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Abstract
We consider the numerical computation of finite-range singular integrals

I [ f ] = ⨎ b

a
f (x) dx, f (x) = g(x)

(x − t)m , m = 1, 2, . . . , a < t < b,

that are defined in the sense of Hadamard Finite Part, assuming that g ∈ C∞
[a, b]

and f (x) ∈ C∞
(Rt) is T -periodic with f ∈ C∞

(Rt), Rt = R\{t + kT }
∞
k=−∞,

T = b − a. Using a generalization of the Euler–Maclaurin expansion developed in
[A. Sidi, Euler–Maclaurin expansions for integrals with arbitrary algebraic endpoint
singularities. Math. Comp., 81:2159–2173, 2012], we unify the treatment of these

integrals. For eachm, we develop a number of numerical quadrature formulas T̂
(s)
m,n[ f ]

of trapezoidal type for I [ f ]. For example, three numerical quadrature formulas of
trapezoidal type result from this approach for the case m = 3, and these are

T̂
(0)
3,n [ f ] = h

n−1

∑
j=1

f (t + jh) −
π
2

3
g
′
(t) h

−1 +
1
6

g
′′′
(t) h, h = T

n ,

T̂
(1)
3,n [ f ] = h

n

∑
j=1

f (t + jh − h/2) − π
2

g
′
(t) h

−1
, h = T

n ,

T̂
(2)
3,n [ f ] = 2h

n

∑
j=1

f (t + jh − h/2) −
h
2

2n

∑
j=1

f (t + jh/2 − h/4), h = T
n .
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For all m and s, we show that all of the numerical quadrature formulas T̂
(s)
m,n[ f ] have

spectral accuracy; that is,

T̂ (s)
m,n[ f ] − I [ f ] = o(n−μ

) as n → ∞ ∀μ > 0.

We provide a numerical example involving a periodic integrand with m = 3 that

confirms our convergence theory. We also show how the formulas T̂
(s)
3,n[ f ] can be

used in an efficient manner for solving supersingular integral equations whose kernels
have a (x − t)−3 singularity. A similar approach can be applied for all m.

Keywords Hadamard finite part ⋅ Singular integrals ⋅ Hypersingular integrals ⋅
Supersingular integrals ⋅ Generalized Euler–Maclaurin expansions ⋅ Asymptotic
expansions ⋅ Numerical quadrature ⋅ Trapezoidal rule

Mathematics Subject Classification 41A55 ⋅ 41A60 ⋅ 45B05 ⋅
45E05 ⋅ 65B15 ⋅ 65D30 ⋅ 65D32

1 Introduction and background

In this work, we consider the efficient numerical computation of

I [ f ] = ⨎ b

a
f (x) dx, f (x) = g(x)

(x − t)m , g ∈ C∞
[a, b], m = 1, 2, . . . , a < t < b,

(1.1)

where

f (x) is T -periodic, f ∈ C
∞
(Rt), Rt = R\{t + kT }

∞
k=−∞, T = b − a.

(1.2)

Clearly, the integrals ∫ b
a f (x) dx are not defined in the regular sense, but they are

defined in the sense of Hadamard Finite Part (HFP), the HFP of ∫ b
a f (x) dx being

commonly denoted by ⨎b
a f (x) dx .1

By invoking a recent generalization of theEuler–Maclaurin (E–M) expansion devel-
oped in Sidi [23, Theorem 2.3] that also applies to both regular and HFP integrals, we
unify the treatments of the HFP integrals in (1.1)–(1.2) and derive a number of very
effective numerical quadrature formulas for I [ f ] for each m ≥ 1. In the process of
derivation, we also obtain a result that shows that all the quadrature formulas derived
here enjoy spectral convergence. As examples, we provide the different quadrature

1 When m = 1, the HFP of ∫ b
a f (x) dx is also called its Cauchy Principal Value (CPV) and the accepted

notation for it is ⨍b
a f (x) dx .When m = 2, ⨎b

a f (x) dx is called a hypersingular integral, and when m = 3,

⨎b
a f (x) dx is called a supersingular integral. We reserve the notation ∫ b

a u(x) dx for integrals that exist
in the regular sense.
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Unified compact numerical quadrature formulas for hadamard… Page 3 of 24 22

formulas for the cases m = 1, 2, 3, 4 and illustrate the application of those formulas
with m = 3 to a nontrivial numerical example.

We note that the case m = 1 was considered earlier in Sidi and Israeli [29] and
Sidi [25], the technique used in [29] being different from that used in [25]. The case
m = 2 was treated in [25]. In [25], we also gave a detailed study of the exactness
and convergence properties of the numerical quadrature formulas for the cases with
m = 1, 2. In Sidi [26], we considered further convergence properties of these formulas
and, in Sidi [27], we analyzed the numerical stability issues related to the application
of the Richardson extrapolation process to them. (For the Richardson extrapolation
process, see Sidi [22, Chapters 1,2], for example.)

For the definition and properties of Hadamard Finite Part integrals, see the books
by Davis and Rabinowitz [2], Evans [4], Krommer and Ueberhuber [9], and Kythe and
Schäferkotter [10], for example. These integrals have most of the properties of regular
integrals and some properties that are quite unusual. For example, they are invariant
with respect to translation, but they are not necessarily invariant under a scaling of the
variable of integration, which is linear; therefore, they are not necessarily invariant

under a nonlinear variable transformation either. Finally, ⨎b
a φ(x) dx = ∫ b

a φ(x) dx
whenφ(x) is integrable over [a, b] in the regular sense. Formore recent developments,
see the books by Lifanov, Poltavskii, and Vainikko [13] and Ladopoulos [13], for
example. See also the papers by Kaya and Erdogan [7], Monegato [16], [17], and
Monegato and Lyness [18]. For an interesting two-dimensional generalization, see
Lyness and Monegato [15].

Cauchy principal value, hypersingular, and supersingular integrals described in
footnote1 arise in different branches of science and engineering, such as fracture
mechanics, elasticity, electromagnetic scattering, acoustics, and fluid mechanics, for
example. They appear naturally in boundary integral equation formulations of bound-
ary value problems in these disciplines. Periodic singular integrals arise naturally from

Cauchy transforms ⨎
�

w(ζ)

(ζ−z)m dζ , where � is an infinitely smooth closed contour in
the complex z-plane and z ∈ �; we discuss this briefly in Sect. 5.

Various numerical quadrature formulas for these integrals have been developed
in many papers. Some of these papers make use of trapezoidal sums or compos-
ite Simpson and Newton Cotes rules with appropriate correction terms to account
for the singularity at x = t ; see Li and Sun [11], Li, Zhang, and Yu [12], Zeng,
Li, and Huang [33], and Zhang, Wu, and Yu [34], for example. The paper by
Huang, Wang, and Zhu [6] approaches the problem of computing HFP integrals

of the form ⨎b
a g(x)/∣x − t∣β dx , (with the restriction 1 < β ≤ 2) by following

Sidi and Israeli [29], which is based on the generalizations of the Euler–Maclaurin
expansion by Navot [19,20]. The papers by Wu, Dai, and Zhang [30] and by Wu and
Sun [32] take similar approaches. The approach of [25] is based on the most recent
developments in Euler–Maclaurin expansions of [23] that are valid for all HFP inte-
grals even with possible arbitrary algebraic endpoint singularities. We also mention
here the papers by Criscuolo [1], De Bonis and Occorsio [3], Filbir, Occorsio, and
Themistoclakis [5], and Wu and Sun [31]. Of these, [5,31] consider integrands that
are not infinitely smooth over [a, b], [5] considers numerical quadrature formulas that
are based on equally spaced points and use Bernstein polynomials and their general-
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izations, while [3] considers HFP integrals over the infinite interval (0,+∞) and uses
polynomial approximations.

In the next section, we review the author’s generalization of the E–M expansion for
integrals whose integrands are allowed to have arbitrary algebraic endpoint singulari-
ties. This generalization is given as Theorem 2.1. In Sect. 3, we apply Theorem 2.1 to
construct the generalized E–M expansion for I [ f ] given in (1.1)–(1.2). In Sect. 4, we
develop a number of numerical quadrature formulas of trapezoidal type for I [ f ]with
arbitrary m and analyze their convergence properties. We also analyze their numerical
stability in floating-point arithmetic.

When applied to the HFP integrals ⨎b
a f (x) dx in (1.1)–(1.2), all these quadra-

ture formulas possess the following favorable properties, which transpire from the
developments in Sects. 3 and 4:

1. Unlike the quadrature formulas developed in the papers mentioned above, they
are compact in that they consist of trapezoidal-like rules with very simple, yet
sophisticated and unexpected, “correction” terms to account for the singularity at
x = t .

2. They have a unified convergence theory that follows directly and very simply from
the way they are derived.

3. Unlike the methods developed in the papers mentioned above, which attain very
limited accuracies, our methods enjoy spectral accuracy.

4. Because they enjoy spectral accuracy, they are much more stable numerically than
existing methods.

In Sect. 5, we apply the quadrature formulas for supersingular integrals (m = 3)
of Sect. 4 to a T -periodic f (x) in C∞

(Rt) and confirm numerically the convergence
theory of Sect. 4. Finally, in Sect. 6, we show how two of these quadrature formulas,

denoted T̂
(0)
3,n [⋅] and T̂

(2)
3,n [⋅], can be used in the solution of supersingular integral

equations.
Before proceeding to the next sections,wewould like to recall someof the properties

of the Riemann Zeta function ζ(z) and the Bernoulli numbers Bk and the connection
between them for future reference:

B0 = 1, B1 = −
1
2
; B2k+1 = 0, B2k ≠ 0, k = 1, 2, . . . ,

ζ(0) = −
1
2
; ζ(−2k) = 0, ζ(1 − 2k) = −

B2k

2k
≠ 0, k = 1, 2, . . . ,

ζ(2k) = (−1)k+1 (2π)2k

2(2k)△
B2k, k = 1, 2, . . . . (1.3)

For all these andmuchmore, seeOlver et al. [21, Chapters 24, 25] or Luke [14, Chapter
2], for example. See also Sidi [22, Appendices D, E].
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2 Generalization of the Euler–Maclaurin expansion to integrals with
arbitrary algebraic endpoint singularities

The following theorem concerning the generalization of the E–M expansion to inte-
grals with arbitrary algebraic endpoint singularities was published recently by Sidi
[23, Theorem 2.3]. It serves as the main analytical tool for all the developments in this
paper.

Theorem 2.1 Let u ∈ C∞
(a, b), and assume that u(x) has the asymptotic expansions

u(x) ∼ K (x − a)
−1 +

∞

∑
s=0

cs (x − a)
γs as x → a+,

u(x) ∼ L(b − x)
−1 +

∞

∑
s=0

ds (b − x)
δs as x → b−,

(2.1)

where the γs and δs are distinct complex numbers that satisfy

γs ≠ −1 ∀s; Reγ0 ≤ Reγ1 ≤ Reγ2 ≤ ⋯; lim
s→∞

Reγs = +∞,

δs ≠ −1 ∀s; Reδ0 ≤ Reδ1 ≤ Reδ2 ≤ ⋯; lim
s→∞

Reδs = +∞. (2.2)

Assume furthermore that, for each positive integer k, u(k)
(x) has asymptotic expan-

sions as x → a+ and x → b− that are obtained by differentiating those of u(x) term
by term k times.2 Let also h = (b − a)/n for n = 1, 2, . . . . Then, as h → 0,

h
n−1

∑
j=1

u(a + jh) ∼ ⨎ b

a
u(x) dx + K (C − log h) +

∞

∑
s=0

γs∉{2,4,6,...}

cs ζ(−γs) hγs+1

+ L(C − log h) +
∞

∑
s=0

δs∉{2,4,6,...}

ds ζ(−δs) hδs+1,

(2.3)

where C = 0.577⋯ is Euler’s constant.3

Remarks 1. Note that if K = L = 0 and Reγ0 > −1 and Reδ0 > −1, then
∫ b

a u(x) dx exists as a regular integral; otherwise, it does not, but its HFP does.
2. When u ∈ C∞

[a, b], the Taylor series of u(x) at x = a and at x = b, whether
convergent or divergent, are also (i) asymptotic expansions of u(x) as x → a+ and
as x → b−, respectively, and (ii) can be differentiated term-by-term any number

2 We express this briefly by saying that “the asymptotic expansions in (2.1) can be differentiated infinitely
many times.”
3 Note that the constants K and/or L in (2.1) hence in (2.3) can be zero.
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of times. Thus, Theorem 2.1 applies without further assumptions on u(x) when
u ∈ C∞

[a, b].
3. When u ∈ C∞

(a, b), the E–M expansion is completely determined by the asymp-
totic expansions of u(x) as x → a+ and as x → b−, nothing else being needed.
What happens in (a, b) is immaterial.

4. It is clear from (2.3) that the positive even integer powers of (x − a) and (b − x),
if present in the asymptotic expansions of u(x) as x → a+ and x → b−, do
not contribute to the asymptotic expansion of h ∑n−1

j=1 u(a + jh) as h → 0, the
reason being that ζ(−2k) = 0 for k = 1, 2, . . . , by (1.3). We have included
the “limitations” γs ∉ {2, 4, 6, . . .} and δs ∉ {2, 4, 6, . . .} in the sums on the
right-hand side of (2.3) only as “reminders.”

5. Theorem 2.1 is only a special case of a more general theorem in [23] involving
the so-called “offset trapezoidal rule” h ∑n−1

i=0 f (a + jh + θh), with θ ∈ [0, 1]

fixed,4 that contains as special cases all previously known generalizations of the
E–M expansions for integrals with algebraic endpoint singularities. For a further
generalization pertaining to arbitrary algebraic-logarithmic endpoint singularities,
see Sidi [24].

3 Generalized Euler–Maclaurin expansion for
⨎b
a g(x)/(x − t)m dx, m = 1, 2, . . .

We now present the derivation of the generalized E–M expansion for the HFP integral
I [ f ] in (1.1)–(1.2). As already mentioned, our starting point and main analytical tool
is Theorem 2.1. Before we begin, we would like to mention that this has already been
discussed in [25], separately for even m and odd m and using an indirect approach.
Our approach here unifies the treatments for all m, is direct, and is much simpler than
that in [25].

First, we claim that, because f (x) is T -periodic, with T = b − a, we can express
I [ f ] in (1.1) as

I [ f ] = ⨎ t+T

t
f (x) dx . (3.1)

As we are dealing with HFP integrals that are not defined in the regular sense, this
claim needs to be justified rigorously. For this, we need to recall some of the properties
of HFP integrals we mentioned in Sect. 1. We begin by noting that

I [ f ] = ⨎ t

a
f (x) dx + ⨎ b

t
f (x) dx, (3.2)

because HFP integrals are invariant with respect to the union of integration intervals.
Next, we recall that HFP integrals are invariant under a translation of the interval of

4 Note that, with θ = 1/2, the offset trapezoidal rule becomes the mid-point rule.
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integration; therefore, under the variable transformation y = x + T , which is only a
translation of the interval [a, t] to [b, t + T ], there holds

⨎ t

a
f (x) dx = ⨎ t+T

a+T
f (y − T ) dy = ⨎ t+T

b
f (x − T ) dx . (3.3)

Finally, by T -periodicity of f (x), we have f (x − T ) = f (x), hence

⨎ t+T

b
f (x − T ) dx = ⨎ t+T

b
f (x) dx . (3.4)

The claim in (3.1) is now justified by combining (3.3) and (3.4) in (3.2), thus obtaining

I [ f ] = ⨎ b

t
f (x) dx + ⨎ t+T

b
f (x) dx = ⨎ t+T

t
f (x) dx .

With (3.1) justified, we now show that Theorem 2.1 can be applied as is to the

integral ⨎t+T
t f (x) dx instead of the integral ⨎b

a f (x) dx . Of course, for this, we need
to show that (i) f (x) is infinitely differentiable on the interval (t, t +T ) and (ii) f (x),
as x → t+ and as x → (t + T )−, has asymptotic expansions of the forms shown in
Theorem 2.1. In doing so, we need to remember that neither g(x) nor (x − t)−m is
T -periodic even though f (x) is. The details follow.

• By the fact that f ∈ C∞
(Rt) and by T -periodicity of f (x), it is clear that

f ∈ C∞
(t, t + T ), with singularities only at x = t and x = t + T .

• Asymptotic expansion of f (x) as x → t+ ∶ Expanding g(x) in a Taylor series at
x = t , we obtain

f (x) ∼
∞

∑
i=0

g(i)
(t)

i!
(x − t)

i−m as x → t,

which we write in the form

f (x) ∼ g(m−1)
(t)

(m − 1)!
(x − t)

−1 +
∞

∑
i=0

i≠m−1

g(i)
(t)

i!
(x − t)

i−m as x → t+.

(3.5)

• Asymptotic expansion of f (x) as x → (t + T )−: We first note that

f (x) = f (x − T ) = g(x − T )

(x − T − t)m by T -periodicity of f (x).

Next, expanding g(x − T ) in a Taylor series at x = t + T , we obtain

f (x) ∼
∞

∑
i=0

g(i)
(t)

i!
(x − t − T )

i−m as x → (t + T ),
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which we write in the form

f (x) ∼ −
g(m−1)

(t)

(m − 1)!
(t + T − x)

−1

+
∞

∑
i=0

i≠m−1

(−1)i−m g(i)
(t)

i!
(t + T − x)

i−m as x → (t + T )−. (3.6)

Note that here we have recalled Remark 2 concerning Taylor series expansions fol-
lowing the statement of Theorem 2.1.

Clearly, Theorem 2.1 applies with a = t and b = t + T , and

K = −L = g(m−1)
(t)

(m − 1)!
, γs = δs = {

s − m, 0 ≤ s ≤ m − 2

s + 1 − m, s ≥ m − 1
,

and

cs = {
g(s)

(t)/s!, 0 ≤ s ≤ m − 2

g(s+1)
(t)/(s + 1)!, s ≥ m − 1

, ds = {
(−1)s−mcs , 0 ≤ s ≤ m − 2,

(−1)s+1−mcs , s ≥ m − 1
.

Letting h = T/n, and noting that the terms K (x − t)−1 and L(t + T − x)−1 in
the asymptotic expansions of f (x) given in (3.5) and (3.6) make contributions that
cancel each other for all m, we thus have the asymptotic expansion

h
n−1

∑
j=1

f (t + jh) ∼ I [ f ] +
∞

∑
i=0

i≠m−1

[1 + (−1)i−m
]

g(i)
(t)

i!
ζ(−i + m) hi−m+1 as h → 0.

(3.7)

Now, this asymptotic expansion assumes different forms depending on whether m is
even or odd. We actually have the following result:

Theorem 3.1 With f (x) as in (1.1)–(1.2) and

T̃m,n[ f ] = h
n−1

∑
j=1

f (t + jh), h = T/n, (3.8)

the following hold:

1. For m even, m = 2r , r = 1, 2, . . . ,

T̃2r ,n[ f ] = I [ f ] + 2
r

∑
i=0

g(2i)
(t)

(2i)!
ζ(2r − 2i) h

−2r+2i+1 + o(h
μ
)

as n → ∞ ∀μ > 0. (3.9)
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2. For m odd, m = 2r + 1, r = 0, 1, . . . ,

T̃2r+1,n[ f ] = I [ f ] + 2
r

∑
i=0

g(2i+1)
(t)

(2i + 1)!
ζ(2r − 2i) h

−2r+2i+1 + o(h
μ
)

as n → ∞ ∀μ > 0. (3.10)

Proof We consider the cases of even and odd m separately.

1. For m = 2r , r = 1, 2, . . . , we have that only terms with even i contribute to the
infinite sum∑∞

i=0
i≠m−1

in (3.7), which reduces to

2
∞

∑
i=0

g(2i)
(t)

(2i)!
ζ(2r − 2i) h

−2r+2i+1
. (3.11)

2. For m = 2r + 1, r = 0, 1, . . . , we have that only terms with odd i contribute to
the infinite sum∑∞

i=0
i≠m−1

in (3.7), which reduces to

2
∞

∑
i=0

g(2i+1)
(t)

(2i + 1)!
ζ(2r − 2i) h−2r+2i+1

. (3.12)

Recalling that ζ(−2k) = 0 for k = 1, 2, . . . , we realize that all the terms with i > r in
the two sums in (3.11) and (3.12) actually vanish. This, of course, does not necessarily
mean that

T̃2r ,n[ f ] = I [ f ] + 2
r

∑
i=0

g(2i)
(t)

(2i)!
ζ(2r − 2i) h−2r+2i+1

, r = 1, 2, . . . ,

T̃2r+1,n[ f ] = I [ f ] + 2
r

∑
i=0

g(2i+1)
(t)

(2i + 1)!
ζ(2r − 2i) h

−2r+2i+1
, r = 0, 1, . . . .

Since there are no powers of h in addition to h−2r+1
, h−2r+3

, . . . , h−1
, h1 that are

already present, a remainder term of order o(hμ
) for every μ > 0 is present on the

right-hand side of each of these “equalities.” This completes the proof. ⊓⊔

As can be seen from (3.9) and (3.10), the finite sums involving g(t) and its deriva-
tives are completely known provided g(x) and its derivatives are known or can be
computed, since ζ(0), ζ(2), . . . , ζ(2r) are known from (1.3). In the next section, we

derive numerical quadrature formulas that rely on (i) all of the g(k)
(t), (ii) some of the

g(k)
(t), and (iii) none of the g(k)

(t).
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4 Compact numerical quadrature formulas

4.1 Development of numerical quadrature formulas

Theorem 3.1 can be used to design numerical quadrature formulas in different ways.
The first ones are obtained directly from (3.9) and (3.10), and they read

T̂
(0)
2r ,n[ f ] = T̃2r ,n[ f ] − 2

r

∑
i=0

g(2i)
(t)

(2i)!
ζ(2r − 2i) h

−2r+2i+1
, r = 1, 2, . . . ,

(4.1)

T̂
(0)
2r+1,n[ f ] = T̃2r+1,n[ f ] − 2

r

∑
i=0

g(2i+1)
(t)

(2i + 1)!
ζ(2r − 2i) h

−2r+2i+1
, r = 0, 1, . . . .

(4.2)

Clearly, g(x) and derivatives of g(x) that are present in the asymptotic expan-

sions of Theorem 3.1 are an essential part of the formulas T̂
(0)
m,n[ f ]. Numerical

quadrature formulas that use less of this information can be developed by apply-
ing a number of steps of a “Richardson-like extrapolation” process to the sequence

T̂
(0)
m,n[ f ], T̂

(0)
m,2n[ f ], T̂

(0)
m,4n[ f ], . . . , thereby eliminating the powers of h in the order

h1
, h−1

, h−3
, . . . .

5 Form = 1, 2, 3, 4, for example,we obtain the following quadrature
formulas via this process:

1. The case m = 1:

T̂
(0)
1,n [ f ] = h

n−1

∑
j=1

f (t + jh) + g′
(t)h (4.3)

T̂
(1)
1,n [ f ] = h

n

∑
j=1

f (t + jh − h/2) (4.4)

2. The case m = 2:

T̂
(0)
2,n [ f ] = h

n−1

∑
j=1

f (t + jh) −
π
2

3
g(t)h

−1 +
1
2

g
′′
(t)h (4.5)

T̂
(1)
2,n [ f ] = h

n

∑
j=1

f (t + jh − h/2) − π
2
g(t)h

−1 (4.6)

T̂
(2)
2,n [ f ] = 2h

n

∑
j=1

f (t + jh − h/2) −
h
2

2n

∑
j=1

f (t + jh/2 − h/4) (4.7)

5 Recall that, when applying the Richardson extrapolation process, we would eliminate the powers of h in

the order h−2r+1
, h−2r+3

, . . . , h−3, h−1, h1.
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3. The case m = 3:

T̂
(0)
3,n [ f ] = h

n−1

∑
j=1

f (t + jh) −
π
2

3
g′
(t)h−1 +

1
6

g′′′
(t)h (4.8)

T̂
(1)
3,n [ f ] = h

n

∑
j=1

f (t + jh − h/2) − π
2
g
′
(t)h

−1 (4.9)

T̂
(2)
3,n [ f ] = 2h

n

∑
j=1

f (t + jh − h/2) −
h
2

2n

∑
j=1

f (t + jh/2 − h/4) (4.10)

4. The case m = 4:

T̂
(0)
4,n [ f ] = h

n−1

∑
j=1

f (t + jh) −
π
4

45
g(t)h−3 −

π
2

6
g′′
(t)h−1 +

1
24

g(4)
(t)h

(4.11)

T̂
(1)
4,n [ f ] = h

n

∑
j=1

f (t + jh − h/2) −
π
4

3
g(t)h

−3 −
π
2

2
g
′′
(t)h

−1 (4.12)

T̂
(2)
4,n [ f ] = 2h

n

∑
j=1

f (t + jh − h/2) −
h
2

2n

∑
j=1

f (t + jh/2 − h/4) + 2π4
g(t)h

−3

(4.13)

T̂
(3)
4,n [ f ] = 16h

7

n

∑
j=1

f (t + jh − h/2) −
5h
7

2n

∑
j=1

f (t + jh/2 − h/4)

+
h
28

4n

∑
j=1

f (t + jh/4 − h/8) (4.14)

Each of the quadrature formulas T̂
(s)
m,n[ f ] above is obtained by performing s steps

of “Richardson-like extrapolation” on the sequence {T̂
(0)

m,2k n
[ f ]}s

k=0. Indeed, for s = 1

(eliminating only the power h1), for s = 2 (eliminating only the powers h1
, h−1), and

for s = 3 (eliminating only the powers h1
, h−1

, h−3), we have, respectively,

T̂
(1)
m,n[ f ] = 2T̂

(0)
m,2n[ f ] − T̂

(0)
m,n[ f ],

T̂ (2)
m,n[ f ] = 2T̂ (1)

m,n[ f ] − T̂
(1)
m,2n[ f ]

= −2T̂
(0)
m,n[ f ] + 5T̂

(0)
m,2n[ f ] − 2T̂

(0)
m,4n[ f ],
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and

T̂
(3)
m,n[ f ] = 8

7
T̂
(2)
m,n[ f ] −

1
7

T̂
(2)
m,2n[ f ]

= 16
7

T̂
(1)
m,n[ f ] −

10
7

T̂
(1)
m,2n[ f ] +

2
7

T̂
(1)
m,4n[ f ]

= −
16
7

T̂ (0)
m,n[ f ] + 6T̂

(0)
m,2n[ f ] − 3T̂

(0)
m,4n[ f ] +

2
7

T̂
(0)
m,8n[ f ].

In general, eliminating only the powers h1
, h−1

, h−3
, . . . , h−2s+3

, we have

T̂
(s)
m,n[ f ] =

s

∑
k=0

α
(s)
m,k T̂

(0)

m,2k n
[ f ],

s

∑
k=0

α
(s)
m,k = 1; α

(s)
m,k independent of n.

(4.15)

Remarks 1. The quadrature formulas T̂
(1)
1,n [ f ] and T̂

(1)
2,n [ f ]were derived and studied

in [29] and [25], respectively.

2. In case g(k)
(t), k = 1, 2, . . . , are not known or cannot be computed exactly, we can

replace them wherever they are present in (4.3)–(4.13) by suitable approximations

based on the already computed (i) g(t + jh) in case of T̂
(0)
m,n[ f ], and (ii) g(t + jh−

h/2) in case of T̂
(1)

m,n[ f ], for example.We can use differentiation formulas based on
finite differences as approximations, for example. Of course, the error expansions
of the quadrature formulas will now have additional powers of h that result from
the differentiation formulas used. (For another approach that uses trigonometric
interpolation and also preserves spectral accuracy, see Sect. 6.3.)

3. In case g(x) is not known, which happens when f (x) is given as a black box, for

example, or in casewe do notwish to approximate the different g(k)
(x), quadrature

formulas that do not involve g(x) become very useful. The formulas T̂
(1)
1,n [ f ] in

(4.4), T̂
(2)
2,n [ f ] in (4.7), T̂

(2)
3,n [ f ] in (4.10), and T̂

(3)
4,n [ f ] in (4.14) do not involve

g(x).

4.2 General convergence theorem

We now state a convergence theorem concerning all the quadrature formulas T̂
(s)
m,n[ f ]

defined in (4.15) in general, and those in (4.3)–(4.13) in particular. This theorem results
from the developments above, especially from the fact that the asymptotic expansions

of T̂
(0)
m,n[ f ] − I [ f ] as h → 0 are all empty:

Theorem 4.1 Let f (x) be as in (1.1)–(1.2), and let the numerical quadrature formulas

T̂
(s)
m,n[ f ] be as defined above. Then limn→∞ T̂

(s)
m,n[ f ] = I [ f ], and we have

T̂
(s)

m,n[ f ] − I [ f ] = o(n
−μ

) as n → ∞ ∀μ > 0. (4.16)
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In words, the errors in the T̂
(s)
m,n[ f ] tend to zero as n → ∞ faster than every negative

power of n.

Proof We begin by observing that, by (3.8), (3.9)–(3.10), and (4.1)–(4.2), there holds

T̂ (0)
m,n[ f ] − I [ f ] = o(n−μ

) as n → ∞ ∀μ > 0, (4.17)

that is, (4.16) is true for s = 0. Next by (4.15),

T̂ (s)
m,n[ f ] − I [ f ] =

s

∑
k=0

α
(s)
m,k(T̂

(0)

m,2k n
[ f ] − I [ f ]).

Letting n → ∞ and invoking (4.17), the result in (4.16) follows. ⊓⊔

Remarks 1. In the nomenclature of the common literature, the quadrature formulas

T̂
(s)
m,n[ f ] have spectral accuracy. Thus, T̂

(s)
m,n[ f ] are excellent numerical quadrature

formulas for computing I [ f ]when f (x) is infinitely differentiable and T -periodic
on Rt , with Rt as defined in (1.2). This should be compared with most existing
quadrature formulas based on trapezoidal sums, which have errors that behave at
best like O(n−ν

) for some low value of ν > 0.
2. In case f (z), the analytic continuation of f (x) to the complex z-plane, is analytic

in the strip ∣Imz∣ < σ , the result of Theorem 4.1 can be improved optimally at

least for m = 1, 2, 3. We now have that the errors (T̂
(s)
m,n[ f ]− I [ f ]), for every s,

tend to zero as n → ∞ like e−2nπσ/T for all practical purposes, as shown in [29]
for m = 1, in [25] for m = 2, and in [28] for m = 3.

4.3 Analysis of the T̂(s)m,n[f] in floating-point arithmetic

Due to the fact that the integrand f (x) tends to infinity as x → t , the quadrature

formulas T̂
(s)
m,n[ f ] are likely to present some stability issues when applied in floating-

point (or finite-precision) arithmetic. Before proceeding further, we would like to

address this issue in some detail. We will study T̂
(0)
3,n [ f ] only; the studies of T̂

(s)
m,n[ f ]

with general m and s are similar and so are the conclusions derived from them.

Let us denote the numerically computed T̂
(0)
3,n [ f ] by T

(0)
3,n[ f ]. Then the true numer-

ical error is (T
(0)
3,n[ f ] − I [ f ]), and we can rewrite it as

T
(0)
3,n[ f ] − I [ f ] = (T

(0)
3,n[ f ] − T̂

(0)
3,n [ f ]) + (T̂

(0)
3,n [ f ] − I [ f ]),

and we can bound it as in

∣T
(0)
3,n[ f ] − I [ f ]∣ ≤ ∣T

(0)
3,n[ f ] − T̂

(0)
3,n [ f ]∣ + ∣T̂

(0)
3,n [ f ] − I [ f ]∣.
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Clearly, the theoretical error (T̂
(0)
3,n[ f ]− I [ f ]) tends to zero faster than any negative

power of n by Theorem 4.1. Therefore, we need to analyze (T
(0)
3,n[ f ] − T̂

(0)
3,n [ f ]),

which is the source of numerical instability.
For all practical purposes, it is clear from (4.8) that the stability issue arises as a

result of errors committed in computing g(x) and its derivatives in the interval [a, b]
because f (x) is given and computed on the interval [a, b] and f (x) = f (x − T ) for
x ∈ [b, b + T ] since f (x) is T -periodic.6 Thus, with the integer r being such that
t + rh ≤ b < t + (r + 1)h, the sum∑n−1

j=1 f (t + jh) in (4.8) is actually computed as

r

∑
j=1

f (t + jh) +
n−1

∑
j=r+1

f (t + jh − T ) =
r

∑
j=1

f (t + jh) +
−1

∑
j=−n+r+1

f (t + jh)

=
r

∑
j=−n+r+1

j≠0

f (t + jh).

We are assuming that the rest of the computations are being carried out with no errors.
Now, the computed g(x), which we shall denote by g(x), is given as g(x) =

g(x)[1 + η(x)], where η(x) is the relative error in g(x). Thus, letting y j = t + jh,
we have

T
(0)
3,n[ f ] − T̂

(0)
3,n [ f ] = h

r

∑
j=−n+r+1

j≠0

g(y j)η(y j)

(y j − t)3
−

π
2

3
g
′
(t)η1(t)h

−1 +
1
6

g
′′′
(t)η3(t)h,

where we have denoted by η1(t) and η3(t) the relative errors in the computed g′
(t)

and g′′′
(t), respectively. Assuming that g(x), g′

(x), and g′′′
(x) are being computed

with maximum precision allowed by the floating-point arithmetic being used, we have
∣η(y j)∣ ≤ u, ∣η1(t)∣ ≤ u, and ∣η3(t)∣ ≤ u, where u is the roundoff unit of this
arithmetic. Therefore,

∣T
(0)
3,n[ f ] − T̂

(0)
3,n[ f ]∣ ≤ ∥g∥uh

−2
r

∑
j=−n+r+1

j≠0

1

∣ j∣3
+

π
2

3
∥g

′
∥uh

−1 +
1
6
∥g

′′′
∥uh,

≤ (2ζ(3)∥g∥ +
π
2

3
∥g

′
∥h +

1
6
∥g

′′′
∥h

3
)uh

−2

≤ K (n)un
2
, K (n) = 2ζ(3)

T 2
∥g∥ +

π
2

3T n
∥g

′
∥ +

T

6n3
∥g

′′′
∥.

Here ∥w∥ = maxa≤x≤b ∣w(x)∣ and ζ(3) = ∑∞
k=1 k−3.

6 Note that even a small error committed when computing g(x) is magnified by the denominator (x − t)3

when x is close to t .
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The conclusion from this is that (T
(0)
3,n[ f ]− T̂

(0)
3,n [ f ]) will dominate the true error

(T
(0)
3,n[ f ]− I [ f ]) for large n, depending on the size of u (equivalently, whether we are

using single- or double- or quadruple-precision arithmetic). Fortunately, substantial

accuracywill have been achieved by T
(0)
3,n[ f ] before n becomes large since (T̂

(0)
3,n [ f ]−

I [ f ]) tends to zero faster than n−μ for every μ > 0. Tables 1, 2 and 3 that result from
the numerical example in the next section amply substantiate this conclusion.

Finally, we would like to note that the abscissas of the formulas T̂
(s)
3,n [ f ]will never

be arbitrarily close to the point of singularity x = t ; the smallest distance from this
point is h, h/2, and h/4 for s = 0, 1, 2, respectively. This is not the case for most
known formulas.

5 A numerical example

We can apply the quadrature formulas T̂
(s)
m,n[ f ] we have derived to supersingular

integrals I [ f ] = ⨎b
a f (x) dx , where f (x) is T -periodic, T = b − a, and is of the

form

f (x) = θm(x − t)u(x), θm(y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

cos π y
T

sin2r−1 π y
T

, m = 2r − 1,

1

sin2r π y
T

, m = 2r ,

r = 1, 2, . . . .

Such integrals arise from Cauchy transforms on the unit circle

Jm[w] = ⨎
�

w(ζ)

(ζ − z)m dζ, z ∈ � = {ζ ∶ ∣ζ ∣ = 1}, m = 1, 2, . . . .

Actually, making the substitution ζ = eix , 0 ≤ x ≤ 2π , so that T = 2π , and letting
t ∈ [0, 2π] be such that z = eit , Jm[w] becomes

Jm[w] = iei(1−m)t

(2i)m ⨎ 2π

0

exp[i(2 − m) x−t
2 ]

sinm x−t
2

w(e
ix
) dx .

After some manipulation, it can be shown that

J1[w] = 1
2
⨎ 2π

0
(
cos x−t

2

sin x−t
2

+ i)w(e
ix
) dx,

J2[w] = −
ie−it

4
⨎ 2π

0

1

sin2 x−t
2

w(eix) dx,
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J3[w] = −
e−i2t

8
⨎ 2π

0
(
cos x−t

2

sin3 x−t
2

− i
1

sin2 x−t
2

)w(e
ix
) dx .

J4[w] = ie−i3t

16
⨎ 2π

0
(

1

sin4 x−t
2

− 2i
cos x−t

2

sin3 x−t
2

− 2
1

sin2 x−t
2

)w(e
ix
) dx .

For all m ≥ 2, we have

Jm[w] = iei(1−m)t

(2i)m ⨎ 2π

0
[

m

∑
k=2

αm,kθk(x − t)]w(eix) dx, for some constants αm,k .

We have applied the quadrature formulas T̂
(s)
3,n to supersingular integrals I [ f ] =

⨎b
a f (x) dx , where f (x) is T -periodic and of the form

f (x) =
cos π(x−t)

T

sin3 π(x−t)
T

u(x), u(x) T -periodic; T = b − a. (5.1)

In order to approximate such integrals via the formulas T̂
(0)
3,n[ f ], T̂

(1)
3,n[ f ], and

T̂
(2)
3,n[ f ], we need to determine the quantities g′

(t) and g′′′
(t). Now, g(x) =

(x − t)3 f (x) can be expressed as

g(x) = (
T
π
)
3 z3 cos z

sin3 z
u(x), z = π(x − t)

T
.

Upon expanding in powers of z, we obtain

z3 cos z

sin3 z
= 1 + O(z

4
) as z → 0,

and, therefore,

g
(i)
(t) = (

T
π
)
3

u
(i)
(t), i = 0, 1, 2, 3. (5.2)

Unfortunately, we are not aware of the existence of tables of supersingular periodic
integrals when f (x) is given as in (5.1). Therefore, we need to construct a simple
but nontrivial periodic u(x) for which I [ f ] is given analytically and can easily be
computed. This is what we do next.

We apply the three quadrature formulas developed in Sect. 4, with T = 2π , to

I [ f ] = ⨎ π

−π

f (x) dx, f (x) =
cos x−t

2

sin3 x−t
2

u(x), (5.3)
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with

u(x) =
∞

∑
m=0

η
m cosmx = 1 − η cos x

1 − 2η cos x + η2
, η real, ∣η∣ < 1, (5.4)

which follows from

u(x) = Re
∞

∑
m=0

η
meimx = Re

1

1 − ηeix
.

Clearly, u(x) is 2π -periodic, and so is f (x). In addition, u(x) is analytic in the strip
∣Im z∣ < σ = log η

−1
.

To obtain an analytical expression for I [ f ], we proceed as follows:
By the fact that u(x) = 1

2 ∑∞
m=0 η

m
(eimx + e−imx

) and by

⨎ π

−π

cos x−t
2

sin3 x−t
2

e
imx

dx = −sgn(m) i4πm
2
e
imt

, m = 0,±1,±2, . . . ,

which follows from Theorem 2.2 in Sidi [28], we have

I [ f ] = 1
2

∞

∑
m=0

η
m
(−i4πm2eimt + i4πm2e−imt

)

= 4π Im[(η
∂

∂η
)
2 ∞

∑
m=0

η
m

e
imt

]

= 4π Im(η
∂

∂η
)
2 1

1 − ηeit

= 4π Im
ηeit(1 + ηeit)

(1 − ηeit)3
. (5.5)

We have applied T̂
(s)
3,n[ f ] with t = 1 and η = 0.1(0.1)0.5. The results of this

computation, using quadruple-precision arithmetic for which u = 1.93 × 10−34

(approximately 34 decimal digits), are given in Tables 1, 2 and 3.
Judging fromTables 1, 2 and 3, wemay conclude that, all three quadrature formulas

T̂
(s)
3,n[ f ] produce approximately the same accuracies. Actually, as shown in Sidi [28,

Theorem5.2], E
(s)
n (η) = ∣T̂

(s)
3,n[ f ]−I [ f ]∣ = O(η

n
) asn → ∞ for all three formulas;

that is, all three formulas converge at the same rate as n → ∞. The numerical results
in Tables 1, 2 and 3 are in agreement with this theoretical result as can be checked
easily.
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Table 1 Numerical results for the integral in (5.3)–(5.5) with t = 1 throughout

n En(η = 0.1) En(η = 0.2) En(η = 0.3) En(η = 0.4) En(η = 0.5)

10 2.91D-10 5.83D-07 3.61D-05 1.70D-04 8.68D-03

20 1.87D-20 2.19D-14 4.69D-11 1.07D-07 2.10D-05

30 1.33D-30 2.35D-21 1.72D-15 2.07D-11 2.61D-08

40 1.30D-30 6.34D-28 1.54D-20 2.46D-15 2.27D-11

50 5.61D-30 6.06D-30 9.29D-26 2.06D-19 1.24D-14

60 9.19D-32 7.74D-32 8.14D-31 9.19D-24 1.39D-18

70 1.40D-29 1.42D-29 1.51D-29 6.35D-28 1.41D-20

80 2.21D-29 2.16D-29 2.21D-29 2.21D-29 2.17D-23

90 5.90D-29 6.20D-29 6.41D-29 6.30D-29 2.22D-26

100 1.04D-30 1.73D-30 2.83D-30 6.98D-31 1.81D-29

Here En(η = c) = ∣T̂
(0)
3,n[ f ] − I [ f ]∣ for η = c

Table 2 Numerical results for the integral in (5.3)–(5.5) with t = 1 throughout

n En(η = 0.1) En(η = 0.2) En(η = 0.3) En(η = 0.4) En(η = 0.5)

10 2.91D-10 5.83D-07 3.61D-05 1.70D-04 8.72D-03

20 1.87D-20 2.19D-14 4.69D-11 1.07D-07 2.10D-05

30 7.80D-31 2.35D-21 1.72D-15 2.07D-11 2.61D-08

40 3.75D-29 6.72D-28 1.54D-20 2.46D-15 2.27D-11

50 3.34D-30 2.64D-30 9.29D-26 2.06D-19 1.24D-14

60 5.20D-30 5.45D-30 4.14D-30 9.19D-24 1.39D-18

70 1.20D-28 1.21D-28 1.28D-28 5.28D-28 1.41D-20

80 2.28D-29 1.19D-29 2.56D-29 3.07D-29 2.17D-23

90 1.13D-27 1.18D-27 1.18D-27 1.17D-27 2.33D-26

100 5.96D-28 6.18D-28 6.17D-28 6.20D-28 5.79D-28

Here En(η = c) = ∣T̂
(1)
3,n[ f ] − I [ f ]∣ for η = c

In Sect. 4.3, we analyzed the true error in T
(0)
3,n[ f ], the computed T̂

(0)
3,n[ f ], and

concluded that

∣T
(0)
3,n[ f ] − I [ f ]∣ ≤ K (n)un

2 + o(n
−μ

) as n → ∞ ∀μ > 0,

with K (n) bounded for all large n. That is, the accuracy of T
(0)
3,n[ f ] increases quickly

(and exponentially) like η
n up to a certain point where the term K (n)un2 increases to

the point where it prevents T
(0)
3,n[ f ] from picking up more correct significant digits.

This takes place after T
(0)
3,n[ f ] has achieved a very good accuracy in floating-point

arithmetic, allowed by the size of u. The numerical results in Tables 1, 2 and 3 demon-
strate the validity of this argument amply.
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Table 3 Numerical results for the integral in (5.3)–(5.5) with t = 1 throughout

n En(η = 0.1) En(η = 0.2) En(η = 0.3) En(η = 0.4) En(η = 0.5)

10 5.83D-10 1.17D-06 7.22D-05 3.40D-04 1.75D-02

20 3.73D-20 4.38D-14 9.37D-11 2.14D-07 4.19D-05

30 3.64D-30 4.69D-21 3.45D-15 4.13D-11 5.21D-08

40 9.78D-29 1.36D-27 3.09D-20 4.93D-15 4.54D-11

50 6.02D-28 6.24D-28 1.86D-25 4.12D-19 2.48D-14

60 1.59D-27 1.65D-27 1.67D-27 1.84D-23 2.77D-18

70 2.56D-28 2.21D-28 2.06D-28 1.07D-27 2.81D-20

80 3.83D-29 1.32D-28 9.14D-29 1.19D-28 4.35D-23

90 6.75D-27 7.02D-27 7.14D-27 6.99D-27 3.78D-26

100 1.44D-27 1.47D-27 1.47D-27 1.49D-27 1.37D-27

Here En(η = c) = ∣T̂
(2)
3,n[ f ] − I [ f ]∣ for η = c

6 Application to numerical solution of periodic supersingular integral
equations

6.1 Preliminaries

We now consider the application of the quadrature formulas T̂
(s)
3,n to the numerical

solution of supersingular integral equations of the form

λφ(t) + ⨎ b

a
K (t, x)φ(x) dx = w(t), t ∈ (a, b), λ scalar, (6.1)

such that, with T , R, and Rt as in (1.2), and the following hold in addition:

1. K (t, x) is T -periodic in both x and t , and is in C∞
(Rt) as a function of x , and is

of the form

K (t, x) = U(t, x)

(x − t)3
, U ∈ C

∞
([a, b] × [a, b]). (6.2)

That is, as a function of x , K (t, x) has poles of order 3 at the points x = t + kT ,
k = 0,±1,±2, . . . .

2. w(t) is T -periodic in t and is in C∞
(R).

3. The solution φ(x) is T -periodic in x and is in C∞
(R). (That φ ∈ C∞

(R) under
the conditions imposed on K (t, x) and w(t) can be argued heuristically, as was
done in [29, Introduction].)

In some cases, additional conditions are imposed on the solution to ensure unique-
ness, which wewill skip below.We now turn to the development of numerical methods
for solving (6.1).
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6.2 The“simple” approach

Noting that the quadrature formula T̂
(2)
3,n[ f ] uses only function values f (x j), and no

derivatives of g(x), it is clearly very convenient to use, and we try this quadrature
formula first.

Since h, h/2, and h/4 all feature in T̂
(2)
3,n , we proceed as follows: For a given integer

n, let ĥ = T/(4n), and x j = a + j ĥ, j = 0, 1, . . . , 4n, . . . . Then x4n = b and h = 4ĥ

in T̂
(2)
3,n . Let t be any one of the x j , say t = xi , i ∈ {1, 2, . . . , 4n}, and approximate

the integral ⨎b
a K (xi , x)φ(x) dx by the rule T̂

(2)
3,n , namely,

T̂
(2)
3,n[K (xi , ⋅)φ] = 2 ⋅ 4ĥ

n

∑
j=1

K (xi , xi + 4 j ĥ − 2ĥ)φ(xi + 4 j ĥ − 2ĥ)

− 2ĥ
2n

∑
j=1

K (xi , xi + 2 j ĥ − ĥ)φ(xi + 2 j ĥ − ĥ).

Finally, noting that, for k ≤ 4n,

f (xi + kĥ) = f (a + (i + k)ĥ) = {
f (xi+k) if i + k ≤ 4n

f (xi+k−4n) if i + k > 4n

when f (x) is T -periodic, and replacing the φ(x j) by corresponding approximations
φ̂ j , and recalling that everything here is T -periodic, [for example, φ(x j+4n) = φ(x j +
T ) = φ(x j) for all j , and the same holds true for K (t, x) and w(x)], we write down
the following set of 4n equations for the 4n unknown φ̂ j :

λφ̂i + ĥ
4n

∑
j=1

εi j K (xi , x j)φ̂ j = w(xi), i = 1, . . . , 4n, (6.3)

where

εi j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

8 if ∣i − j − 2∣ divisible by 4,

−2 if ∣i − j − 1∣ divisible by 2,

0 otherwise.

(6.4)

Note that εi i = 0 for all i , which means that K (xi , xi) is avoided. The linear equations
in (6.3) can be rewritten in the form

4n

∑
j=1

K̂i j φ̂ j = w(xi), i = 1, . . . , 4n, (6.5)

K̂i j = εi j ĥK (xi , x j) + λδi j . (6.6)
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Here δi j stands for the Kronecker delta.

Remark Note that if we were to use either of the quadrature formulas T̂
(0)
3,n[K (xi , ⋅)φ]

or T̂
(1)
3,n[K (xi , ⋅)φ] instead of T̂

(2)
3,n[K (xi , ⋅)φ], we would have to know the first and

third derivatives (with respect to x) of U(xi , x)φ(x) at x = xi , which implies that we
must have knowledge of φ

′
(x), φ′′

(x), and φ
′′′
(x). Of course, one may think that this

is problematic since φ(x) is the unknown function that we are trying to determine.

The quadrature formula T̂
(2)
3,n[K (xi , ⋅)φ] has no such problem since it relies only on

integrand values. We take up this issue in our next (“advanced”) approach.

6.3 The“advanced” approach

In view of the fact that, for m = 1, 2, 3, all approximations T̂
(s)
m,n[ f ] converge to

I [ f ] as n → ∞ at the same rate when f (z) is analytic and T -periodic in the strip

∣Imz∣ < σ , we may want to keep the number of abscissas in T̂
(s)
m,n[ f ] to a minimum.

We can achieve this goal for m = 3, for example, by using T̂
(0)
3,n[ f ], which requires

only n abscissas, unlike the 4n abscissas required by T̂
(2)
3,n[ f ]. We apply this approach

to ⨎b
a K (t, x)φ(x) dx next.

With f (t, x) = K (t, x)φ(x) = U(t, x)φ(x)/(x − t)3 and (6.2), we have

f (t, x) = g(t, x)

(x − t)3
, g(t, x) = U(t, x)φ(x).

Letting

gk(t, x) = ∂
k

∂xk
g(t, x), Uk(t, x) = ∂

k

∂xk
U(t, x),

we have

gk(t, x) =
k

∑
p=0

(
k
p)Uk−p(t, x)φ(p)

(x), k = 0, 1, 2, . . . ,

where φ
(k)

(x) is the kth derivative of φ(x). Therefore, by (4.8), we have

T̂
(0)
3,n [K (t, ⋅)φ] = h

n−1

∑
j=1

K (t, t + jh)φ(t + jh) −
π
2

3
g1(t, t)h

−1 +
1
6

g3(t, t)h,

which, after some simple manipulation, can be written in the form

T̂
(0)
3,n [K (t, ⋅)φ] = h

n−1

∑
j=1

K (t, t + jh)φ(t + jh) +
3

∑
k=0

Ak(t, h)φ(k)
(t), (6.7)
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where

A0(t, h) = −
π
2

3
U1(t, t)h

−1 +
1
6

U3(t, t)h,

A1(t, h) = −
π
2

3
U0(t, t)h

−1 +
1
2

U2(t, t)h,

A2(t, h) = 1
2

U1(t, t)h,

A3(t, h) = 1
6

U0(t, t)h.

(6.8)

The unknown quantities here are φ
( j)

(x), j = 0, 1, 2, 3. We can take care of φ
( j)

(x),
j = 1, 2, 3, as follows: We first construct the trigonometric interpolation polynomial
Qn(x) for φ(x) over the set of (equidistant) abscissas {x0, x1, . . . , xn−1} already used

for constructing T̂
(0)
3,n [K (t, ⋅)φ]; therefore, Qn(x j) = φ(x j), j = 0, 1, . . . , n − 1.

Now, since φ(x) is T -periodic and infinitely differentiable on R, it is known that
Qn(x) converges to φ(x) over [a, b] with spectral accuracy. Similarly, for each k,

Q
(k)
n (x), the kth derivative of Qn(x), converges to φ

(k)
(x) over [a, b] with spectral

accuracy and at the same rate. Now, with x j = a + jT/n, Qn(x) is of the form

Qn(x) =
n−1

∑
j=0

Dn(x − x j)φ(x j), Dn(xs − x j) = δs j ,

where7

Dn(y) = 1
n sin

nπ y
T

cot
π y
T

, when n is an even integer.

Taking t ∈ {x0, x1, . . . , xn−1}, we thus have

φ(t) = Qn(t)� φ
(k)

(t) ≈ Q(k)
n (t) =

n−1

∑
j=0

D(k)
n (t − x j)φ(x j), k = 1, 2, . . . .

Letting now t = xi and φ̂i ≈ φ(xi), we can replace the integral equation in (6.1) by
the following set of n equations for the n unknown φ̂i :

λφ̂i + h
n−1

∑
j=0
j≠i

K (xi , x j)φ̂ j + A0(xi , h)φ̂i

+
n−1

∑
j=0

[
3

∑
k=1

Ak(xi , h)D
(k)
n (xi − x j)]φ̂ j = w(xi), i = 0, 1, . . . , n − 1,

7 There is a similar result for odd n, which we omit. What is important here is the main idea.

123



Unified compact numerical quadrature formulas for hadamard… Page 23 of 24 22

where we have used the fact that

f (xi + kh) = f (a + (i + k)h) = {
f (xi+k) if i + k ≤ n − 1

f (xi+k−n) if i + k ≥ n

when f (x) is T -periodic and k ≤ n − 1. Finally, these equations can be rewritten in
the form

n−1

∑
j=0

K̂i j φ̂ j = w(xi), i = 0, 1, . . . , n − 1, (6.9)

K̂i j = [λ + A0(xi , h)]δi j + hK (xi , x j)(1 − δi j) +
3

∑
k=1

Ak(xi , h)D
(k)
n (xi − x j).

(6.10)

We note that the idea of using trigonometric interpolation was introduced origi-
nally by Kress [8] in connection with the numerical solution of hypersingular integral
equations. Needless to say, it can be used for all the singular integral equations with
kernels having singularities of the form (x − t)−m with arbitrary integers m ≥ 1.
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