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Abstract
This paper deals with an inverse problem on determining a time dependent potential 
in a diffusion equation with temporal fractional derivative of variable order from 
a distributed observation. We shall study the existence, uniqueness and regularity 
estimates of the solution for the forward problem by utilizing the Freldhom alterna-
tive principle for compact operators. Based on a newly established coercivity for 
fractional derivatives of variable order, we prove a uniqueness result for the inverse 
potential problem. Numerically, we transform the inverse potential problem into an 
optimization problem with Tikhonov regularization. An iterative thresholding algo-
rithm is proposed to find the minimizers by a newly constructed adjoint system, 
whose wellposedness is also verified. Several numerical experiments are presented 
to show the accuracy and efficiency of the proposed algorithm.
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1  Introduction

In the field of statistical mechanics, people can deduce the time-fractional diffu-
sion equation (tFDE) by assuming the jump length and the waiting time between 
two successive jumps are independent and respectively follow Gaussian distribu-
tion and power law distribution as time large, see, e.g., Metzler and Klafter [30]. 
Because tFDEs were well performed in catching the behavior of the diffusion pro-
cesses with memory effect, it attracted more and more attention from many fields, 
such as rheology [1], transport theory [8], viscoelasticity [28], non-Markovian 
stochastic processes [31], etc.

However, on the attempting to describe some complex dynamical systems, 
several researches confronted with the situation that the fractal dimension of the 
heterogeneous media determined by the Hurst index [29] that changes as the geo-
metrical structure or property of the media changes. Mathematically, it reflects 
that the fractional orders in tFDEs are temporally or spatially varying.

The fractional models involving variable-order derivatives have more feasibil-
ity to catch some behavior of complex dynamical system than the constant frac-
tional order case in a large class of physical, biological and physiological dif-
fusion phenomena. For example, shape memory polymer due to the change of 
its microstructure [23], the shale gas production due to the hydraulic fracturing 
[37], the tritium transport through a highly heterogeneous medium at the mac-
rodispersion experimental site [39], polymer gels [34] and magnetorheological 
elastomers [5] in imposed electric and magnetic fields. We also refer to [9] for the 
relaxation processes and reaction kinetics of proteins under changing tempera-
ture field. These work indicated that the behavior of the above diffusion processes 
in response to temperature, electrostatic field strength or magnetic field strength 
changes may be better described using variable order elements rather than the 
constant order.

Variable-order tFDEs have appeared in more and more applications, but math-
ematical researches on analyzing the variable-order tFDEs is relatively new 
and is still at an early stage. For the variable-order tFDEs with the time inde-
pendent principle elliptic part, Umarov and Steinberg [42] proved the existence 
and uniqueness theorem of a solution of the Cauchy problem for variable order 
tFDEs via the explicit representation formula (see, e.g., [21, 33]) of the solution 
for constant-order fractional PDEs. Wang and Zheng [44] studied the wellposed-
ness of the initial-boundary value problems of variable order tFDE, in which the 
principle elliptic part is time independent, so the Mittag-Leffler function and the 
eigenfunction expansion argument, which is a widely used technique in analyzing 
tFDEs, can be used to derive the desired results. Kian, Soccorsi and Yamamoto 
[16] studied tFDEs with space depending variable order, in which the t-analytic-
ity of the solution is proved and so the Laplace transform technique is utilized 
to derive the wellposedness. For the numerical methods for solving the variable 
order tFDEs, we refer to some work given by W. Chen and his group [11, 37, 38], 
F. Liu and his group [2, 3, 53], Wu, Baleanu, Xie and Zeng [46] , Zaky, Doha, 
Taha and Baleanu [49] and the references therein.



1 3

Coefficient inverse problem for variable order time‑fractional… Page 3 of 28  34

In this paper, assuming T ∈ (0,∞) and Ω is an open bounded domain in ℝd 
with a sufficiently smooth boundary �Ω , we will consider the following initial-
boundary value problem of variable-order tFDE:

where (�1, �2,… , �d) is the unit out normal vector at the boundary �Ω , and L(t) is a 
symmetric uniformly elliptic operator defined by

with aij(x, t) = aji(x, t) (1 ≤ i, j ≤ d), x ∈ Ω and aij ∈ C1(ΩT ) such that

for some positive constant a0 . In the system (1.1), by ��(⋅)t  we denote the Caputo frac-
tional derivative of temporal variable order �(t) ∈ (0, 1):

The coefficient q depends only on x, the potential function p is only t-dependent, and 
they are assumed to be in function spaces L∞(Ω) , L∞(0, T) respectively. We assume 
the source term f ∈ L2(ΩT ) . In the above variable-order tFDE (1.1), the variable 
order, diffusion coefficient and potential are all time dependent, hence the previous 
analytical techniques, such as the Fourier expansion and Laplace transform argu-
ment used in [16, 42, 44], do not work in the current context, which increases the 
difficulty in the study of the wellposedness for the forward problem.

In addition, the parameters e.g., fractional order, source, potential and ini-
tial value, are usually unknown and cannot be obtained directly in most practi-
cal applications. It should be inferred as an inverse problem from suitable addi-
tional data which can be easily obtained based on the forward problems. This is a 
more practical issue and has been widely concerned in theoretical and numerical 
researches for tFDEs in recent years. We do not intend to give a full list of the 
works. We refer to Huang, Li and Yamamoto [12], Jiang, Li, Liu and Yamamoto 
[13], Liu, Rundell and Yamamoto [26] for inverse source problems. We refer to 
Chen, Liu, Jiang, Turner and Burrage [4], Li, Zhang, Jia and Yamamoto [20], 
Li, Imanuvilov and Yamamoto [22] for recovering the fractional orders. Kian, Li, 
Liu and Yamamoto [18], Kian, Oksanen, Soccorsi and Yamamoto [17], Jin and 
Rundell [14] are concerned with the inverse problem in determining the spatially 
varying potential. For recovering t-dependent potential, we refer to Zhang and 

(1.1)

⎧
⎪⎨⎪⎩

�tu + q(x)�
�(⋅)
t u + L(t)u + p(t)u = f (x, t), (x, t) ∈ ΩT ∶= Ω × (0, T),

u(x, 0) = 0, x ∈ Ω,∑d

i=1
aij(x, t)�xiu(x, t)�j = 0, (x, t) ∈ Σ ∶= �Ω × (0, T),

L(t)u(x) ∶= −

d∑
i,j=1

�xi

(
aij(x, t)�xju(x)

)
, u ∈ H2(Ω)

d∑
i,j=1

aij(x, t)�i�j ≥ a0

d∑
i=1

�2
j
, ∀(x, t) ∈ ΩT , ∀(�1,… , �d) ∈ ℝ

d

�
�(⋅)
t g(t) ∶=

1

Γ(1 − �(t)) ∫
t

0

(t − �)−�(t)
d

d�
g(�) d�.
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Zhou [50], Sun, Zhang and Wei [40]. For backward problems, we refer to Liu and 
Yamamoto [25] , Florida, Li and Yamamoto [7] and Wang and Liu [43]. We also 
refer to Jin and Rundell [15] for a survey of the inverse problems for fractional 
differential equations. It seems that the most existing works are concerned with 
inverse problems for (constant-order) tFDEs. Up to now, the available study on 
inverse problems associated with variable-order case are meager. Wang, Wang, Li 
and Wang [45] investigated a tFDE involving space and time depending variable 
fractional order derivative in which the homotopy regularization algorithm was 
applied to solve the inverse problem in simultaneously determining the fractional 
order and the diffusion coefficient. Zheng, Cheng and Wang [51] proved the 
uniqueness of determining the variable fractional order of the initial-boundary 
value problems of variable-order tFDEs in one space dimension with some avail-
able observed values of the unknown solutions inside the spatial domain.

As far as we know, there is no theoretical analysis and numerical algorithm for 
inverse coefficient problems in the variable-order tFDEs with time dependent prin-
ciple elliptic part, since the useful analytic techniques, e.g., Mittag-Leffler function 
expression and Laplace transform argument cannot work here. Regarding the impor-
tance of inverse coefficient problems, we here consider the theoretical analysis and 
numerical reconstruction of the time dependent potential from energy type meas-
ured data. The reasons why we choose the integral type observation conclude two 
aspects. One is that the energy method could help us investigate the mathematical 
theories, and the other one is that it can average the error of point measurements, 
which will make the inversion algorithm more stable.

Inverse Problem  1.1  We assume u ∈ H1(0, T;L2(Ω)) ∩ L2(0, T;H2(Ω)) is the solu-
tion to the system (1.1). We intend to determine the temporally varying potential 
p ∈ L∞(0, T) by measuring the energy data

As this is the first paper to study the uniqueness and numerical algorithms for the 
reconstruction of the time dependent potential in a variable-order tFDE with time 
dependent principle elliptic part. We would like to point out the main difficulties for 
the reconstruction and the novelties of this paper. The essential difficulties are 

1.	 the fractional order, diffusion coefficient and potential are time varying, which 
makes the usual analytical techniques, like Mittag-Leffler function expression and 
Laplace transform argument, cannot work;

2.	 the inverse problem of identifying the potential is nonlinear, which makes that 
there are quite a few mathematical tools can work. Indeed, it is difficult to give 
an exact formula for the solution operator of our inverse problem. Moreover, the 
techniques based on linearity, such as compact operator theory and Fredholm 
alternative principle, are no longer applicable to our inverse problem.

The main novelties of this paper include 

(1.2)E(t) ∶=

(
∫Ω

u2(x, t)dx

) 1

2

, t ∈ (0, T].
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1.	 we prove the wellposedness for the forward problem (1.1) by regarding the frac-
tional order term as a perturbation of the first order time derivative and using the 
theoretical results for the parabolic equations;

2.	 we obtain the uniqueness for the inverse potential problem by the use of the 
energy methods on basis of a newly established coercivity of the variable order 
time fractional derivative in Lemma 4.1;

3.	 numerically, we construct a newly wellposed adjoint system and propose an itera-
tive thresholding algorithm, which makes the numerical implementation easy and 
computationally cheap.

2 � Main results and outline

For the initial-boundary value problem (1.1), we will first prove the well-posedness 
of the solution. Before stating the main theorem, we list several restrictions on the 
coefficients.

Assumption 2.1 

(a)	 �(⋅) ∈ C[0, T] such that 0 < 𝛼(⋅) < 1 in [0, T].
(b)	 p(⋅) ∈ L∞(0, T) , q(⋅) ∈ L∞(Ω) and f ∈ L2(ΩT ).

Under Assumption 2.1, by regarding the fractional order term as a perturbation of 
the first order time-derivative, the unique existence of the solution as well as regu-
larity of the solution can be proved by Fredholm principle for compact operators. 
We now state the first main theorem.

Theorem  2.1  Under Assumption 2.1, the initial-boundary value problem (1.1) 
admits a unique weak solution u ∈ H1(0, T;L2(Ω)) ∩ L2(0, T;H2(Ω)) such that

The above theorem indicates that the solution has the full regularity as the para-
bolic analogues do. Most importantly, based on the above regularity of the solu-
tion, one can show the coercivity of the variable order time-fractional derivative 
(see Lemma 4.1 ), from which we can further derive the uniqueness of the inverse 
problem.

Theorem 2.2  Under Assumption 2.1, and we further suppose that ess infΩ q(x) > 0 
and �(⋅) ∈ C1[0, T] . Let u1, u2 ∈ H1(0, T;L2(Ω)) ∩ L2(0, T;H2(Ω)) be the solutions 
to (1.1) with respect to p1, p2 ∈ L∞

+
(0, T) ∶= {p ∈ L∞(0, T);p ≥ 0, a.e. t ∈ (0, T)} , 

then the observation data

‖�tu‖L2(0,T;L2(Ω)) + ‖u‖L2(0,T;H2(Ω)) ≤ C‖f‖L2(0,T;L2(Ω)).

(
∫Ω

u2
1
(x, t)dx

) 1

2

=

(
∫Ω

u2
2
(x, t)dx

) 1

2

> 0
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for any t ∈ (0, T) implies

The remaining parts of this manuscript are structured as follows. Section  3 is 
concerned with the well-posedness of the initial-boundary value problem (1.1). In 
Sect.  4, we address a coercivity of the variable order time-fractional derivatives, 
based on which we prove a uniqueness result for an inverse problem of the determi-
nation of the potential from the energy type observed value of the unknown solution. 
In Sect. 5, we transform the inverse problem into an optimization problem with Tik-
honov regularization, which will be solved by an iterative thresholding algorithm. 
Several examples are also given to show the accuracy and efficiency of our algo-
rithm. Finally, the concluding remarks are given in Sect. 6.

3 � Well‑posedness of the forward problem

In this part, we are concerned with the unique existence of the solution to the ini-
tial-boundary value problem (1.1) as well as the regularity estimates for the solu-
tion under suitable topology. Recalling that the coefficients in (1.1) are t and/or x 
dependent, the Fourier expansion argument in Sakamoto and Yamamoto [33] can-
not be directly used any more. Here we will introduce a novel method to avoid the 
expansion argument. The key idea is regarding the fractional order term as a source 
term and using the theoretical results for the parabolic equations to construct a com-
pact operator, and then the well-posedness of the problem (1.1) can be shown from 
the Fredholm alternative principle.

For the purpose, we introduce the Riemann-Liouville integral operator J� : for any 
v(t) ∈ L2(0, T),

Then we first establish the following useful lemma for later use.

Lemma 3.1  Let �(⋅) ∈ C[0, T] such that 0 < 𝛼(t) < 1 for any t ∈ [0, T] , and we 
choose 𝜀 > 0 being small enough such that 1 − 𝜀 − 𝛼(t) > 0 for any t ∈ [0, T] . Then 
the following estimate

is valid for any g ∈ H1(0, T) satisfying g(0) = 0.

Proof  Firstly, from Wang and Zheng [44, Lemma 2.2], it follows that

p1 = p2 and u1 = u2.

(3.1)J�v(t) =
1

Γ(�) ∫
t

0

(t − s)�−1v(s)ds.

‖��(⋅)t g‖L2(0,T) ≤ C‖g‖H1−�(0,T)

(3.2)�
�(⋅)
t g(t) =

[
1

Γ(1 − �(t))

d

ds ∫
s

0

(s − �)−�(t)g(�)d�

]

s=t

.
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From the assumptions on g, it follows that g ∈ H1−�(0, T) , and then we can find an 
element h ∈ L2(0, T) such that g = J1−�h in view of Gorenflo, Luchko and Yama-
moto [10, Theorem 2.1]. Then from the definition of J1−� and the Fubini lemma, we 
see that

Since 1 − 𝜀 − 𝛼(t) > 0 for any t ∈ [0, T] , we further see that

Noting the fact that

where � ∶= supt∈[0,T] �(t) , we see that ��(⋅)t g can be estimated as follows

Further, we employ the Young inequality for the convolution to derive

Finally, noting that ‖h‖L2(0,T) ∼ ‖g‖H1−�(0,T) , see e.g., Gorenflo, Luchko and Yama-
moto [10, Theorem  2.1], Kubica and Yamamoto [19], we finish the proof of the 
lemma. 	�  ◻

The above lemma indicates that the definition of the variable order Captuo deriva-
tive ��(⋅)t  can be extended to the fractional Sobolev space H1−�(0, T) by following 
the argument used in Gorenflo, Luchko and Yamamoto [10]. Actually, in the case of 
1 − 𝜀 − 𝛼(t) > 0 , ∀t ∈ [0, T] , by noting the relation (3.2), for g ∈ H1−�(0, T) satisfying 
g(0) = 0 , we define

�
�(⋅)
t g(t) =

1

Γ(1 − �)

1

Γ(1 − �(t))

[
d

ds ∫
s

0

(s − �)−�(t) ∫
�

0

(� − �)−�h(�)d�d�

]

s=t

=
1

Γ(1 − �)

1

Γ(1 − �(t))

[
d

ds ∫
s

0 ∫
s

�

(s − �)−�(t)(� − �)−�d�h(�)d�

]

s=t

=
1

Γ(2 − � − �(t))

[
d

ds ∫
s

0

(s − �)1−�−�(t)h(�)d�

]

s=t

.

�
�(⋅)
t g(t) =

1

Γ(1 − � − �(t)) ∫
t

0

(t − �)−�−�(t)h(�)d�.

(3.3)t−�−�(t) ≤ t−�−�T�−�(t) ≤ t−�−� max{1, T�}, t ∈ (0, T],

|��(⋅)t g| ≤ max{1, T�} sup
t∈[0,T]

||||
1

Γ(1 − � − �(t))

||||�
t

0

(t − �)−�−�|h(�)|d�.

‖��(⋅)t g‖L2(0,T) ≤ max{1, T�} sup
t∈[0,T]

����
1

Γ(1 − � − �(t))

�����
T

0

t−�−�dt‖h‖L2(0,T)

≤ T1−�−�

1 − � − �
max{1, T�} sup

t∈[0,T]

����
1

Γ(1 − � − �(t))

����‖h‖L2(0,T) ≤ C‖h‖L2(0,T).

�
�(⋅)
t g(t) ∶= lim

n→∞
�
�(⋅)
t gn(t)

= lim
n→∞

[
1

Γ(1 − �(t))

d

ds ∫
s

0

(s − �)−�(t)gn(�)d�

]

s=t

.
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Here gn ∈ H1−�(0, T) such that gn(0) = 0 . We still denote the extended operator 
by ��(⋅)t  if there is no conflict. Then Lemma 3.1 immediately implies the following 
corollary.

Corollary 3.1  Let �(⋅) ∈ C[0, T] such that 0 < 𝛼(t) < 1 for any t ∈ [0, T] , and we 
choose 𝜀 > 0 being small enough such that 1 − 𝜀 − 𝛼(t) > 0 for any t ∈ [0, T] . Then 
the following estimate

is valid for any g ∈ H1−�(0, T) satisfying g(0) = 0.

We also need a unique result for the following system

Lemma 3.2  Suppose v ∈ H1(0, T;L2(Ω)) ∩ L2(0, T;H2(Ω)) is a solution to the system 
(3.4), then v ≡ 0 in ΩT.

Proof  By regarding the term −q��(⋅)t v as a new source term, we multiply equation in 
(3.4) by v and �tv separately, and follow the argument used in the proof of [6, Theo-
rem 5, p.360] to discover

where C is a constant which is independent of t. Moreover, from the definition of the 
Caputo derivative of variable order, in view of the Hölder inequality, it follows that

Here 𝜀 > 0 is sufficiently small and Γ0 ∶= supt∈[0,T]
1

Γ(1−�(t))
 . Now using the inequal-

ity (3.3), we conclude that (t − �)−�(t) ≤ max{1, T�}(t − �)−� . Therefore, the above 
estimate (3.6) can be further treated as follows

‖��(⋅)t g‖L2(0,T) ≤ C‖g‖H1−�(0,T)

(3.4)

⎧
⎪⎨⎪⎩

�tv + L(t)v + p(t)v = −q�
�(⋅)
t v, x ∈ ΩT ,

v(x, 0) = 0, x ∈ Ω,∑d

i,j=1
aij(x, t)�xi v(x, t)�j = 0, x ∈ Σ.

(3.5)

‖v(⋅, t)‖H1(Ω) + �
t

0

‖��v(⋅, �)‖2L2(Ω)d�

≤ C �
t

0

�����Ω

��v(x, �)�
�(⋅)
�

v(x, �)dx
����d� + C �

t

0

�����Ω

v(x, �)��(⋅)
�

v(x, �)dx
����d�,

(3.6)

�����Ω

v(x, t)�
�(⋅)
t v(x, t)dx

����
≤ 1

Γ(1 − �(t)) �
t

0

(t − �)−�(t)
���⟨��v(⋅, �), v(⋅, t)⟩L2(Ω)

���d�

≤ Γ0

4� �
t

0

(t − �)−�(t)‖��v(⋅, �)‖2L2(Ω)d� + �Γ0 �
t

0

(t − �)−�(t)‖v(⋅, t)‖2
L2(Ω)

d�.
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Similarly, we can obtain

Substituting the above two estimates into (3.5), and choosing 𝜀 > 0 sufficiently 
small, we see that (3.5) can be rephrased as follows

We conclude from the Fubini lemma that

Finally, from the Gronwall inequality, we derive �tv = 0 in ΩT , which combined 
with v(x, 0) = 0 in Ω implies v = 0 in ΩT.

The proof of the lemma is finished. 	�  ◻

Now we are ready to show the well-posedness of the problem (1.1).

Lemma 3.3  Let T > 0 and �(⋅) ∈ C[0, T] such that �(t) ∈ (0, 1) for t ∈ [0, T] , and we 
suppose f ∈ L2(ΩT ) . Then the initial-boundary value problem (1.1) admits a unique 
weak solution u ∈ H1(0, T;L2(Ω)) ∩ L2(0, T;H2(Ω)) satisfying

Proof  From the superposition of the problem (1.1), we consider the following two 
subproblems separately:

and

�����Ω

v(x, t)�
�(⋅)
t v(x, t)dx

����
≤ Γ0 max{1, T−�}

4� �
t

0

(t − �)−�‖��v(⋅, �)‖2L2(Ω)d�

+ �Γ0 max{1, T1−�}
T1−�

1 − �
‖v(⋅, t)‖2

L2(Ω)
.

�����Ω

��v(x, �)�
�(⋅)
�

v(x, �)dx
����

≤ Γ0 max{1, T−�}

4� �
t

0

(t − �)−�‖��v(⋅, �)‖2L2(Ω)d�

+ �Γ0 max{1, T1−�}
T1−�

1 − �
‖�tv(⋅, t)‖2L2(Ω).

‖�tv(⋅, t)‖2L2(Ω) ≤ C �
t

0

�
�

�

0

(� − �)−�‖��v(⋅, �)‖2L2(Ω)d�
�
d�, t ∈ (0, T).

‖�tv(⋅, t)‖2L2(Ω) ≤ C �
t

0

�
�

t

�

(� − �)−�d�

�
‖��v(⋅, �)‖2L2(Ω)d�,

≤ C �
t

0

(t − �)1−�‖��v(⋅, �)‖2L2(Ω)d�, t ∈ (0, T).

‖�tu‖L2(0,T;L2(Ω)) + ‖u‖L2(0,T;H2(Ω)) ≤ C‖f‖L2(0,T;L2(Ω)).

(3.7)�tv + L(t)v + p(t)v = f (x, t)
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with the same initial and boundary conditions as in (1.1). Here in the above equation 
(3.8), we assume u ∈ H1−�(0, T;L2(Ω)) . In view of Lemma 3.1, we see from the the-
oretical results of parabolic equations that there exist unique solutions to the above 
two problems (3.7) and (3.8). We denote them as uf  and K�u separately. It remains to 

show that there exists a unique solution u ∈ H1(0, T;L2(Ω)) ∩ L2(0, T;H2(Ω)) for the 
operator equation u = K�u + uf .

From Lemma 3.1 and the well-known regularity for parabolic equations (e.g., 
[24, Section 4.7.1, p.243]), we have uf ,K�u ∈ H1(0, T;L2(Ω)) ∩ L2(0, T;H2(Ω)) such 
that

and

By [41, Theorem  2.1] and [24, Theorem  16.2,  Chapter  1], we see that 
H1(0, T;L2(Ω)) ∩ L2(0, T;H2(Ω)) is compact in H1−�(0, T;L2(Ω)) , which further 
implies K� : H1−�(0, T;L2(Ω)) → H1−�(0, T;L2(Ω)) is a compact operator. By the 
Fredholm alternative for compact operators, u = K�u + uf  admits a unique solution 
in H1−�(0, T;L2(Ω)) as long as

Here I denotes the identity operator.
Therefore, we need to show that (I − K�)v = 0 implies v = 0 . Indeed, noting that 

v = K�v is just the solution to (3.4), then we obtain from Lemma 3.2 that I − K� 
is one-to-one on H1−�(0, T;H−1(Ω)) . Hence, by Fredholm alternative, there exists 
a unique solution of u = K�u + uf  and the solution admits the following regularity 
estimates

We further derive from (3.9) and (3.10) that

and

Combining all the above estimates, we finish the proof of the lemma. 	�  ◻

(3.8)�tw + L(t)w + p(t)w = −q�
�(⋅)
t u

(3.9)‖�tuf‖L2(0,T;L2(Ω)) + ‖uf‖L2(0,T;H2(Ω)) ≤ C‖f‖L2(0,T;L2(Ω)),

(3.10)
‖�tK�u‖L2(0,T;L2(Ω)) + ‖K�u‖L2(0,T;H2(Ω))

≤ C‖q��(⋅)t u‖L2(0,T;L2(Ω)) ≤ C‖u‖H1−�(0,T;L2(Ω)).

I − K� is one-to-one on H1−�(0, T;L2(Ω)).

‖u‖H1−�(0,T;L2(Ω)) ≤ ‖(I − K�)
−1‖‖uf‖L2(0,T;L2(Ω)) ≤ C‖f‖L2(0,T;L2(Ω)).

‖u‖L2(0,T;H2(Ω)) = ‖K�u + uf‖L2(0,T;H2(Ω)) ≤ C‖f‖L2(0,T;L2(Ω))

‖�tu‖L2(0,T;L2(Ω)) = ‖�t(K�u + uf )‖L2(0,T;L2(Ω)) ≤ C‖f‖L2(0,T;L2(Ω)).
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4 � Uniqueness of the inverse potential problem

In this section, we shall prove the uniqueness theorem proposed in Sect. 2. For 
the sake of convenience in fractional calculus, we will first establish several esti-
mates related to the Caputo derivatives of variable order which will be useful for 
the proof of Theorem 2.2.

The first lemma indicates the coercivity of the Caputo derivative.

Lemma 4.1  (Coercivity) Let �(⋅) ∈ C[0, T] such that �(t) ∈ (0, 1) , t ∈ [0, T] . Then 
the following coercivity inequality

holds true for any function g ∈ H1(0, T).

Proof  For simplicity, we denote

Then it is sufficient to prove I ≥ 0 . The proof is done by direct calculations. By the 
definition of Caputo fractional derivative, we find

By a direct calculation, we further claim that

Indeed, by noting that

where in the second inequality we used the Hölder inequality. Thus the claim (4.1) is 
true. Finally, by integration by parts, we see that

g(t)�
�(⋅)
t g(t) ≥ 1

2
�
�(⋅)
t |g(t)|2, a.e. t ∈ (0, T)

I(t) ∶= g(t)�
�(⋅)
t g(t) −

1

2
�
�(⋅)
t |g(t)|2.

I(t) =
1

Γ(1 − �(t))

(
∫

t

0

(t − �)−�(t)g(t)g�(�)d� − ∫
t

0

(t − �)−�(t)g(�)g�(�)d�

)

=
1

Γ(1 − �(t)) ∫
t

0

(t − �)−�(t)(g(t) − g(�))g�(�)d�

= −
1

2Γ(1 − �(t)) ∫
t

0

(t − �)−�(t)
d

d�
|g(t) − g(�)|2d�.

(4.1)lim
�→t

(t − �)−�(t)|g(t) − g(�)|2 = 0.

(t − �)−�(t)�g(t) − g(�)�2 ≤ (t − �)−�(t)
�
�

t

�

�g�(s)�ds
�2

≤ (t − �)−�(t) �
t

�

�g�(s)�2ds�
t

�

12ds

≤ (t − �)1−�(t)‖g‖2
H1(0,T)

,
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This completes the proof of the lemma. 	�  ◻

Lemma 4.2  Let �(⋅) ∈ C[0, T] satisfy �(t) ∈ (0, 1) , t ∈ [0, T] . Then there exists a 
positive constant C = C(T , �) such that the following inequality

is valid for any g ∈ H1(0, T) with g(0) = 0 , where � ∶= supt∈[0,T] �(t).

Proof  From the notation of ��(⋅)t  , and using the Fubini lemma, we see that

Here in the last equality we used the fact g(0) = 0 and the estimate

Moreover, by letting 𝜏 =
𝜏−𝜂

t−𝜂
 and a direct calculation, we obtain

I(t) = −
1

2Γ(1 − �(t))
(t − �)−�(t)|g(t) − g(�)|2|||

�=t

�=0

+
�(t)

2Γ(1 − �(t)) �
t

0

(t − �)−�(t)−1|g(t) − g(�)|2d�

=
1

2Γ(1 − �(t))
t−�(t)|g(t) − g(0)|2

+
�(t)

2Γ(1 − �(t)) �
t

0

(t − �)−�(t)−1|g(t) − g(�)|2d� ≥ 0.

|||||�
t

0

��(⋅)
�

g(�)d�
|||||
≤ C �

t

0

(1 + | ln(t − �)|)(t − �)−�|g(�)|d�, t ∈ (0, T)

(4.2)

∫
t

0

��(⋅)
�

g(�)d� = ∫
t

0

[
1

Γ(1 − �(�)) ∫
�

0

(� − �)−�(�)g�(�)d�

]
d�

= ∫
t

0

(
∫

t

�

1

Γ(1 − �(�))
(� − �)−�(�)d�

)
g�(�)d�

= ∫
t

�

1

Γ(1 − �(�))
(� − �)−�(�)d�g(�)

|||
�=t

�=0

− ∫
t

0

�

��

(
∫

t

�

1

Γ(1 − �(�))
(� − �)−�(�)d�

)
g(�)d�

= −∫
t

0

�

��

(
∫

t

�

1

Γ(1 − �(�))
(� − �)−�(�)d�

)
g(�)d�.

|||||�
t

�

1

Γ(1 − �(�))
(� − �)−�(�)d�

|||||
≤ sup

t∈[0,T]

1

Γ(1 − �(t))

|||||�
t

�

(� − �)−�(�)d�
|||||

≤ sup
t∈[0,T]

1

Γ(1 − �(t))
max{1, T�}

|||||�
t

�

(� − �)−�d�
|||||

≤ sup
t∈[0,T]

1

Γ(1 − �(t))
max{1, T�}

(t − �)1−�

1 − �
→ 0 as � → t.
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Now noting the facts that 1

Γ(1−�(⋅))
∈ C1[0, T] and �(⋅) ∈ C1[0, T] satisfying 

0 < 𝛼(t) < 1 for t ∈ [0, T] , we derive

and

Consequently, collecting all the above estimates, we arrive at

∫
t

𝜂

1

Γ(1 − 𝛼(𝜏))
(𝜏 − 𝜂)−𝛼(𝜏)d𝜏

= ∫
1

0

(t − 𝜂)1−𝛼(𝜏t+(1−𝜏)𝜂)

Γ(1 − 𝛼(𝜏t + (1 − 𝜏)𝜂))
𝜏−𝛼(𝜏t+(1−𝜏)𝜂))d𝜏.

�����
𝜕

𝜕𝜂

�
𝜏−𝛼(𝜏t+(1−𝜏)𝜂))

Γ(1 − 𝛼(𝜏t + (1 − 𝜏)𝜂))

������
≤ 𝜏−𝛼(𝜏t+(1−𝜏)𝜂))

�����
𝜕

𝜕𝜂

�
1

Γ(1 − 𝛼(𝜏t + (1 − 𝜏)𝜂))

������
+
����
𝜕

𝜕𝜂
𝜏−𝛼(𝜏t+(1−𝜏)𝜂))

����
1

Γ(1 − 𝛼(𝜏t + (1 − 𝜏)𝜂))

≤ max{1, T𝛼}𝜏−𝛼
����

1

Γ(1 − 𝛼(⋅))

����C1[0,T]

‖𝛼(⋅)‖C1[0,T]

+
����

1

Γ(1 − 𝛼(⋅))

����C1[0,T]

���𝜏
−𝛼(𝜏t+(1−𝜏)𝜂))𝛼�(𝜏t + (1 − 𝜏)𝜂) ln 𝜏

���
≤ max{1, T𝛼}𝜏−𝛼

����
1

Γ(1 − 𝛼(⋅))

����C1[0,T]

‖𝛼(⋅)‖C1[0,T]

+max{1, T𝛼}𝜏−𝛼
����

1

Γ(1 − 𝛼(⋅))

����C1[0,T]

‖𝛼(⋅)‖C1[0,T]� ln 𝜏�

≤ max{1, T𝛼}
����

1

Γ(1 − 𝛼(⋅))

����C1[0,T]

‖𝛼(⋅)‖C1[0,T]𝜏
−𝛼(1 + � ln 𝜏�)

����
𝜕

𝜕𝜂
(t − 𝜂)1−𝛼(𝜏t+(1−𝜏)𝜂)

����
≤ (t − 𝜂)−𝛼(𝜏t+(1−𝜏)𝜂) + (t − 𝜂)1−𝛼(𝜏t+(1−𝜏)𝜂)�𝛼�(𝜏t + (1 − 𝜏)𝜂) ln(t − 𝜂)�
≤ max{1, T𝛼}(t − 𝜂)−𝛼 +max{1, T𝛼}(t − 𝜂)−𝛼‖𝛼‖C1[0,T]� ln(t − 𝜂)�.
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Since 0 < 𝛼 < 1 , we see that the two functions 𝜏−𝛼(1 + | ln 𝜏|) and 𝜏−𝛼 are integrable 
on [0, 1], hence

Taking the above inequality into (4.2), we conclude that

which completes the proof of the lemma. 	�  ◻

Now we are ready to give the proof of Theorem 2.2.

Proof of Theorem 2.2  Let u1 and u2 be the solutions to the fractional diffusion equa-
tions (1.1) with respect to p1 and p2 . Then we see that w ∶= u1 − u2 admits the fol-
lowing initial-boundary value problem

with the homogeneous initial and boundary conditions. An equivalent form of (4.3) 
read as

Summing the above two equations implies

Now multiplying the above equation with w and integrating the resulted equation 
over Ω , we have

|||||
𝜕

𝜕𝜂

(
�

t

𝜂

1

Γ(1 − 𝛼(𝜏))
(𝜏 − 𝜂)−𝛼(𝜏)d𝜏

)|||||
≤ |||||�

1

0

𝜕

𝜕𝜂

(
𝜂̃−𝛼(𝜏t+(1−𝜏)𝜂)

Γ(1 − 𝛼(𝜏t + (1 − 𝜏)𝜂))

)
(t − 𝜂)1−𝛼(𝜏t+(1−𝜏)𝜂))d𝜏

|||||
+
|||||�

1

0

𝜂̃−𝛼(𝜏t+(1−𝜏)𝜂)

Γ(1 − 𝛼(𝜏t + (1 − 𝜏)𝜂))

𝜕

𝜕𝜂
(t − 𝜂)1−𝛼(𝜏t+(1−𝜏)𝜂))d𝜏

|||||
≤ C �

1

0

𝜏−𝛼(1 + | ln 𝜏|)d𝜏(t − 𝜂)1−𝛼 + C �
1

0

𝜏−𝛼d𝜏(1 + | ln(t − 𝜂)|)(t − 𝜂)−𝛼 .

|||||
𝜕

𝜕𝜂

(
�

t

𝜂

1

Γ(1 − 𝛼(𝜏))
(𝜏 − 𝜂)−𝛼(𝜏)d𝜏

)|||||
≤ C(t − 𝜂)1−𝛼 + C(1 + | ln(t − 𝜂)|)(t − 𝜂)−𝛼

≤ CT(t − 𝜂)−𝛼 + C(1 + | ln(t − 𝜂)|)(t − 𝜂)−𝛼 , 0 < t < T .

|||||�
t

0

��(⋅)
�

g(�)d�
|||||
≤ C �

t

0

(1 + | ln(t − �)|)(t − �)−�|g(�)|d�, t ∈ (0, T),

(4.3)�tw + q�
�(⋅)
t w + L(t)w + p1w + (p1 − p2)u2 = 0,

(4.4)�tw + q�
�(⋅)
t w + L(t)w + p2w + (p1 − p2)u1 = 0.

(4.5)2�tw + 2q�
�(⋅)
t w + 2L(t)w + (p1 + p2)w + (p1 − p2)(u1 + u2) = 0.
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where ⟨⋅, ⋅⟩ denotes the inner product in L2(Ω) . Further, in view of the observation

we see that ⟨u1 + u2,w⟩ = ⟨u1, u1⟩ − ⟨u2, u2⟩ = 0 , which implies

By integration by parts and the ellipticity of the operator L(t), we see that

Moreover, we conclude from Lemma 4.1 that

Now taking the above two estimates into (4.7) and noting p1, p2 ≥ 0 , we derive

Integrating with respect to t over (0,t) on both sides of the above inequality and 
using the fact ‖w(0)‖L2(Ω) = 0 and the estimate in Lemma 4.2, we obtain

Moreover, since � ∈ (0, 1) , we see that there exists a sufficiently small 𝜀 > 0 such 
that 𝛼 + 𝜀 < 1 and 1 + | ln t| ≤ Ct−� are valid for any t ∈ (0, T) , therefore we have

We further use the Gronwall inequality to derive that w = 0 in ΩT , that is, u1 = u2 . 
We thus have p1 = p2 from (4.4) and the positivity of the observation data, which 
completes the proof of the theorem. 	�  ◻

Remark 4.1  We point out here that the assumption on the observation data (∫
Ω
u2(x, t)dx

) 1

2 > 0 for t ∈ (0, T) is essential for our proof and it may be achieved 
by choosing the source being positive. Indeed, one may prove u(x, t) > 0 for any 
(x, t) ∈ ΩT in view of the maximum principle for the fractional diffusion equation. 
We postpone the proof of the positivity of the solution to the appendix..

(4.6)
⟨2�tw,w⟩ + 2⟨q��(⋅)t w,w⟩ + 2⟨L(t)w,w⟩ + (p1 + p2)⟨w,w⟩ = −(p1 − p2)⟨u1 + u2,w⟩,

(
∫Ω

u2
1
(x, t)dx

) 1

2

=

(
∫Ω

u2
2
(x, t)dx

) 1

2

,

(4.7)⟨2�tw,w⟩ + 2⟨q��(⋅)t w,w⟩ + 2⟨L(t)w,w⟩ + (p1 + p2)⟨w,w⟩ = 0.

⟨L(t)w,w⟩ ≥ a0‖∇w‖2L2(Ω).

2⟨q��(⋅)t w,w⟩ ≥ �
�(⋅)
t �Ω

q(x)�w(x, t)�2dx = �
�(⋅)
t ‖q 1

2w‖2
L2(Ω)

.

�t‖w‖2L2(Ω) + �
�(⋅)
t ‖q 1

2w‖2
L2(Ω)

+ a0‖∇w‖2L2(Ω) ≤ 0.

‖w‖2
L2(Ω)

+ a0 �
t

0

‖∇w‖2
L2(Ω)

d� ≤ C �
t

0

(1 + � ln(t − �)�)(t − �)−�‖w‖2
L2(Ω)

d�.

‖w‖2
L2(Ω)

+ a0 �
t

0

‖∇w‖2
L2(Ω)

d� ≤ C �
t

0

(t − �)−�−�‖w‖2
L2(Ω)

d�.
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5 � Numerical inversion

In this section, we are devoted to developing an effective numerical method and 
presenting several numerical experiments for the reconstruction of the unknown 
potential p(t) in the domain (0, T) from the addition data 

(∫
Ω
u2(x, t)dx

) 1

2 in (0, T).

5.1 � Tikhonov regularization

We write the solution of system (1.1) as u(p) in order to emphasize its depend-
ence on the unknown function p. Here and henceforth, we set 
p∗ ∈ L∞

+
(0, T) ∶= {p ∈ L∞(0, T);p ≥ 0, a.e. t ∈ (0, T)} as the true solution to the 

proposed Inverse Problem 1.1 and investigate the numerical reconstruction by 
noise contaminated observation data E�(t) in (0,  T). Here E� satisfies ���‖u(p∗)‖L2(Ω) − E�(t)

���L2(0,T) ≤ � with the noise level �.
In the framework of the Tikhonov regularization technique, we propose the 

following output least squares functional related to our inverse potential problem:

where 𝛽 > 0 is the regularization parameter.
As the majority of the efficient iterative methods do, we need the information 

about the G ̂ateaux derivative Φ�(p) of the objective functional Φ(p) . For an arbi-
trarily fixed direction � ∈ L2(0, T) , a direct calculation implies

where u�(p)� denotes the G ̂ateaux derivative of u(p) in the direction � and it is the 
solution to the following variable order time-fractional differential equation:

In view of the fact that u(p) ∈ L2(0, T;L2(Ω)) ∩ H1(0, T;H2(Ω)) , by a similar argu-
ment used in the proof for Lemma 3.3, we can show that the above problem (5.3) 
admits a unique solution u�(p)� ∈ H1(0, T;L2(Ω)) ∩ L2(0, T;H2(Ω)).

Remark 5.1  It is not applicable to find the minimizer of the functional Φ directly 
in terms of the above formula (5.2) of the G ̂ateaux derivative. Indeed, in the 

(5.1)min
p∈L∞+ (0,T)

Φ(p), Φ(p) ∶=
1

2

���‖u(p)‖L2(Ω) − E�(t)
���
2

L2(0,T)
+

1

2
�‖p‖2

L2(0,T)
,

(5.2)
Φ�(p)� =∫

T

0

�
1 −

E�(t)

‖u(p)(⋅, t)‖L2(Ω)
��

∫Ω

(u�(p)�)u(p)dx

�
dt

+ � ∫
T

0

p(t)�(t)dt,

(5.3)

⎧⎪⎨⎪⎩

�tw + q�
�(t)
t w + L(t)w + p(t)w = −�(t)u(p), (x, t) ∈ ΩT ,

w(x, 0) = 0, x ∈ Ω,∑d

i=1
aij(x, t)�xiw(x, t)�j = 0, (x, t) ∈ Σ.
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computation for Φ�(p) in (5.2), one should solve system (5.3) for u�(p)� with � vary-
ing in L2(0, T) , which is undoubtedly quite hard and computationally expensive.

5.2 � Adjoint system and its well‑posedness

In order to reduce the computational costs for the G ̂ateaux derivative Φ�(p) , we 
first define the backward Riemann-Liouville integral operator J1−�(t)

T
 and the back-

ward Riemann-Liouville fractional derivative D�(t)

T
 : for any g(t) ∈ L2(0, T),

By the Fubini Lemma and the integration by parts, for any g1, g2 ∈ L2(0, T) with 
g1(0) = 0 and limt→T J

1−�(t)

T
g2(t) = 0 , we have

Then we shall introduce the following backward variable order time-fractional dif-
ferential equation:

Now we are ready to propose the following lemma for getting the adjoint relation.

Lemma 5.1  For any fixed direction � ∈ L2(0, T) , the following equality holds:

Proof  By the variational forms of the systems (5.3) and (5.5), for any 
�,� ∈ L2(0, T;H1(Ω)) , we have

J
1−�(t)

T
g(t) =∫

T

t

1

Γ(1 − �(�))
(� − t)−�(�)g(�)d�,

D
�(t)

T
g(t) =�tJ

1−�(t)

T
g(t) = �t

[
∫

T

t

1

Γ(1 − �(�))
(� − t)−�(�)g(�)d�

]
.

(5.4)

∫
T

0

(�
�(t)
t g1(t)) g2(t)dt = ∫

T

0

1

Γ(1 − �(t)) ∫
t

0

(t − �)−�(t) g�
1
(�) d�g2(t)dt

= ∫
T

0 ∫
T

�

1

Γ(1 − �(t))
(t − �)−�(t) g2(t)dt g

�
1
(�)d� = ∫

T

0

(J
1−�(�)

T
g2(�)) g

�
1
(�)d�

= −∫
T

0

g1(�)��(J
1−�(�)

T
g2(�))d� = −∫

T

0

g1(t) (D
�(t)

T
g2(t))dt.

(5.5)

⎧⎪⎨⎪⎩

−�tz − qD
�(t)

T
z + L(t)z + p(t)z =

�
E�(t)

‖u(p)(⋅,t)‖
L2 (Ω)

− 1

�
u(p), (x, t) ∈ ΩT ,

z(x, T) = 0, x ∈ Ω,∑d

i,j=1
aij(x, t)�xi z(x, t)�j = 0, (x, t) ∈ Σ.

(5.6)
∫

T

0

�
1 −

E�(t)

‖u(p)(⋅, t)‖L2(Ω)
��

∫Ω

(u�(p)�)u(p)dx

�
dt = ∫

T

0

�(t)∫Ω

u(p) zdx dt.
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As (u�(p)�)(x, 0) = 0 = z(x, T) , we obtain by the integration by parts with respect to 
t and (5.4) that

Hence, taking � = z and � = u�(p)� in (5.7) and (5.8) respectively, we derive

We finish the proof of the lemma. 	�  ◻

Next, we shall show that the new system (5.5) is well-posed. Correspondingly, in a 
similar manner as the proof of Lemma 3.3, one can show the following well-posedness 
result for the backward boundary value problem (5.5). Indeed, by the change of the var-
iable t̃ = T − t and setting ṽ(t̃) ∶= z(t) = z(T − t̃) , we first see that 𝜕tz(t) = −𝜕t̃ ṽ(t̃) and

Then we can equivalently change the problem (5.5) to the following initial-boundary 
value problem

(5.7)

∫ΩT

{
�t(u

�(p)�)� + q�
�(t)
t (u�(p)�)� +

d∑
i,j=1

aij
�u�(p)�

�xi

��

�xj
+ p(t)(u�(p)�)�

}
dxdt

= −∫ΩT

�(t)u(p)�dxdt,

(5.8)
∫ΩT

{−�tz� − qD
�(t)

T
z� +

d�
i,j=1

aij
�z

�xi

��

�xj
+ p(t)z�}dxdt

= ∫ΩT

�
E�(t)

‖u(p)(⋅, t)‖L2(Ω) − 1

�
u(p)�dxdt.

∫ΩT

�t(u
�(p)�) zdxdt = − ∫ΩT

�tz (u
�(p)�)dxdt,

∫ΩT

�
�(t)
t (u�(p)�) zdxdt = − ∫ΩT

D
�(t)

T
z (u�(p)�)dxdt.

∫
T

0

�
1 −

E�(t)

‖u(p)(⋅, t)‖L2(Ω)
��

∫Ω

(u�(p)�)u(p)dx

�
dt = ∫

T

0

� ∫Ω

u(p) zdx dt.

D
𝛼(t)

T
z(t) ∶ =

𝜕

𝜕t

[
∫

T

t

1

Γ(1 − 𝛼(𝜏))
(𝜏 − t)−𝛼(𝜏)z(𝜏)d𝜏

]

= −
𝜕

𝜕t̃

[
∫

t̃

0

1

Γ(1 − 𝛼(T − 𝜏))
(t̃ − 𝜏)−𝛼(T−𝜏)ṽ(𝜏)d𝜏

]
=∶ −d

𝛼(t)

t̃
ṽ(t̃).

⎧⎪⎨⎪⎩

𝜕t̃ ṽ + qd
𝛼(t)

t̃
ṽ + L(T − t̃)ṽ + p(T − t̃)ṽ =

�
E𝛿(T−t̃)

‖u[p](⋅,T−t̃)‖
L2(Ω)

− 1

�
u(p), (x, t̃) ∈ ΩT ,

ṽ(x, 0) = 0, x ∈ Ω,∑d

i,j=1
aij(x, T − t̃)𝜕xi ṽ(x, t̃)𝜈j = 0, (x, t̃) ∈ Σ.
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We notice that

Then in order to prove the well-posedness of the problem (), it is sufficient to show 
that d𝛼(t)

t̃
ṽ ∈ L2(0, T;L2(Ω)) for any ṽ ∈ 0H

1−𝜀(0, T;L2(Ω)) with small enough 𝜀 > 0.

Lemma 5.2  Let �(⋅) ∈ C1[0, T] such that 0 < 𝛼(t) < 1 for any t ∈ [0, T] , and we 
choose 𝜀 > 0 being small enough such that 1 − 𝜀 − 𝛼(t) > 0 for any t ∈ [0, T] . Then 
the following estimate

is valid for any g ∈ H1−�(0, T) satisfying v(0) = 0.

Proof  From the assumptions on g, we can find h ∈ L2(0, T) such that z = J1−�h , then 
from the notations of d�(t)t  and J1−� and the Fubini lemma, we see that

Here in the last inequality we used

as � → t . Moreover, we can show the following assertion

This can be done by the change of variables. In fact, by letting 𝜏 =
𝜏−𝜂

t−𝜂
 , we have

Now by noting the facts that 1

Γ(1−�(⋅))
∈ C1[0, T] , 1 − 𝜀 − 𝛼(t) > 0 and �(⋅) ∈ C1[0, T] , 

we can show that the assertion (5.9) is true. Collecting all the above estimates, from 
the Young inequality for the convolution, it follows that

�
E�

‖u[p]‖L2(Ω) − 1

�
u(p) ∈ L2(0, T;L2(Ω)).

‖d�(t)t g‖L2(0,T) ≤ C‖g‖H1−�(0,T)

d
�(t)
t g(t) =

1

Γ(1 − �)

d

dt

[
∫

t

0

1

Γ(1 − �(T − �))
(t − �)−�(T−�) ∫

�

0

(� − �)−�h(�)d�d�

]

=
1

Γ(1 − �)

d

dt

[
∫

t

0

(
∫

t

�

1

Γ(1 − �(T − �))
(t − �)−�(T−�)(� − �)−�d�

)
h(�)d�

]

=
1

Γ(1 − �)

[
∫

t

0

�

�t

(
∫

t

�

1

Γ(1 − �(T − �))
(t − �)−�(T−�)(� − �)−�d�

)
h(�)d�

]
.

|||||�
t

𝜂

1

Γ(1 − 𝛼(T − 𝜏))
(t − 𝜏)−𝛼(T−𝜏)(𝜏 − 𝜂)−𝜀d𝜏

|||||
≤ C(t − 𝜂)1−𝜀−𝛼̄ → 0

(5.9)
�

�t

(
∫

t

�

1

Γ(1 − �(T − �))
(t − �)−�(T−�)(� − �)−�d�

)
∈ L1(0, T).

∫
t

𝜂

1

Γ(1 − 𝛼(T − 𝜏))
(t − 𝜏)−𝛼(T−𝜏)(𝜏 − 𝜂)−𝜀d𝜏

= ∫
1

0

(t − 𝜂)1−𝜀−𝛼(T−𝜏(t−𝜂)−𝜂)

Γ(1 − 𝛼(T − 𝜏(t − 𝜂) − 𝜂))
(1 − 𝜏)−𝛼(T−𝜏(t−𝜂)−𝜂)𝜏−𝜀d𝜏.
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Then the proof of the lemma can be finished by noting that ‖h‖L2(0,T) ∼ ‖g‖H1−�(0,T) , 
see Gorenflo, Luchko and Yamamoto [10, Theorem 2.1]. 	�  ◻

Now, by an argument similar to the proof of Lemma 3.3, we have the well-
posedness of the problem (5.5).

Lemma 5.3  Let T > 0 and �(⋅) ∈ C1[0, T] such that �(t) ∈ (0, 1) for any t ∈ [0, T] . 
We suppose ‖u(p)(⋅, t)‖L2(Ω) > 0 for any t ∈ [0, T] and p ∈ L2(0, T) . Then the prob-
lem (5.5) admits a unique weak solution z ∈ H1(0, T;L2(Ω)) ∩ L2(0, T;H2(Ω)) such 
that

On the basis of the above regularity result of the solution to the adjoint system 
(5.5), we now aim to give a weak form of the solution to the problem (5.5). Let 
z ∈ H1(0, T;L2(Ω)) ∩ L2(0, T;H2(Ω)) be the solution to the problem (5.5). The use 
of integration by parts implies that the solution z to the problem (5.5) admits the 
following weak form

where f̃ ∶=
�

E𝛿(t)

‖u(p)(⋅,t)‖
L2 (Ω)

− 1

�
u(p) , and � ∈ H1(0, T;L2(Ω)) ∩ L2(0, T;H2(Ω)) satis-

fying �(⋅, 0) = 0.

5.3 � Iterative thresholding algorithm

Due to the adjoint relation (5.6), we find that for any � ∈ L2(0, T),

Here we write the solution z to system (5.5) as z(p) to emphasize its dependence on 
p(t). This suggests a characterization of the solution to the minimization problem 
(5.1), i.e., the function p∗(t) ∈ L2(0, T) is a minimizer of the functional Φ(p) in (5.1) 
only if it satisfies the variational equation

‖d�(t)t g‖L2(0,T) ≤ C‖h‖L2(0,T).

‖�tz‖L2(0,T;L2(Ω)) + ‖z‖L2(0,T;H2(Ω)) ≤ C
�‖E�(t)‖L2(0,T) + ‖u(p)‖L2(0,T;L2(Ω))

�
.

(5.10)

d�
i,j=1

∫ΩT

aij
𝜕𝜓

𝜕xi

𝜕z

𝜕xj
dxdt + ∫

T

0

p(t)⟨𝜓 , z⟩dt − ∫
T

0

⟨𝜓 , 𝜕tz + qD
𝛼(⋅)

T
z⟩dt

= ∫
T

0

⟨f̃ ,𝜓⟩dt,

Φ�(p)� =∫
T

0

�
1 −

E�(t)

‖u(p)(⋅, t)‖L2(Ω)
��

∫Ω

(u�(p)�)u(p)dx

�
dt + � ∫

T

0

p(t)�(t)dt

=∫
T

0

� ∫Ω

u(p) z(p)dx dt + � ∫
T

0

p(t)�(t)dt.
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Now we are ready to propose the iterative thresholding algorithm (see e.g. [32] [48]) 
for the reconstruction.

Algorithm 5.1  Choose a tolerance parameter 𝜖 > 0 and an initial value p0 , and set 
k ∶= 0 . 

1.	 Compute 

2.	 If ‖p
k+1−pk‖

L2(0,T)

‖pk‖
L2(0,T)

≤ � , stop the iteration; otherwise set k ∶= k + 1 , go to Step 1.

Remark 5.2  Here A > 0 is a tuning parameter and it should satisfy that 
A‖p − q‖2

L2(0,T)
≥ ∫ T

0
�‖u(p)‖L2(Ω) − ‖u(q)‖L2(Ω)�2dt for any p, q ∈ L∞

+
(0, T) for the 

convergence of the Algorithm 5.1 (please refer to [48] for more details). We can see 
from (5.11) that at each iteration step, we only need to solve the forward problem 
(1.1) once for u(pk) and the backward problem (5.5) once for z(pk) subsequently. As 
a result, the numerical implementation of algorithm 5.1 is easy and computationally 
cheap.

5.4 � Numerical experiments

In this subsection, we shall present several numerical examples in one and two 
dimensional spaces to show the accuracy and efficiency of the proposed iterative 
thresholding Algorithms 5.1. To begin with, we assign the general settings of the 
reconstructions as follows. Without loss of generality, in (1.1) we set

The noisy data u� is obtained by adding some uniform random noise to the exact 
data ‖u(p∗)‖L2(Ω) , which means

where R(−1, 1) is a uniform random function varying in the range [-1,1].
Let pk be the numerical reconstruction by Algorithms 5.1 at the kth iteration, 

other than the illustrative figures, we mainly evaluate the numerical performance by 
the relative L2-norm error

∫Ω

u(p∗) z(p∗)dx + �p∗ = 0.

(5.11)pk+1 =
1

A + �

(
Apk − ∫Ω

u(pk) z(pk)dx
)
.

q = 1, T = 1, L(t)u = −∇ ⋅ (a(x, t)∇u).

u� = (1 + �R(−1, 1)) ‖u(p∗)‖L2(Ω),

ek =
‖pk − p∗‖L2(0,T)

‖p∗‖L2(0,T) .
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We divide the space-time region Ω × [0, 1] as equidistant meshes. All the variable-
order time-fractional differential equations in Algorithm 5.1 are solved by the con-
tinuous linear finite element method in space. And for the time discretization, we 
use the forward difference scheme to approximate the first order time derivative, 
while apply the similar finite difference scheme proposed in [52] to approximate the 
variable-order time-fractional derivative, i.e.,

where dm
j
∶= (j + 1)1−�m+1 − j1−�m+1 for j = 0, 1,… ,m.

We first start two numerical experiments for the reconstructions of the time-
dependent potential in system (1.1) with d = 1 . We set Ω = (0, 1) and divide 
the space-time region [0, 1] × [0, 1] into 40 × 40 equidistant meshes. We fix 
f (x, t) = 5 + 2�xt , a(x, t) = 1 + x + t and set the tuning parameter A = 2 , the toler-
ance parameter � = 7 × 10−3 and the regularization parameter � = 0.02.

Example 5.1  In this example, we take the exact time-dependent component 
p∗(t) = sin(�t) in [0, 1] and set the initial guess p0(t) = 3

2
− 6(t −

1

2
)2 in [0, 1].

Figure 1 (left) presents the reconstructed solutions and the exact ones, the itera-
tion number k and the relative error ek by fixing the noise level � = 3% . We can see 
that the numerical reconstructed solutions appear to be quite satisfactory in the pres-
ence of a 3% noise in the data.

�
�(t)
t u(x, tm+1) =

1

Γ(1 − �m+1)

m∑
j=0

∫
tj+1

tj

�su(x, s)

(tm+1 − s)�(t)
ds

≈
1

Γ(1 − �m+1))

m∑
j=0

u(x, tj+1) − u(x, tj)

� ∫
tj+1

tj

(tm+1 − s)−�m+1 ds

=
1

Γ(2 − �m+1)

m∑
j=0

u(x, tm+1−j) − u(x, tm−j)

��m+1
{(m + 1 − j)1−�m+1 − (m − j)1−�m+1}

=
1

Γ(2 − �m+1)�
�m+1

(u(x, tm+1) +

m−1∑
j=0

(dm
j+1

− dm
j
)u(x, tm−j) − dm

m
u(x, t0)),
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Fig. 1   Exact and reconstructed solutions for Examples 5.1 (left) and 5.2 (right) with � = 3% : (left) 
k = 44 , e

k
= 4.38% ; (right) k = 34 , e

k
= 2.53%
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Example 5.2  In this example, we take the exact time-dependent component 
p∗(t) = 1 − t in [0, 1] and set the initial guess p0(t) = 5(ln 4 − ln(3 + t)) in [0, 1].

Figure 1 (right) presents the exact and reconstructed solutions, the iteration num-
ber k and the relative error ek by fixing the noise level � = 3% . It appears that the 
numerical reconstructed solutions is also quite satisfactory in the presence of a 3% 
noise in the data.

Then we start two numerical experiments for the reconstructions of the time-
dependent potential in system (1.1) with d = 2 . We set Ω = (0, 1)2 and divide 
the space-time region [0, 1]2 × [0, 1] into 402 × 40 equidistant meshes. We fix 
f (x1, x2, t) = 5 + 2�(x1 + x2)t , a(x1, x2, t) = 1 + x1 + x2 + t and set the tuning 
parameter A = 2 , the tolerance parameter � = 8 × 10−3 and the regularization 
parameter � = 0.02.

Example 5.3  In this example, we take the exact time-dependent component 
p∗(t) = sin(�t) in [0, 1] and set the initial guess p0(t) = 3

2
− 6(t −

1

2
)2 in [0, 1].

Example 5.4  In this example, we take the exact time-dependent component 
p∗(t) = 1 − t in [0, 1] and set the initial guess p0(t) = 5(ln 4 − ln(3 + t)) in [0, 1].

Figure 2 (left) and (right) present the reconstructed solutions and the exact ones, 
the iteration number k and the relative error ek by fixing the noise level � = 3% for 
Example 5.3 and Example 5.4 respectively. We can see that the numerical recon-
structed solutions also appear to be quite satisfactory in the presence of a 3% noise 
in the data for two dimensional cases.
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Fig. 2   Exact and reconstructed solutions for Examples 5.3 (left) and 5.4 (right) with � = 3% : (left) 
k = 42 , e

k
= 4.52% ; (right) k = 33 , e

k
= 2.90%



	 D. Jiang, Z. Li 

1 3

34  Page 24 of 28

6 � Concluding remarks

In this paper, we have discussed the inverse problem of recovering a temporally 
varying potential in the variable order time-fractional diffusion equation from a 
nonlinear and nonlocal type additional data. We have shown the well-posedness 
of the forward problem by using the Fredholm alternative principle for compact 
operators and also proved the uniqueness of the inverse problem by assuming 
the measurement is strictly positive. Numerically, in order to reduce the com-
putational cost of the Frechét derivative of the minimizing functional, a newly 
backward adjoint system has been constructed, whose well-posedness has also 
been verified. The iterative thresholding algorithm has been proposed and several 
numerical experiments have been presented to show its feasibility and efficiency.

Finally, it would be interesting to investigate what happens with the inverse prob-
lem if the additional data can touch zero. Moreover, it is known that the conditional 
stability results hold for the inverse problems for recovering the spatially varying 
potential in parabolic or hyperbolic equations based on Carleman estimates. Unfor-
tunately, such techniques do not work in our case. It will be a challenging and inter-
esting direction of research to investigate the stability of the inverse problem.

Appendix

In this part, we shall show the solution to the problem (1.1) is strictly positive 
provided that the source term f > 0 in ΩT . We first give the following useful 
lemma.

Lemma 6.1  Assume g ∈ C[0, T] such that d
dt
g ∈ C(0, T] ∩ L1(0, T) and g(t) attains 

its minimum value at t = t0 ∈ (0, T) , then ��(t0)t g(t0) ≤ 0.

Proof  Let h(t) = g(t) − g(t0) for t ∈ (0, T) , then h ≥ 0 . From the definition of the 
variable order Caputo derivative, we see that ��(⋅)t h(t) = �

�(⋅)
t g(t) . Therefore, for any 

0 < 𝛿 < t0 which will be chosen later, we obtain by a direct calculation that

We will estimate I�
1
 and I�

2
 separately. For I�

1
 , since d

dt
h ∈ L1(0, T) , we see that 

∫ �

0
| d

d�
h(�)|d� is continuous with respect to � ∈ (0, �) . Therefore for any 𝜀 > 0 , there 

exists 0 < 𝛿0 < t0 such that for any 0 < 𝛿 < 𝛿0,

(6.1)

�
�(t0)

t h(t0) =
1

Γ(1 − �(t0)) �
t0

0

(t0 − �)−�(t0)
d

d�
h(�)d�

=
1

Γ(1 − �(t0)) �
�

0

(t0 − �)−�(t0)
d

d�
h(�)d�

+
1

Γ(1 − �(t0)) �
t0

�

(t0 − �)−�(t0)
d

d�
h(�)d� ≐ I�

1
+ I�

2
.
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It remains to evaluate I�
2
 . Firstly, noting d

dt
h ∈ C(0, T] and h(t0) = 0 , we conclude for 

any � ∈ (�, t0) that

which implies that

Therefore, by integration by parts, a direct calculation yields that

It is not difficult to check that the last term on the right hand side of the above equal-
ity is well defined. Indeed, since d

dt
h ∈ C(0, T] and h(t0) = 0 , we see that

Moreover, using the fact that Γ(1 − 𝛼(t0)) > 0 , we see that I�
2
≤ 0 . Combining all 

the above results, we finally see that I𝛿
1
+ I𝛿

2
< 𝜀 holds true for any 𝜀 > 0 , that is, 

𝜕
𝛼(t0)

t h(t0) < 𝜀.
Since 𝜀 > 0 is arbitrarily given, we can assert that ��(t0)t h(t0) = �

�(t0)

t g(t0) ≤ 0 . We 
finish the proof of the lemma. 	�  ◻

Lemma 6.2  Assume f ∈ C(ΩT ) satisfying f (x, t) > 0 and p(t) ≥ 0 
for any t ∈ (0, T] . Then for any (x, t) ∈ ΩT we have u(x, t) > 0 , where 
u ∈ C(ΩT ) ∩ C1((0, T];L2(Ω)) ∩ L2(0, T;H2(Ω)) solves the problem (1.1).

Proof  From the maximum principle, e.g., Luchko [27], it follows that u(x, t) ≥ 0 for 
any (x, t) ∈ ΩT . If the strictly positivity of u is not true, we can choose t0 ∈ (0, T) 
and x0 ∈ Ω such that u(x0, t0) = 0 , which means u attains its minimum value 
zero. We consequently see that L(t0)u(x0, t0) ≤ 0 and ��(t0)t u(x0, t0) ≤ 0 , where 
the last assertion is due to Lemma 6.1. Consequently, we see that the estimate 
p(t0)u(x0, t0) = f (x0, t0) − L(t0)u(x0, t0) − 𝜕

𝛼(t0)

t u(x0, t0) > 0 , which contradicts with 
u(x0, t0) = 0 . 	�  ◻

|I𝛿
1
| ≤ 1

Γ(1 − 𝛼(t0)) �
𝛿

0

(t0 − 𝜏)−𝛼(t0)
d

d𝜏
h(𝜏)d𝜏 ≤ (t0 − 𝛿0)

−𝛼(t0)

Γ(1 − 𝛼(t0)) �
𝛿

0

||||
d

d𝜏
h(𝜏)

||||d𝜏 < 𝜀.

|(t0 − �)−�(t0)h(�)| = |(t0 − �)−�(t0)(h(�) − h(t0)| ≤ ‖‖‖‖
d

dt
h
‖‖‖‖C[�,t0]

|t0 − �|1−�(t0),

|(t0 − �)−�(t0)h(�)| → 0, as � → t0.

I�
2
=

−1

Γ(1 − �(t0))
(t0 − �)−�(t0)h(�) +

−�(t0)

Γ(1 − �(t0)) ∫
t0

�

(t0 − �)−�(t0)−1h(�)d�.

|||||�
t0

�

(t0 − �)−�(t0)−1h(�)d�
|||||
=
|||||�

t0

�

(t0 − �)−�(t0)−1(h(�) − h(t0))d�
|||||

≤ ‖‖‖‖
d

dt
h
‖‖‖‖C[�,t0] �

t0

�

(t0 − �)−�(t0)d� =
‖‖‖‖
d

dt
h
‖‖‖‖C[�,t0]

(t0 − �)1−�(t0)

1 − �(t0)
.
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