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Abstract
A new finite element method is presented for a general class of singularly perturbed 
reaction-diffusion problems −�2�u + bu = f  posed on bounded domains 𝛺 ⊂ ℝ

k for 
k ≥ 1 , with the Dirichlet boundary condition u = 0 on �� , where 0 < 𝜀 ≪ 1 . The 
method is shown to be quasioptimal (on arbitrary meshes and for arbitrary conform-
ing finite element spaces) with respect to a weighted norm that is known to be bal-
anced when one has a typical decomposition of the unknown solution into smooth 
and layer components. A robust (i.e., independent of � ) almost first-order error 
bound for a particular FEM comprising piecewise bilinears on a Shishkin mesh is 
proved in detail for the case where � is the unit square in ℝ2 . Numerical results 
illustrate the performance of the method.

Keywords Finite element method · Balanced norm · Quasioptimal

Mathematics Subject Classification 65N30 · 65N12

1 Introduction

Singularly perturbed differential equations of reaction-diffusion type have been 
extensively studied, as described in [16, 21, 23]. When a standard Galerkin finite 
element method (FEM) is used to solve these problems, it is straightforward to carry 
out the usual “energy norm” analysis, but a serious weakness of this measure of the 
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error is that when the singular perturbation parameter (i.e., the diffusion coefficient 
in the PDE) is very small, the energy norm of the error in the computed solution is 
essentially no stronger than the L2 norm of the error; that is, the H1 component of 
the energy norm is typically much smaller than its L2 component. This drawback 
is discussed at length in [14], where the authors proposed the replacement of the 
energy norm by a stronger balanced norm whose H1 component is scaled to the cor-
rect size, so that both the H1 and L2 components of the solution are O(1) when the 
singular perturbation parameter is small.

[14] also proposed a new bilinear form and FEM that were designed to facilitate 
analysis in their balanced norm. Subsequently, other authors derived new FEMs and 
new analyses that yielded convergence in various balanced norms; see in particular 
[1, 2, 5, 12, 18, 20, 22].

In the present paper, we consider a singularly perturbed reaction-diffusion prob-
lem that is posed on an arbitrary bounded domain 𝛺 ⊂ ℝ

k for k ≥ 1 and present a 
new and simple way of constructing a FEM that is convergent in a weighted bal-
anced norm. This new norm is stronger than the standard energy norm because of 
the weighting that it includes.

Our key idea is to modify the standard Galerkin FEM by introducing a weight 
function that was (essentially) already used in [2], but unlike [2] we do not rewrite 
the reaction-diffusion problem as a system of equations. Furthermore, the analysis 
of [2] is for a problem posed on the unit square in ℝ2 , but the analysis in the current 
paper permits a far more general class of domains.

Our method is simpler than any other FEM that is designed to yield convergence 
in a balanced norm. It stands on a solid theoretical foundation: Theorem 1 shows 
that on an arbitrary bounded domain, for arbitrary meshes and an arbitrary conform-
ing FEM space, the computed solution is quasioptimal with respect to our weighted 
norm. This norm can be shown to be balanced for problems where one has a typi-
cal decomposition of the unknown solution into smooth and layer components; see 
Remarks 3 and 4.

The structure of the paper is as follows. In Sect.  2 we state our reaction-diffu-
sion problem and construct a weighted norm and associated bilinear form for which 
we derive various fundamental properties. These results are used to construct our 
weighted FEM in Sect. 3, and quasioptimality of the FEM solution is proved. Then 
in Sect. 4 we specialise this general theory to the particular case where the domain 
is the unit square in 2D and the FEM uses bilinears on a Shishkin mesh. Here a 
detailed error analysis leads to the optimal-order convergence result of Theorem 2, 
where we show that (up to a log factor) the weighted FEM attains first-order conver-
gence in our weighted norm. Finally, Sect. 5 presents numerical results to show the 
performance of the weighted FEM.

2  The singularly perturbed reaction–diffusion problem

Let � be a bounded domain in ℝk , where k ≥ 1 . Write �̄� for the closure of � and �� 
for its boundary. We shall discuss the elliptic boundary value problem 
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 where the diffusion parameter satisfies 0 < 𝜀 ≤ 1 , but the challenging and interest-
ing case is when 𝜀 ≪ 1 ; then (1) is a singularly perturbed reaction-diffusion prob-
lem. Assume that the reaction term satisfies b ∈ L

∞
(�) with b2

0
< b(x) ≤ b2

1
 for 

almost all x ∈ � , where b0, b1 are positive constants. This assumption is usual in 
singularly perturbed problems of this type—see [16, 21, 23].

It is well known that for each f ∈ L2(�) the problem (1) has a unique solution 
u ∈ H2

(�) ∩ H1
0
(�) if � is convex or if �� is smooth, but throughout Sects.  2 

and 3 we assume only that � is bounded.
Notation. Let � be any measurable subset of �̄� and let �� be its bound-

ary. We use standard notation for the Sobolev spaces Wm,p
(�) and their associ-

ated norms ‖ ⋅ ‖m,p,� and seminorms | ⋅ |m,p,� . If m = 0 , we simply write ‖ ⋅ ‖p,� ; 
while if p = 2 we set Hm

(�) = Wm,2
(�) and ‖ ⋅ ‖m,� = ‖ ⋅ ‖m,2,� . As usual, 

H1
0
(�) = {v ∈ H1

(�) ∶ v|
��

= 0} , where v|
��

 is the trace of v on  �� , and 
L2(�) = H0

(�).
Throughout this paper, the letter C (with or without subscripts) will denote a 

generic positive constant that may stand for different values in different places but 
is independent of the parameter � and of the mesh diameter.

2.1  Weighted norm

To solve (1), we shall apply a FEM that uses standard trial and test functions on 
general meshes; its distinguishing feature is that it incorporates a special weight 
in the bilinear form and its associated norm, where the weight is chosen in such a 
way that the norm is balanced (i.e., the H1

(�) and L2(�) weighted components of 
our norm are commensurable for typical solutions of (1)); see Remarks 3 and 4.

For each x ∈ � , set

where |x − z| denotes the Euclidean distance from x to z. That is, d(x) is the Euclid-
ean distance from x to the boundary of �.

For any y ∈ � , choose z ∈ �� such that d(y) = |y − z| . Then 
d(x) ≤ |x − z| ≤ |x − y| + d(y) , by a triangle inequality. Similarly 
d(y) ≤ |y − x| + d(x) . Hence

(This proof of (2) comes from [10, p.354].) The inequality (2) says that d(⋅) is uni-
formly Lipschitz continuous on �̄� . Then Rademacher’s Theorem [7, p.296] guaran-
tees that the function d(⋅) is differentiable almost everywhere in � , and a fortiori (2) 
clearly implies that

(1a)Lu ∶= −�
2
�u + bu = f in �,

(1b)u = 0 on ��,

d(x) = min{|x − z| ∶ z ∈ ��},

(2)|d(x) − d(y)| ≤ |x − y| for all x, y ∈ �.
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Define our weight function � by

where the positive constant � is (for the moment) arbitrary. Then

Recalling (3), we get

Let (⋅, ⋅) denote the scalar and vector inner products in L2(�) . Write ‖ ⋅ ‖ for the 
norm associated with this inner product. For each v ∈ L2(�) and w ∈ H1

(�) , define

This norm is balanced (i.e., its components �2(�∇u,∇u) and ‖u‖2
�
 are both O(1)) for 

a typical solution u of (1); see Remarks 3 and 4.

Remark 1 (Comparison with other balanced norms used to solve (1)) In [2] the bal-
anced norm used comprises the above norm |||w|||

�
 with some extra terms added. 

The balanced norm used in [5, 18, 20, 22] is ‖w‖
�
∶=

�
�‖∇w‖2 + ‖w‖2

�1∕2 . In [1, 
12, 14] extra terms are added to ‖w‖

�
 to form a balanced norm. Of course, all these 

norms are stronger than the standard “energy norm” 
�
�
2‖∇w‖2 + ‖w‖2

�1∕2 that is 
often associated with (1).

Remark 2 (Motivation and applicability) The weight function � defined in (4) is a 
generalisation of the weight function used in  [2] for a problem posed on the unit 
square in ℝ2 . It is motivated by the desire to have the simplest weight with the fol-
lowing two properties: that � ≈ 1 away from layers so the method is like the standard 
Galerkin method, and that � ≈ 1∕� inside layers so that the component �2‖∇w‖2 in 
the standard energy norm is essentially replaced by �‖∇w‖2 in regions where we 
want this term to be O(1).

Our weight function � should work satisfactorily for any layer that has the same 
exponential decay nature as the boundary layers described in Lemma 3 below, pro-
vided that � is suitably modified: one replaces “distance to �� ” by “distance to the 
layer location”. For example, the layers appearing in certain reaction-diffusion prob-
lems with interior layers are of this type; see [4, 8].

(3)|∇d(x)| ≤ 1 almost everywhere.

(4)�(x) = 1 +
1

�
exp

(
−
�d(x)

�

)
for x ∈ �,

∇�(x) = −
�∇d(x)

�2
exp

(
−
�d(x)

�

)
almost everywhere in �.

(5)|∇�(x)| ≤ �

�2
exp

(
−
�d(x)

�

)
≤

�

�
�(x) almost everywhere in �.

‖v‖
�
∶= (�v, v)1∕2 and ���w���

�
∶=

�
�
2‖∇w‖2

�
+ ‖w‖2

�

�1∕2
.
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Remark 3 (Heuristic justification that ||| ⋅ |||
�
 is balanced) Given sufficient infor-

mation about the data of  (1), a standard technique due to Shishkin enables us to 
decompose its solution as u = v + w , where v satisfies Lv = f  on � with all low-
order derivatives of v bounded independently of � , while Lw = 0 on � with w = −v 
on �� , so w is the boundary layer component of u. This is done for example in [6], 
where 𝛺 ⊂ ℝ

2 is the unit square. Using the properties of v and w, one finds that typi-
cally ���v���

�
∼ ‖v‖

�
= O(1) and ���w���

�
∼ �‖∇w‖

�
= O(1) , so each component of 

|||u|||
�
 is O(1), demonstrating that ||| ⋅ |||

�
 is balanced.

2.2  Weighted bilinear form

For all v,w ∈ H1
0
(�) , define the bilinear form

We prove two fundamental properties of B
�
(⋅, ⋅ ).

Lemma 1 (coercivity of B
�
(⋅, ⋅) ) Assume that 0 < 𝛾 ≤ b0 . Then for the weight func-

tion � specified in (4), one has

where C1 ∶= min{1∕2, b2
0
∕2}.

Proof Let v ∈ H1
0
(�) . Then

Recalling (5), we have

by the Cauchy-Schwarz and Young inequalities. Inserting this bound into (6), one 
obtains

The lemma follows, since � ≤ b0 .   ◻

B
�
(v,w) ∶= (�

2
∇v,∇(�w)) + (bv, �w),

B
𝛽
(v, v) > C1 |||v|||2𝛽 for all v ∈ H1

0
(𝛺),

(6)

B
�
(v, v) = (�

2
∇v,∇(�v)) + (bv, �v)

≥ �
2
(∇v, �∇v + v∇�) + (b0v, �v)

= �
2‖∇v‖2

�
+ (�

2
∇v, v∇�) + b2

0
‖v‖2

�
.

���(�
2
∇v, v∇�)

��� ≤ (��∇v�, �v���)

≤ �‖∇v‖
�
�‖v‖

�

≤
�
2

2
‖∇v‖2

�
+

�
2

2
‖v‖2

�
,

B
�
(v, v) ≥

�
2

2
‖∇v‖2

�
+

�
b2
0
−

�
2

2

�
‖v‖2

�
.
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Lemma 2 (boundedness of B
�
(⋅, ⋅) ) For the weight function � specified in (4), one 

has

where C2 ∶= max{1, � , b2
1
}.

Proof Let v,w ∈ H1
0
(�) . Then

Now (5) yields

by a Cauchy-Schwarz inequality. Applying two more Cauchy-Schwarz inequalities 
to (7), we get

The desired result follows.   ◻

From now on, we assume that f ∈ H−1
(�) ∶=

(
H1

0
(�)

)� . One can then define a 
weak solution u ∈ H1

0
(�) of (1) by requiring it to satisfy

where � is defined in (4) and the constant � satisfies 0 < 𝛾 ≤ b0 . By the Lax-Mil-
gram theorem, invoking Lemmas 1 and 2, the problem (8) has a unique solution 
u ∈ H1

0
(�) . Any strong solution u ∈ H2

(�̄�) ∩ H1
0
(𝛺) of the original problem (1) is 

also a weak solution of (8), as can be seen by multiplying (1a) by �v then integrating 
by parts.

3  The weighted finite element method

Let �h be an arbitrary mesh on �̄� . Let Vh ⊂ H1
0
(𝛺) be a conforming finite element 

space defined on this mesh. Suppose that 0 < 𝛾 ≤ b0 . From the Lax-Milgram theorem 
and Lemmas 1 and 2, there is a unique uh ∈ Vh such that

Combining (8) and (9) gives the Galerkin orthogonality property

|B
�
(v,w)| ≤ C2|||v|||� |||w|||� for all v,w ∈ H1

0
(�),

(7)
B
�
(v,w) = (�

2
∇v,∇(�w)) + (bv, �w) = (�

2
�∇v,∇w) + (�

2
∇v,w∇�) + (bv, �w).

�(�2∇v,w∇�)� ≤ ��(�∇v�, �w��) ≤ ��‖∇v‖
�
‖w‖

�

���B�
(v,w)

��� ≤ �
2‖∇v‖

�
‖∇w‖

�
+ ��‖∇v‖

�
‖w‖

�
+ b2

1
‖v‖

�
‖w‖

�
.

(8)B
�
(u, v) = (f , �v) for all v ∈ H1

0
(�),

(9)B
�
(uh, vh) = (f , �vh) for all vh ∈ Vh.

(10)B
�
(u − uh, vh) = 0 for all vh ∈ Vh.
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Theorem 1 (quasioptimal FEM error bound) Let � be a bounded subset of ℝk for 
some k ≥ 1 . Let �h be an arbitrary mesh on �̄� , and Vh ⊂ H1

0
(𝛺) a finite element 

space defined on this mesh. Choose � ∈ ℝ to satisfy 0 < 𝛾 ≤ b0 . Let u be the weak 
solution of (8) and uh the solution of (9). Then one has

Proof Let wh ∈ Vh be arbitrary. Invoking Lemma  1, then equation  (10), then 
Lemma 2, we get

Hence |||u − uh|||� ≤ (C2∕C1)|||u − wh|||� . As wh ∈ Vh was arbitrary, we are done.  
 ◻

The analysis up to this point is for a general bounded domain, a general mesh, 
and a general conforming finite element space Vh . This generality cannot however 
yield a bound in Theorem 1 that will ensure that |||u − uh|||� is small; to get this 
desirable outcome, one must tailor Vh or the mesh to the singularly perturbed nature 
of the problem. In Sect. 4 we show how this is done for a specific domain by a suit-
able choice of mesh.

4  Reaction‑diffusion problem on the unit square in ℝ2

We now specialise the theory of Sect. 2 to a 2D reaction-diffusion problem that has 
been considered in many balanced-norm papers, including [1, 12, 14].

During Sect.  4 we take � = (0, 1)2 , the unit square in  ℝ2 . Assume that 
f , b ∈ C0,𝛼

(�̄�) , where we use the standard notation for Hölder spaces. Assume the 
corner compatibility conditions

Then (1) has a unique solution u ∈ C2,𝛼
(�̄�) ; see, e.g., [11]. Furthermore, this solu-

tion has typically an exponential boundary layer in a neighbourhood of �� of width 
O(�| ln �|) ; see Lemma 3 below for more details.

The 4 sides of � will be denoted by

The corners of this domain are z1 ∶= (0, 0), z2 ∶= (1, 0), z3 ∶= (1, 1), z4 ∶= (0, 1).
In [6, Theorem 2.2] and [17, Lemma 1.2] the solution u of (1) with � = (0, 1)2 

is decomposed into smooth and layer components, and bounds are derived on 

|||u − uh|||� ≤
C2

C1

inf
wh∈Vh

|||u − wh|||� .

C1|||u − uh|||2� ≤ B
�
(u − uh, u − uh)

= B
�
(u − uh, u − wh)

≤ C2|||u − uh|||�|||u − wh|||� .

f (0, 0) = f (1, 0) = f (0, 1) = f (1, 1) = 0.

�1 ∶= {(x, 0)|0 ≤ x ≤ 1}, �2 ∶= {(0, y)|0 ≤ y ≤ 1},

�3 ∶= {(x, 1)|0 ≤ x ≤ 1}, �4 ∶= {(1, y)|0 ≤ y ≤ 1}.
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certain derivatives of these components. The analysis in these papers makes stronger 
assumptions than ours, but an inspection of their arguments shows however that, 
under our assumptions on the data, one obtains the following result, where for brev-
ity the derivative �m+ng∕�mx�ny of any function g is written as Dm

x
Dn

y
g.

Lemma 3 The solution u of (1) can be decomposed as

where each wk is a layer associated with the edge �k and each zk is a layer associ-
ated with the corner ck . There exists a constant C such that for all (x, y) ∈ �̄� and 
0 ≤ m + n ≤ 2 one has 

 Bounds for w2,w3 and w4 that are analogous to (12b) and bounds for z2, z3 and z4 
that are analogous to (12c) also hold.

Remark 4 For a solution u that enjoys the properties described in Lemma 3, one can 
verify that for any constant 𝛾 > 0 , one has �‖∇u‖

�
= O(1) and ‖u‖

�
= O(1) . That is, 

the norm ||| ⋅ |||
�
 is balanced for this problem.

4.1  The Shishkin mesh

To solve the problem numerically, we shall use a piecewise-uniform Shishkin mesh. 
These meshes are a popular tool in the numerical solution of problems such as (1). 
For an introduction to their properties and usage, see [16, 21, 23].

Let N be an even positive integer. The mesh will use N mesh intervals in each 
coordinate direction. The mesh transition parameter λ will specify where the mesh 
changes from coarse to fine; we define it by

In this formula, the constant � will be chosen later to facilitate our numerical analy-
sis and is then used in the implementation of the finite element method.

Then, without loss of generality, one can assume that N is so large that (13) sim-
plifies to

(11)u = v +

4∑

k=1

wk +

4∑

k=1

zk,

(12a)‖Dm
x
Dn

y
v‖0,∞,�̄� ≤ C,

(12b)
|||D

m
x
Dn

y
w1(x, y)

||| ≤ C�−ne−b0y∕�,

(12c)
|||D

m
x
Dn

y
z1(x, y)

||| ≤ C�−m−ne−b0(x+y)∕�.

(13)λ = min

{
1

4
,
�� lnN

b0

}
.
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Partition � as follows (see Fig. 1): �̄� = 𝛺11 ∪𝛺21 ∪𝛺12 ∪𝛺22 , where

Divide each of the x-intervals [0, λ] and [1 − λ, 1] into N/4 equidistant subintervals 
and divide [λ, 1 − λ] into N/2 equidistant subintervals. This gives a coarse mesh on 
[λ, 1 − λ] and a fine mesh on [0, λ] ∪ [1 − λ, 1] . Divide the y-interval [0,1] in the 
same way. Then the final 2-dimensional mesh is a tensor product of these 1-dimen-
sional Shishkin meshes; see Fig. 1, where N = 8.

An explicit description of the mesh follows: one has 0 = x0 < x1 < ⋯ < xN = 1 
and 0 = y0 < y1 < ⋯ < yN = 1 , with mesh sizes hi ∶= xi − xi−1 and kj ∶= yj − yj−1 
that are defined by 

 and

The mesh divides � into a set TN,N of mesh rectangles R whose sides are paral-
lel to the axes—see Fig. 1. The mesh is coarse on �11 , coarse/fine on �21 ∪�12 , 
and fine on �22 . The mesh is quasiuniform on �11 and its diameter d there satisfies √
2∕N ≤ d ≤ 2

√
2∕N ; on �12 ∪�21 , each mesh rectangle has dimensions O(N−1

) 
by O(�N−1 lnN) ; and on �22 each rectangle is O(�N−1 lnN) by O(�N−1 lnN) . These 
dimensions will be used in the error analysis of our finite element method.

(14)λ = ��b−1
0

lnN.

�11 = [λ, 1 − λ] × [λ, 1 − λ], �21 = ([0, λ] ∪ [1 − λ, 1]) × [λ, 1 − λ],

�12 = [λ, 1 − λ] × ([0, λ] ∪ [1 − λ, 1]),

�22 = ([0, λ] × ([0, λ] ∪ [1 − λ, 1])) ∪ ([1 − λ, 1] × ([0, λ] ∪ [1 − λ, 1])).

(15a)

hi =

{
h ∶= 4λN−1 for i = 0,… ,N∕4 and i = 3N∕4 + 1,… ,N,

H ∶= 2(1 − 2λ)N−1 for i = N∕4 + 1,… , 3N∕4,

(15b)kj =

{
h for j = 0,… ,N∕4 and j = 3N∕4 + 1,… ,N,

H for j = N∕4 + 1,… , 3N∕4.

Fig. 1  Shishkin mesh for reaction-diffusion
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4.2  Bilinear FEM on Shishkin mesh

We assume henceforth that the user-chosen constant � satisfies 0 < 𝛾 ≤ b0 , so Theo-
rem 1 is valid.

For our finite element method, choose the finite space Vh ⊂ C(�̄�) ∩ H1
0
(𝛺) to 

comprise piecewise bilinears on the Shishkin mesh of Sect. 4.1. Given any function 
g ∈ C(�̄�) ∩ H1

0
(𝛺) , we write gI for the nodal interpolant of g from Vh.

The following interpolation error bound is suitable for the highly anisotropic 
Shishkin mesh.

Lemma 4 [3, Theorem 2.7] Let R be any Shishkin mesh rectangle with dimensions 
hx × ky . Let � ∈ H2

(R) . Then its bilinear nodal interpolant �I satisfies the bounds

where the constant C is independent of �, hx and ky.

Theorem 1 gives us

We shall bound the right-hand side of (16) by using the decomposition of u from 
Lemma 3, comparing each component there with its interpolant from Vh.

Lemma 5 For the component v in Lemma 3, one has

Proof Lemmas 3 and 4 yield ‖v − vI‖
∞,� ≤ CN−2�v�2,∞,� ≤ CN−2 . Hence

By a similar argument, again using Lemmas  3 and  4, one has 
‖∇(v − vI)‖

∞,� ≤ CN−1�v�2,∞,� ≤ CN−1 and hence ‖∇(v − vI)‖
�
≤ CN−1 . To finish 

the proof, recall the definition of ||| ⋅ |||
�
 .   ◻

For any measurable 𝜔 ⊂ 𝛺 , and each v ∈ L2(�) and w ∈ H1
(�) , define

‖� − �
I‖

∞,R ≤ C
�
h2
x
‖�xx‖∞,R + k2

y
‖�yy‖∞,R

�
,

‖(� − �
I
)x‖∞,R ≤ C

�
hx‖�xx‖∞,R + ky‖�xy‖∞,R

�
,

‖(� − �
I
)y‖∞,R ≤ C

�
hx‖�xy‖∞,R + ky‖�yy‖∞,R

�
,

(16)|||u − uh|||� ≤
C2

C1

|||u − uI|||
�
.

|||v − vI|||
�
≤ C�N−1

+ N−2.

‖v − vI‖
�
=

�

�
�

�(v − vI)2
�1∕2

≤ CN−2

�

�
�

�

�1∕2
≤ CN−2.

‖v‖
�,� ∶=

�

∫
�

�v2
�1∕2

and ���w���
�,� ∶=

��
�
2

∫
�

��∇w�2
�
+ ‖w‖2

�,�

�1∕2
.
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Lemma 6 For the components w1,w2,w3,w4 of Lemma 3, one has

Proof We give the proof only for w1 , as the other wj are similar.
Set �y = {(x, y) ∈ � ∶ y ≥ λ} . By Lemma 3, one has

Hence,

It now follows, as in the proof of Lemma 5, that

On � ⧵�y invoke Lemma 4 and (15) to get

where we used Lemma 3 to bound the derivatives of w1 . From these estimates it fol-
lows, as in the proof of Lemma 5, that

Putting together (17) and (18) completes the proof.   ◻

Next we prove the corresponding result for the components zj of u; the proof 
resembles the proof of Lemma 6 but there are some differences.

Lemma 7 For the components z1, z2, z3, z4 in Lemma 3, one has

|||wj − wI
j
|||

�
≤ C

(
N−1 lnN + N−�

)
for j = 1, 2, 3, 4.

|||D
m
x
Dn

y
w1(x, y)

||| ≤ C�−nN−� for 0 ≤ m + n ≤ 2 and (x, y) ∈ �y.

‖w1 − wI
1
‖
∞,�y

≤ ‖w1‖∞,�y
+ ‖wI

1
‖
∞,�y

= 2‖w1‖∞,�y
≤ CN−�

and

‖∇(w1 − wI
1
)‖

∞,�y
≤ ‖∇w1‖∞,�y

+ ‖∇wI
1
‖
∞,�y

≤ 2‖∇w1‖∞,�y
≤ C�−1N−� .

(17)|||w1 − wI
1
|||

�,�y
≤ CN−� .

‖w1 − wI
1
‖
∞,�⧵�y

≤ C
�
H2‖(w1)xx‖∞,�⧵�y

+ h2‖(w1)yy‖∞,�⧵�y

�

≤ C
�
N−2

+ (�N−1 lnN)2�−2
�

= C(N−1 lnN)2

and

‖∇(w1 − wI
1
)‖

∞,�⧵�y
≤ C

�
H‖(w1)xx‖∞,�⧵�y

+ (h + H)‖(w1)xy‖∞,�⧵�y

+h‖(w1)yy‖∞,�⧵�y

�

≤ C
�
N−1

(1 + �
−1
) + (�N−1 lnN)(�−1 + �

−2
)

�

= C�−1(N−1 lnN),

(18)|||w1 − wI
1
|||

�,�⧵�y
≤ CN−1 lnN.
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Proof We give the proof only for z1 , as the other zj are similar.
Set �xy = {(x, y) ∈ � ∶ x ≥ λ or y ≥ λ} . By Lemma 3, one has

Hence,

It now follows, as in the proof of Lemma 5, that

On � ⧵�xy invoke Lemma 4 and (15) to get

where we used Lemma 3 to bound the derivatives of z1 . From these estimates it fol-
lows, as in the proof of Lemma 5, that

Combine (19) and (20) to finish the argument.   ◻

We can now give a precise error estimate for our finite element method.

Theorem 2 Let u be the solution of (1) and uh the solution of (9), where the finite 
element method uses piecewise bilinears on the Shishkin mesh. Then there exists a 
constant C such that

|||zj − zI
j
|||

�
≤ C

(
N−1 lnN + N−�

)
for j = 1, 2, 3, 4.

|||D
m
x
Dn

y
w1(x, y)

||| ≤ C�−m−nN−� for 0 ≤ m + n ≤ 2 and (x, y) ∈ �xy.

‖z1 − zI
1
‖
∞,�y

≤ ‖z1‖∞,�y
+ ‖zI

1
‖
∞,�y

= 2‖z1‖∞,�y
≤ CN−�

and

‖∇(z1 − zI
1
)‖

∞,�y
≤ ‖∇z1‖∞,�y

+ ‖∇zI
1
‖
∞,�y

≤ 2‖∇z1‖∞,�y
≤ C�−1N−� .

(19)|||z1 − zI
1
|||

�,�y
≤ CN−� .

‖z1 − zI
1
‖
∞,�⧵�y

≤ C
�
h2‖(z1)xx‖∞,�⧵�y

+ h2‖(z1)yy‖∞,�⧵�y

�

≤ C(�N−1 lnN)2�−2

= C(N−1 lnN)2

and

‖∇(z1 − zI
1
)‖

∞,�⧵�y
≤ C

�
h‖(z1)xx‖∞,�⧵�y

+ h‖(z1)xy‖∞,�⧵�y

+h‖(z1)yy‖∞,�⧵�y

�

≤ C(�N−1 lnN)(1 + �
−1

+ �
−2
)

= C�−1(N−1 lnN),

(20)|||z1 − zI
1
|||

�,�⧵�y
≤ CN−1 lnN.

|||u − uh|||� ≤ C
(
N−1 lnN + N−�

)
.
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With the choice � = 1 in the definition (14) of the Shishkin mesh transition param-
eter, this bound becomes

Proof Lemmas 5, 6 and 7 and the decomposition of Lemma 3 yield

The result then follows from Lemma 1.   ◻

Remark 5 One could instead use a FEM space that comprises polynomials of higher 
degree and carry out a similar error analysis to obtain a higher order of convergence 
in Theorem 2, but this necessitates imposing more conditions on the data of (1) so 
that more derivatives of u are bounded in Lemma 3, as in [6, 17].

Remark 6 [9] extend the reaction-diffusion analysis of [20] to the convection-diffu-
sion problem

where the functions a and b are positive. (Here, as is customary, we have replaced 
the �2 coefficient of  (1a) by � since this is a convection–diffusion problem.) Typi-
cal solutions of this problem exhibit an exponential layer along the side x = 1 of � , 
and parabolic layers along the sides y = 0 and y = 1 . The associated energy norm �
��∇v�2 + ‖v‖2

0

�1∕2 is correctly balanced for the exponential layer, but is unbal-
anced for the weaker parabolic layers, for which it reduces essentially to the L2(�) 
norm when 𝜀 ≪ 1 . In [9] an FEM comprising streamline-diffusion (SDFEM) in the 
x-direction and standard Galerkin in the y-direction is used and is shown to converge 
in the balanced norm 

�
��vx�2 + �

1∕2�vy�2 + ‖v‖2
0

�1∕2 on a Shishkin mesh that is appro-
priate for this problem.

One can carry out an analogous construction and analysis in our setting: working 
with piecewise bilinears on a Shishkin mesh like that of [9], construct an FEM that 
uses SDFEM in the x-direction (note that we can use the standard SDFEM, unlike 
the special variant of SDFEM that is used in [9]) and replaces  (4) by the weight 
function

This weight is a function of y only and is large inside the parabolic layers. One can 
prove convergence on the Shishkin mesh in the weighted balanced norm

We do not give details here as they are lengthy and require no new idea beyond a 
synthesis of our earlier analysis and that of [9].

|||u − uh|||� ≤ CN−1 lnN.

|||u − uI|||
�
≤ C

(
N−1 lnN + N−�

)
.

(21)−��v + avx + bv = f on � = (0, 1)2, v = 0 on ��,

𝛽(x, y) ∶= 1 +
1

𝜀1∕2
exp

(
−
𝛾[1∕2 − |y − 1∕2|]

𝜀1∕2

)
for (x, y) ∈ 𝛺.

(22)
�
𝜀�vx�2 + 𝜀𝛽�vy�2 + ‖v‖2

0

�1∕2
.
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5  Numerical results

Our test problem is

where f chosen so that

This problem is taken from [13] and is widely used in the literature (see, e.g., [1]). 
Its solution exhibits only two layers, which are near x = 0 and y = 0 . Nonetheless, 
the bounds presented in Lemma 3 hold and are sharp for v, w1 , w2 , and z1 . Thus, the 
example is sufficiently typical to verify the results of Theorem 2.

Since this problem has layers along only two edges, we modify the Shishkin mesh 
of Sect. 4.1 so that it is a tensor product of two one-dimensional meshes with N/2 
equidistant subintervals on each of [0, λ] and [λ, 1] . In our experiments we have taken 
� = 0.98 in (4), and b0 = 0.99 and � = 1 in (13).

Our results are computed using Firedrake; see [19]. All results presented here are 
for bilinear elements; consistent results were obtained using biquadratic elements 
(see Remark 5).

In Table 1 we present the errors in the solutions computed using our proposed 
method. Observe that, for sufficiently small � , the errors are independent of � , and 
converge at a rate that is O(N−1 lnN) , verifying Theorem 2. This contrasts with the 
observed results for the classical Galerkin method (i.e., �(⋅) ≡ 1 ) for this problem on 
this Shishkin mesh, where the computed errors in the standard energy norm scale 
like �1∕2N−1 lnN ; see, e.g., [17, Table 1].

Although a discrete maximum norm error analysis is beyond the scope of this 
paper, in Table 2 we show the maximum error observed at the mesh points. One sees 
again that, for sufficiently small � , the error is independent of � and converges at a 
rate that is O(N−1

) . We remark that choosing � = 2 in (13) improves the experimen-
tal convergence rate to O(N−2 ln2 N) , though we do not show these results here.

(23)−�
2
�u + u = f in � = (0, 1)2, u = 0 on ��,

(24)u(x, y) =

(
cos

(
�

2
x
)
−

e−x∕� − e−1∕�

1 − e−1∕�

)(
1 − y −

e−y∕� − e−1∕�

1 − e−1∕�

)
.

Table 1  |||u − uh|||� where u 
is as in (24) and uh the solution 
of (9) on a Shishkin mesh

� N = 32 N = 64 N = 128 N = 256 N = 512

1 4.303e−03 2.151e−03 1.076e−03 5.378e−04 2.689e−04
10

−1 2.975e−02 1.787e−02 1.043e−02 5.320e−03 2.660e−03

10
−2 3.322e−02 1.985e−02 1.157e−02 6.610e−03 3.718e−03

10
−3 3.360e−02 2.007e−02 1.169e−02 6.675e−03 3.754e−03

10
−4 3.358e−02 2.008e−02 1.170e−02 6.682e−03 3.758e−03

10
−5 3.366e−02 2.009e−02 1.170e−02 6.682e−03 3.758e−03

10
−6 3.366e−02 2.010e−02 1.170e−02 6.683e−03 3.758e−03

10
−7 3.366e−02 2.010e−02 1.170e−02 6.683e−03 3.758e−03

10
−8 3.366e−02 2.010e−02 1.170e−02 6.683e−03 3.758e−03
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Finally, we mention that when a solution ũh is computed using the classical Galer-
kin FEM, our numerical results reveal that |||u − ũh|||𝛽 closely matches the values 
of |||u − uh|||� stated in Table 1. This is curious, and worthy of further investigation, 
particularly since our experiments also suggest that when errors are measured in the 
discrete maximum norm, then our weighted method is more accurate than the classi-
cal Galerkin FEM by more than a factor of two.

Remark 7 For the problem of Remark 6, we have verified experimentally the accu-
racy of the numerical method described in that remark, using the standard SDFEM 
with its stabilisation parameter chosen as in [15]. Here we chose f in (21) such that 
the solution has parabolic layers along y = 0 and y = 1 , but no exponential layer 
at the outflow boundary  x = 1 , so that the error in the parabolic layer dominates. 
Our results in the weighted norm (22) show almost first-order convergence, indepen-
dently of �.
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