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Abstract
We consider the approximation of the inverse of the finite element stiffness matrix in 
the data sparse H-matrix format. For a large class of shape regular but possibly non-
uniform meshes including algebraically graded meshes, we prove that the inverse of 
the stiffness matrix can be approximated in the H-matrix format at an exponential 
rate in the block rank. Since the storage complexity of the hierarchical matrix is 
logarithmic-linear and only grows linearly in the block-rank, we obtain an efficient 
approximation that can be used, e.g., as an approximate direct solver or precondi-
tioner for iterative solvers.

Keywords  FEM · H-matrices · Approximability · Non-uniform meshes

Mathematics Subject Classification  Primary: 65F50 · Secondary: 65F30, 65N30

1  Introduction

Discretizations of elliptic partial differential equations on a domain 𝛺 ⊆ ℝ
d using 

the classical finite element method (FEM) usually produce sparse linear systems 
of equations Ax = b with storage requirements linear in the number of unknowns 
and linear complexity for the matrix-vector multiplication. However, the direct 
solution of these systems is computationally more expensive. Therefore, iterative 
solution methods (e.g., Krylov space methods) are popular in applications, since 
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they only need matrix-vector multiplications, which can be done in linear com-
plexity. A drawback of these methods is that convergence can be slow for matrices 
with large condition numbers unless a suitable preconditioner is employed. These 
preconditioners have to be taylored to the problem at hand making black box pre-
conditioners that are based on (approximate) direct solvers particularly interest-
ing. Moreover, if one is interested in solving the same problem with (many) dif-
ferent right-hand sides, a direct solver may be computationally advantageous.

Hierarchical matrices ( H-matrices), introduced in [20] and extensively studied in 
the monograph [21], provide a different solution approach to this problem that does 
not suffer from the drawbacks of classical direct and iterative methods. H-matri-
ces are blockwise low-rank matrices. For suitable block structures and block ranks, 
storing an H-matrix is of logarithmic-linear complexity. Approximating a given 
matrix in the H-matrix format thus effects a compression. A main difference to other 
compression methods such as multipole expansions, [18, 23], or wavelet methods, 
[24–26], is that the H-matrix format allows for an approximate arithmetic. It is pos-
sible to add and multiply as well as compute inverses and LU-decompositions effi-
ciently in the format, [14, 19, 21]. Therefore, using an H-matrix approximation to 
the inverse A−1 gives an approximate direct solution method of logarithmic-linear 
complexity that can be applied efficiently to multiple right-hand sides. Moreover, an 
LU-decomposition in the H-matrix format can be used as a black-box preconditioner 
in iterative solvers, [3, 15, 17, 22]. Nonetheless, we mention that the accuracy in 
terms of the maximal blockwise rank of the computed approximations to A−1 (or the 
LU-decomposition) using H-matrix arithmetic is not fully understood yet.

In order to explain the numerical success of these approximations, first observed 
in [19], several works in the literature provide existence results of approximations to 
the inverse matrices in the H-matrix format. See, e.g., [2, 5, 7, 11] for the inverses 
of FEM matrices and [12, 13] for the inverses of BEM matrices. These analyses are 
restricted to the case of (quasi)uniform meshes, i.e., all mesh elements have compa-
rable size. In a typical FEM scenario, however, locally refined meshes are employed 
with mesh elements varying greatly in size in order to account for effects such as 
locally reduced regularity of the solution. A classical example are graded meshes for 
the solution of elliptic problems in corner domains, [6].

In this article, we generalize the results of [11] for quasiuniform meshes to 
meshes of so called locally bounded cardinality (cf. Definition 2.4), which includes 
both uniform meshes and algebraically graded meshes. Our main result states that 
the inverses of FEM matrices for such meshes can be approximated by hierarchical 
matrices such that the error converges exponentially in the H-matrix block rank r. 
Given a clustering strategy suitable for non-uniform grids, cf. [16], the storage com-
plexity of the H-matrix approximant is of logarithmic-linear complexity O(rN lnN) . 
Moreover, we develop an abstract framework that allows for more general FEM 
basis functions that do not need to have local supports. In fact, locality is neces-
sary only for a set of dual functions, which is a substantially weaker assumption. 
Finally, we streamline some of the arguments made in [11]. While not repeated in 
this article, we mention that the (mostly algebraic) techniques of [11, Section 5] can 
be employed in exactly the same way to derive exponentially convergent approxi-
mate LU-decompositions in the H-matrix format.
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The present paper is structured as follows: In Sect. 2 we introduce all necessary 
definitions and concepts and state our main result, Theorem 2.15. Section 3 is dedi-
cated to the proof of the main result. The main technical contribution is the dis-
crete Caccioppoli-type estimate presented in Lemma 3.27, which is of independent 
interest. For a certain class of functions, it allows us to bound the H1-seminorm on 
a given subdomain by the L2-norm on a slightly larger subdomain. Finally, Sect. 4 
provides numerical examples that illustrate our main result.

Concerning notation: We write “ a ≲ b ”, if there exists a constant C > 0 such that 
“ a ≤ Cb ”. The constant might depend on the space dimension d, the domain � , the 
coefficients of the PDE, the shape regularity constant of the mesh, and the polyno-
mial degree of the discrete spline space, but it is independent of all critical parame-
ters such as the mesh width. We write a ≂ b , if there hold both a ≲ b and a ≳ b . 
Matrices and vectors in linear systems of equations are expressed in boldface letters, 
e.g., A ∈ ℝ

N×N and f ∈ ℝ
N . For all x ∈ ℝ

d and 𝜀 > 0 , we write 
Ball2(x, r)∶={y ∈ ℝ

d � ‖y − x‖2 < 𝜀} for the Euclidean ball of radius r centered at x. 
The norm of the sequence spaces �1 and �2 is denoted by ‖ ⋅ ‖1 and ‖ ⋅ ‖2 . For k ≥ 0 , 
q ∈ [1,∞] and domains 𝛺 ⊆ ℝ

d , we denote the Sobolev space by Wk,q(�) . For a 
given mesh T  , we denote by Wk,q

pw (T ) the broken Sobolev space consisting of ele-
mentwise functions from Wk,q . For all v ∈ W

k,q
pw (T ) and B ⊆ T  , we set 

�v�Wk,q(B)∶=(
∑

T∈B �v�
q

Wk,q(T)
)1∕q and |v|Wk,∞(B)∶=maxT∈B |v|Wk,∞(T) . Similarly, C0

pw
(T ) 

denotes the space of piecewise continuous functions. For all v ∈ L2(�) and B ⊆ T  , 
the restriction of v to 

⋃
B ⊆ ℝ

d is abbreviated as v�B∶=v�⋃B . Finally, it will facili-
tate notation on numerous occasions to define the (discrete) support of a function 
v ∈ L2(�) on a mesh T  by suppT (v)∶={T ∈ T | v|T ≢ 0} . In particular, we have 
suppT (v) ⊆ T  and 

⋃
suppT (v) ⊆ ℝ

d , which slightly differs from the usual definition 
of a support, namely, supp(v)∶={x ∈ 𝛺 | v(x) ≠ 0} ⊆ ℝ

d.

2 � Main results

2.1 � The model problem

We investigate the following model problem: Let d ≥ 1 and 𝛺 ⊆ ℝ
d be a bounded 

polyhedral Lipschitz domain. Furthermore, let a1 ∈ L∞(�,ℝd×d) , a2 ∈ L∞(�,ℝd) 
and a3 ∈ L∞(�,ℝ) be given coefficient functions and f ∈ L2(�) be a given right-
hand side. We seek a weak solution u ∈ H1

0
(�) to the following equations:

In the present work, we restrict ourselves to homogeneous Dirichlet conditions. For 
the treatment of Neumann and Robin boundary conditions, the same arguments as in 
[11] can be employed.

We assume that a1 is coercive in the sense ⟨a1(x)y, y⟩ ≥ �1‖y‖22 for all x ∈ � , 
y ∈ ℝ

d and some constant 𝛼1 > 𝜎2
Pcr
(‖a2‖L∞(𝛺) + ‖a3‖L∞(𝛺)) ≥ 0 . Here, 𝜎Pcr > 0 

denotes the constant in the Poincaré inequality ‖ ⋅ ‖H1(�) ≤ �Pcr� ⋅ �H1(�) on H1
0
(�).

−div(a1⋅∇u) + a2 ⋅ ∇u + a3u = f in �,

u = 0 on ��.
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Definition 2.1  We introduce the bilinear form:

The weak formulation of the model problem reads as follows: Find u ∈ H1
0
(�) 

such that

The assumptions on the PDE coefficients imply that the bilinear form a(⋅, ⋅) is con-
tinuous and coercive, cf. Lemma  3.7. In particular, the well-known Lax-Milgram 
Lemma yields the existence of a unique solution u ∈ H1

0
(�).

2.2 � The mesh

Throughout the text, we consider regular, affine meshes in the following sense:

Definition 2.2  (Mesh) A finite set T ⊆ Pow(𝛺) is a mesh if there exists an open sim-
plex T̂ ⊆ ℝ

d (the reference element) such that every element T ∈ T  is of the form 
T = FT (T̂) , where FT ∶ ℝ

d
⟶ ℝ

d is an affine diffeomorphism. Furthermore, the 
elements must be pairwise disjoint, i.e., |T ∩ S| = 0 for all T ≠ S ∈ T  , and consti-
tute a partition of � , i.e., 

⋃
T∈T T = � . Finally, a mesh must be regular in the sense 

of [9], i.e., it does not contain any hanging nodes.

We call a collection of mesh elements B ⊆ T  a cluster. In the literature on hier-
archical matrices, the word cluster is typically reserved for collections of vector/
matrix indices I ⊆ {1,… ,N} . In the present work, however, we deal with collec-
tions of mesh elements B ⊆ T  much more frequently. We also note that both con-
cepts are intimately linked via Definition 2.8.

For every subset B ⊆ ℝ
d , we call the set of neighboring mesh elements

the patch of B. Similarly, for every cluster B ⊆ T  , we set T(B)∶=
⋃

B∈B T(B) ⊆ T .
To measure the size of an element T ∈ T  , we introduce the local mesh width 

hT∶= supx,y∈T ‖y − x‖2 . The corresponding aggregate mesh widths for a cluster 
B ⊆ T  read hB∶=hmax,B∶=maxT∈B hT and hmin,B∶=minT∈B hT.

Finally, for every T ∈ T  , we denote the center of the largest inscribable ball 
by xT ∈ T  (the incenter). We assume that T  is part of a shape-regular family of 
meshes, i.e., there exists a constant �shp ≥ 1 such that

∀u, v ∈ H1
0
(�) ∶ a(u, v)∶= ⟨a1∇u,∇v⟩L2(�) + ⟨a2 ⋅ ∇u, v⟩L2(�) + ⟨a3u, v⟩L2(�).

∀v ∈ H1
0
(�) ∶ a(u, v) = ⟨f , v⟩L2(�).

(2.1)T(B)∶={T ∈ T |T ∩ B ≠ �} ⊆ T

∀T ∈ T ∶ Ball2(xT , 𝜎
−1
shp

hT ) ⊆ T ⊆
⋃

T(T) ⊆ Ball2(xT , 𝜎shphT ).
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Definition 2.3  (Mesh metric) The mesh metric is given by

For all clusters A , B ⊆ T  , we denote the corresponding diameters and distances by

If A or B contains only one element, e.g., A = {T} , we drop the enclosing braces and 
simply write distT (T ,B)∶=distT ({T},B) . Furthermore, diamT (T)∶=diamT ({T}) = 0 
by definition of the cluster diameter.

We refer to Lemma 3.15 for some basic properties of the mesh metric.
Compared to [11], we consider a more general class of meshes. Here, the crucial 

property is the so called locally bounded cardinality defined in the following Defini-
tion 2.4. In Sect. 3.2, we provide examples of meshes both with (uniform and alge-
braically graded meshes) and without said property (exponentially graded meshes).

Definition 2.4  (Locally bounded cardinality) A mesh T ⊆ Pow(𝛺) has locally 
bounded cardinality, if there exists a constant �card ≥ 1 such that

2.3 � The basis and dual functions

Definition 2.5  (Spline spaces) Let k ≥ 0 and p ≥ 0 . We introduce the finite-dimen-
sional spline spaces

where ℙp(T̂)∶=span {T̂ ∋ x ↦ xq � ‖q‖1 ≤ p} denotes the usual space of polynomi-
als of (total) degree p on the reference element.

The following definition introduces the bases of �p,1

0
(T ) that we consider:

Definition 2.6  (Basis with local dual functions) Let p ≥ 1 , N∶=dim�
p,1

0
(T ) and 

{𝜑1,… ,𝜑N} ⊆ �
p,1

0
(T ) be a basis. We say that the basis allows for a system of local 

dual functions, if there exist functions {𝜆1,… , 𝜆N} ⊆ L2(𝛺) with the following 
properties: 

1.	 Duality: For all n,m ∈ {1,… ,N} , there holds ⟨�n, �m⟩L2(�) = �nm.

∀T , S ∈ T ∶ distT (T , S)∶=‖xS − xT‖2.

diamT (A)∶= max
A1, A2∈A

distT (A1,A2), distT (A,B)∶=min
A∈A,
B∈B

distT (A,B).

h
𝜎card
T

≲ hmin,T, ∀B ⊆ T ∶ #B ≲

(
1 +

diamT(B)

hB

)d𝜎card

.

𝕊
p,k(T )∶={v ∈ Hk(𝛺) |∀T ∈ T ∶ v◦FT ∈ ℙ

p(T̂)},

𝕊
p,k

0
(T )∶=𝕊p,k(T ) ∩ H1

0
(𝛺),
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2.	 Stability: For all x ∈ ℝ
N , there holds the bound ‖∑N

m=1
xm𝜆m‖L2(𝛺) ≲ h

−d∕2

min,T
‖x‖2 . 

The implied constant may only depend on d, p, and the shape regularity of the 
mesh T .

3.	 Locality: For every n ∈ {1,… ,N} , there exists a characteristic element Tn ∈ T  
such that suppT(𝜆n) ⊆ T(Tn) . For every T ∈ T  , there holds the uniform bound 
#{n | Tn = T} ≲ 1.

Remark 2.7  Note that we do not assume local basis functions �n , i.e., suppT (�n) = T  
is allowed. Rather, locality is imposed only on the dual functions. In the finite ele-
ment framework described in Sect.  3.3, this distinction might seem unnecessary, 
as both the basis functions and the dual functions are indeed local. In the some-
what similar setting of radial basis functions (see, e.g., [27]), however, the distinc-
tion becomes crucial. There, the basis functions have global supports by nature and 
locality can only be imposed on the dual functions. Here, our goal is to formulate 
the more general framework such that we can apply some results in our upcoming 
work on H-matrices and radial basis functions (cf. [1]) as well.

The fundamental idea of the present work is to derive properties of matrices 
from properties of function spaces. Naturally, one has to think about the connection 
between abstract matrix indices n ∈ {1,… ,N} and corresponding subdomains of � , 
which is captured in the following definition.

Definition 2.8  (Index patches) We define the index patches

Recall from Sect. 2.2 that T(B) ⊆ T  is the patch of a subdomain B ⊆ ℝ
d and that 

T(B) ⊆ T  is the patch of a cluster B ⊆ T  . We also have patches T(I) ⊆ T  for collec-
tions of matrix indices I ⊆ {1,… ,N} . Since all three types of patches follow a com-
mon idea, we chose the similarity in notation on purpose.

2.4 � The system matrix

Let T ⊆ Pow(𝛺) be a mesh and p ≥ 1 a fixed polynomial degree. Let 
�
p,1

0
(T ) ⊆ H1

0
(𝛺) be the corresponding spline space. We discretize the model prob-

lem from Sect. 2.1 by means of the spline space and get the following discrete model 
problem: For given f ∈ L2(�) , find u ∈ �

p,1

0
(T ) such that

Again, existence and uniqueness of a solution u ∈ �
p,1

0
(T ) follow from Lemma 3.7 

and the Lax-Milgram Lemma.
As usual, given a basis of the discrete space, the discrete model problem can be 

rephrased as an equivalent linear system of equations. The bilinear form a(⋅, ⋅) from 

∀I ⊆ {1,… ,N} ∶ T(I)∶=
⋃

n∈I

suppT (𝜆n) ⊆ T.

∀v ∈ �
p,1

0
(T ) ∶ a(u, v) = ⟨f , v⟩L2(�).
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Definition 2.1 and the basis functions �n ∈ �
p,1

0
(T ) from Definition 2.6 compose the 

governing system matrix.

Definition 2.9  We define the system matrix

Note that the unique solvability of the discrete model problem already ensures 
that the matrix A is invertible.

2.5 � Hierarchical matrices

First, let us sketch the concepts of cluster trees and block cluster trees. For a more 
detailed introduction, see, e.g., [21, Chapter 5].

A (binary) clustering strategy consists of two mappings child1 , 
child2 ∶ Pow{1,… ,N} ⟶ Pow{1,… ,N} that satisfy the disjointness property 
child1(I) ∩ child2(I) = � and the covering property child1(I) ∪ child2(I) = I . (See, 
e.g., [21] for some examples of such clustering strategies.) Let Iroot∶={1,… ,N} and 
𝜎small > 0 . Consider a system �

N
⊆ Pow{1,… ,N} with Iroot ∈ �

N
 that is closed in 

the following sense: For every tree node I ∈ �
N

 with #I > 𝜎small , its children satisfy 
child1(I) , child2(I) ∈ �

N
 as well. If �

N
 is minimal, i.e., removing one of its elements 

would violate said properties, then we call �
N

 a (hierarchical) cluster tree. The 
assumed minimality allows us to assign a level to each tree node such that 
level(Iroot) = 0 and level(child1(I)) = level(child2(I)) = level(I) + 1 for all I ∈ �

N
 . 

Finally, we set depth(�
N
)∶=maxI∈�

N
level(I).

Said clustering strategy induces functions 

via child��(I, J)∶=(child�(I), child�(J)) . Let 𝜎adm > 0 . Consider a system 
�
N×N

⊆ (Pow{1,… ,N})2 with (Iroot, Iroot) ∈ �
N×N

 that is closed in the following 
sense: For every tree node (I, J) ∈ �

N×N
 with diamT (T(I)) > 𝜎admdistT (T(I), T(J)) , 

its children satisfy child11(I, J) , child12(I, J) , child21(I, J) , child22(I, J) ∈ �
N×N

 as 
well. Again, if �

N×N
 is minimal, it is called (hierarchical) block cluster tree. The 

associated sparsity constant is given by

Definition 2.10  The subset ℙ ⊆ 𝕋
N×N

 of all block cluster tree leaves is called 
hierarchical block partition. We say that ℙ is sparse, if depth(�

N
) ≲ ln(N) and 

Csparse(�N×N) ≲ 1.

Remark 2.11  For a mesh T  with locally bounded cardinality and a basis 
{𝜑1,… ,𝜑N} ⊆ �

p,1

0
(T ) with local dual functions {𝜆1,… , 𝜆N} ⊆ L2(𝛺) , there 

A∶= (a(�n,�m))
N
m,n=1

∈ ℝ
N×N .

child11, child12, child21, child22 ∶ (Pow{1,… ,N})2 ⟶ (Pow{1,… ,N})2

Csparse(�N×N)∶=max

{
max
I∈�

N

#{J ∈ �
N
| (I, J) ∈ �

N×N
}, max

J∈�
N

#{I ∈ �
N
| (I, J) ∈ �

N×N
}

}
.
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indeed exists a sparse hierarchical block partition: The locality assumption on the 
dual functions allows us to treat their supports as a group of distinct characteris-
tic points in ℝd . Thus, we can apply the results from [16]. There, the authors pre-
sented a geometrically balanced clustering strategy that ensures the upper bounds 
depth(�

N
) ≲ ln(h−1

min,T
) and Csparse(�N×N) ≲ 1 for the resulting trees �

N
 and �

N×N
 . 

Using the relation hmin,T ≳ h
𝜎card
T

 from Definition 2.4 for meshes with locally bounded 
cardinality, we conclude depth(�

N
) ≲ ln(N) , i.e., the hierarchical block partition ℙ is 

sparse.

From the construction of the block cluster tree it follows that the elements of the 
hierarchical block partition can be categorized into two groups. More precisely, we 
can state the following:

Lemma 2.12  The hierarchical block partition can be decomposed as 
ℙ = ℙadm ∪̇ ℙsmall with

Definition 2.13  Let ℙ be a sparse hierarchical block partition and r ∈ ℕ a given 
block rank bound. We define the set of H-matrices by

Remark 2.14  By [21, Lemma 6.13], the memory requirement to store an H-matrix 
B ∈ H(ℙ, r) can be bounded by the quantity Csparse(�N×N)(�small + r)depth(�

N
)N . 

Inserting the estimates for the cluster tree depth and the sparsity constant of a 
sparse hierarchical block partition (cf. Definition 2.10), we get an overall bound of 
O(rN lnN) for the memory requirement.

2.6 � The main result

The following theorem is the main result of the present work. It states that inverses 
of FEM matrices with meshes of locally bounded cardinality can be approximated at 
an exponential rate in the block rank by hierarchical matrices.

Theorem 2.15  Let T ⊆ Pow(𝛺) be a mesh of locally bounded cardinality for some 
�card ≥ 1 in the sense of Definition  2.4 and {𝜑1,… ,𝜑N} ⊆ �

p,1

0
(T ) a basis that 

allows for a system of local dual functions (see Definition 2.6). Let a(⋅, ⋅) be the ellip-
tic bilinear form from Definition 2.1 and A ∈ ℝ

N×N be the corresponding Galerkin 
stiffness matrix (Definition 2.9). Finally, let ℙ be a sparse hierarchical block parti-
tion as in Definition 2.10. Then, there exists a constant 𝜎exp > 0 such that, for every 
block rank bound r ∈ ℕ , there exists an H-matrix B ∈ H(ℙ, r) with

∀(I, J) ∈ ℙadm ∶ 0 < diamT (T(I)) ≤ 𝜎admdistT (T(I), T(J)),

∀(I, J) ∈ ℙsmall ∶ min{#I, #J} ≤ 𝜎small.

H(ℙ, r)∶={B ∈ ℝ
N×N |∀(I, J) ∈ ℙadm ∶ ∃X ∈ ℝ

I×r,Y ∈ ℝ
J×r ∶ B|I×J = XYT}.

‖A−1 − B‖2 ≲ N𝜎card ln(N) exp(−𝜎expr
1∕(d𝜎card+1)).
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Remark 2.16  Comparing the main result with the previous work [11] shows that the 
parameter �card of a mesh with locally bounded cardinality additionally appears. For 
quasi-uniform meshes, as studied in [11], this parameter is given by �card = 1 and 
Theorem  2.15 reproduces the main result therein. However, for different meshes 
such as algebraically graded meshes, this parameter reduces the exponential rate of 
convergence. With our fully discrete method of proof a dependence on mesh param-
eters can be expected and seems unavoidable. Nonetheless, a numerical example 
presented at the end of the paper shows that the rate of convergence indeed depends 
on �card , albeit the dependence seems to be weaker than in the theoretical bound of 
Theorem 2.15.

As shown in Sect.  3.2, uniform and algebraically graded meshes have locally 
bounded cardinality. In particular, we immediately get the following corollary.

Corollary 2.17  Let T ⊆ Pow(𝛺) be an algebraically graded mesh with grading expo-
nent � ≥ 1 (see Definition 3.4). Then, Theorem 2.15 holds verbatim with �card = �.

3 � Proof of main result

3.1 � Overview

The techniques employed in the proof of our main result are similar to those devel-
oped in [11] for uniform meshes. However, some modifications are necessary to deal 
with the present case of non-uniform meshes T  and (possibly) global basis func-
tions �n ∈ �

p,1

0
(T ) . Additionally, we simplify several parts of the previous proof 

considerably.
(1) Before we begin the proof, we give a motivation for the assumptions made in 

Definitions 2.4 and 2.6. In Sect. 3.2, we present two types of meshes with locally 
bounded cardinality, namely uniform and algebraically graded meshes. The fact that 
every uniform mesh has locally bounded cardinality will be used during our proof 
of Theorem 3.31. The locally bounded cardinality of algebraically graded meshes 
shows that Theorem 2.15 is applicable for algebraically graded meshes in the sense 
of Definition 3.4.

Then, in Sect. 3.3, we present a practical choice for the dual functions �n ∈ L2(�) 
from Definition  2.6 for a common choice of basis functions �n ∈ �

p,1

0
(T ) . The 

results from this section guarantee that Theorem 2.15 can be used for many different 
types of finite element bases, including the classic hat functions.

(2) The starting point for our proof is an explicit representation formula for A−1 . 
Since A−1 represents the act of solving the discretized model problem, it is only nat-
ural that the corresponding discrete solution operator ST ∶ L2(�) ⟶ �

p,1

0
(T ) will 

be involved. Additionally, this endeavor requires the dual functions �n ∈ L2(�) men-
tioned earlier. We present the explicit formula for A−1 at the end of Sect. 3.4.
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(3) In Sect. 3.5 we use this formula to go from the “matrix level” to the “function 
level”: Initially, we reduce the problem of approximating A−1 as a whole to the prob-
lem of approximating A−1|I×J for each admissible block (I, J) ∈ ℙadm . (The small 
blocks ℙsmall are irrelevant for that matter.) As it turns out, this boils down to the 
following question:

Given admissible clusters B,D ⊆ T  and a free parameter L ∈ ℕ , how can we 
construct a low-dimensional subspace VB,D,L ⊆ L2(𝛺) that contains a good approxi-
mant of (ST f )|B for every f ∈ L2(�) with suppT (f ) ⊆ D ? More precisely, we want 
to achieve the bounds (for some fixed � ≥ 1)

The remaining sections will give an answer to this very question. Since the con-
struction of VB,D,L is fairly technical and by no means straightforward, the proof is 
split into further parts:

(4) As the notation “ VB,D,L ” already suggests, the notion of locality plays a promi-
nent role in almost all parts of the proof. This is why we introduce so called inflated 
clusters, discrete cut-off functions, and the discrete cut-off operator in Sect. 3.6.

(5) In Sect. 3.7 we investigate an important class of functions for our analysis, the 
spaces of locally discrete harmonic functions �harm(B) ⊆ �

p,1

0
(T ) . These subspaces 

have three important properties: First, for certain f ∈ L2(�) , they contain the image 
ST f  . Second, they are invariant under the influence of their respective discrete cut-
off operators. Third, they allow for the discrete Caccioppoli inequality, a key ingre-
dient in deriving the asserted error bounds for VB,D,L.

(6) Finally, in Sect. 3.8 we construct the single- and multi-step coarsening oper-
ators. For any given u ∈ �harm(B

�) on the inflated cluster B𝛿 ⊇ B , the single-step 
coarsening operator Q�

B
 produces a “coarse” approximation Q�

B
u ∈ �harm(B) with a 

small approximation error on B . This is by far the most intricate part of the proof 
and puts all the aforementioned concepts to use. Afterwards, the multi-step coarsen-
ing operator Q�,L

B
 is just a combination of L ∈ ℕ single-step coarsening operators.

(7) In Sect.  3.9 we merely put all the pieces together and finish the proof of 
Theorem 2.15.

3.2 � Examples of meshes with locally bounded cardinality

In this subsection, we present two representatives of meshes with locally bounded 
cardinality (cf. Definition 2.4): Uniform meshes and algebraically graded meshes. 
To verify the locally bounded cardinality property for a given mesh, the following 
lemma is helpful.

dimVB,D,L ≲ L𝜅 , inf
v∈VB,D,L

‖ST f − v‖L2(B) ≲ 2−L‖f‖L2(D).
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Lemma 3.1  Let T ⊆ Pow(𝛺) be a shape-regular mesh as in Definition  2.2. Then, 
there hold the bounds

Proof  The first relation follows immediately from 1 ≂ ��� = ∑
T∈T �T� ≂

∑
T∈T h

d

T

≤ h
d

T
#T  . For the second bound, let B ⊆ T  . Using Lemma  3.15 ahead, we get 

hd
min,B

#B ≤
∑

T∈B h
d
T
≂
∑

T∈B �T� = �⋃B� ≲ (diamT (B) + hB)
d ≲ (diamT (B) + hmin,B)

d . This 
concludes the proof. 	�  ◻

Definition 3.2  (Uniform mesh) A mesh T ⊆ Pow(𝛺) is called uniform, if there exists 
a constant �unif ≥ 1 such that

Using Lemma 3.1, we immediately get the following result:

Lemma 3.3  Every uniform mesh T ⊆ Pow(𝛺) has locally bounded cardinality with 
�card = 1.

Definition 3.4  (Mesh graded towards Γ ) Let T ⊆ Pow(𝛺) be a mesh and Γ ⊆ ℝ
d 

satisfy Γ ⊆ ℝ
d�T  for all T ∈ T  . Furthermore, let � ≥ 1 be a grading exponent and 

H > 0 a coarse mesh width. We say that T  is (algebraically) graded towards Γ with 
parameters �,H , if there holds

Here, xT denotes the incenter of the element T and dist2(xT ,Γ) = inf�∈Γ ‖xT − �‖2 is 
the Euclidean distance between a point and a set.

The set Γ , towards which the mesh is graded, is usually determined by the given 
problem. For example, reentrant corners of the domain � or regions of non-smooth-
ness of the data may entail a reduced regularity of the solution u to the model prob-
lem from Sect. 2.1. This usually leads to reduced order of convergence of the finite 
element approximation on quasiuniform meshes. Choosing the set Γ to contain all 
singularities of the solution as well as choosing the parameter � correctly, one can 
restore the optimal order of convergence. To a large extent, the shape of Γ is irrel-
evant for our analysis. We only require that the mesh resolves Γ , i.e., the mesh can 
only be graded towards subsets of the mesh skeleton, e.g., vertices/edges/faces in 3D.

Lemma 3.5  Let T ⊆ Pow(𝛺) be a mesh graded towards Γ with parameters �,H . 
Then, there hold the bounds H𝛼 ≲ hmin,T ≤ hT ≲ H . Furthermore, T  has locally 
bounded cardinality with �card = �.

Proof  We start with the bounds for hT  and hmin,T  : For every T ∈ T  , we know from 
Definition  2.2 that Ball2(xT , 𝜎−1

shp
hT ) ⊆ T  . Combining this with the assumption 

1

hd
T

≲ #T, ∀B ⊆ T ∶ #B ≲

(
1 +

diamT (B)

hmin,B

)d

.

hmin,T ≤ hT ≤ �unifhmin,T.

∀T ∈ T ∶ hT ≂ dist2(xT ,Γ)
1−1∕�H.
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Γ ⊆ Tc from Definition  3.4 yields dist2(xT ,Γ) ≥ hT∕�shp . We conclude 
hT ≂ dist2(xT ,Γ)

1−1∕𝛼H ≳ h
1−1∕𝛼

T
H and ultimately hmin,T ≳ H𝛼 . On the other hand, 

we have the bound hT ≂ dist2(xT ,Γ)
1−1∕𝛼H ≤ supx∈𝛺 dist2(x,Γ)

1−1∕𝛼H ≲ H and thus 
hT ≲ H.

It remains to prove the locally bounded cardinality: Let B ⊆ T  be arbitrary. We 
fix an element B ∈ B with b∶=dist2(xB,Γ) = minT∈B dist2(xT ,Γ) and abbreviate 
Δb∶= diamT (B) . Note that hB ≂ (maxT∈B dist2(xT ,Γ))

1−1∕𝛼H ≲ (b + Δb)1−1∕𝛼H.
In the case b ≤ Δb we have the lower bound

In the remaining case b > Δb we get

In particular, both cases lead to the estimate

which concludes the proof. 	�  ◻

In order to gain a better understanding of Definition 2.4 it is instructive to investi-
gate a counter example as well. To this end, let 𝛺∶=(0, 1) ⊆ ℝ , M ∈ ℕ , �m∶=2−m for 
all m ∈ {0,… ,M − 1} and �M∶=0 . Then, the elements Tm∶=(𝜉m, 𝜉m−1) ⊆ 𝛺 com-
bine into an exponentially graded mesh T  that does not have locally bounded cardi-
nality. In fact, hT = hT1 = 2−1 and hmin,T = hTM = 21−M , which clearly contradicts the 
first requirement in Definition 2.4. Finally, note that an exponentially graded mesh 
can be interpreted as an algebraically graded mesh with grading exponent � = ∞ 
(cf. Definition 3.4).

3.3 � Examples of local dual functions

In this subsection, we present a way to construct bases of �p,1

0
(T ) that is common in 

the finite element method. This scheme encompasses, in particular, the classical hat 
functions �n ∈ �

1,1

0
(T ) as well as their generalization to p ≥ 1 (Lagrange elements). 

Then, we show explicitly how to find a local dual system {𝜆1,… , 𝜆N} ⊆ L2(𝛺) in 
the sense of Definition 2.6.

Let p ≥ 1 , L∶=dimℙ
p(T̂) and N∶=dim�

p,1

0
(T) . Let {𝜑1,… ,𝜑N} ⊆ �

p,1

0
(T ) be a 

basis such that:
1) Local supports: For every n ∈ {1,… ,N} , there exists an element Tn ∈ T  such 

that Tn ∈ suppT (𝜑n) ⊆ T(Tn).
2) Simple structure: There exists a basis of shape functions {𝜑̂1,… , 𝜑̂L} ⊆ ℙ

p(T̂) 
that determines the shape of the basis elements. More precisely, for every 

hmin,B ≥ hmin,T ≳ H𝛼 ≳
h𝛼
B

(b + Δb)𝛼−1
≥

h𝛼
B

(2Δb)𝛼−1
.

hmin,B ≂ H

(
min
T∈B

dist2(xT ,Γ)

)1−1∕𝛼

= Hb1−1∕𝛼 ≳ hB

(
b

b + Δb

)1−1∕𝛼

≥ 21∕𝛼−1hB.

#B
Lem. 3.1

≲

(
1 +

Δb

hmin,B

)d

≲

(
1 +

Δb

hB

)d𝛼

,



1 3

Approximating inverse FEM matrices on non‑uniform meshes… Page 13 of 36  31

n ∈ {1,… ,N} and every T ∈ suppT (�n) , there exists an index �(n, T) ∈ {1,… , L} 
such that 𝜑n|T = 𝜑̂

𝓁(n,T)◦F
−1
T

.
3) Local distinctness: The basis functions are locally distinct in the following 

sense: For all n ≠ m ∈ {1,… ,N} and all common T ∈ suppT (�n) ∩ suppT (�m) , 
there holds �(n, T) ≠ �(m,T).

For each basis function �n we fix an element Tn ∈ T  as in 1). Note that a standard 
scaling argument T ↔ T̂  readily provides the following relation:

For the construction of the dual functions �n ∈ L2(�) , let {𝜆̂1,… , 𝜆̂L} ⊆ ℙ
p(T̂ ) 

be the unique set of dual shape functions, i.e. ⟨𝜑̂
�
, 𝜆̂k⟩L2(T̂ ) = 𝛿

�k for all 
�, k ∈ {1,… , L} . We define the function 𝜆n ∈ �

p,0(T ) ⊆ L2(𝛺) in a piecewise man-
ner: For every T ≠ Tn , we set �n|T∶=0 , whereas

Lemma 3.6  The subset {𝜆1,… , 𝜆N} ⊆ L2(𝛺) constitutes a local dual system in the 
sense of Definition 2.6.

Proof  From the definition of �n , it is clear that suppT (𝜆n) = {Tn} ⊆ T(Tn) . As for 
the duality, let n,m ∈ {1,… ,N} . If Tm ∉ suppT (�n) , we have m ≠ n and therefore 
⟨�n, �m⟩L2(�) = 0 = �nm . In the remaining case Tm ∈ suppT (�n) we get

We compute |det∇FTm
| = |T̂|−1∕2|Tm|1∕2 . Recalling that |T| ≂ hd

T
 for every element 

T in a shape-regular mesh T  , we obtain for all m ∈ {1,… ,N} the relation

Finally, for every T ∈ T  , we consider the indices ms(T)∶={m | Tm = T} . Due to the 
duality formula from above, the system {𝜆1,… , 𝜆N} ⊆ �

p,0(T ) is linearly independ-
ent. As a consequence, there must hold #ms(T) ≲ 1 . For every x ∈ ℝ

N and every 
T ∈ T  , we estimate

Summing over all elements T ∈ T  then gives the asserted global stability bound. 
This concludes the proof. 	�  ◻

∀n ∈ {1,… ,N} ∶ ‖�n‖L2(�) ≂ h
d∕2

Tn
.

𝜆n|Tn∶= |det∇FTn
|−1 ⋅ (𝜆̂

𝓁(n,Tn)
◦F−1

Tn
).

⟨𝜑n, 𝜆m⟩L2(𝛺) = ⟨𝜑n, 𝜆m⟩L2(Tm) = ⟨𝜑̂
�(n,Tm)

, 𝜆̂
�(m,Tm)

⟩L2(T̂ ) = 𝛿
�(n,Tm)�(m,Tm)

= 𝛿nm.

‖𝜆m‖L2(𝛺) = �det∇FTm
�−1‖𝜆̂

𝓁(m,Tm)
◦F−1

Tm
‖L2(Tm)

= �T̂�1∕2�Tm�−1∕2‖𝜆̂𝓁(m,Tm)‖L2(T̂ ) ≂ h
−d∕2

Tm
.

����

N�

m=1

xm𝜆m
����

2

L2(T)

=
����

�

m∈ms(T)

xm𝜆m
����

2

L2(T)

≤
� �

m∈ms(T)

‖𝜆m‖2L2(𝛺)

�� �

m∈ms(T)

x2
m

�
≲ h−d

T

�

m∈ms(T)

x2
m
.



	 N. Angleitner et al.

1 3

31  Page 14 of 36

3.4 � A representation formula for the inverse system matrix

In this subsection, we develop a representation formula for A−1 in terms of 
three linear operators: Recall that A−1 represents the action of solving the dis-
crete model problem, so there must be a fundamental connection to the discrete 
solution operator ST ∶ L2(�) ⟶ �

p,1

0
(T ) . Additionally, we need a way to turn 

coefficient vectors f ∈ ℝ
N into functions f ∈ L2(�) that can be plugged into ST  . 

For this purpose, we can use the dual functions �n ∈ L2(�) from Definition 2.6 
and the corresponding coordinate mapping Λ ∶ ℝ

N
⟶ L2(�) . Finally, the 

image ST Λ f ∈ �
p,1

0
(T )  must be converted back to a vector in ℝN . A straight-

forward approach would be to use the inverse �−1 of the coordinate mapping 
� ∶ ℝ

N
⟶ 𝕊

p,1

0
(T ) associated with the basis functions �n ∈ �

p,1

0
(T ) . But, as it 

turns out, it is advantageous to use the Hilbert space transpose ΛT ∶ L2(�) ⟶ ℝ
N 

instead.
First, let us recall the following classical result:

Lemma 3.7  The bilinear form a(⋅, ⋅) from Definition 2.1 is coercive and continuous:

The precise definition of the solution operator ST  is given in the following Def-
inition 3.8 and the coordinate mappings � and Λ are defined in Definition 3.9.

Definition 3.8  Let a ∶ H1
0
(�) × H1

0
(�) ⟶ ℝ be the bilinear form of Definition 2.1. 

For every f ∈ L2(�) , denote by ST f ∈ �
p,1

0
(T ) the unique function satisfying the 

variational equality

The linear mapping ST ∶ L2(�) ⟶ �
p,1

0
(T ) is called discrete solution operator.

Recall from Sect.  2.4 that existence and uniqueness of ST f  are provided 
by the Lax-Milgram Lemma. Additionally, there holds the a priori bound 
‖ST f‖H1(𝛺) ≲ ‖f‖L2(𝛺).

Definition 3.9  Let {𝜑1,… ,𝜑N} ⊆ �
p,1

0
(T ) be a basis and {𝜆1,… , 𝜆N} ⊆ L2(𝛺) be a 

dual system compliant with Definition 2.6. We denote the corresponding coordinate 
mappings by

We summarize the most important properties of � and Λ in the following 
lemma. As usual, we use the notation supp(x)∶={n ∈ {1,… ,N} | xn ≠ 0} for the 
support of a vector x ∈ ℝ

N . Furthermore, recall from Definition 2.8 the notation 
T(I) ⊆ T  for all abstract matrix index sets I ⊆ {1,… ,N}.

∀u, v ∈ H1
0
(𝛺) ∶ ‖u‖2

H1(𝛺)
≲ a(u, u), �a(u, v)� ≲ ‖u‖H1(𝛺)‖v‖H1(𝛺).

∀v ∈ �
p,1

0
(T ) ∶ a(ST f , v) = ⟨f , v⟩L2(�).

� ∶

�
ℝ

N
⟶ 𝕊

p,1

0
(T )

x ⟼
∑N

n=1
xn�n

, Λ ∶

�
ℝ

N
⟶ L2(�)

x ⟼
∑N

n=1
xn�n

.
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Lemma 3.10  The Hilbert space transpose of Λ is given by the operator

The restriction of ΛT to the subspace �p,1

0
(T ) ⊆ L2(𝛺) coincides with the inverse 

mapping �−1 . More precisely, for all x, y ∈ ℝ
N and all v ∈ �

p,1

0
(T ) , there hold the 

duality/inversion formulae

Both Λ and ΛT preserve locality: For all x ∈ ℝ
N , v ∈ L2(�) and I ⊆ {1,… ,N} , we 

have

Proof  The operator ΛT is indeed the Hilbert space transpose of Λ : For all v ∈ L2(�) 
and x ∈ ℝ

N , we compute

The duality formula is a direct consequence of the duality property 
⟨�n, �m⟩L2(�) = �nm from Definition 2.6: For all x, y ∈ ℝ

N , we have

From this, we immediately get the inversion formula ΛT�x = x as well. On the 
other hand, for every v ∈ �

p,1

0
(T ) , there holds �ΛTv = �ΛT��−1v = ��−1v = v.

Next, we turn our attention to the preservation of locality by Λ:

Finally, let v ∈ L2(�) and I ⊆ {1,… ,N} . Let � ∈ L∞(�) be a (discontinuous) cut-
off function with � |T(I) ≡ 1 and � |T�T(I) ≡ 0 . Then,

which finishes the proof. 	�  ◻

Lemma 3.11  The system matrix A ∈ ℝ
N×N from Definition 2.9, the discrete solution 

operator ST ∶ L2(�) ⟶ �
p,1

0
(T ) from Definition 3.8, and the coordinate mapping 

Λ ∶ ℝ
N
⟶ L2(�) from Definition 3.9 are related via the representation formula

ΛT ∶

�
L2(�) ⟶ ℝ

N

v ⟼ (⟨v, �n⟩L2(�))
N
n=1

.

⟨�x,Λy⟩L2(�) = ⟨x, y⟩2, ΛT�x = x, �ΛTv = v.

suppT (Λx) ⊆ T(supp(x)), ‖ΛTv‖
�2(I) ≤ ‖Λ‖‖v‖L2(T(I)).

⟨ΛTv, x⟩2 =
N�

n=1

⟨v, �n⟩L2(�)xn =

�
v,

N�

n=1

xn�n

�

L2(�)

= ⟨v,Λx⟩L2(�).

⟨�x,Λy⟩L2(�) =

N�

n,m=1

xnym⟨�n, �m⟩L2(�) =

N�

n=1

xnyn = ⟨x, y⟩2.

∀x ∈ ℝ
N ∶ suppT (Λx) = suppT

( ∑

n∈supp(x)

xn𝜆n

)
⊆

⋃

n∈supp(x)

suppT(𝜆n)

Def. 2.8
= T(supp(x)).

‖ΛTv‖
�2(I) = ‖ΛT (�v)‖

�2(I) ≤ ‖ΛT (�v)‖2 ≤ ‖ΛT‖‖�v‖L2(�) = ‖Λ‖‖v‖L2(T(I)),

∀f ∈ ℝ
N ∶ A−1f = ΛTST Λ f .
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Proof  First, we establish a relationship between A and a by means of the coordinate 
mapping �:

Now, using the duality and inversion formulae from Lemma 3.10, we get

This readily implies the stated representation formula. 	�  ◻

3.5 � Reduction from matrix level to function level

In this subsection, we rephrase the original matrix approximation problem as a 
function approximation problem. This will remove the abstract matrix indices 
I ⊆ {1,… ,N} in favor of element clusters B ⊆ T  . The following lemma facilitates a 
reduction from the full matrix to the individual matrix blocks.

Lemma 3.12  Let ℙ be a sparse hierarchical block partition as in Definition  2.10. 
Then, there holds the estimate

Proof  In [21, Lemma 6.5.8] (see also [8, 19]), the bound

was established. Inserting the bounds for the cluster tree depth and sparsity constant 
from Definition 2.10 immediately gives the desired result. 	�  ◻

The following lemma is the main step in shifting the original problem from 
matrices to function spaces. Note that the representation formula for A−1 from 
Lemma 3.11 plays a crucial role in its proof.

Lemma 3.13  Let (I, J) ∈ ℙadm and V ⊆ L2(𝛺) be a finite-dimensional subspace. 
Then, there exist matrices X ∈ ℝ

I×r and Y ∈ ℝ
J×r with r ≤ dimV  such that there 

holds the error bound

Proof  We use the transposed coordinate mapping ΛT ∶ L2(�) ⟶ ℝ
N from 

Lemma  3.10 to define V∶=(ΛTV)|I ⊆ ℝ
I . Note that r∶=dimV ≤ dimV  . Next, let 

∀x, y ∈ ℝ
N ∶ ⟨Ax, y⟩2

Def. 2.9
=

N�

n,m=1

a(�n,�m)xnym
Def. 3.9
= a(�x,�y).

∀f , y ∈ ℝ
N ∶ ⟨AΛTST Λ f , y⟩2 = a(�ΛTST Λ f ,�y) = a(ST Λ f ,�y)

Def. 3.8
= ⟨Λ f ,�y⟩L2(�) = ⟨f ,ΛT�y⟩2 = ⟨f , y⟩2.

∀B ∈ ℝ
N×N ∶ ‖B‖2 ≲ ln(N) ⋅ max

(I,J)∈ℙ
‖B�I×J‖2.

‖B‖2 ≤ Csparse(𝕋N×N)depth(𝕋N) max
(I,J)∈ℙ

‖B�I×J‖2

‖A−1�I×J − XYT‖2 ≤ ‖Λ‖2 ⋅ sup
f∈L2(𝛺)∶

suppT (f )⊆T(J)

inf
v∈V

‖ST f − v‖L2(T(I))
‖f‖L2(𝛺)

.
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the columns of the matrix X ∈ ℝ
I×r be an �2(I)-orthonormal basis of V . In particu-

lar, the product XXT ∈ ℝ
I×I represents the �2(I)-orthogonal projection from ℝI onto 

V . Finally, set Y∶=(A−1|I×J)TX ∈ ℝ
J×r.

For every f ∈ ℝ
N with supp(f ) ⊆ J , we get the bound

We can divide both sides by ‖f‖
�2(J) , take suprema and substitute f∶=Λf ∈ L2(�) . 

Finally, we use suppT (f ) = suppT (Λ f ) ⊆ T(supp(f )) ⊆ T(J) and 
‖f‖−1

�2(J)
≤ ‖Λ‖‖f‖−1

L2(�)
 to get the desired result. 	�  ◻

A thorough understanding of the preceding lemma is absolutely fundamental for 
the subsequent sections. Therefore, let us recall its interpretation from Sect. 3.1:

Given B , D ⊆ T  with 0 < diamT (B) ≤ 𝜎admdistT (B,D) and L ∈ ℕ , how can we 
construct a subspace VB,D,L ⊆ L2(𝛺) of dimension dimVB,D,L ≲ L𝜅 (for some fixed 
� ≥ 1 ) that satisfies the error bound

for all source functions f ∈ L2(�) with suppT (f ) ⊆ D?

3.6 � The discrete cut‑off operator

The notion of cluster inflation provides a means of enlarging a given cluster by a 
predefined threshold with respect to the mesh metric distT (⋅, ⋅) from Definition 2.3. 
This is one of the core concepts in our proof and will be used extensively. We 
acknowledge this fact with tight notation:

Definition 3.14  For every cluster B ⊆ T  and every radius � ≥ 0 , we introduce the 
inflated cluster

We summarize the most important facts about the mesh metric and inflated clus-
ters in the subsequent lemma.

Lemma 3.15  The mesh metric distT (⋅, ⋅) from Definition 2.3 defines a metric on T  . 
There holds the triangle type inequality

For every element T ∈ T  and every neighbor S ∈ T(T) , [cf. (2.1)] the distance is 
bounded by distT (T , S) ≤ �shphT . On the other hand, for every S ∈ T �{T} , we have 

‖(A−1�I×J − XYT )f �J‖𝓁2(I) = ‖(I − XXT )(A−1f )�I‖𝓁2(I) = inf
v∈V

‖(A−1f )�I − v‖
𝓁2(I)

Lem. 3.11
= inf

v∈V
‖ΛT (ST Λ f − v)‖

𝓁2(I)

Lem. 3.10

≤ ‖Λ‖ ⋅ inf
v∈V

‖ST Λ f − v‖L2(T(I)).

inf
v∈VB,D,L

‖ST f − v‖L2(B) ≲ 2−L‖f‖L2(D),

B
�∶={T ∈ T | distT (T ,B) ≤ �}.

∀A,B, C ⊆ T ∶ distT (A, C) ≤ distT (A,B) + diamT (B) + distT (B, C).
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the lower bound distT (T , S) ≥ �−1
shp

(hT + hS) . Additionally, for every cluster B ⊆ T  , 
there holds hB ≤ max{hmin,B, �shpdiamT (B)}.

When dealing with a second mesh S ⊆ Pow (𝛺) , cluster diameters are essentially 
equivalent:

Finally, consider clusters B ⊆ C ⊆ T  and inflation radii � , � ≥ 0 . Then, 
B ⊆ B

𝛿 ⊆ (B𝛿)𝜀 ⊆ B
𝛿+𝜀 ⊆ C

𝛿+𝜀 . For the cluster patch T(B) we have the inclusion 
T(B) ⊆ B

𝜎shphB . Finally, diamT (B
�) ≤ diamT (B) + 2� and h

B
� ≤ max{hB, �shp�}.

Proof  Both the verification of the metric axioms for distT(⋅, ⋅) and the triangle type 
inequality are straightforward.

Let T ∈ T  and S ∈ T(T) . From the assumption on shape regularity following Def-
inition  2.2, we know that xS ∈ S ⊆

⋃
T(T) ⊆ Ball2(xT , 𝜎shphT ) . This yields 

distT(T , S) = ‖xS − xT‖2 ≤ �shphT . Next, let T ∈ T  and S ∈ T �{T} . Again, from 
shape regularity, we know that Ball2(xS, 𝜎−1

shp
hS) ⊆ S and Ball2(xT , 𝜎−1

shp
hT ) ⊆ T  . 

Since S and T are disjoint, the inscribed balls have to be disjoint, too. We conclude 
distT(T , S) = ‖xS − xT‖2 ≥ �−1

shp
(hT + hS).

Next, let B ⊆ T  . In the case #B = 1 we clearly have hB = hmin,B . In the case 
#B ≥ 2 we can choose distinct elements B ≠ Bmax ∈ B with hBmax

= hB and conclude 
hB = hBmax

≤ �shpdistT (B,Bmax) ≤ �shpdiamT (B).
Let S ⊆ Pow(𝛺) be an additional mesh, B ⊆ T  and B∶=

⋃
B ⊆ ℝ

d the associ-
ated domain. For every S ∈ S(B) there exists a T(S) ∈ B with T(S) ∩ S ≠ � . Clearly, 
‖xS − xT(S)‖2 ≤ hS + hT(S) . We conclude

The inclusion chain for inflated clusters follows directly from Definition 3.14 and 
the triangle type inequality above.

To see the inclusion of a cluster patch in some inflated cluster, let B ⊆ T  . 
Then, for every T ∈ T(B) there exists a B ∈ B with T ∈ T(B) . We get 
distT (T ,B) ≤ distT (T ,B) ≤ �shphB ≤ �shphB , i.e., the inclusion T(B) ⊆ B

𝜎shphB.
Once again, let B ⊆ T  and � ≥ 0 . The inequality diamT (B

�) ≤ diamT (B) + 2� 
can be derived from the mesh metric’s triangle inequality. Finally, to find an upper 
bound for h

B
� , consider an arbitrary T ∈ B

� . By definition, there exists a B ∈ B with 
distT (T ,B) ≤ � . In the case T = B we get hT = hB ≤ hB and in the remaining case 
T ≠ B we have hT ≤ �shpdistT (T ,B) ≤ �shp� . 	�  ◻

For the construction of the cut-off function ��
B
 in Lemma 3.18 we will use a vari-

ant of the classical Clément operator, [10].

∀B ⊆ T ∶ diamS(S (
�

B)) ≤ diamT (B) + 2hB + 2hS(
⋃

B).

diamS(S(B)) ≤ max
R,S∈S(B)

‖xS − xT(S)‖2 + ‖xT(S) − xT(R)‖2 + ‖xT(R) − xR‖2

≤ diamT(B) + 2hB + 2hS(B).
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Definition 3.16  Let N ⊆ 𝛺 be the nodes of the mesh T  and denote by 
{bN |N ∈ N} ⊆ �

1,1(T ) the well-known hat-functions, i.e., bN(M) = �NM . We write 
⟨v⟩T∶=�T�−1 ∫T v dx ∈ ℝ for the mean value of a function v ∈ L2(�) on an element 
T ∈ T  . Now, the Clément operator JT ∶ L2(�) ⟶ �

1,1(T ) is defined in a nodewise 
fashion: For every v ∈ L2(�) , we set JTv∶=

∑
N∈N �NbN , where the nodal value �N 

is given by

Lemma 3.17  The linear operator JT  has a local projection property: Given a cluster 
B ⊆ T  and a function v ∈ L2(�) with v|T(B) ≡ const , there holds (JTv)|B = v|B . Fur-
thermore, JT  preserves discrete supports: For every q ≥ 0 and every v ∈ �

q,0(T ) , 
there holds suppT (JTv) ⊆ T(supp(v)) . Moreover, JT  preserves ranges: For every 
v ∈ �

1,0(T ) with 0 ≤ v ≤ 1 there also holds 0 ≤ JTv ≤ 1 . Finally, we have the stabil-
ity bound

Proof  We only show the stability bound: For every w ∈ �
1,0(T ) and 

every T ∈ T  , the inverse inequality from Lemma  3.20 provides the esti-
mate hT �w�W1,∞(T) ≲ ‖w‖L∞(T) = maxN∈N(T) �w(N)� , where N(T) denotes the 
nodes of the element T. Since | ⋅ |W1,∞(T) annihilates constants, we also get 
hT |w|W1,∞(T) ≲ maxN,M∈N(T) |w(N) − w(M)| . Inserting w∶=JTv ∈ �

1,1(T ) and using 
(JTv)(N) = �N , the asserted stability bound follows readily. 	�  ◻

The discretized model problem a(u, v) = ⟨f , v⟩L2(�) was phrased in terms of 
global functions u, v ∈ �

p,1

0
(T ) . But if we plug in a function v with local support, 

e.g., suppT(v) ⊆ B for some prescribed cluster B ⊆ T  , we can extract local infor-
mation about u on B . This motivates the usage of discrete cut-off functions.

Lemma 3.18  Let B ⊆ T  and 𝛿 > 0 with 4𝜎3
shp

hB ≤ 𝛿 ≲ 1 . Then, there exists a dis-
crete cut-off function ��

B
 with

Proof  We abbreviate 𝜀∶=𝛿∕(4𝜎2
shp

) > 0 and consider a step function � ∈ �
0,0(T ) 

defined by

From the definition we immediately get suppT(𝜅 ) ⊆ T(B)𝜀 and � |T(B) ≡ 1 as well 
as 0 ≤ � ≤ 1 . (Recall that T(B) are all patch elements of B and T(B)� is the corre-
sponding inflated cluster by a radius of � .) Next, for every T ∈ T  and every neigh-
bor S ∈ T(T) , we apply the triangle inequality from Lemma  3.15 to the clusters 

�N∶=
1

#T(N)

�

T∈T(N)

⟨v⟩T .

∀v ∈ L2(𝛺) ∶ ∀T ∈ T ∶ hT �JTv�W1,∞(T) ≲ max
S∈T(T)

�⟨v⟩T − ⟨v⟩S�.

𝜅𝛿
B
∈ �

1,1(T ), suppT (𝜅
𝛿
B
) ⊆ B

𝛿 , 𝜅𝛿
B
�B ≡ 1, 0 ≤ 𝜅𝛿

B
≤ 1, ‖𝜅𝛿

B
‖W1,∞(𝛺) ≲

1

𝛿
.

∀T ∈ T ∶ � |T∶=max{0, 1 − distT (T , T(B))∕�} ∈ ℝ.
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{T}, {S}, T(B) and derive distT (T , T(B)) ≤ distT (T , S) + distT (S, T(B)) . (Recall from 
Definition 2.3 that diamT (S) = 0 , since {S} contains only one element.) Exploiting 
the Lipschitz continuity of t ↦ max{0, t} , we get the error bound

We use the Clément operator JT ∶ L2(�) ⟶ �
1,1(T ) from Definition 3.16 to define 

��
B
∶=JT� ∈ �

1,1(T ) . For the support of ��
B
 we compute

where in the last step we used � ≥ 4�3
shp

hB.
From Lemma 3.17 and � |T(B) ≡ 1 we get ��

B
|B ≡ 1 . Moreover, 0 ≤ � ≤ 1 yields 

0 ≤ ��
B
≤ 1 . This implies, in particular, ‖𝜅𝛿

B
‖L∞(𝛺) ≤ 1 ≲ 𝛿−1 , where we used the 

assumption 𝛿 ≲ 1 . The remaining bound |𝜅𝛿
B
|W1,∞(𝛺) ≲ 𝛿−1 follows from

This finishes the proof. 	�  ◻

Given a cluster B ⊆ T  and a distance 𝛿 > 0 , the discrete cut-off function ��
B
 

allows us to “restrict” a function v ∈ �
p,1(T ) to the subdomain 

⋃
B
𝛿 ⊆ 𝛺 while 

preserving continuity. This can be achieved by simply multiplying v with ��
B
 . 

Note that the product ��
B
v has polynomial degree p + 1 , rather than p. To mitigate 

this drawback, we can simply re-interpolate the result with an operator of order p.

Definition 3.19  Let p ≥ 1 and denote by Îp ∶ C0(T̂) ⟶ ℙ
p(T̂) the (local) Lagrange 

interpolation operator on the reference element T̂  . The (global) Lagrange interpola-
tion operator Ip

T
∶ C0

pw
(T ) ⟶ �

p,0(T ) is defined in a piecewise manner: For every 
v ∈ C0

pw
(T ) and every T ∈ T  , we set

In order to derive a useful stability estimate for Ip
T

 , we use a standard element-
wise inverse inequality, which follows from scaling arguments.

Lemma 3.20  Let k,� ∈ ℕ0 with k ≥ � ≥ 0 , q ∈ [1,∞] and p ≥ 0 . Then, for all 
discrete functions v ∈ �

p,0(T ) and all elements T ∈ T  , there holds the inverse 
inequality

|𝜅 |T − 𝜅 |S| ≤
|distT (T , T(B)) − distT (S, T(B))|

𝜀
≤
distT (T , S)

𝜀

Lem. 3.15

≲
hT

𝜀
≂

hT

𝛿
.

suppT (𝜅
𝛿
B
)
Lem. 3.17

⊆ T(suppT (𝜅 )) ⊆ T(T(B)𝜀)
Lem. 3.15

⊆ B
(1+𝜎2

shp
)(𝜎shphB+𝜀)

⊆ B
2𝜎3

shp
hB+𝛿∕2 ⊆ B

𝛿 ,

∀T ∈ T ∶ hT |𝜅𝛿
B
|W1,∞(T)

Lem. 3.17

≲ max
S∈T(T)

|𝜅 |T − 𝜅 |S| ≲
hT

𝛿
.

(I
p

T
v)|T∶= Îp(v◦FT )◦F

−1
T
.

hk
T
|v|Wk,q(T) ≲ h�

T
|v|W�,q(T).
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The properties of the Lagrange interpolation operator Ip
T

 are very similar to 
those of the Clément operator JT  from Definition 3.16. For the sake of complete-
ness, we include them in the following lemma.

Lemma 3.21  Let p ≥ 1 . The linear operator Ip
T

 has a local projection property: 
Given a cluster B ⊆ T  and a function v ∈ C0

pw
(T ) with v ∈ �

p,0(B) , there holds 
(I

p

T
v)|B = v|B . Furthermore, Ip

T
 preserves global continuity and homogeneous bound-

ary values: For every v ∈ C0(�) , there holds Ip
T
v ∈ �

p,1(T ) . Similarly, if v ∈ C0(�) 
with v|�� ≡ 0 , then Ip

T
v ∈ �

p,1

0
(T ) . Moreover, Ip

T
 preserves discrete supports: For 

every q ≥ 0 and every v ∈ �
q,0(T ) , we have suppT (I

p

T
v) ⊆ suppT (v) . Finally, for all 

q ≥ 0 , v ∈ �
q,0(T ) and T ∈ T  , there hold the following stability and error estimates 

(with constants depending on q):

Proof  We briefly sketch the proof of the stability and error bounds: The map-
ping v ↦ ‖Îpv‖L2(T̂ ) + �v�Hp+1(T̂ ) defines a norm on the finite-dimensional space 
ℙ
q(T̂ ) . Hence, by norm equivalence, ‖v‖Hp+1(T̂ ) ≲ ‖Îpv‖L2(T̂ ) + �v�Hp+1(T̂ ) for all 

v ∈ ℙ
q(T̂ ) . Inserting v∶=w − Îpw for arbitrary w ∈ ℙ

q(T̂ ) results in the bound 
‖w − Îpw‖Hp+1(T̂ ) ≲ �w�Hp+1(T̂ ) . Finally, a standard scaling argument T̂ ↔ T  yields 
the desired error estimate on T. As for the stability bound, we perform a straight-
forward triangle inequality on T, reuse the already proven error bound and finish off 
with the inverse inequality from Lemma 3.20. 	�  ◻

Remark 3.22  The fact that Ip
T

 preserves global continuity and homogeneous bound-
ary values hinges on an implicit assumption about the (local) interpolation points 
used by the local Lagrange interpolation operator Îp . Recall from Definition 2.2 that 
the reference element T̂ ⊆ ℝ

d is a simplex and thus delimited by d + 1 hyperplanes. 
The interpolation points on each hyperplane Ê must be unisolvent for the space 
ℙ
p(Ê) . Then, in particular, every polynomial v ∈ ℙ

p(T̂ ) vanishing at the interpola-
tion points in Ê must already vanish everywhere on Ê . This property readily implies 
that homogeneous boundary values are preserved by the global operator Ip

T
 . Finally, 

the distribution of interpolation points on each hyperplane Ê must be “symmetric”. 
More precisely, if two elements T1 , T2 ∈ T  share a common hyperplane, we require 
the corresponding interpolation points to align perfectly. In this case, using the same 
argument as before, the operator Ip

T
 preserves global continuity indeed.

As our next step, we encapsulate the aforementioned “cut-off” process in a lin-
ear operator.

Definition 3.23  Let B ⊆ T  and 𝛿 > 0 with 4𝜎3
shp

hB ≤ 𝛿 ≲ 1 and denote by 
��
B
∈ �

1,1(T ) the discrete cut-off function from Lemma 3.18. Furthermore, denote 
by Ip

T
∶ C0

pw
(T ) ⟶ �

p,0(T ) the Lagrange interpolation operator from Defini-
tion 3.19. We define the discrete cut-off operator

∀m ∈ {0,… , p + 1} ∶ �Ip
T
v�Hm(T) ≲ �v�Hm(T),∑p+1

�=0
h�
T
�(id − I

p

T
)(v)�H�(T) ≲ h

p+1

T
�v�Hp+1(T).
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The discrete cut-off operator K�
B
 inherits its core properties from Ip

T
.

Lemma 3.24  Let B ⊆ T  and 𝛿 > 0 with 4𝜎3
shp

hB ≤ 𝛿 ≲ 1 . For all v ∈ �
p,1(T ) , the 

linear operator K�
B
 has the cut-off property suppT (K𝛿

B
v) ⊆ B

𝛿 and the local projec-
tion property (K�

B
v)|B = v|B . Furthermore, K�

B
 preserves homogeneous boundary 

values: For all v ∈ �
p,1

0
(T ) , there holds K�

B
v ∈ �

p,1

0
(T ) . Finally, for every 

v ∈ �
p,1(T ) and every T ∈ T  , there holds the local stability estimate

Proof  The cut-off property, the local projection property and the preservation of 
homogeneous boundary values follow directly from Lemma 3.21 and Lemma 3.18. 
Finally, let v ∈ �

p,1(T ) and T ∈ T  . Note that ��
B
v ∈ �

p+1,1(T ) , i.e., we can use the 
stability estimate from Lemma 3.21:

This finishes the proof. 	�  ◻

3.7 � The spaces of locally discrete harmonic functions

In this subsection, we introduce the spaces of locally discrete harmonic func-
tions. As we already mentioned in Sect.  3.1, they are chosen for three main rea-
sons: To begin with, they fit in seamlessly with the discrete solution opera-
tor ST ∶ L2(�) ⟶ �

p,1

0
(T ) from Definition  3.8. Furthermore, as specified in 

Lemma  3.26, they are invariant with respect to the discrete cut-off operators 
K�
B
∶ �

p,1(T ) ⟶ �
p,1(T ) from Definition 3.23. But most importantly, they contain 

functions whose H1-norms can be bounded by L2-norms with constants independent 
of h , i.e., a discrete Caccioppoli inequality holds.

Definition 3.25  For every B ⊆ T  , the space of locally discrete harmonic functions is 
given by

K�
B
∶

{
�
p,1(T ) ⟶ �

p,1(T )

v ⟼ I
p

T
(��

B
v)

.

‖K𝛿
B
v‖L2(T) + 𝛿�K𝛿

B
v�H1(T) ≲ ‖v‖L2(T) + 𝛿�v�H1(T).

1∑

�=0

𝛿�|K𝛿
B
v|H�(T) ≲

1∑

�=0

𝛿�|𝜅𝛿
B
v|H�(T) ≲

1∑

�=0

𝛿�
�∑

i=0

|𝜅𝛿
B
|W�−i,∞(T)|v|Hi(T)

Lem. 3.18

≲

1∑

�=0

𝛿�
�∑

i=0

𝛿i−�|v|Hi(T) ≲

1∑

�=0

𝛿�|v|H�(T).

�harm(B)∶={u ∈ �
p,1

0
(T ) |∀v ∈ �

p,1

0
(T ) with suppT (v) ⊆ B ∶ a(u, v) = 0} ⊆ �

p,1

0
(T ).
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We summarize the first two main features of the spaces �harm(B) in the next lemma, 
namely, their relationships to the discrete solution operator ST ∶ L2(�) ⟶ �

p,1

0
(T ) 

and the discrete cut-off operators K�
B
∶ �

p,1(T ) ⟶ �
p,1(T ).

Lemma 3.26  The spaces of locally discrete harmonic functions are nested in the sense

Furthermore, for all clusters B , D ⊆ T  with B ∩D = � , the operator ST  has the 
mapping property

Finally, for all B ⊆ T  and all 𝛿 > 0 with 4𝜎3
shp

hB ≤ 𝛿 ≲ 1 , we have the invariance

Proof  The inclusion �harm(B
+) ⊆ �harm(B) follows directly from the definition of 

the spaces. As for the mapping properties of ST  , let f ∈ L2(�) with suppT (f ) ⊆ D . 
Then, for every v ∈ �

p,1

0
(T ) with suppT (v) ⊆ B , we have

Finally, consider a function u ∈ �harm(B) and an arbitrary v ∈ �
p,1

0
(T ) with 

suppT (v) ⊆ B . Then,

This gives K�
B
u ∈ �harm(B) , which concludes the proof. 	�  ◻

Next, we turn our attention to the discrete Caccioppoli inequality. In a nutshell, 
it will allow us to bound an H1-norm on a cluster B ⊆ T  by an L2-norm on the 
slightly larger cluster B� . Obviously, this can only be true for a certain subspace 
V ⊆ �

p,1(T ) . In our setting, this is the space of locally discrete harmonic functions 
�harm(B

�) from Definition 3.25. We can interpret the discrete Caccioppoli inequality 
as an improved version of the inverse inequality from Lemma 3.20, which bounds 
an H1-seminorm by an L2-norm, too. This time, however, the prefactor h of the H1

-seminorm can be increased to a (possibly much) bigger parameter 𝛿 ≫ h.

Lemma 3.27  Let B ⊆ T  and 𝛿 > 0 with 4𝜎3
shp

hB ≤ 𝛿 ≲ 1 . Then, for every 
u ∈ �harm(B

�) , there holds the discrete Caccioppoli inequality

∀B ⊆ B
+ ⊆ T ∶ �harm(B

+) ⊆ �harm(B).

∀f ∈ L2(𝛺) with suppT (f ) ⊆ D ∶ ST f ∈ �harm(B).

∀u ∈ �harm(B) ∶ K�
B
u ∈ �harm(B).

a(ST f , v)
Def. 3.8
= ⟨f , v⟩L2(D∩B)

B∩D=�
= 0.

a(K�
B
u, v)

Def. 2.1
= ⟨a1∇K�

B
u,∇v⟩

L2(B) + ⟨a2 ⋅ ∇K�
B
u, v⟩

L2(B) + ⟨a3K�
B
u, v⟩

L2(B)

Lem. 3.24
= ⟨a1∇u,∇v⟩

L2(B) + ⟨a2 ⋅ ∇u, v⟩
L2(B) + ⟨a3u, v⟩L2(B)

= a(u, v)

= 0.

𝛿�u�H1(B) ≲ ‖u‖L2(B𝛿).
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Proof  First off, by induction on p ≥ 1 we show the following estimate: For every 
� ∈ �

1,1(T ) , u ∈ �
p,0(T ) and T ∈ T ,

In the base case p = 1 , the second order derivatives in |� 2u|H2(T) can 
be computed explicitly. Since � , u ∈ ℙ

1(T) , the terms containing D�� 
or D�u with |�| = 2 are not present. In the induction step p ↦ p + 1 , 
we estimate �𝜅 2u�Hp+2(T) ≲

∑
i �𝜅 (𝜕i𝜅 )u�Hp+1(T) + �𝜅 2(𝜕

i
u)�Hp+1(T) . For 

the first summand, we use the inverse inequality Lemma  3.20 and get 
|𝜅 (𝜕

i
𝜅 )u|Hp+1(T) ≲ h

−p

T
|𝜅 (𝜕

i
𝜅 )u|H1(T) . Again, we can expand the derivatives explic-

itly and cancel all terms containing second order derivatives of � ∈ ℙ
1(T) . 

The second summand is directly amenable to the induction hypothesis, i.e., 
(3.1): �𝜅 2(𝜕

i
u)�Hp+1(T) ≲ h

1−p

T
�𝜅 �W1,∞(T)(‖(𝜕iu)∇𝜅‖L2(T) + ‖𝜅∇(𝜕

i
u)‖L2(T)) . Since 

∇� ≡ const , we have

The term ‖�∇(�
i
u)‖L2(T) can be treated with the identity 

�∇(�
i
u) = �i(�∇u) − (�

i
� )∇u and the inverse inequality Lemma  3.20 using the 

same arguments. Multiplication with hp+2
T

 then proves the induction step.
Let us turn our attention to the discrete Caccioppoli inequality itself. To this end, 

let B ⊆ T  and 𝛿 > 0 with 4𝜎3
shp

hB ≤ 𝛿 ≲ 1 . We denote by �∶=��
B
∈ �

1,1(T ) the dis-
crete cut-off function from Lemma  3.18 and by Ip

T
∶ C0

pw
(T ) ⟶ �

p,0(T ) the 
Lagrange interpolation operator from Definition  3.19. Furthermore, let 
u ∈ �harm(B

�) . The key step of the proof is to exploit the orthogonality a(u, v) = 0 
for some carefully chosen test function v ∈ �

p,1

0
(T ) with suppT (v) ⊆ B

𝛿 . From Lem-
mas  3.21 and 3.18 we know that v∶=Ip

T
(� 2u) satisfies both v ∈ �

p,1

0
(T ) and 

suppT (v) ⊆ suppT (𝜅 ) ⊆ B
𝛿 , i.e., we can use v as a test function. This results in the 

following bound:

(3.1)h
p+1

T
�𝜅 2u�Hp+1(T) ≲ h2

T
�𝜅 �W1,∞(T)(‖u∇𝜅‖L2(T) + ‖𝜅∇u‖L2(T)).

‖(𝜕
i
u)∇𝜅‖L2(T) = �∇𝜅 �‖𝜕

i
u‖L2(T) ≲ h−1

T
�∇𝜅 �‖u‖L2(T) = h−1

T
‖u∇𝜅‖L2(T).

a(u, 𝜅 2u) = a(u, 𝜅 2u − v) = a(u, (id − I
p

T
)(𝜅 2u))

Def. 2.1

≲
�

T∈B𝛿

‖u‖H1(T)‖(id − I
p

T
)(𝜅 2u)‖H1(T)

Lem. 3.21

≲
�

T∈B𝛿

‖u‖H1(T)h
p

T
�𝜅 2u�Hp+1(T)

≲ �𝜅 �W1,∞(𝛺)

�

T∈B𝛿

hT‖u‖H1(T)(‖u∇𝜅‖L2(T) + ‖𝜅∇u‖L2(T))

Lem. 3.20

≲ �𝜅 �W1,∞(𝛺)

�

T∈B𝛿

‖u‖L2(T)(‖u∇𝜅‖L2(T) + ‖𝜅∇u‖L2(T))

C.Sch.

≲ �𝜅 �W1,∞(𝛺)‖u‖L2(B𝛿)(‖u∇𝜅‖L2(𝛺) + ‖𝜅∇u‖L2(𝛺)).
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On the other hand, using the coercivity of the PDE coefficient a1 in the bilinear form 
a(⋅, ⋅) , cf. Sect. 2.1, we can expand the term a(u, � 2u) and rearrange the summands:

Finally, since the parameter 𝜀 > 0 from Young’s inequality can be chosen arbitrarily 
small, we can absorb the last summand of the right-hand side in the left-hand side of 
the overall inequality. We end up with

This concludes the proof of the discrete Caccioppoli inequality. 	�  ◻

3.8 � The single‑ and multi‑step coarsening operators

In this subsection, we do the actual work in the construction of the subspace 
VB,D,L ⊆ �

p,1

0
(T ) from Sect.  3.1. We design the so called single- and multi-step 

coarsening operators. Given B ⊆ T  , 𝛿 > 0 and u ∈ �harm(B
�) , the single-step coars-

ening operator Q�
B
 produces a “coarse” approximation Q�

B
u ∈ �harm(B) with an error 

‖u − Q�
B
u‖L2(B) ≤ 2−1‖u‖L2(B�) . The prefactor 2−1 ∈ (0, 1) is essential, as it produces 

an exponential factor 2−L when L ∈ ℕ single-step coarsening operators are com-
bined in a specific manner. This is precisely the idea behind the multi-step coarsen-
ing operator Q�,L

B
 . Given a function u ∈ �harm(B

�L) , it produces a “coarse” approxi-
mation Q�,L

B
u ∈ �harm(B) with an error ‖u − Q

�,L

B
u‖L2(B) ≤ 2−L‖u‖L2(B�L).

As our construction of the single-step coarsening operator in Theorem 3.31 is quite 
technical, we would like to reveal the underlying ideas first: Assume for a moment 
that T  is uniform, i.e., hT ≂ hmin,T  . Then, a function u ∈ �harm(B

�) is described by 
up to dim�

p,0(T ) ≂ #T ≂ h−d
T

 degrees of freedom. In order to reduce this number, 
we could approximate u ≈ Π

p

S
u ∈ �

p,0(S) , where S ⊆ Pow(𝛺) is a second uniform 
mesh and where Πp

S
∶ L2(�) ⟶ �

p,0(S) is some kind of approximation operator. 
As long as S is coarser than T  , i.e. hS ≳ hT  , this provides a reduction of the dimen-
sion. On the other hand, the typical error bound ‖u − Π

p

S
u‖L2(𝛺) ≲ H�u�H1(𝛺) involves 

an H1-norm on the right-hand side. In order to get rid of the H1-norm, we want to 
apply the discrete Caccioppoli inequality, Lemma 3.27. For this to work, however, 
we first need to reduce the global quantity H|u|H1(�) to the local quantity H|u|H1(B) . 
This can be done using the discrete cut-off operator K�

B
 from Definition 3.23. Finally, 

‖𝜅∇u‖2
L2(𝛺)

≲ ⟨a1𝜅∇u, 𝜅∇u⟩
L2(𝛺)

Def. 2.1
= a(u, 𝜅 2

u) − 2⟨a1𝜅∇u, u∇𝜅⟩
L2(𝛺)

− ⟨a2 ⋅ ∇u, 𝜅 2
u⟩

L2(𝛺) − ⟨a3u, 𝜅 2
u⟩

L2(𝛺)

≲ �𝜅 �
W1,∞(𝛺)‖u‖L2(B𝛿)(‖u∇𝜅‖

L2(𝛺) + ‖𝜅∇u‖
L2(𝛺))

+ ‖𝜅∇u‖
L2(𝛺)‖u∇𝜅‖

L2(𝛺) + ‖𝜅∇u‖
L2(𝛺)‖𝜅u‖L2(𝛺) + ‖𝜅u‖2

L2(𝛺)

∀𝜀>0

≤ C𝜀‖𝜅‖2W1,∞(𝛺)
‖u‖2

L2(B𝛿)
+ 𝜀‖𝜅∇u‖2

L2(𝛺)
.

�u�H1(B)

𝜅 �B≡1
≤ ‖𝜅∇u‖L2(𝛺) ≲ ‖𝜅‖W1,∞(𝛺)‖u‖L2(B𝛿)

Lem. 3.18

≲
1

𝛿
‖u‖L2(B𝛿).
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the combined operator Πp

S
K�
B
∶ �harm(B

�) ⟶ �
p,0(S) only lacks one more thing: It 

does not necessarily map into the space �harm(B) , which is a critical requirement, 
because we want to iterate the argument by plugging the remainder ũ∶= u − Q𝛿

B
u 

of one single-step coarsening operator into another one. Thankfully, we can simply 
append the orthogonal projection PB ∶ L2(�) ⟶ �harm(B) without losing any of 
the aforementioned properties.

In the next lemma we provide a construction for the second, coarser mesh 
S ⊆ Pow(𝛺):

Lemma 3.28  Let S0 ⊆ Pow(𝛺) be an arbitrary mesh and (S
�
)
�∈ℕ0

 be the cor-
responding sequence of uniform refinements. For every H > 0 , there exists an 
S ∈ (S

�
)
�∈ℕ0

 with �shp(S) = C(S0) and C(S0)H ≤ hmin,S ≤ hS ≤ H . In particular, S 
is uniform in the sense of Definition 3.2.

Proof  There hold the relations hS
�
= 2−�hS0

 and hmin,S
�
= 2−�hmin,S0

 . For any given 
H > 0 , we choose the mesh S∶=SL , where L ∈ ℕ0 is the minimal level satisfying 
hSL

≤ H . In particular, there also holds the lower bound 
H < hSL−1

= 2−(L−1)hS0
= 2hS0

h−1
min,S0

hmin,SL
= C(S0)hmin,SL

 . 	�  ◻

The additional mesh S ⊆ Pow(𝛺) does not need to be aligned with the original 
mesh T ⊆ Pow(𝛺) at all. The output of the cut-off operator K�

B
 is just an element 

of �p,1

0
(T ) ⊆ H1(𝛺) , so we need an operator ΠS ∶ H1(�) ⟶ �

q,0(S) for some 
q ≥ 0 . Also, in the case S = T  the operator should act like a projection on func-
tions from �p,1

0
(T ) . The simplest solution for these demands is the L2(�)-orthogo-

nal projection.

Definition 3.29  We denote by Πp

S
∶ L2(�) ⟶ �

p,0(S) the (global) orthogonal pro-
jection from L2(�) onto the closed subspace �p,0(S).

In fact, Πp

S
 coincides with the piecewise L2-orthogonal projection on the mesh S . 

This results in desirable local properties and bounds.

Lemma 3.30  The linear operator Πp

S
 has a local projection property: For 

every cluster B ⊆ S and every function v ∈ L2(�) with v ∈ �
p,0(B) , there holds 

(Π
p

S
v)|B = v|B . Furthermore, Πp

S
 preserves supports: For every v ∈ L2(�) , we have 

suppS(Π
p

S
v) ⊆ suppS(v) . Finally, for every k ∈ {0,… , p + 1} , there hold the stability 

and error estimates

Now, we have all the ingredients for the construction of the single-step coarsen-
ing operator.

∀v ∈ Hk
pw
(S) ∶ ∀S ∈ S ∶

k∑
�=0

h�
S
�Πp

S
v�H�(S) ≲

k∑
�=0

h�
S
�v�H�(S),

k∑
�=0

h�
S
�(id − Π

p

S
)(v)�H�(S) ≲ hk

S
�v�Hk(S).
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Theorem 3.31  Let T ⊆ Pow(𝛺) be a mesh of locally bounded cardinality. Further-
more, let B ⊆ T  and 𝛿 > 0 with 𝛿 ≲ 1 . Then, there exists a linear single-step coars-
ening operator

of rank

that satisfies the following approximation property: For every u ∈ �harm(B
�),

Proof  Let B ⊆ T  and 𝛿 > 0 with 𝛿 ≲ 1 . For the construction of Q�
B
 we need three 

operators: First, we use the discrete cut-off operator K�
B
∶ �

p,1(T ) ⟶ �
p,1(T ) from 

Definition 3.23 with some carefully chosen parameter 𝜀 > 0 . Second, we apply the 
piecewise orthogonal projection Πp

S
∶ L2(�) ⟶ �

p,0(S) from Definition  3.29 on 
some suitable mesh S ⊆ Pow(𝛺) . Third, the result is mapped back into the space 
�harm(B) via the orthogonal projection PB ∶ L2(�) ⟶ �harm(B).

For the precise choice of � and S we have to distinguish between two cases: In the 
more involved case � ≥ 20�7

shp
hB we choose �∶=�∕(5�4

shp
) ≥ 4�3

shp
hB and use the 

uniform mesh S ⊆ Pow(𝛺) from Lemma  3.28 with hS ≂ hmin,S ≂ H , where the 
parameter H > 0 will be specified during the proof. In the degenerate case 
𝛿 < 20𝜎7

shp
hB we set �∶=4�3

shp
hB and use the mesh S∶=T  itself.

We define the asserted operator as

The case � ≥ 20�7
shp

hB : Let u ∈ �harm(B
�) . By Lemma  3.15 we have 

hB� ≤ max{hB, �shp�} , and the assumption on � implies 
hB ≤ 𝛿∕(20𝜎7

shp
) = 𝜀∕(4𝜎3

shp
) < 𝜀 , so the maximum in the previous estimate is 

attained at �shp� . Therefore, the parameter �∶=4�4
shp

� satisfies 4𝜎3
shp

hB𝜀 ≤ 𝛼 ≲ 1 . In 
particular, we can apply the discrete Caccioppoli inequality to the set B� and the 
parameter � . Since � ≂ � , this gives the stability estimate for the cut-off operator K�

B

From Lemmas 3.26 and 3.24 we know that K�
B
u ∈ �harm(B) , hence PBK

�
B
u = K�

B
u . 

We conclude u|B = (K�
B
u)|B = (PBK

�
B
u)|B and thus

Q�
B
∶ �harm(B

�) ⟶ �harm(B)

rank(Q𝛿
B
) ≲

(
1 +

diamT(B)

𝛿

)d𝜎card

‖u − Q�
B
u‖L2(B) ≤

1

2
‖u‖L2(B� ).

Q�
B
∶=PBΠ

p

S
K�
B
∶ �harm(B

�) ⟶ �harm(B).

1�

�=0

𝛿��K𝜀
B
u�H�(𝛺)

Lem. 3.24

≲

1�

�=0

𝛼��u�H�(B𝜀)

Lem. 3.27

≲ ‖u‖L2(B𝜀+𝛼)

𝜀+𝛼≤𝛿
≤ ‖u‖L2(B𝛿 ).
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In particular, we can choose H ≂ 𝛿 > 0 small enough to establish the asserted error 
bound.

The case 𝛿 < 20𝜎7
shp

hB : Again let u ∈ �harm(B
�) . Exploiting S = T  and 

Lemma 3.24, the operator Q�
B
 reduces to Q�

B
u = PBΠ

p

T
K�
B
u = PBK

�
B
u = K�

B
u . Conse-

quently, the error bound becomes trivial:

To find a good upper bound for the rank of Q�
B
 , the locally bounded cardinality of S 

is crucial. In the case � ≥ 20�7
shp

hB the mesh S is uniform and thus of locally 
bounded cardinality (cf. Lemma  3.3). In the case 𝛿 < 20𝜎7

shp
hB we chose S = T  , 

which has locally bounded cardinality by assumption.
Next, we abbreviate B∶=

⋃
B
𝜀 ⊆ ℝ

d and compute a common lower bound for hS(B) : 
In the case � ≥ 20�7

shp
hB we have hB ≲ 𝛿 and 𝜀 ≲ 𝛿 and H ≂ � by our choice of the 

parameters. With Lemma  3.28, this implies hB + 𝜀 + 𝛿 ≲ 𝛿 ≂ H ≂ hmin,S ≤ hS(B) . In 
the case 𝛿 < 20𝜎7

shp
hB , using 𝜀 ≲ 𝛿 we get in a similar way 

hB + 𝜀 + 𝛿 ≲ hB ≤ hT(B𝜀) = hS(B) as well.
For every u ∈ �harm(B

�) we know from Lemmas  3.30 and 3.24 that 
suppS(Π

p

S
K𝜀
B
u) ⊆ suppS(K

𝜀
B
u) ⊆ S(B) . This results in the estimate

which finishes the proof. 	�  ◻

With the single-step coarsening operator at hand, we can iterate to obtain expo-
nential convergence.

Theorem 3.32  Let T ⊆ Pow(𝛺) be a mesh of locally bounded cardinality. Further-
more, let B ⊆ T  and 𝛿 > 0 with 𝛿 ≲ 1 . Then, for every L ∈ ℕ , there exists a linear 
multi-step coarsening operator

of rank

‖u − Q𝛿
B
u‖L2(B) = ‖PBK

𝜀
B
u − PBΠ

p

S
K𝜀
B
u‖L2(B) ≤ ‖PB(id − Π

p

S
)(K𝜀

B
u)‖L2(𝛺)

≤ ‖(id − Π
p

S
)(K𝜀

B
u)‖L2(𝛺)

Lem. 3.30

≲ H�K𝜀
B
u�H1(𝛺)

≲
H

𝛿
‖u‖L2(B𝛿).

‖u − Q�
B
u‖L2(B) = ‖u − K�

B
u‖L2(B) = ‖u − u‖L2(B) = 0.

rank(Q𝛿
B
) ≤ dim {v ∈ �

p,0(S) | suppS(v) ⊆ S(B)} ≂ #S(B)

Def. 2.4

≲ (1 + h−1
S(B)

diamS(S(B)))
d𝜎card

Lem. 3.15

≲ (1 + h−1
S(B)

(diamT(B) + hB + 𝜀))d𝜎card

hB+𝜀≲hS(B)

≲ (1 + h−1
S(B)

diamT(B))
d𝜎card

𝛿≲hS(B)

≲ (1 + 𝛿−1diamT(B))
d𝜎card ,

Q
�,L

B
∶ �harm(B

�L) ⟶ �harm(B)
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that satisfies the following approximation property: For every u ∈ �harm(B
�L) , there 

holds

Proof  Let B ⊆ T  and 𝛿 > 0 with 𝛿 ≲ 1 as well as L ∈ ℕ . We define a sequence of 
nested element sets B ⊆ B0 ⊆ ⋯ ⊆ BL ⊆ B

𝛿L inductively by B0∶=B and 
B
�+1∶=(B�

)� . Using the corresponding single-step coarsening operators 
Q

�
∶=Q�

B
�

∶ �harm(B�+1) ⟶ �harm(B�
) from Theorem 3.31, we make the following 

definition:

Using the alternative representation 

we infer

Finally, the definition of Q�,L

B
 was such that the error bound becomes elementary: 

For every u ∈ �harm(B
�L) , iteration of Theorem 3.31 gives

which finishes the proof. 	�  ◻

3.9 � Putting everything together

We can finally answer the question of how to find the subspace VB,D,L ⊆ L2(𝛺) from 
Sect. 3.1. After that, the Proof of Theorem 2.15 is just a matter of putting everything 
together.

rank(Q𝛿,L

B
) ≲

(
L +

diamT(B)

𝛿

)d𝜎card+1

‖u − Q
�,L

B
u‖L2(B) ≤ 2−L‖u‖L2(B�L).

∀u ∈ �harm(B
�L) ∶ Q

�,L

B
u∶=u − (id − Q

0
)◦⋯◦(id − Q

L−1
)(u) ∈ �harm(B).

Q
�,L

B
u = −

∑

�∈{0,1}L�{0}

(−Q
0
)(�0)◦⋯◦(−Q

L−1
)(�L−1)(u),

rank(Q𝛿,L

B
) ≤

L−1∑

�=0

rank(Q
�
)
Thm. 3.31

≲

L−1∑

�=0

(1 + 𝛿−1diamT(B�
))d𝜎card

Lem. 3.15

≲

L−1∑

�=0

(1 + � + 𝛿−1diamT(B))
d𝜎card ≤ L(L + 𝛿−1diamT(B))

d𝜎card

≤ (L + 𝛿−1diamT(B))
d𝜎card+1.

‖u − Q
�,L

B
u‖L2(B) = ‖(id − Q

0
)◦⋯◦(id − Q

L−1
)(u)‖L2(B0)

≤ 2−L‖u‖L2(B�L),
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Theorem  3.33  Let T ⊆ Pow(𝛺) be a mesh of locally bounded cardinality and B , 
D ⊆ T  clusters satisfying

Then, for every L ∈ ℕ , there exists a subspace

of dimension

that satisfies the following approximation property: For every f ∈ L2(�) with 
suppT (f ) ⊆ D there holds

Proof  Let B , D ⊆ T  with 0 < diamT (B) ≤ 𝜎admdistT (B,D) . For every given L ∈ ℕ , 
we make the choice 𝛿∶=diamT (B)∕(2𝜎admL) > 0 and use the space

Here, Q�,L

B
∶ �harm(B

�L) ⟶ �harm(B) is the multi-step coarsening operator from 
Theorem  3.32. Using Theorem  3.32 and the definition of � , we can bound the 
dimension by

To see the approximation properties, let f ∈ L2(�) with suppT (f ) ⊆ D . 
By the definition of B

�L and distT (B
�L,D) , there exist elements B ∈ B , 

C ∈ B
�L , D ∈ D such that distT (B,C) ≤ �L and distT (B

�L,D) = distT (C,D) . 
Using the triangle inequality of the mesh metric distT (⋅, ⋅) , we conclude 
distT (B,D) ≤ distT (B,D) ≤ distT (B,C) + distT (C,D) ≤ �L + distT (B

�L,D) . Now, 
exploiting the definition of � and the assumptions on B , D , we obtain

Then, Lemma 3.26 implies ST f ∈ �harm(B
�L) and ultimately

which finishes the proof. 	�  ◻

0 < diamT(B) ≤ 𝜎admdistT(B,D).

VB,D,L ⊆ �
p,1

0
(T )

dimVB,D,L ≲ Ld𝜎card+1

inf
v∈VB,D,L

‖ST f − v‖L2(B) ≲ 2−L‖f‖L2(D).

VB,D,L∶= ran(Q𝛿,L

B
) ⊆ �

p,1

0
(T ).

dimVB,D,L = rank(Q𝛿,L

B
) ≲

(
L +

diamT (B)

𝛿

)d𝜎card+1

≲ Ld𝜎card+1.

distT (B
𝛿L,D) ≥ distT (B,D) − 𝛿L = distT (B,D) −

diamT (B)

2𝜎adm
≥

diamT (B)

2𝜎adm
> 0.

inf
v∈VB,D,L

‖ST f − v‖
L2(B) ≤ ‖ST f − Q

𝛿,L

B
(ST f )‖L2(B)

Thm. 3.31

≤ 2−L‖ST f‖L2(B𝛿L)

Def. 3.15

≲ 2−L‖f‖
L2(D),
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We close this section with the Proof of Theorem 2.15.

Proof  (of Theorem 2.15) Let A ∈ ℝ
N×N be the matrix from Definition 2.9 and r ∈ ℕ 

a given block rank bound. We define the asserted H-matrix approximant B ∈ ℝ
N×N 

to A−1 in a block-wise fashion:
First, for every admissible block (I, J) ∈ ℙadm , we denote the corresponding 

index patches by B∶=T(I) ⊆ T  and D∶=T(J) ⊆ T  . From Lemma  2.12 we know 
that 0 < diamT(B) ≤ 𝜎admdistT(B,D) . Furthermore, let C > 0 be the constant from 
the dimension bound in Theorem  3.33. We set 𝜎exp∶=(1∕C)1∕(d𝜎card+1) ln(2) > 0 
and L∶=⌊(r∕C)1∕(d�card+1)⌋ ∈ ℕ . Then, Theorem  3.33 provides a subspace 
VB,D,L ⊆ �

p,1

0
(T ) ⊆ L2(𝛺) . We apply Lemma  3.13 to the subspace VB,D,L ⊆ L2(𝛺) 

and get matrices Xr
I,J

∈ ℝ
I×r̃ and Yr

I,J
∈ ℝ

J×r̃ of size r̃ ≤ dimVB,D,L . We set

Second, for every small block (I, J) ∈ ℙsmall , we make the trivial choice

By Definition 2.13, we have B ∈ H(ℙ, r̃) with a block rank bound

For the error we get

Finally, it only remains to bound the norm of Λ:

This concludes the proof of the main result, Theorem 2.15. 	�  ◻

B|I×J∶=Xr
I,J
(Yr

I,J
)T .

B|I×J∶=A−1|I×J .

r̃ ≤ dimVB,D,L

Thm. 3.33

≤ CLd𝜎card+1 ≤ r.

‖A−1 − B‖2
Lem. 3.12

≲ ln(N) ⋅ max
(I,J)∈ℙadm

‖A−1�
I×J − X

r

I,J
(Yr

I,J
)T‖2

Lem. 3.13

≤ ln(N)‖Λ‖2 ⋅ max
B,D⊆T

admissible

sup
f∈L2(𝛺)∶
suppT (f )⊆D

inf
v∈VB,D,L

‖ST f − v‖
L2(B)

‖f‖
L2(D)

Thm. 3.33

≲ ln(N)‖Λ‖22−L

≲ ln(N)‖Λ‖2 exp(−𝜎expr1∕(d𝜎card+1)).

‖Λ‖2
Def. 2.6

≲ h−d
min,T

Def. 2.4

≲ h
−d𝜎card
T

Lem. 3.1

≲ # T
𝜎card ≂ (dim�

p,1

0
(T ))𝜎card = N𝜎card .
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4 � Numerical results

In this subsection, we illustrate the validity of Theorem  2.15 by means of 
a numerical example: For the geometry we choose the L-shaped domain 
𝛺∶=((0, 1) × (0, 1))�([1∕2, 1] × [1∕2, 1]) ⊆ ℝ

2 in two space dimensions. The PDE 
coefficients for the model problem from Sect. 2.1 are given by 

The mesh T  is graded in the sense of Definition 3.4 towards Γ∶={(1∕2, 1∕2)} with 
exponent �∶=5 and the coarse mesh width H∶=0.0095 . We use the spline space 
�
1,1

0
(T ) ( p = 1 , globally continuous, piecewise linear) and the well-known basis of 

hat-functions {𝜑1,… ,𝜑N} ⊆ �
1,1

0
(T ) . The block partition ℙ is constructed from a 

geometrically balanced cluster tree �
N

 as suggested in [16]. We choose the param-
eters �adm∶=2 and �small∶=25 (cf. Definition 2.10). For the rank bound we choose 
the range r ∈ {1,… , 50}.

Unfortunately, the H-matrix approximant B ∈ ℝ
N×N from our proof is only a the-

oretical tool and inaccessible for an implementation in a computer system. Hence, 
we revert to a block-wise singular value decomposition: First, we compute the exact 
inverse A−1 ∈ ℝ

N×N explicitly. Then, for every admissible block (I, J) ∈ ℙadm , we 
perform the singular value decomposition A−1|I×J = U�VT ∈ ℝ

I×J . Here, U ∈ ℝ
I×I , 

V ∈ ℝ
J×J are orthogonal and � = diag(�1,… , �min{#I,#J}) ∈ ℝ

I×J contains the cor-
responding singular values �1 ≥ ⋯ ≥ �min{#I,#J} ≥ 0 . Now, for the approximant we 
use B|I×J∶=Ur�rV

T
r
∈ ℝ

I×J , where Ur ∈ ℝ
I×r , �r ∈ ℝ

r×r and Vr ∈ ℝ
J×r are the 

first r columns of U , � and V , respectively. Recall from the theory of singular value 
decompositions (e.g., [21]) that

a1(x)∶=
(
10 −1
−1 1

)
, a2(x)∶=

(
10x2
0

)
, a3(x)∶=1.

‖A−1�I×J − B�I×J‖2 = min
C∈ℝI×J∶
rank(C)≤r

‖A−1�I×J − C‖2 = �r+1.

Fig. 1   The mesh T  , the cluster tree �
N

 and the block partition ℙ for N ≈ 2.000 degrees of freedom
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In particular, we end up with the following computable error bound (cf. [21, 
Lemma 6.5.8])

The numerical example is implemented in Matlab. For the inversion of the full 
matrix A ∈ ℝ

N×N we use Matlab’s built-in procedure inv(...). For the singular 
value decompositions we use svds(...). Recall that an exact matrix inversion 
needs O(N2) memory and O(N3) time to compute, which effectively restricts the 
maximal feasible problem size to N ≈ 70.000 on our machine.

In Fig.  1, we chose N ≈ 2.000 degrees of freedom. The elements are graded 
towards the reentrant corner with a grading exponent � = 5 . The cluster tree �

N
 is 

clearly deeper near the grading center. The block partition ℙ uses sorted indices 
internally. Only a few admissible blocks are far away from the diagonal, lots of small 
blocks agglomerate along the diagonal. The sparsity pattern becomes more pro-
nounced as N → ∞.

‖A−1 − B‖2 ≲ depth(𝕋
N×N

) ⋅ max
(I,J)∈ℙ

‖A−1�I×J − B�I×J‖2

= depth(𝕋
N×N

) ⋅ max
(I,J)∈ℙ

𝜎r+1(A
−1�I×J).

Fig. 2   Approximation error and memory allocation for N ≈ 72.000 degrees of freedom

Fig. 3   Approximation error and memory allocation (in MB) for N ≈ 30.000 degrees of freedom using 
HLiB
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In Fig. 2, we chose N ≈ 72.000 degrees of freedom. The computable error bound 
from above (for r ∈ {1,… , 50} ) is depicted on a linear abscissa and a logarithmic 
ordinate. The values are below a straight line with slope −0.37 indicating an expo-
nential decay error(r) ≲ 10−0.37r . This is even better than the asserted bound from 
Theorem 2.15. The allocated memory in MBytes is plotted on a linear abscissa and 
a linear ordinate. The values are below a straight line with slope 103.57 indicating 
a polynomial growth memory(r) ≲ r . Choosing a rank bound r = 37 , for example, 
gives an approximation error ≈ 10−14 and uses ≈ 4.2 GByte memory. The full sys-
tem matrix takes ≈ 41.4 GByte memory.

In Fig. 3, we chose N ≈ 30.000 degrees of freedom on a graded mesh with grad-
ing exponent � = 5 and this time computed the H-matrix approximation using the 
C-Library HLiB, [4]. The approximation to the inverse matrix is computed using 
the H-matrix arithmetic of HLiB, specifically the hierarchical LU-decomposition. 
The errors shown are ‖� − �(�H�H)

−1‖2 , which is an upper bound for the relative 
error and computable without computing the inverse matrix. Again, we observe 
exponential convergence with respect to the rank r and linear growth in the memory 
requirements.

Finally, in Fig. 4, we chose N ≈ 17.500 degrees of freedom and multiple grading 
exponents in the range {1, 2, 3, 4, 5} . The case � = 1 corresponds to a uniform mesh, 
whereas � = 5 is “heavily” graded. Again, the computable error bound from above 
is shown on a linear abscissa and a logarithmic ordinate. As suggested by our main 
result, Theorem 2.15, the convergence speed deteriorates as � is increased.
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