qf  will be defined in Subsection 3.1. If (i, j) does not satisfy any of 
the conditions  (2.18), then it will be skipped and we move to the next pair in the 

� = 2(apppaqpp − apqqaqqq)sign(a
2
ppp

+ a2
qqq

− a2
pqq

− a2
qpp

),

� = |a2
ppp

+ a2
qqq

− a2
pqq

− a2
qpp

|.

tan(2�) =
2t

1 − t2
,

2t

1 − t2
=

�

�
.

cos�i =
1√
1 + t2

i

, sin�i =
ti√
1 + t2

i

= ti cos�i, i = 1, 2.

(2.16)Or = (1, 2), (1, 3),… , (1, n), (2, 3),… , (2, n),… , (n − 1, n)

(2.17)Oc = (1, 2), (1, 3), (2, 3),… , (1, n), (2, n),… , (n − 1, n),

(2.18)�⟨∇Qf ,QṘ(i, j, 0)⟩� ≥ 𝜂‖∇Qf‖2, for Q = U,V ,W,
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cycle. It will be shown in Lemma 3.2 that for each inequality (2.18) it is always pos-
sible to find an appropriate pivot pair.

In the kth step of the algorithm, when we have A(k) , Uk,Vk,Wk , we first com-
pute the sine and the cosine of the rotation angle in the rotation matrix RU,k . We 
compute the auxiliary tensor B(k),

and

Then we repeat this procedure in the other modes. This is summarized in 
Algorithm 2.1.

Algorithm 2.1. Jacobi-type algorithm for the approximate tensor diagonal-
ization

Input: A ∈ Rn×n×n.
Output: orthogonal matrices U, V,W
k = 0
A(0) = A
U0 = V0 = W0 = I
repeat

Choose pivot pair (i, j).
if (i, j) satisfies (2.18) for Q = U then

Find cosφk and sinφk for RU,k using (2.13).
B = A(k) ×1 RU,k

Uk+1 = UkRU,k

end if
if (i, j) satisfies (2.18) for Q = V then

Find cosφk and sinφk for RV,k using (2.14).
C = B ×2 RV,k

Vk+1 = VkRV,k

end if
if (i, j) satisfies (2.18) for Q = W then

Find cosφk and sinφk for RW,k using (2.15).
A(k+1) = C ×3 RW,k

Wk+1 = WkRW,k

end if
until convergence

We have several remarks regarding the Algorithm 2.1.

• Algorithm  2.1 employs the identity initialization U0 = V0 = W0 = I . This 
is not necessarily done this way and it will be further discussed within the 

B(k)
= A(k)

×1 R
T
U,k

= A ×1 (R
T
U,k

UT
k
) ×2 V

T
k
×3 W

T
k
,

Uk+1 = UkRU,k.
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numerical examples in Section 4, as well as in relation with the antisymmetric 
tensors in Section 5.

• It is not needed to explicitly form rotation matrices and tensor matricizations 
in order to perform mode-n multiplications in the algorithm.

• Conditions on pivot pairs  (2.18) can be simplified to lower the computa-
tional effort. This will be shown after Lemma 3.2. Moreover, the coefficient 
0 < 𝜂 ≤

2

n
 can vary, which will be examined in Section 4.

This algorithm can be generalized for the order-d tensors where d > 3 . In that 
case we need to obtain orthogonal matrices U1,U2,…Ud such that maximization 
condition (1.2) holds. One iteration of the algorithm consists of d microiterations 
that are analogues of those in (2.9), (2.10), and (2.11).

3  Convergence results

3.1  Gradient of the objective function

Before we move on to the convergence of the Algorithm 2.1, let us say something 
about the gradient of the objective function f ∶ On × On × On → ℝ,

where On stands for the group of orthogonal matrices of order n. To calculate ∇f  we 
need an auxiliary function f̃ ∶ ℝ

n×n
×ℝ

n×n
×ℝ

n×n
→ ℝ defined by the same for-

mula (3.1) as f. In other words, function f̃  is such that f is the restriction of f̃  to the 
set of triples of orthogonal matrices. Then ∇f  is the projection of ∇f̃  onto the tan-
gent space at (U, V, W) to the manifold On × On × On . We have

where

To calculate ∇f (U,V ,W) we write f̃  as

Element-wise, we get

(3.1)f (U,V ,W) = ‖diag(A ×1 U
T
×2 V

T
×3 W

T
)‖2,

(3.2)

∇f (U,V ,W) =

[
∇Uf (U,V ,W) ∇Vf (U,V ,W) ∇Wf (U,V ,W)

]

= Proj
[
∇Uf̃ (U,V ,W) ∇V f̃ (U,V ,W) ∇Wf̃ (U,V ,W)

]

=

[
UΛ(U) VΛ(V) WΛ(W)

]
,

(3.3)Λ(Q) ∶=
QT

∇Qf̃ − (∇Qf̃ )
TQ

2
.

f̃ (U,V ,W) = ‖diag(A ×1 U
T
×2 V

T
×3 W

T
)‖2 =

n�
l=1

�
n�

i,j,k=1

aijkuilvjlwkl

�2

.
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 Then, we can use the above relations together with (3.3) to get an explicit expres-
sion for Λ(U),

 Similarly we get the expressions for Λ(V) and Λ(W).
The gradient of the objective function will be needed in order to prove the fol-

lowing convergence result and also to check the pivot conditions (2.18).

3.2  Convergence theorem

The convergence of Algorithm 2.1 is given in Theorem 3.1.

Theorem 3.1 Every accumulation point (U, V, W) obtained by Algorithm 2.1 is a 
stationary point of the function f defined by (3.1).

The proof follows the idea from [9], which was also used in [13], as well 
as in [1, 2]. The major obstacle is that here we have a function of three vari-
ables, while earlier this procedure was used with single-variable functions. We 
prove Lemma 3.2, which is an adaptation of Lemma 3.1 from [13]. Then, using 
Lemma  3.2 we prove Lemma  3.4, which is an essential step in the proof of 
Theorem 3.1.

Lemma 3.2 For any differentiable function f ∶ On × On × On → ℝ , U,V ,W ∈ On , 
and 0 < 𝜂 ≤

2

n
 it is always possible to find index pairs (iU , jU) , (iV , jV ) , (iW , jW ) satis-

fying pivot condition (2.18).

Proof Observe that

𝜕f̃

𝜕uml
= 2

(
n∑

i,j,k=1

aijkuilvjlwkl

)(
n∑

j,k=1

amjkvjlwkl

)

= 2
(
A ×1 U

T
×2 V

T
×3 W

T
)
lll

(
A ×2 V

T
×3 W

T
)
mll
,

𝜕f̃

𝜕vml
= 2

(
A ×1 U

T
×2 V

T
×3 W

T
)
lll

(
A ×1 U

T
×3 W

T
)
lml
,

𝜕f̃

𝜕wml

= 2
(
A ×1 U

T
×2 V

T
×3 W

T
)
lll

(
A ×1 U

T
×2 V

T
)
llm
.

(Λ(U))lp =
1

2

(
n∑

m=1

uml
𝜕f̃

𝜕ump
−

n∑
m=1

𝜕f̃

𝜕uml
ump

)

=

(
A ×1 U

T
×2 V

T
×3 W

T
)
ppp

(
A ×1 U

T
×2 V

T
×3 W

T
)
lpp

−

(
A ×1 U

T
×2 V

T
×3 W

T
)
lll

(
A ×1 U

T
×2 V

T
×3 W

T
)
pll
.



1 3

Convergence of a Jacobi‑type method for the approximate… Page 11 of 20 3

From the definition of the operator Λ we see that matrix Λ(U) is skew-symmetric. 
Then, from the fact that the Euclidean norm is invariant under unitary transforma-
tions and from relation (3.2) we have

We can always find an index pair (iU , jU) such that

Inserting this into equation (3.4) with (i, j) = (iU , jU) , we get

which proves assertion (i). Since the matrices Λ(V) and Λ(W) are also skew-sym-
metric, in the same way we obtain

This proves assertions (ii) and (iii), respectively.   ◻

Remark 3.3 Conditions (2.18) are equivalent to

where Λ(⋅) is as in relation (3.3).

Lemma 3.4 Let Uk , Vk , Wk , k ≥ 0 be the sequences generated by Algorithm 2.1. Let 
U,V ,W be a triple of orthogonal matrices satisfying ∇f (U,V ,W) ≠ 0 . Then there 
exist 𝜖 > 0 and 𝛿 > 0 such that

implies

Proof Let us fix the iteration step k. To shorten the notation set �U = �U,k , �V = �V ,k , 
�W = �W,k , and RU,k = R(ik, jk,�U) , RV ,k = R(ik, jk,�V ) , RW,k = R(ik, jk,�W ) . We 
define three functions h(1)

k
, h

(2)

k
, h

(3)

k
∶ ℝ → ℝ,

Ṙ(i, j, 0) = eje
T
i
− eie

T
j
.

(3.4)
�⟨∇Uf (U,V ,W),UṘ(i, j, 0)⟩� = �⟨UΛ(U),UṘ(i, j, 0)⟩�

= �⟨Λ(U), Ṙ(i, j, 0)⟩� = 2�Λ(U)ij�.

�Λ(U)iU jU
� ≥ 1

n
‖Λ(U)‖2.

�⟨∇Uf (U,V ,W),UṘ(iU , jU , 0)⟩� ≥ 2

n
‖Λ(U)‖2 ≥ 𝜂‖Λ(U)‖2 = 𝜂‖∇Uf (U,V ,W)‖2,

�⟨∇Vf (U,V ,W),VṘ(iV , jV , 0)⟩� ≥ 2

n
‖Λ(V)‖2 ≥ 𝜂‖Λ(V)‖2 = 𝜂‖∇Vf (U,V ,W)‖2,

�⟨∇Wf (U,V ,W),WṘ(iW , jW , 0)⟩� ≥ 2

n
‖Λ(W)‖2 ≥ 𝜂‖Λ(W)‖2 = 𝜂‖∇Wf (U,V ,W)‖2.

2�Λ(Q)ij� ≥ �‖Λ(Q)‖2, for Q = U,V ,W,

‖Uk − U‖2 < 𝜖, ‖Vk − V‖2 < 𝜖, ‖Wk −W‖2 < 𝜖

(3.5)f (Uk+1,Vk+1,Wk+1) − f (Uk,Vk,Wk) ≥ �.
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Further on, we define yet another function hk ∶ ℝ ×ℝ ×ℝ → ℝ,

Since R(ik, jk, 0) = I,

From the construction of Algorithm 2.1 we know that

and the kth step of the algorithm is represented by

Moreover, it is easy to see from the algorithm that

In order to attain inequality (3.5) we need at least one sharp inequality in (3.6).
If ∇f (U,V ,W) ≠ 0 , then at least one partial gradient of f is not zero, that is

Let us assume that ∇Uf (U,V ,W) ≠ 0 . Then there exists 𝜖 > 0 such that

We use the Taylor expansion of the function h(1)
k

 around 0,

Set M1 = max |(h(1)
k
)
��
(𝜉)| < ∞ . Then we have

h
(1)

k
(�1) = f (UkR(ik, jk,�1),Vk,Wk),

h
(2)

k
(�2) = f (UkRU,k,VkR(ik, jk,�2),Wk),

h
(3)

k
(�3) = f (UkRU,k,VkRV ,k,WkR(ik, jk,�3)).

hk(�1,�2,�3) = f (UkR(ik, jk,�1),VkR(ik, jk,�2),WkR(ik, jk,�3)).

hk(0, 0, 0) = f (Uk,Vk,Wk).

max
�1

h
(1)

k
(�1) = h

(1)

k
(�U) = f (UkRU,k,Vk,Wk),

max
�2

h
(2)

k
(�2) = h

(2)

k
(�V ) = f (UkRU,k,VkRV ,k,Wk),

max
�3

h
(3)

k
(�3) = h

(3)

k
(�W ) = f (UkRU,k,VkRV ,k,WkRW,k),

hk(�U ,�V ,�W ) = f (UkRU,k,VkRV ,k,WkRW,k) = f (Uk+1,Vk+1,Wk+1).

(3.6)

f (Uk+1,Vk+1,Wk+1) ≥ f (Uk+1,Vk+1,Wk)

≥ f (Uk+1,Vk,Wk)

≥ f (Uk,Vk,Wk).

∇Uf (U,V ,W) ≠ 0, ∇Vf (U,V ,W) ≠ 0, or ∇Wf (U,V ,W) ≠ 0.

(3.7)𝜇1 ∶= min{‖∇Uf (U,V ,W)‖2 ∶ ‖U − U‖2 < 𝜖} > 0.

h
(1)

k
(𝜙1) = h

(1)

k
(0) + (h

(1)

k
)
�
(0)𝜙1 +

1

2
(h

(1)

k
)
��
(𝜉)𝜙2

1
, 0 < 𝜉 < 𝜙1.

(3.8)h
(1)

k
(�1) − h

(1)

k
(0) ≥ (h

(1)

k
)
�
(0)�1 −

1

2
M1�

2
1
.
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The derivative of h(1)
k

 is given by

In particular,

It follows from Lemma 3.2(i) and relation (3.9) that

Therefore, from (3.10) and (3.7) we get

We go back to the inequality (3.8). For �1 =
1

M1

(h
(1)

k
)
�
(0) , using the definition of the 

function h(1)
k

 and relations (3.6) and (3.11), we obtain

Now we assume that ∇Uf (U,V ,W) = 0 and ∇Vf (U,V ,W) ≠ 0 . There is an 𝜖 > 0 
such that

In this case we use the Taylor expansion of the function h(2)
k

 around 0. We have

for M2 = max |(h(2)
k
)
��
(𝜉)| < ∞ , and

Lemma 3.2(ii) and relation (3.12) imply

The assertion of the lemma follows from  (3.13), (3.6), and  (3.14) with 
�2 =

1

M2

(h
(2)

k
)
�
(0).

(h
(1)

k
)
�
(𝜙1) = ⟨∇Uf (UkR(ik, jk,𝜙1),Vk,Wk),UkṘ(ik, jk,𝜙1)⟩.

(3.9)(h
(1)

k
)
�
(0) = ⟨∇Uf (Uk,Vk,Wk),UkṘ(ik, jk, 0)⟩.

(3.10)�(h(1)
k
)
�
(0)� ≥ �‖∇Uf (Uk,Vk,Wk)‖2.

(3.11)|(h(1)
k
)
�
(0)| ≥ 𝜂𝜇1 > 0.

f (Uk+1,Vk+1,Wk+1) − f (Uk,Vk,Wk)

≥ f (Uk+1,Vk,Wk) − f (Uk,Vk,Wk) = h
(1)

k
(𝜙1) − h

(1)

k
(0)

≥ (h
(1)

k
)
�
(0)𝜙1 −

1

2
M1𝜙

2
1
=

1

M1

((h
(1)

k
)
�
(0))2 −

1

2M1

((h
(1)

k
)
�
(0))2

≥
𝜂2𝜇2

1

2M1

= 𝛿 > 0.

(3.12)𝜇2 ∶= min{‖∇Vf (U,V ,W)‖2 ∶ ‖V − V‖2 < 𝜖} > 0.

(3.13)h
(2)

k
(�2) − h

(2)

k
(0) ≥ (h

(2)

k
)
�
(0)�2 −

1

2
M2�

2
1
,

(h
(2)

k
)
�
(0) = ⟨∇Vf (Uk,Vk,Wk),VkṘ(ik, jk, 0)⟩.

(3.14)�(h(2)
k
)
�
(0)� ≥ 𝜂‖∇Vf (Uk,Vk,Wk)‖2 ≥ 𝜂𝜇2 > 0.
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Finally, if ∇Uf (U,V ,W) = 0 and ∇Vf (U,V ,W) = 0 , since 
∇f (U,V ,W)(U,V ,W) ≠ 0 , then it must be that ∇Wf (U,V ,W) ≠ 0 . Then, there is an 
𝜖 > 0 such that

Here we need the Taylor expansion of h(3)
k

 around 0,

for M3 = max |(h(2)
k
)
��
(𝜉)| < ∞ . We repeat the same steps as for the preceding two 

cases. We have

and, using Lemma 3.2(iii) and the relation (3.15), it follows that

We attain inequality (3.5) using (3.16), (3.6), and (3.17) with �3 =
1

M3

(h
(3)

k
)
�
(0) .   ◻

Using Lemma 3.4 we can now prove Theorem 3.1.

Proof of Theorem 3.1 Suppose that U , V  , W are, respectively, accumulation points of 
the sequences {Uj}j≥1 , {Vj}j≥1 , {Wj}j≥1 generated by Algorithm 2.1. Then there are 
subsequences {Uj}j∈KU

 , {Vj}j∈KV
 , {Wj}j∈KW

 such that

where KU ,KV ,KW ⊆ ℕ.
Assume that (U,V ,W) is not a stationary point of the function f, that is

Then, for any 𝜖 > 0, there are k(U)

0
∈ KU , k(V)

0
∈ KV , k(W)

0
∈ KW such that

for every k > k0 , k0 = max{k
(U)

0
, k

(V)

0
, k

(W)

0
} . Thus, Lemma  3.4 implies 

f (Uk+1,Vk+1,Wk+1) − f (Uk,Vk,Wk) ≥ 𝛿 > 0 . It follows that

when k → ∞ . Since f is continuous, if (Uk,Vk,Wk) converges, then f (Uk,Vk,Wk) 
should converge, too. This gives a contradiction. Therefore, assumption (3.18) can-
not hold and (U,V ,W) is a stationary point of f.   ◻

(3.15)𝜇3 ∶= min{‖∇Wf (U,V ,W)‖2 ∶ ‖W −W‖2 < 𝜖} > 0.

(3.16)h
(3)

k
(�3) − h

(3)

k
(0) ≥ (h

(3)

k
)
�
(0)�1 −

1

2
M3�

2
3
,

(h
(3)

k
)
�
(0) = ⟨∇Wf (Uk,Vk,Wk),WkṘ(ik, jk, 0)⟩,

(3.17)�(h(3)
k
)
�
(0)� ≥ 𝜂‖∇Wf (Uk,Vk,Wk)‖2 ≥ 𝜂𝜇3 > 0.

{Uj}j∈KU
→ U, {Vj}j∈KV

→ V , {Wj}j∈KW
→ W,

(3.18)∇f (U,V ,W) ≠ 0.

‖Uk − Û‖2 < 𝜖, ‖Vk − V̂‖2 < 𝜖, ‖Wk − Ŵ‖2 < 𝜖,

f (Uk,Vk,Wk) → ∞,
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Note that all results from this section can be generalized to order-d tensors, 
d > 3.

4  Numerical examples

We illustrate the convergence of Algorithm 2.1 through several numerical exam-
ples. We observe the relative off-norm of a tensor A , which is given as

For a diagonal tensor, value (4.1) is equal to zero, while for a random tensor it is, 
typically, close to one. Note that the off-norm is not a norm because it can be equal 
to zero for a nonzero input.

Figure 1 shows the change of the relative off-norm. We distinguish two differ-
ent situations, one where a tensor can be completely diagonalized using orthogo-
nal transformations, and a more general one where orthogonal diagonalization is 
not possible. For the first set of tensors we get off(A)

‖A‖ = 0 . Otherwise, we get the 
convergence to some value between 0 and 1. A random diagonalizable tensor is 
constructed by taking a diagonal tensor with random entries on the diagonal and 
multiplying it in each mode by orthogonal matrices obtained from QR factoriza-
tions of three random matrices. The algorithm uses row-wise cyclic pivot order-
ing (2.16) with different values of the parameter �.

In Figure 2 we compare five different pivot orderings. In addition to the row-
wise top to bottom  (2.16) and the column-wise left to right  (2.17) ordering we 
have the row-wise bottom to top

(4.1)
off(A)

‖A‖ .

0 2 4 6 8 10

cycle k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

cycle k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1  Change in the relative off-norm for two 30 × 30 × 30 tensors with different values of � . Left: Diag-
onalizable tensor. Right: Non-diagonalizable tensor
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the column-wise right to left

and the diagonal ordering of pivot pairs

O�

r
= (n − 1, n), (n − 2, n − 1), (n − 2, n), (n − 3, n − 2),…

… , (2, n), (1, 2),… , (1, n),

O�

c
= (1, n),… , (n − 1, n), (1, n − 1),… , (n − 2, n − 1),… , (1, 2),

Od = (1, 2), (2, 3),… , (n − 1, n), (1, 3), (2, 4),… , (n − 2, n), (1, 4),… , (1, n).

0 5 10 15 20

cycle k

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
row-wise top to bottom
column-wise left to right
row-wise bottom to top
column-wise right to left
diagonal

0 5 10 15 20

cycle k

0

0.05

0.1

0.15

0.2

0.25

0.3
row-wise top to bottom
column-wise left to right
row-wise bottom to top
column-wise right to left
diagonal

0 5 10 15 20

cycle k

0

0.05

0.1

0.15

0.2

0.25
row-wise top to bottom
column-wise left to right
row-wise bottom to top
column-wise right to left
diagonal

0 5 10 15 20

cycle k

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

row-wise top to bottom
column-wise left to right
row-wise bottom to top
column-wise right to left
diagonal

0 5 10 15 20

cycle k

0

0.1

0.2

0.3

0.4

0.5

row-wise top to bottom
column-wise left to right
row-wise bottom to top
column-wise right to left
diagonal

0 5 10 15 20

cycle k

0

0.1

0.2

0.3

0.4

0.5

row-wise top to bottom
column-wise left to right
row-wise bottom to top
column-wise right to left
diagonal

Fig. 2  Change in the relative off-norm for six 10 × 10 × 10 tensors with different pivot strategies
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We run the algorithm on six random tensors, four of which cannot be diagonalized 
by orthogonal transformations, all with � =

1

20n
 . As expected, different pivot strate-

gies are faster/slower on different tensors. However, no matter what pivot strategy 
we choose, the algorithm converges to the same point.

In Figure 3 we compare two different initializations for our Jacobi-type algorithm. 
The first one is identity initialization as it was done in Algorithm 2.1. There we have

The other initialization that can be used is coming from the HOSVD of A , see [5], 
A = S̃ ×1 Ũ ×2 Ṽ ×3 W̃, where Ũ , Ṽ  , and W̃ are matrices of left singular vectors 
of matricizations A

(1) , A(2) , and A
(3) , respectively, and S̃ = A ×1 Ũ

T
×2 Ṽ

T
×3 W̃

T . 

Then, instead of the initialization (4.2), we set A(0)
= S̃ , U0 = Ũ , V0 = Ṽ  , W0 = W̃ . 

We run the algorithm with � =
1

20n
 on two random tensors. We can see that the 

HOSVD initialization is superior in the beginning cycles. This is the case because, 
compared to the starting tensor A , the core tensor S̃ from the HOSVD of A is sig-
nificantly closer to a diagonal tensor. Nevertheless, after those first cycles, both ini-
tializations are equally good.

5  Symmetric and antisymmetric tensors

We say that a tensor is symmetric if its elements remain constant under any permuta-
tion of indices. For a symmetric tensor X ∈ ℝ

n×n×n we have

Symmetric tensors were studied in details in [13] and [12], where the authors also 
work with a Jacobi-type algorithm.

(4.2)A(0)
= A, U0 = V0 = W0 = I.

xijk = xikj = xjik = xjki = xkij = xkji.

0 5 10 15 20

cycle k

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18 identity initialization
HOSVD initialization

0 5 10 15 20

cycle k

0

0.05

0.1

0.15

0.2

identity initialization
HOSVD initialization

Fig. 3  Convergence of the algorithm with different initializations. Left: 20 × 20 × 20 tensor. Right: 
10 × 10 × 10 tensor
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Our algorithm is not structure-preserving. In order to have a symmetry-preserv-
ing Jacobi-type algorithm, rotation matrices should be the same in all modes. Since 
the rotations RU,k , RV ,k , and RW,k in the kth step are chosen depending on different 
tensors, they are not all the same. Nevertheless, we have noticed in practice that 
for smaller values of � from (2.18), after the convergence criterion is satisfied, the 
Algorithm 2.1, in most of the cases, returns mutually equal matrices U, V, W and a 
symmetric tensor S . However, this is not the case for larger � . We will illustrate this 
behaviour on an example.

Departure from symmetry is measured as the distance in the Frobenius norm 
between the tensor A and its symmetrization sym(A),

where, for a 3rd order tensor X  , we have

It is easy to check that, if X  is symmetric, then sym(X) = X  , and the expres-
sion (5.1) is equal to zero. We applied Algorithm 2.1 with � =

1

2000n
 on a randomly 

generated symmetric 20 × 20 × 20 tensor A . In the left picture in Figure 4 we can 
see that after we start with a symmetric tensor, symmetry is lost already in the first 
cycle, as expected, but the tensor becomes more and more symmetric through itera-
tions and the sequence (A(k)

)k converges to a symmetric tensor. In the right picture 
we see that the distance between each pair of matrices Uk,Vk,Wk converges to zero, 
that is, Uk,Vk,Wk converge to the same matrix. This does not happen for � =

1

20n
.

One should keep in mind that for a symmetric starting tensor the solution of the 
maximization problem (2.5) is not necessary a symmetric tensor. One such example 
is tensor T  from [12, Example 5.5] that can be given by its matricization

First, we notice that neither identity nor HOSVD initialization work on this ten-
sor. In both cases the diagonal elements of T(0) are zero and all rotation angles are 
zero, so the tensor is unchanged. Thus, here we do preconditioning with a random 
orthogonal matrix Q by setting A(0)

= A ×1 Q ×2 Q ×3 Q. For the vast majority of 
the choices of Q, Algorithm 2.1 with � =

1

2000n
 converges to the symmetric tensor S,

with transformation matrix U = V = W depending on Q. This is a stationary point 
of the objective function (2.6), but not a point of its global maximum. In the other 

(5.1)‖A − sym(A)‖,

sym(X) =
1

6
(xijk + xikj + xjik + xjki + xkij + xkji).

(5.2)T
(1) =

⎡⎢⎢⎣

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 0 0 0

⎤⎥⎥⎦
.

S
(1) =

[
0.8889 − 0.4444 − 0.4444 − 0.4444 − 0.4444 − 0.1111 − 0.4444 − 0.1111 − 0.4444

−0.4444 − 0.4444 − 0.1111 − 0.4444 0.8889 − 0.4444 − 0.1111 − 0.4444 − 0.4444

−0.4444 − 0.1111 − 0.4444 − 0.1111 − 0.4444 − 0.4444 − 0.4444 − 0.4444 0.8889

]
,
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rare cases the algorithm converged to one of the better, but nonsymmetric, solutions 
of the form S̄

On the other hand, a tensor is antisymmetric if its elements change sign when per-
muting pairs of indices. For an antisymmetric tensor X ∈ ℝ

n×n×n we have

In every antisymmetric tensor, elements on the positions where two or more indices 
are the same are equal to zero. Hence, all elements on the diagonal of an antisym-
metric tensor are zero. This is the reason why, contrary to the symmetric case where 
one may be interested in a structure-preserving algorithm, we are not interested in 
preserving the antisymmetry. Here, by each iteration a tensor moves further from 
the structure. Still, antisymmetric tensors need some special attention. If we apply 
the algorithm directly in the form given in Algorithm 2.1, with the identity initiali-
zation, the algorithm will fail when computing the rotation angle. This happens 
because for an antisymmetric tensor, when computing the tangent of the double rota-
tion angle (2.13), (2.14), and (2.15), we get both the numerator and the denominator 
equal to zero. We can overcome this problem with a preconditioning step — instead 
of the identity initialization (4.2) we use the HOSVD initialization as described in 
Section 4.

Acknowledgements This work has been supported in part by Croatian Science Foundation under the 
project UIP-2019-04-5200. The author is grateful to the anonymous referees for their detailed comments 
that improved the paper.

S̄
(1) =

⎡⎢⎢⎣

±1 0 0 0 0 0 0 ± 1 0

0 0 ± 1 0 ± 1 0 0 0 0

0 0 0 ± 1 0 0 0 0 ± 1

⎤⎥⎥⎦
.

xijk = xjki = xkij = −xikj = −xjik = −xkji.

0 2 4 6 8 10 12 14 16 18 20

cycle k

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20

cycle k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 4  Departure from the symmetry for a random symmetric 20 × 20 × 20 tensor
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