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Abstract
We introduce and analyze a new mixed finite element method with reduced symme-
try for the standard linear model in viscoelasticity. Following a previous approach 
employed for linear elastodynamics, the present problem is formulated as a sec-
ond-order hyperbolic partial differential equation in which, after using the motion 
equation to eliminate the displacement unknown, the stress tensor remains as the 
main variable to be found. The resulting variational formulation is shown to be 
well-posed, and a class of H(div)-conforming semi-discrete schemes is proved to 
be convergent. Then, we use the Newmark trapezoidal rule to obtain an associated 
fully discrete scheme, whose main convergence results are also established. Finally, 
numerical examples illustrating the performance of the method are reported.
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1 Introduction

We are interested in the problem of wave propagation in solids exhibiting a lin-
ear viscoelastic behaviour. Viscoelastic materials are characterized by reactions 
involving a combination of elastic and viscous effects when mechanical loads are 
applied to them. The viscoelastic properties of solids are modeled through con-
stitutive equations relating the strain and the stress tensors. In the linear case, 
it is shown in [13] that these constitutive relations have an integral form, which 
reflects that the stress depends on the history of the strain evolution, and an 
equivalent differential form represented in one dimension by different arrange-
ments of springs and dashpots. In this paper we are concerned with the standard 
linear solid model, also known as the Zener model. It consists in a parallel com-
bination of one spring and one Maxwell component (a serial combination of one 
spring and one dashpot). It is the simplest model for viscoelasticity that takes into 
account important phenomena such as recovery and stress relaxation, see [24] for 
more details.

The non-local version of the constitutive law can be used to eliminate the 
stress tensor and formulate the linear viscoelastic system solely in terms of the 
displacement field. This approach gives rise to an integro-differential weak for-
mulation whose mathematical analysis can be found in [10]. Most of the numeri-
cal work on linear viscoelasticity focused on this formulation. It has been used 
in various contexts by engineers, in spite of the negative impact that the Volt-
erra integral term have on the computational performance. An overview of the 
different numerical techniques used to solve this problem can be found in [18]. 
Convergence of schemes based on continuous and discontinuous Galerkin finite 
elements in space and quadratures in time have also been explored in [20, 25, 26] 
for the displacement formulation. We also refer to [15, 16, 21] for other studies of 
numerical methods for linear viscoelasticity.

In this paper, we are interested in formulations based exclusively on differen-
tial equations and relying on the stress tensor as primary unknown. To our knowl-
edge, Bécache et  al. [4] introduced the first mixed formulation for viscoelastic 
wave problems employing an H(div)-energy space for the stress. Their numerical 
scheme combines an explicit time quadrature with a space discretization based on 
the mixed finite element introduced in [5] for linear elastodynamics. The resulting 
numerical method delivers low order symmetric approximations of the stress on 
regular cubical grids. Rognes and Winther reinforced this strategy by analyzing 
in [22] mixed formulations for the quasi-static Maxwell and Kelvin-Voigt models 
with a weak symmetry restriction on the stress tensor. This approach gives rise to 
mixed variational formulations for linear viscoelasticity whose spacial discretiza-
tions can be built upon stable families of simplicial finite elements designed for 
mixed approximations of the elasticity system with reduced symmetry, see for 
example [1, 2, 5, 8, 14, 27] and the references therein. Recently, this strategy has 
been generalized by Lee [17] for the dynamic standard linear solid model.

We point out that the articles [4, 17, 22] carry out convergence analyses for 
semi-discrete schemes leading to L2-error estimates for the stress tensor. Our aim 
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here is to introduce semi and fully discrete versions of a new mixed formulation 
for the standard linear solid model and to prove optimal convergence rates for the 
stress tensor in the full energy norm, namely, in the H(div)-norm. Our approach 
is based on the mixed formulation introduced in [11] for linear elastodynamics. 
We show that this formulation can be adapted to deal with our viscoelastic model 
problem on general domains, including heterogeneous media and general bound-
ary conditions. We analyze the continuous problem and provide convergence 
analyses for the semi-discrete and fully discrete problems by using fairly standard 
discrete energy decay techniques. It is also worthwhile to mention that, although 
we only maintain the stress tensor as primary unknown (besides the rotation), 
accurate approximations of the acceleration field can be directly obtained from 
the linear momentum equation.

This article is structured as follows: Section 2 is devoted to notations, definitions, 
and basic results that are used throughout the document. In Sect. 3, we introduce a new 
mixed variational formulation for the standard linear solid model. Next, we recall in 
Sect. 4 the standard hypotheses ensuring the stability of mixed finite elements in elas-
ticity problems with reduced symmetry and use them to construct in Sect. 5 a space dis-
cretization of the variational problem. Then, we employ a Galerkin procedure to prove 
the existence of a weak solution. The convergence of the semi-discrete problem is car-
ried out in Sect. 6. We propose in Sect. 7 a fully discrete method based on an implicit 
Newmark scheme and undertake its stability and convergence analysis. In Sect. 8 we 
derive asymptotic error estimates for an example based on the Arnold–Falk–Winther 
element [2]. Finally, we confirm in Sect.  9 these rates of convergence by showing 
results obtained from a series of numerical tests.

2  Notations and preliminary results

We dedicate this section to provide part of the notations, definitions, and preliminary 
results that will be employed along the paper. We first denote by I the identity matrix 
of ℝd×d ( d = 2, 3 ), and by � the null vector in ℝd or the null tensor in ℝd×d . In addi-
tion, the component-wise inner product of two matrices �, � ∈ ℝd×d is defined by 
� ∶ � ∶= tr(���) , where tr(�) ∶=

∑d

i=1
�ii and �� ∶= (�ji) stand for the trace and the 

transpose of � = (�ij) , respectively. In turn, for � ∶ Ω → ℝd×d and u ∶ Ω → ℝd , we set 
the row-wise divergence ���� ∶ Ω → ℝd , the row-wise gradient ∇u ∶ Ω → ℝd×d , and 
the strain tensor �(u) ∶ Ω → ℝd×d as

respectively. Next, we let Ω be a polyhedral Lipschitz bounded domain of ℝd 
(d = 2, 3) , with boundary �Ω . Furthermore, for s ∈ ℝ , ‖⋅‖s,Ω stands indis-
tinctly for the norm of the Hilbertian Sobolev spaces Hs(Ω) , �s(Ω) ∶= Hs(Ω)d or 
ℍs(Ω) ∶= Hs(Ω)d×d , with the convention H0(Ω) ∶= L2(Ω) . In all what follows, 
(⋅, ⋅) stands for the inner product in L2(Ω) , �2(Ω) ∶= L2(Ω)d , �2(Ω) ∶= L2(Ω)d×d , 
and �2(Ω) ∶= �2(Ω) × �2(Ω) . We also introduce the Hilbert space 

(����)i ∶=
∑
j

�j�ij , (∇u)ij ∶= �jui, and �(u) ∶=
1

2

{
∇u + (∇u)�

}
,



 G. N. Gatica et al.

1 3

11 Page 4 of 27

ℍ(���,Ω) ∶=
{
� ∈ 𝕃2(Ω) ∶ ���� ∈ �2(Ω)

}
 and denote the corresponding norm 

‖�‖2
ℍ(���,Ω)

∶= ‖�‖2
0,Ω

+ ‖����‖2
0,Ω

.
Since we will deal with a time-domain problem, besides the Sobolev spaces 

defined above, we need to introduce spaces of functions acting on a bounded time 
interval (0, T) and with values in a separable Hilbert space V, whose norm is denoted 
here by ‖⋅‖V . In particular, for 1 ≤ p ≤ ∞ , Lp(V) is the space of classes of functions 
f ∶ (0, T) → V  that are Böchner-measurable and such that ‖f‖Lp(V) < ∞ , with

We use the notation C0(V) for the Banach space consisting of all continuous func-
tions f ∶ [0, T] → V  . More generally, for any k ∈ ℕ , Ck(V) denotes the subspace of 
C
0(V) of all functions f with (strong) derivatives d

j f

dtj
 in C0(V) for all 1 ≤ j ≤ k . In what 

follows, we will use indistinctly the notations ḟ ∶= df

dt
 and f̈ ∶= d2f

dt2
 to express the 

first and second derivatives with respect to the variable t. Furthermore, we will use 
the Sobolev space

and denote H1(V) ∶= W1,2(V) . The space Wk,p(V) is defined recursively for all 
k ∈ ℕ.

On the other hand, given two Hilbert spaces S and Q and a bounded bilinear form 
a ∶ S × Q → ℝ , we denote ker(a) ∶= {s ∈ S ∶ a(s, q) = 0 ∀ q ∈ Q} . We say that a 
satisfies the inf-sup condition for the pair {S,Q} , whenever there exists 𝜅 > 0 such 
that

We will repeatedly use the well-known fact that (see [7]) if a satisfies the inf-sup 
condition for the pair {S,Q} and if � ∈ S� vanishes identically on ker(a) , then there 
exists a unique q ∈ Q such that

Throughout the rest of the paper, given any positive expressions X and Y depending 
on the meshsize h of a triangulation, the notation X ≲ Y  means that X ≤ C Y  with 
a constant C > 0 independent of the mesh size h and the time discretization step Δt.

3  A mixed formulation of the Zener model

In what follows, Ω ⊂ ℝd ( d = 2, 3 ) is a polyhedral Lipschitz domain representing a vis-
coelastic body with a piecewise constant mass density � . We assume that there exists a 
polygonal/polyhedral disjoint partition 

{
Ωj, j = 1,… , J

}
 of Ω̄ such that 𝜌|Ωj

∶= 𝜌j > 0 

‖f‖p
Lp(V)

∶= �
T

0

‖f (t)‖p
V
d t for 1 ≤ p < ∞, and

‖f‖L∞(V) ∶= ess sup[0,T]‖f (t)‖V .

W1,p(V) ∶=
{
f ∶ ∃g ∈ Lp(V) and ∃f0 ∈ V such that f (t) = f0 + ∫ t

0
g(s) ds ∀t ∈ [0, T]

}
,

(2.1)sup
0≠s∈S

a(s, q)

‖s‖S ≥ � ‖q‖Q ∀ q ∈ Q .

a(s, q) = �(s) ∀ s ∈ S .
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for j = 1,… , J . In addition, we assume that the boundary �Ω admits a disjoint parti-
tion �Ω = ΓD ∪ ΓN , and denote its outward unit normal vector by n . Then, given a 
body force f ∶ Ω × [0, T] → ℝd and a function g ∶ �Ω × (0, T] → ℝd , we seek a dis-
placement field u ∶ Ω × [0, T] → ℝd and a stress tensor � ∶ Ω × [0, T] → ℝd×d satis-
fying the equations of linear viscoelasticity with a strain-to-stress relationship given by 
Zener’s material law [24]:

where C and D are two space-dependent symmetric and positive definite tensors of 
order 4 and � ∈ L∞(Ω) is such that 𝜔(x) ≥ 𝜔0 > 0 a.e. in Ω . In order to obtain a dis-
sipative model, we assume that the tensor D − C , which corresponds to the diffusive 
part of the elastic model, is also positive definite, cf. [4]. In turn, the model problem 
(3.1) is assumed to be subject to the initial conditions

The starting point of the procedure leading to a mixed formulation for (3.1) is a 
decomposition of the stress tensor � into a purely elastic component � ∶= C�(u) and 
a Maxwell component � ∶= � − � , cf. [4, 17, 22]. With these notations, the second 
equation of (3.1) can be rewritten as

which yields

In this way, defining A ∶= C
−1 and V ∶= (D − C)−1 , we find that problem (3.1) can 

be stated as follows:

The essential boundary condition on ΓN requires the introduction of the closed sub-
space of ℍ(���,Ω) given by

where ⟨⋅, ⋅⟩�Ω stands for the duality pairing between �−1∕2(�Ω) and �1∕2(�Ω) with 
respect to the �2(�Ω)-inner product. In the sequel, we use the compact notations 
� ∶= (� , �) and � ∶= (� , �) to denote elements from �2(Ω) and set �+ ∶= � + � . We 

(3.1)

𝜌ü − ���� = f in Ω × (0, T],

� + 𝜔�̇ = C�(u) + 𝜔D�(u̇) in Ω × (0, T],

u = g on ΓD × (0, T],

�n = � on ΓN × (0, T],

(3.2)u(0) = u0, u̇(0) = u1, and �(0) = �0 in Ω.

�̇ = D�(u̇) − 𝜔−1� in Ω × (0, T],

�̈ = �̈ − C�(ü) = (D − C)�(ü) − 𝜔−1�̇ in Ω × (0, T].

(3.3)

𝜌ü − ���(� + �) = f in Ω × (0, T],

V�̈ +
1

𝜔
V�̇ = �(ü) in Ω × (0, T],

A�̈ = �(ü) in Ω × (0, T]

u = g on ΓD × (0, T],

�n = � on ΓN × (0, T].

𝕎 ∶=
�
� ∈ ℍ(���,Ω); ⟨�n, v⟩�Ω = 0 ∀v ∈ �

1∕2(�Ω), v�ΓD
= �

�
,
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also introduce the �2(Ω)-orthogonal projection �1� ∶= (� , �) onto �2(Ω) × {�} . The 
energy space corresponding to the variational formulation of (3.3) is given by

It is endowed with the Hilbertian norm ‖�‖2
�
∶= ‖�‖2

0,Ω
+ ‖����+‖2

0,Ω
 . We notice 

that the embeddings � ×� ↪ � ↪ �2(Ω) are continuous. On the other hand, 
we define the space of symmetric tensors with square integrable entries 
�2
sym

(Ω) ∶=
{
� ∈ �2(Ω) ∶ � = ��

}
 , and denote by ℚ ∶=

{
� ∈ 𝕃2(Ω) ∶ � = −��

}
 

its orthogonal complement in �2(Ω) . We also let �2

sym
(Ω) ∶=

{
� ∈ �2(Ω) ∶ �+ ∈ �2

sym
(Ω)

}
 

and consider the closed subspace �sym∶=� ∩ �2
sym

(Ω) of �.

Lemma 3.1 The embedding � ×� ↪ � is dense.

Proof Let �∶=(� , �) ∈ � be such that

Taking � = � = �+ ∈ � in (3.4) we deduce that �+∶=� + � = � in ℍ(���,Ω) . Using 
this fact in (3.4) and testing with �1�∶=(� , �) proves that � = � and the result fol-
lows.   ◻

We obtain a variational formulation of (3.3) by considering an arbitrary 
� = (� , �) ∈ � and by testing the constitutive laws (second and third rows of (3.3)) 
with � and � , respectively. Adding the resulting equations, we obtain

where the skew symmetric tensor r ∶= 1

2

{
∇u − (∇u)�

}
 is the rotation. Next, inte-

grating by parts in the right hand-side of (3.5) and employing the Dirichlet boundary 
condition u = g on ΓD × [0, T] together with the fact that � ∈ � , we obtain

Now, we use the motion equation (first row of (3.3)) to eliminate the displacement 
field from (3.6). Indeed, substituting back ü = 𝜌−1(f + ����) into (3.6) we end up 
with

where (u, v)�∶=(
1

�
u, v) for all u, v ∈ �2(Ω) , L(t, �)∶= −

�
f , ����+

�
𝜌
+ ⟨g̈, �+n⟩𝜕Ω for 

all � ∈ � and

� ∶=
{
� ∈ �2(Ω) ∶ �+ ∈ �

}
.

(3.4)(�, �) +
(
����+, ����+

)
= 0 ∀�∶=(� , �) ∈ � ×�.

(3.5)
(
V�̈ +

1

𝜔
V�̇ , �

)
+ (A�̈, �) = (�(ü), � + �) =

(
∇ü − r̈, (� + �)

)
,

(3.6)

�
V�̈ +

1

𝜔
V�̇ , �

�
+ (A�̈, �) = −

�
ü, ���(� + �)

�
− (r̈, � + �) + ⟨g̈, (� + �)n⟩𝜕Ω.

(3.7)A
(
�̈, �

)
+ A

(
1

𝜔
𝜋1�̇, �

)
+ (r̈, �+) +

(
����+, ����+

)
𝜌
= L(t, �),

A
(
�, �

)
∶=(V� , �) + (A�, �), ∀� = (� , �), � = (� , �) ∈ �2(Ω).
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As a consequence of our hypotheses on C and D , the bilinear form A is symmet-
ric, bounded and coercive, which means that there exist positive constants M and � , 
depending only on C and D , such that

and

Moreover, the continuity of the normal trace operator in ℍ(���,Ω) and suitable reg-
ularity conditions on f  and g imply that the linear functional, L(t, ⋅) ∶ � → ℝ is 
bounded, indeed,

Taking into account these notations and (3.7), we deduce that, given f ∈ L1(�2(Ω)) 
and g ∈ W2,1(�1∕2(�Ω)) , the mixed variational formulation of our problem reads as 
follows: Find � ∈ L∞(�) ∩W1,∞(�2(Ω)) and r ∈ W1,∞(ℚ) such that

and such that the initial conditions

are satisfied with

4  Semi‑discretization in space

Let {Th}h be a family of shape regular partitions of Ω̄ into triangles/tetrahedra K of 
diameter hK . The parameter h∶=maxK∈Th{hK} represents the mesh size of Th . In 
what follows, we assume that the triangulations Th are aligned with the partition 
Ω̄ = ∪J

j=1
Ω̄j , i.e.,

We consider conforming finite element subspaces �h ⊂ � , ℚh ⊂ ℚ , and 
�h ⊂ �2(Ω) consisting of piecewise polynomial tensors and vector fields relatively 
to the triangulations Th . We assume that they satisfy the approximation property,

(3.8)��A(�, �)�� ≤ M‖�‖0,Ω‖�‖0,Ω ∀�, � ∈ �2(Ω),

(3.9)A(�, �) ≥ �‖�‖2
0,Ω

∀ � ∈ �2(Ω).

�L(t, �)� ≲ �‖f‖L∞(�2(Ω)) + ‖g‖W2,1(�1∕2(𝜕Ω))

� ‖�‖�, ∀� ∈ �, ∀t ∈ [0, T].

(3.10)
d

dt

{
A
(
�̇ +

1

𝜔
𝜋1�, �

)
+ (ṙ, �+)

}
+
(
����+, ����+

)
𝜌

= L(t, �), ∀� ∈ �

(s,�+) = 0, ∀s ∈ ℚ,

(3.11)
�(0) = �0 = (�0, �0) ∈ �sym , �̇(0) = �1 = (�1, �1) ∈ �2

sym
(Ω),

r(0) = r0 ∈ ℚ, ṙ(0) = r1 ∈ ℚ ,

(3.12)

�0∶= C�(u0), �1∶= C�(u1), �0∶=�0 − �0, �1∶=D�(u1) − �1 − �−1�0

r0∶=∇u0 − �(u0), and r1∶=∇u1 − �(u1).

Ω̄j = ∪
{
K ∈ Th; K ⊂ Ω̄j

}
∀j = 1,… , J.
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for all � ∈ � , r ∈ ℚ and u ∈ �2(Ω) . We are now going to impose conditions 
(Hypothesis 1 and Hypothesis 2 below) that ensure the stability of a Galerkin 
approximation method based on the triple of spaces {𝕎h,�h,ℚh} for the dual-mixed 
formulation of the steady state elasticity problem with weak symmetry, see [2].

Hypothesis 1 There exists 𝛽∗ > 0 , independent of h, such that

Hypothesis 2 

In order to facilitate our forthcoming analysis, we now introduce an auxiliary operator 
�h ∶ � → �h , whose construction is adapted from [3, Lemma 2.1]. More precisely, 
for each � ∈ � we define �h�∶=�̃h , where (�̃h, r̃h, ũh) ∈ �h ×ℚh × �h is the solution 
of

We deduce from the well-known inf-sup condition (cf. [1, 6])

and from the embedding � × {�} ↪ � that it also holds

We denote by � the kernel of the bilinear form 
� × (ℚ × �2(Ω)) ∋

(
�, (s, v)

)
↦ (s, �+) + (v, ����+)� , that is

The fact that (�, �) = ‖�‖2
0,Ω

= ‖�‖2
�

 for all � ∈ � and the inf-sup condition (4.4) 
permit us to apply the Babuška–Brezzi theory to deduce that the continuous coun-
terpart of problem (4.3) is well-posed. Moreover, it can easily be seen that its unique 
solution is (�, �, �) ∈ � ×ℚ × �2(Ω).

Similarly, if we let �h∶=�h ×�h ⊂ � , the embedding �h × {�} ↪ �h and 
Hypothesis 1 imply that

(4.1)lim
h→0

inf
�h∈𝕎h

‖‖� − �h
‖‖H(���,Ω) + inf

sh∈ℚh

‖‖r − sh
‖‖0,Ω + inf

vh∈�h

‖‖u − vh
‖‖0,Ω = 0,

(4.2)sup
�∈𝕎h

(� , s) + (���� , v)�

‖�‖H(���,Ω) ≥ �∗(‖s‖0,Ω + ‖v‖0,Ω), ∀(s, v) ∈ ℚh × �h.

���(�h) = �h.

(4.3)

(
�̃h, �̃

)
+ (̃rh, �

+) + (ũh, ����
+)� =

(
�, �

)
∀ � ∈ �h,

(s, �̃+
h
) + (v,����̃+

h
)� = (s,�+) +

(
v,����+

)
�

∀ (s, v) ∈ ℚh × �h.

sup
�∈𝕎

(� , s) + (���� , v)�

‖�‖H(���,Ω) ≥ �(‖s‖0,Ω + ‖v‖0,Ω), ∀(s, v) ∈ ℚ × �
2(Ω),

(4.4)

sup
�∈�

(s, �+) +
�
v, ����+

�
�

‖�‖� ≥ �
�
‖s‖0,Ω + ‖v‖0,Ω

�
, ∀(s, v) ∈ ℚ × �

2(Ω).

�∶=
{
� ∈ �sym ∶ ����+ = �

}
.
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On the other hand, thanks to Hypothesis 2, the kernel �h of the bilinear form (
�, (s, v)

)
↦ (s, �+) + (v,����+)� on �h × (ℚh × �h) can be written

where �sym,h∶=
{
� ∈ �h ∶ (s, �+) = 0 ∀ s ∈ ℚh

}
 . (We point out that �sym,h is not 

a subspace of �sym ). Hence, it also holds (�, �) = ‖�‖2
�

 for all � ∈ �h , and employ-
ing now the inf-sup condition (4.5) and the discrete Babuška–Brezzi theory, we 
deduce that problem (4.3) is well-posed (uniformly in h). Moreover, Céa’s estimate 
between (�, �, �) and (�̃h, r̃h, ũh) implies the following approximation property for 
�h ∶

Finally, taking into account the alignment of Th with the partition Ω̄ = ∪J
j=1

Ω̄j , it 
turns out that �h satisfies by construction the commuting diagram property

where Uh stands for the orthogonal projection in (�2(Ω), ‖⋅‖0,Ω) onto �h.

5  Well‑posedness of the continuous problem

We consider the following semi-discrete counterpart of (3.10)–(3.11): Find 
�h ∈ C

1(�h) and rh ∈ C
1(ℚh) solving

and satisfying the initial conditions

where �0,h is the �-orthogonal projection of �0 onto �sym,h , �1,h is the �2(Ω)-orthog-
onal projection of �1 onto �sym,h and Qh is the �2(Ω)-orthogonal projector onto ℚh . 
It is clear that the component �h of problem (5.1)–(5.2) solves the following reduced 
formulation: Find �h ∈ C

1(�sym,h) satisfying �h(0) = �0,h , �̇h(0) = �1,h , and such that

(4.5)

sup
�∈�h

(s, �+) +
�
v,����+

�
�

‖�‖� ≥ �∗
�
‖s‖0,Ω + ‖v‖0,Ω

�
, ∀(s, v) ∈ ℚh × �h.

�h∶=
{
� ∈ �sym,h ∶ ����+ = �

}
,

(4.6)‖‖� − 𝛯h�
‖‖� ≲ inf

�h∈�h

‖‖� − �h
‖‖� ∀� ∈ �.

(4.7)1

�
���(�h�)

+ = Uh

(
1

�
����+

)
, ∀� ∈ �,

(5.1)

d

dt

{
A
(
�̇h +

1

𝜔
𝜋1�h, �

)
+ (ṙh, �

+)
}
+
(
����+

h
, ����+

)
𝜌
= L(t, �),∀� ∈ �h

(s,�+
h
) = 0,∀s ∈ ℚh,

(5.2)�h(0) = �0,h, �̇h(0) = �1,h, rh(0) = Qhr0, ṙh(0) = Qhr1,

(5.3)
d

dt
A
(
�̇h +

1

𝜔
𝜋1�h, �

)
+
(
����+

h
, ����+

)
𝜌
= L(t, �), ∀� ∈ �sym,h.
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In this regard, the unique solvability of (5.3) is obtained by writing the problem in 
the form of a first order system of ODEs and applying the classical Cauchy-Lip-
schitz-Picard theorem.

In the following result, we obtain stability estimates for the solution �h(t) in 
terms of the energy functional E ∶ W1,∞(�) → L∞((0, T)) defined by

Let us first point out that it is straightforward to deduce from (3.9) that

Theorem 5.1 Assume that f ∈ W1,1(�2(Ω)) and g ∈ W3,1(�1∕2(�Ω)) . Then, prob-
lem (5.1)–(5.2) admits a unique solution satisfying

Proof Taking � = �̇h in (5.3) and integrating the resulting identity over (0, t) gives

Next, integrating by parts in the right-hand side, and using that the second term on 
the left hand side is non-negative, we find

By virtue of the Cauchy–Schwarz inequality, the Sobolev embeddings 
W1,1(�2(Ω)) ↪ C

0(�2(Ω)) and W1,1(�1∕2(Γ)) ↪ C
0(�1∕2(Γ)) (see [23, Lemma 7.1]) 

and the continuity of the normal trace operator, it follows from (5.7) that

(5.4)E
(
�
)
(t)∶=

1

2
A
(
�̇(t), �̇(t)

)
+

1

2

(
����+(t), ����+(t)

)
𝜌
.

(5.5)‖�̇(t)‖2
0,Ω

+ ‖����+(t)‖2
0,Ω

≲ E
�
�
�
(t), ∀� ∈ L∞(�) ∩W1,∞(�2(Ω)).

(5.6)
max
t∈[0,T]

E(�h)
1∕2(t) + max

t∈[0,T]

��ṙh��0,Ω ≲ ‖f‖W1,1(�2(Ω))

+ ‖g‖W3,1(�1∕2(𝜕Ω)) +
���0��� + ���1��0,Ω.

E
(
�h
)
(t) + ∫

t

0

A
(
1

𝜔
𝜋1�̇h(s),𝜋1�̇h(s)

)
ds = E

(
�h
)
(0) − ∫

t

0

(
f (s),����̇+

h
(s)

)
𝜌
ds

+ ∫
t

0

⟨
g̈(s), �̇+

h
(s)n

⟩
𝜕Ω

ds.

(5.7)

E
(
�h
)
(t) − E

(
�h
)
(0) ≤ �

t

0

(
ḟ (s),����+

h
(s)

)
𝜌
ds

−
(
f (t), ����+

h
(t)
)
𝜌
+
(
f (0), ����+

0,h

)
𝜌

− �
t

0

⟨d3g
dt

(s),�+
h
(s)n

⟩
𝜕Ω

ds

+
⟨
g̈(t), �+

h
(t)n

⟩
𝜕Ω

−
⟨
g̈(0), �+

0,h
n
⟩
𝜕Ω
.

(5.8)
E
�
�
�
(t) ≲ ‖f‖W1,1(�2(Ω)) max

t∈[0,T]
E
�
�
�1∕2

(t)

+ ‖g‖W3,1(�1∕2(Γ)) max
t∈[0,T]

����
+
h
(t)
���ℍ(���,Ω) + E

�
�h
�
(0).
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Moreover, using the triangle inequality, the identity �h(t) = ∫ t

0
�̇h(s) dt + �0,h and 

(5.5) yield

and it is clear from the definition of E that E
(
�h
)
(0) ≲ ‖‖�0,h‖‖2� + ‖‖�1,h‖‖20,Ω . Combin-

ing the last estimates with (5.8) implies, after straightforward manipulations, that

We turn now to prove the existence of a unique Lagrange multiplier rh . To this end, 
we let Gh(t) ∈ C

1(��
h
) be given as follows (in terms of r0,h , r1,h and the solution �h of 

(5.3)):

Integrating (5.3) twice with respect to time we deduce that the functional 
Gh(t) ∈ ��

h
 vanishes identically on the kernel �sym,h of the bilinear form 

�h ×ℚh ∋
(
�, r

)
↦ (r, �+) . Therefore, the discrete inf-sup condition (4.5) implies 

the existence of a unique rh ∈ C
1(ℚh) such that

Differentiating twice the last identity in the sense of distributions we deduce that (
�h, rh

)
 solves (5.1). Moreover, evaluating (5.10) and its time derivative at t = 0 , and 

using again the discrete inf-sup condition (4.5), we deduce that the initial conditions 
rh(0) = r0,h and ṙh(0) = r1,h are fulfilled. Finally, using (4.5) once again we obtain 
from the Cauchy–Schwarz inequality the estimate

The stability result(5.6) is then a consequence of (5.9), (5.11), and the definition of 
the discrete initial data (cf. (5.2)).   ◻

‖‖‖�
+
h
(t)
‖‖‖ℍ(���,Ω) ≲ ‖‖�h‖‖0,Ω +

‖‖‖����
+
h

‖‖‖0,Ω ≲ ‖‖�̇h‖‖0,Ω
+
‖‖‖����

+
h

‖‖‖0,Ω + ‖‖�0,h‖‖0,Ω ≲ E
(
�h
)1∕2

(t) + ‖‖�0,h‖‖0,Ω,

(5.9)

max
t∈[0,T]

E
�
�h
�1∕2

(t) ≲ ‖f‖W1,1(�2(Ω)) + ‖g‖W3,1(�1∕2(Γ)) +
���0,h��� + ���1,h��0,Ω,

Gh(t)
(
�
)
∶=A

(
�h(t) +

1

� ∫
t

0

�1�h(s) ds, �
)
+ ∫

t

0

(
∫

s

0

(
����+

h
(z), ����+

)
�
dz

)
ds

− ∫
t

0

(
∫

s

0

L(z, �) dz

)
ds − t

{
A
(
�1,h +

1

�
�1�0,h,

�
)
+ (r1,h, �

+)
}
−
{
A
(
�0,h, �

)
+ (r0,h, �

+)
}
.

(5.10)(rh(t), �
+) = −Gh(t)

(
�
)
, ∀ t ∈ [0, T] , ∀ � ∈ �h.

(5.11)

𝛽∗ ��ṙh(t)��0,Ω ≤ sup
�∈�h

(ṙh(t), �
+)

‖�‖� = sup
�∈�h

Ġh(t)
�
�
�

‖�‖� ≲ max
t∈[0,T]

E
�
�h
�1∕2

(t)

+ ‖f‖W1,1(�2(Ω)) + ‖g‖W3,1(�1∕2(Γ)) + ‖�0,h‖0,Ω + ���1,h��0,Ω + ‖r1,h‖0,Ω .
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The a priori estimate (5.6) and the approximation property (4.1) permit to 
employ the classical Galerkin procedure (cf. [9, 19]) to prove that the continuous 
problem (3.10)–(3.11) admits at least a solution.

Theorem 5.2 Assume that f ∈ W1,1(�2(Ω)) and g ∈ W3,1(�1∕2(Γ)) . Then, problem 
(3.10)–(3.11) admits at least a solution. Moreover, there holds

Proof It follows from (5.6) and (5.5) that 
{
�̇h
}
h
 , 
{
�h
}
h
 and {rh}h are uniformly 

bounded in L∞(�2(Ω)) , L∞(�) and W1,∞(ℚ) , respectively. We can then extract 
weak∗ convergent subsequences (also denoted 

{
�h
}
h
 and {rh}h ) with limits 

� ∈ L∞(�) ∩W1,∞(�2(Ω)) and r ∈ W1,∞(ℚ) , respectively. We deduce immediately 
from the second equation of (5.1) and (4.1) that �+ ∈ �2

sym
(Ω) . Moreover, multiply-

ing the first equation of (5.1) by a function � ∈ C
1([0, T]) satisfying �(T) = 0 , and 

integrating by parts with respect to t ∈ [0, T] , yield

Passing to the limit in the last equation and using (4.1) shows that � and r satisfy

for all � ∈ � and for all � ∈ C
1([0, T]) such that �(T) = 0 . This proves that (�, r) 

solves the first equation of (3.10) provided the time derivative is understood in 
the sense of distributions in (0,  T). In addition, we notice that �h also converges 
weakly to � in H1(�2(Ω)) . Hence �h(0) converges weakly to �(0) in �2(Ω) , and since 
�h(0) = �0,h also converges strongly to �0 in �2(Ω) , we conclude that �(0) = �0 . 
Similarly, the sequence {rh(0)}h = {r0,h}h converges weakly to r(0) in ℚ and strongly 
to r0 in ℚ , which gives r(0) = r0 . To obtain the remaining initial conditions we take 
� in (5.14) such that �(0) = 0 and integrate the first term backwardly with respect 
to t to get

(5.12)

sup esst∈[0,T]‖�(t)‖� + ‖�(t)‖W1,∞(�2(Ω)) + ‖r‖W1,∞(�2(Ω))

≲ ‖f‖W1,1(�2(Ω)) + ‖g‖W3,1(�1∕2(Γ))

+ ‖�0‖� + ‖�1‖0,Ω + ‖r0‖0,Ω + ‖r1‖0,Ω.

(5.13)

− ∫
T

0

{
A
(
�̇h +

1

𝜔
𝜋1�h, �

)
+ (ṙh, �

+)
}
�̇�(t) dt + ∫

T

0

(
����+

h
, ����+

)
𝜌
𝜓(t) dt

= ∫
T

0

L(t, �)𝜓(t) dt + 𝜓(0)
{
A
(
�1,h +

1

𝜔
𝜋1�0,h, �

)
+ (r1,h, �

+)
}
, ∀� ∈ �h.

(5.14)

− ∫
T

0

{
A
(
�̇ +

1

𝜔
𝜋1�, �

)
+ (ṙ, �+)

}
�̇�(t) dt + ∫

T

0

(
����+, ����+

)
𝜌
𝜓(t) dt

= ∫
T

0

L(t, �)𝜓(t) dt + 𝜓(0)
{
A
(
�1 +

1

𝜔
𝜋1�0, �

)
+ (r1, �

+)
}
,

(5.15)

d

dt

{
A
(
�̇ +

1

𝜔
𝜋1�, �

)
+ (ṙ, �+)

}
= L(t, �) −

(
����+, ����+

)
𝜌
, ∀� ∈ �.
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It follows that t ↦ A
(
�̇ +

1

𝜔
𝜋1�, �

)
+ (ṙ, �+) belongs to W1,1(��) ↪ C

0(��) , and we 
can test (5.15) with a function � ∈ C

1([0, T]) satisfying �(T) = 0 to get

for all � ∈ � . Comparing (5.14) with (5.16) we deduce that �̇(0) = �1 and ṙ(0) = r1 . 
Finally, the stability estimate (5.12) is obtained by taking the limit h → 0 in (5.6) 
and using (5.5).   ◻

The usual strategy (cf. [9] or [19, Section 11.2]) providing uniqueness for sec-
ond-order hyperbolic evolution problems can be applied here as follows.

Lemma 5.1 The solution of problem (3.10)–(3.11) is unique.

Proof Let (�, r) be the solution of (3.10)–(3.11) with f = 0 , g = 0 and vanishing 
initial conditions. Proceeding as in [9, 19], we introduce for each fixed s ∈ (0, T) the 
function

It follows from the first row of (3.10) (with L ≡ 0 ) that

for all � ∈ �sym , which proves that A
(
�̈(t), ⋅

)
∈ L∞(��

sym
) . Hence, we can take � = � 

in (3.10) and integrate the resulting equation over [0, T] to obtain

As the bilinear form A is symmetric, we can integrate by parts in time to get

where we took into account that �(0) = �(T) = (�, �) . Using in the last identity the 
fact that �̇(t) = −�(t) for 0 ≤ t < s gives

which can equivalently be written

(5.16)

− ∫
T

0

{(
A
(
�̇ +

1

𝜔
𝜋1�, �

)
+ (ṙ, �+)

)}
�̇�(t) dt + ∫

T

0

(
����+(t), ����+

)
𝜌
𝜓(t) dt

= ∫
T

0

L(t, �)𝜓(t) dt + 𝜓(0)
(
A
(
�̇(0) +

1

𝜔
𝜋1�(0), �

)
+ (ṙ(0), �+)

)

W1,∞(�sym) ∋ �(t)∶=

{
− ∫ s

t
�(u) du t < s,

(�, �) ∈ L
2(Ω) t ≥ s.

t ↦ A
(
�̈, �) = −A

(
1

𝜔
𝜋1�̇, �

)
−
(
����+, ����+

)
𝜌
∈ L∞((0, T))

∫
T

0

A
(
�̈ +

1

𝜔
𝜋1�̇, �

)
dt + ∫

T

0

(
����+, ����+

)
𝜌
dt = 0.

−∫
T

0

A
(
�̇ +

1

𝜔
𝜋1�, �̇

)
dt + ∫

T

0

(
����+, ����+

)
𝜌
dt = 0,

1

2 ∫
s

0

d

dt

{
(����+, ����+)� − A

(
�, �

)}
dt − ∫

s

0

A
(
1

�
�1�,�1�

)
dt = 0,
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and the coerciveness of A implies that � = � in �2(Ω) . Finally, we deduce from the 
first equation of (3.10) and the homogeneous initial conditions on r that (r, �+) = 0 
for all � ∈ � , which, thanks to the continuous inf-sup condition (4.4), implies that 
r = � .   ◻

We end this section with a couple of important remarks. Indeed, following [19, 
Section  11.2.4], one can show that the solution (�, r) of (3.10)–(3.11) satisfies 
� ∈ C

0(�) ∩ C
1(�2

sym
(Ω)) and r ∈ C

1(ℚ) . In turn, if the solution of the homogeneous 
problem is sufficiently smooth, we can take � = �̇ in (3.10) to deduce the identity

which proves that the viscoelastic material does dissipate energy.

6  Convergence analysis of the semi‑discrete problem

The elliptic projector �h ∶ � → �h introduced in Sect.  4 will allow us to use 
standard techniques of error analysis for our scheme. From now on we assume that 
�1 ∈ �sym and we consider a solution (�h(t), rh(t)) of problem (5.1) started up with 
the initial conditions

In this way, the projected errors e�,h(t)∶=�h�(t) − �h(t) and er,h(t)∶=Qhr(t) − rh(t) 
satisfy by construction vanishing initial conditions:

Moreover, by definition of �h and due to the second equations of (3.10) and (5.1), it 
turns out that

Theorem 6.1 Assume that the solution of problem (3.10)–(3.11) satisfies the reg-
ularity assumptions � ∈ C

2(�) and r ∈ C
2(ℚ) . Then, the following error estimate 

holds

(
����+(0), ����+(0)

)
�
+ A

(
�(s),�(s)

)
+ ∫

s

0

A
(
1

�
�1�,�1�

)
dt = 0,

d

dt
E
(
�h
)
(t) = −A

(
1

𝜔
𝜋1�̇,𝜋1�̇

) ≤ 0 ,

(6.1)�h(0) = 𝛯h�0 , �̇h(0) = 𝛯h�1, rh(0) = Qhr0, ṙh(0) = Qhr1.

(6.2)e�,h(0) = (�, �) er,h(0) = �, ė�,h(0) = (�, �), and ėr,h(0) = � .

(6.3)
(
s, e+

�,h
(t)
)
=
(
s,�+(t)

)
−
(
s,�+

h
(t)
)
= 0, ∀s ∈ ℚh.

(6.4)
max
t∈[0,T]

‖‖(� − �h)(t)
‖‖� + max

t∈[0,T]

‖‖(�̇ − �̇h)(t)
‖‖0,Ω + max

t∈[0,T]

‖‖(ṙ − ṙh)(t)
‖‖0,Ω

≲ ‖‖� − 𝛯h�
‖‖W2,∞(�)

+ ‖‖r − Qhr
‖‖W2,∞(�2(Ω))

.
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Proof We first observe that, because of the regularity assumptions on � and r , we 
have

Then, using that the scheme (5.1) is consistent with (3.10), and keeping in mind 
(4.7) and Hypothesis 2, we readily find that

with

Next, choosing � = ė�,h(t) in (6.6) and taking into account (6.3), we deduce that

Hence, the Cauchy–Schwarz inequality combined with (5.5) give

from which, integrating with respect to time and using (4.6), we arrive at

Now, it follows from (5.5) that

Actually, as e�,h(t) = ∫ t

0
ė�,h(s)ds , we also have

In order to estimate the error in the rotation r we first notice that, integrating once 
with respect to time in (6.6), we obtain

(6.5)

di

dti
�h�(t) = �h

di

dti
�(t) and

di

dti
Qhr(t) = Qh

di

dti
r(t), ∀ i ∈ {1, 2} , ∀ t ∈ [0, T].

(6.6)
A
(
ë�,h +

1

𝜔
𝜋1ė�,h, �

)
+ (ër,h, �

+) +
(
���e+

�,h
(t), ����+

)
𝜌
= F(�), ∀� ∈ �h,

F
(
�
)
∶=A

(
𝛯h�̈ − �̈ +

1

𝜔
𝜋1(𝛯h�̇ − �̇), �

)
+ (Qhr̈ − r̈, �+).

(6.7)Ė
(
e�,h

)
(t) + A

(
1

𝜔
𝜋1ė�,h,𝜋1ė�,h

)
= F(ė�,h).

Ė
(
e�,h

)

2

√
E
(
e�,h

) ≲
∑
i=1,2

‖‖‖‖‖
di�

dti
− 𝛯h

di�

dti

‖‖‖‖‖0,Ω
+ ‖‖r̈ − Qhr̈

‖‖0,Ω,

(6.8)max
t∈[0,T]

E
(
e�,h

)1∕2
(t) ≲ ‖‖� − 𝛯h�

‖‖W2,∞(�2(Ω))
+ ‖‖r − Qhr

‖‖W2,∞(�2(Ω))
.

(6.9)
max
t∈[0,T]

‖‖‖���e
+
�,h
(t)
‖‖‖0,Ω + max

t∈[0,T]

‖‖‖ė�,h(t)
‖‖‖0,Ω

≲ ‖‖� − 𝛯h�
‖‖W2,∞(�2(Ω))

+ ‖‖r − Qhr
‖‖W2,∞(�2(Ω))

.

(6.10)
max
t∈[0,T]

‖‖‖e�,h(t)
‖‖‖� + max

t∈[0,T]

‖‖‖ė�,h(t)
‖‖‖0,Ω

≲ ‖‖� − 𝛯h�
‖‖W2,∞(�2(Ω))

+ ‖‖r − Qhr
‖‖W2,∞(�2(Ω))

.
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Therefore, the inf-sup condition (4.5), identity (6.11), the Cauchy–Schwarz inequal-
ity, (3.8) and (6.10) provide

Using the triangle inequality relatively to the splittings � − �h = (� − �h�) + e�,h 
and r − rh = (r − Qhr) + er,h of each component the error and taking into account 
(6.12) and (6.10), we conclude that

which gives the result.   ◻

7  The fully discrete scheme and its convergence analysis

Given L ∈ ℕ , we consider a uniform partition of the time interval [0, T] with step size 
Δt∶=T∕L . Then, for any continuous function � ∶ [0, T] → ℝ and for each 
k ∈ {0, 1,… , L} , we denote �k∶=�(tk) , where tk∶=kΔt . In addition, we adopt the 
same notation for vector/tensor valued functions and consider t

k+
1

2

∶=
tk+1+tk

2
 , 

�k+
1

2 ∶=
�k+1+�k

2
 , �k−

1

2 ∶=
�k+�k−1

2
 , and the discrete time derivatives

from which we notice that

In what follows we utilize the Newmark trapezoidal rule for the time discretization 
of (5.1)-(5.2) which means that, for each k = 1,… , L − 1 , we look for �k+1

h
∈ �h 

and rk+1
h

∈ ℚh such that

(6.11)

(ėr,h, �
+) = −A

(
ė�,h +

1

𝜔
𝜋1e�,h, �

)
− ∫

t

0

(
���e+

�,h
(s),����+

)
𝜌
ds,

− A
(
�̇ − 𝛯h�̇ +

1

𝜔
𝜋1(� − 𝛯h�), �

)
+ A

(
�1 − 𝛯h�1

+
1

𝜔
𝜋1(�0 − 𝛯h�0), �

)

− (ṙ − Qhṙ, �
+) + (r1 − Qhr1, �

+), ∀� ∈ �h.

(6.12)
𝛽∗��ėr,h��0,Ω ≤ sup

�∈�h

(ėr,h, �
+)

‖�‖�
≲��� − 𝛯h�

��W2,∞(�2(Ω))
+ ��r − Qhr

��W2,∞(�2(Ω))
.

(6.13)
max
[0,T]

‖‖� − �h
‖‖� +max

[0,T]

‖‖�̇ − �̇h
‖‖0,Ω + max

t∈[0,T]

‖‖ṙ − ṙh
‖‖0,Ω

≲ ‖‖� − 𝛯h�
‖‖W2,∞(�)

+ ‖‖r − Qhr
‖‖W2,∞(�2(Ω))

,

𝜕t𝜙
k∶=

𝜙k+1 − 𝜙k

Δt
, �̄�t𝜙

k∶=
𝜙k − 𝜙k−1

Δt
and 𝜕0

t
𝜙k∶=

𝜙k+1 − 𝜙k−1

2Δt
,

𝜕t�̄�t𝜙
k =

�̄�t𝜙
k+1 − �̄�t𝜙

k

Δt
=

𝜕t𝜙
k − 𝜕t𝜙

k−1

Δt
.
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for all � ∈ �h and s ∈ ℚh . In addition, for the sake of simplicity, we assume that the 
scheme (7.1) is initiated as in (). It is straightforward to realize that the functions 
ek
�,h
∶=�h�(tk) − �k

h
 and ek

r,h
∶=Qhr(tk) − rk

h
 solve the equations

for all � ∈ �h and s ∈ ℚh , where

with

and (thanks to (4.7) and Hypothesis 2)

Discrete techniques mimicking those used for the semi-discrete problem in Theo-
rem 5.6 permit to estimate the projected errors in terms of the consistency errors as 
follows.

Lemma 7.1 Assume that the solution of problem (3.10)–(3.11) satisfies 
� ∈ C

2(�2(Ω)) and r ∈ C
2(ℚ) . Then, the following estimate holds true

Proof Taking � = �0
t
ek
�,h

=
e
k+

1

2

�,h
− e

k−
1

2

�,h

Δt
=

�te
k
�,h

+ �te
k−1
�,h

2
 in (7.2) yields the identity

(7.1)

A
�
𝜕t�̄�t�

k +
1

𝜔
𝜋1𝜕

0
t
�k
h
, �
�
+ (𝜕t�̄�tr

k
h
, �+)

+

⎛
⎜⎜⎜⎝
���

⎛⎜⎜⎝
�
k+

1

2

h
+ �

k−
1

2

h

2

⎞⎟⎟⎠

+

, ����+

⎞
⎟⎟⎟⎠𝜌

= L(tk, �)

�
s, (�k+1

h
)+
�
= 0

(7.2)

A
�
𝜕t�̄�te

k
�,h

+
1

𝜔
𝜕0
t
𝜋1e

k
�,h
, �
�
+
�
𝜕t�̄�te

k
r,h
, �+

�

+

⎛⎜⎜⎜⎝
���

⎛⎜⎜⎜⎝

e
k+

1

2

�,h
+ e

k−
1

2

�,h

2

⎞⎟⎟⎟⎠

+

, ����+

⎞⎟⎟⎟⎠𝜌
= Gk(�)

(s, (ek+1
�,h

)+) = 0,

Gk(�)∶=A
(
�k

1
, �
)
+ (� k, �+) +

(
���(�k

2
)+, ����+

)
�
,

�k
1
∶=𝛯h𝜕t�̄�t�(tk) − �̈(tk) + 𝜋1

(
𝛯h𝜕

0
t
�(tk) − �̇(tk)

)
, � k = Qh𝜕t�̄�tr(tk) − r̈(tk),

�k
2
∶=

�(tk+1) − 2�(tk) + �(tk−1)

4
.

(7.3)

max
n

���𝜕te
n
�,h

���0,Ω +max
n

������(e
n
�,h
)+
���0,Ω +max

n

���𝜕te
n
r,h

���0,Ω
≲ max

n

���n
1
��0,Ω +max

n
‖�n‖0,Ω +max

n

�����(𝜕t�n
2
)+��0,Ω +max

n

�����(�n
2
)+��0,Ω.
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from which we obtain the estimate

Then, summing the foregoing inequality over k = 1,… , n and using (3.9) gives

Performing a discrete integration by parts in the summation corresponding to the 
term containing �2 on the right hand side of (7.4), we arrive at

Using this expression of the right hand side of (7.4) and the Cauchy–Schwarz ine-
quality we obtain by means of straightforward calculations the estimate

It remains to obtain bounds in the L2-norm for the projected error in the variable r . 
In fact, multiplying the first equation of (7.2) by Δt and summing over k = 1,… , n , 
we get

1

2Δt
A
(
�te

k
�,h

− �te
k−1
�,h

, �te
k
�,h

+ �te
k−1
�,h

)
+ A

(
1

�
�1�

0
t
ek
�,h
,�1�

0
t
ek
�,h

)

+
1

2Δt

(
���

(
e
k+

1

2

�,h
+ e

k−
1

2

�,h

)+

, ���

(
e
k+

1

2

�,h
− e

k−
1

2

�,h

)+)

�

= Gk(�0
t
ek
�,h
),

A
�
�te

k
�,h
, �te

k
�,h

�
− A

�
�te

k−1
�,h

, �te
k−1
�,h

�
+
�����

1√
�
���

�
e
k+

1

2

�,h

�+�����

2

0,Ω

−
�����

1√
�
���

�
e
k−

1

2

�,h

�+�����

2

0,Ω

≤ 2ΔtGk(�0
t
ek
�,h
).

(7.4)‖‖‖𝜕te
n
�,h

‖‖‖
2

0,Ω
+
‖‖‖‖‖
���

(
e
n+

1

2

�,h

)+‖‖‖‖‖

2

0,Ω

≲ Δt

n∑
k=1

Gk(𝜕0
t
ek
�,h
).

Δt

n∑
k=1

Gk(�0
t
ek
�,h
) = Δt

n∑
k=1

A

(
�k

1
,
�te

k
�,h

+ �te
k−1
�,h

2

)

+ Δt

n∑
k=1

(
� k,

(
�te

k
�,h

+ �te
k−1
�,h

2

)+)

− Δt

n−1∑
k=1

(
����t(�

k
2
)+, ���

(
e
k+

1

2

�,h

)+)

�

+

(
���

(
�n

2

)+
, ���

(
e
n+

1

2

�,h

)+)

�

.

(7.5)

max
n

‖‖‖𝜕te
n
�,h

‖‖‖0,Ω +max
n

‖‖‖‖���e
n+

1

2

�,h

‖‖‖‖0,Ω ≲ Δt

L∑
k=1

‖‖‖�
k
1

‖‖‖0,Ω + Δt

L∑
k=1

‖‖‖�
k‖‖‖0,Ω

+ Δt

L∑
k=1

‖‖‖���(𝜕t�
k
2
)+
‖‖‖0,Ω +max

n

‖‖���(�n
2
)+‖‖0,Ω.
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Hence, by virtue of the inf-sup condition (4.5), the Cauchy–Schwarz inequality, and 
(3.8), we have that

and the result follows from (7.5) and the fact that

  ◻

The stability estimate obtained in (7.3) for the projected errors and Taylor 
expansions for the different consistency terms, provide the following quasi-opti-
mal convergence result.

Theorem  7.1 Assume that the solution of problem (3.10)–(3.11) is such that 
� ∈ C

4(�) and r ∈ C
4(�2(Ω)) . Then, it holds that

Proof It follows from the triangle inequality and the stability estimate (7.3) that

(�te
n+1
r,h

, �) = −A
�
�te

n+1
�,h

, �
�
− A

�
1

�

en+1
�,h

+ en
�,h

2
,�1�

�

− Δt

n�
k=1

⎛⎜⎜⎜⎝
���

⎛⎜⎜⎜⎝

e
k+

1

2

�,h
+ e

k−
1

2

�,h

2

⎞⎟⎟⎟⎠

+

, ����+

⎞⎟⎟⎟⎠�
+ Δt

n�
k=1

Gk(�).

���𝜕te
n
r,h

���0,Ω ≲ sup
�∈�h

(𝜕te
n
r,h
, �+)

‖�‖� ≲ max
n

���𝜕te
n
�,h

���0,Ω
+max

n

���e
n
�,h

���0,Ω +max
n

�������
�
e
n+

1

2

�,h

�+����0,Ω
+ max

n

���n
1
��0,Ω +max

n
‖�n‖0,Ω +max

n

�����(𝜕t�n
2
)+��0,Ω +max

n

�����(�n
2
)+��0,Ω,

‖‖‖e
n
�,h

‖‖‖0,Ω ≤ Δt

n∑
k=1

‖‖‖�̄�te
k
�,h

‖‖‖0,Ω ≤ max
k

‖‖‖𝜕te
k
�,h

‖‖‖0,Ω ∀n = 1… , L.

(7.6)

max
n

�����
�
t
n+

1

2

�
− �n

h

����0,Ω +max
n

�������
�
�(t

n+
1

2

) − �
n+

1

2

h

�+����0,Ω +max
n

���r(tn+ 1

2

) − rn
h

���0,Ω
≲ ��� − 𝛯h�

��W2,∞(�)
+ ��r − Qhr

��W2,∞(�2(Ω))

+ Δt2
�
‖�‖W4,∞(�) + ‖r‖W4,∞(�2(Ω))

�
.
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Centering the following Taylor expansions at t = tn gives

and

Expanding this time about t = t
n+

1

2

 gives

(7.7)

max
n

����̇(tn+ 1

2

) − 𝜕t�
n
h

���0,Ω +max
n

�����
���

�
�(t

n+
1

2

) − �
n+

1

2

h

�+�����0,Ω
+max

n

���ṙ(tn+ 1

2

) − 𝜕tr
n
h

���0,Ω
≤ max

n

����̇(tn+ 1

2

) − 𝛯h𝜕t�(tn)
���0,Ω +max

n

�����
���

�
�(t

n+
1

2

) − 𝛯h

�(tn+1) + �(tn)

2

�+�����0,Ω
+max

n

���ṙ(tn+ 1

2

) − Qh𝜕tr(tn)
���0,Ω +max

n

���𝜕te
n
�,h

���0,Ω +max
n

�������e
n+

1

2

�,h

����𝜌
+max

n

���𝜕te
n
r,h

���0,Ω ≲ max
n

����̇(tn+ 1

2

) − 𝛯h𝜕t�(tn)
���0,Ω

+max
n

���ṙ(tn+ 1

2

) − Qh𝜕tr(tn)
���0,Ω

+max
n

�����
���

�
�(t

n+
1

2

) − 𝛯h

�(tn+1) + �(tn)

2

�+�����0,Ω
+max

n

���n
1
��0,Ω +max

n
‖�n‖0,Ω +max

n

�����(𝜕t�n
2
)+��0,Ω +max

n

�����(�n
2
)+��0,Ω.

(7.8)
�n

1
= 𝛯h�̈(tn) − �̈(tn) +

Δt2

6 ∫
1

−1

(1 − |s|)3𝛯h

d4�

dt4
(tn + Δt s) ds

+ 𝜋1

(
𝛯h�̇(tn) − �̇(tn)

)
+

Δt2

2 ∫
1

−1

(1 − |s|)2𝜋1𝛯h

d3 �

dt3
(tn + Δt s) ds ,

(7.9)�n = Qhr̈(tn) − r̈(tn) +
Δt2

6 ∫
1

−1

(1 − |s|)3Qh

d4r

dt4
(tn + Δt s) ds ,

(7.10)�n
2
=

Δt2

4 ∫
1

−1

(1 − |s|)�̈(tn + Δt s) ds ,

(7.11)

�t�
k
2
=

�(tn+2) − 3�(tn+1) + 3�(tn) − �(tn−1)

4Δt

= Δt2 ∫
1

0

(1 − s)2
(
d3�

dt3
(tn + 2Δt s) −

3

8

d3�

dt3
(tn + Δt s) +

1

8

d3�

dt3
(tn − Δt s)

)
ds.
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and

Using that �h ∶ � → �h and Qh ∶ ℚ → ℚh are uniformly bounded in h and taking 
advantage of (7.8), (7.10) and (7.11), we readily obtain the bound

On the other hand, (7.12), (7.13) and (7.14) yield

Combining (7.15), (7.16) with (7.7) we obtain

Finally, to obtain error estimates for �(t
n+

1

2

) − �
n+

1

2

h
 we sum the identity

(7.12)
�(t

n+
1

2

) − 𝛯h

�(tn+1) + �(tn)

2
= �(t

n+
1

2

) − 𝛯h�(tn+ 1

2

)

−
Δt2

4 ∫
1

−1

(1 − |s|)𝛯h�̈(tn+ 1

2

+
Δt

2
s) ds,

(7.13)

�̇(t
n+

1

2

) − 𝛯h𝜕t�(tn) = �̇(t
n+

1

2

) − 𝛯h�̇(tn+ 1

2

)

−
Δt2

8 ∫
1

−1

(1 − |s|)2𝛯h

d3�

dt3

(
t
n+

1

2

+
Δt

2
s
)
ds,

(7.14)

ṙ(t
n+

1

2

) − 𝜕tr
∗
h
(tn) = ṙ(t

n+
1

2

) − Qhṙ(tn+ 1

2

)

−
Δt2

8 ∫
1

−1

(1 − |s|)2Qh

d3r

dt3

(
t
n+

1

2

+
Δt

2
s
)
ds.

(7.15)

max
n

���n
1
��0,Ω +max

n
‖�n‖0,Ω +max

n

�����(𝜕t�n
2
)+��0,Ω +max

n

�����(�n
2
)+��0,Ω

≲ ��r − Qhr
��W2,∞(�2(Ω))

+ ��� − 𝛯h�
��W2,∞(�)

+ Δt2
�
‖r‖W4,∞(�2(Ω)) + ‖�‖W4,∞(�)

�
.

(7.16)

max
n

����̇(tn+ 1

2

) − 𝛯h𝜕t�(tn)
���0,Ω +max

n

���ṙ(tn+ 1

2

) − Qh𝜕tr(tn)
���0,Ω

+max
n

�����
���

�
�(t

n+
1

2

) − 𝛯h

�(tn+1) + �(tn)

2

�+�����0,Ω
≲ ��� − 𝛯h�

��W1,∞(�)

+ ��r − Qhr
��W1,∞(H(���,Ω))

+ Δt2
�
‖r‖W3,∞(�2(Ω)) + ‖�‖W3,∞(�)

�
.

(7.17)

max
n

�����̇
�
t
n+

1

2

�
− 𝜕t�

n
h

����0,Ω +max
n

�����
���

�
�
�
t
n+

1

2

�
− �

n+
1

2

h

�+�����0,Ω
+max

n

����ṙ
�
t
n+

1

2

�
− 𝜕tr

n
h

����0,Ω
≲ ��� − 𝛯h�

��W2,∞(�)
+ ��r − Qhr

��W2,∞(�2(Ω))

+ Δt2
�
‖�‖W4,∞(�) + ‖r‖W4,∞(�2(Ω))

�
.
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over k = 1,… , n to deduce that

Similar manipulations yield

The result is now a direct consequence of the last two estimates and (7.17).   ◻

8  Asymptotic error estimates for the AFW element

According to the theory developed above, if {𝕎h,ℚh,�h} is any of the mixed 
finite elements introduced in [1, 2, 8, 14, 27] for the steady elasticity problem 
with reduced symmetry then {�h,ℚh} (with �h∶=�h ×�h ) constitutes a sta-
ble pair for problem (5.1) and its fully discrete counterpart (7.1). For the sake of 
brevity we only illustrate this fact and obtain convergence rates for the Arnold-
Falk-Winther family of finite elements [2].

Given an integer m ≥ 0 , we denote the space of piece-
wise polynomial functions of degree at most m relatively to Th by 
Pm(Th)∶=

{
v ∈ L2(Ω); v|K ∈ Pm(K), ∀K ∈ Th

}
 . It is shown in [2] that Hypoth-

esis 1 and Hypothesis 2 are satisfied by the Arnold-Falk-Winther finite element 
spaces

On the other hand, we recall that the tensorial version Πh ∶ 𝕎 ∩ ℍ1(Ω) → 𝕎h of the 
BDM-interpolation operator satisfies the classical error estimate, see [7, Proposition 
2.5.4],

(7.18)

(
�
(
t
k+

1

2

)
− �

k+
1

2

h

)
−

(
�
(
t
k−

1

2

)
− �

k−
1

2

h

)
= �

(
t
k+

1

2

)
− �

(
t
k−

1

2

)

−
Δt

2

(
�̇
(
t
k+

1

2

)
+ �̇

(
t
k−

1

2

))

+
Δt

2

(
�̇
(
tk− 1

2

)
− 𝜕t�

k−1
h

)
+

Δt

2

(
�̇
(
tk+ 1

2

)
− 𝜕t�

k
h

)

=
Δt3

16 ∫
1

−1

(s2 − 1)
d3�

dt3

(
tk +

Δt

2
s
)
ds +

Δt

2

(
�̇
(
tk− 1

2

)
− 𝜕t�

k−1
h

)

+
Δt

2

(
�̇
(
t
k+

1

2

)
− 𝜕t�

k
h

)

max
n

�����(tn+ 1

2

) − �
n+

1

2

h

����0,Ω ≲ Δt2‖�‖W3,∞(�2(Ω)) +max
n

����̇(tn+ 1

2

) − 𝜕t�
n
h

���0,Ω.

max
n

����r(tn+ 1

2

) − r
n+

1

2

h

����0,Ω ≲ Δt2‖r‖W3,∞(�2(Ω)) +max
n

���ṙ(tn+ 1

2

) − 𝜕tr
n
h

���0,Ω.

𝕎h∶=Pk(Th)
d×d ∩𝕎, ℚh∶=Pk−1(Th)

d×d ∩ℚ and

�h∶=Pk−1(Th)
d (k ≥ 1).
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together with the commuting diagram property

Consequently, if ���� ∈ �k(Ω) , it also holds that

Finally, we point out that the approximation property (4.1) holds true if ΓD = �Ω or 
ΓN = �Ω because of (8.1), (8.2) and of the density of smooth functions in � ×� 
(cf. [12]), and therefore also in � thanks to Lemma  3.1. However, to our knowl-
edge, such density results are not known when ΓN ⊊ 𝜕Ω . In any case, as � ×ℚ is 
a separable Hilbert space, the existence result provided by Theorem 5.2 can still be 
obtained (without (4.1)) by a Galerkin dimension reduction of (3.10)–(3.11) based 
on a countable set of linearly independent elements whose linear span is dense in 
� ×ℚ , cf. [11] for an example. Here, for the sake of concision, we directly formu-
lated the Galerkin procedure by way of the mixed finite element method (5.1) that 
defines our semi-discrete scheme.

A direct application of (8.1), (8.2), (4.6), and Theorem 6.1 give the following 
asymptotic error estimates in the semi-discrete case.

Theorem  8.1 Assume that the solution of problem (3.10)–(3.11) is such that 
� ∈ C

2(ℍk(Ω)2) , ����+ ∈ C
2(�k(Ω)) and r ∈ C

2(ℍk(Ω)) . Then there holds

We stress here that the quantity üh(t)∶=
1

𝜌

(
����+

h
(t) + Uhf (t)

)
 provides a direct 

and accurate approximation of the acceleration field ü . Indeed, under the assump-
tions of Theorem 8.1, the triangle inequality yields

Under adequate time and space regularity assumptions, we can also obtain the fol-
lowing asymptotic error estimate for the fully-discrete scheme.

Theorem  8.2 Assume that the solution of (3.10)–(3.11) is such that 
� ∈ C

4(�) ∩ C
2
(
[ℍk(Ω)]2

)
 , ����+ ∈ C

2(�k(Ω)) and r ∈ C
4(𝕃2(Ω)) ∩ C

2(ℍk(Ω)) . 
Then there holds

Proof The result is a direct consequence of (8.1), (8.2), (4.6) and Theorem 7.1.   ◻

(8.1)��� − Πh�
��0,Ω ≤ Chm‖�‖m,Ω ∀� ∈ ℍ

m(Ω) with1 ≤ m ≤ k + 1,

����h� = Uh���� , ∀� ∈ ℍ(���,Ω) ∩ ℍ
1(Ω).

(8.2)
�����(� − Πh�)

��0,Ω = ������ − Uh����
��0,Ω ≤ Chm‖����‖m,Ω for 0 ≤ m ≤ k.

(8.3)max
[0,T]

‖‖�̇(t) − �̇h(t)
‖‖0,Ω +max

[0,T]

‖‖�(t) − �h(t)
‖‖� + ‖‖r − rh

‖‖W1,∞(�2(Ω))
≲ hk.

max
t∈[0,T]

‖(ü − üh)(t)‖0,Ω ≲ max
t∈[0,T]

‖���(� − �h)
+‖0,Ω + max

t∈[0,T]
‖f − Uhf‖0,Ω ≲ hk.

(8.4)max
n

‖‖‖‖�(tn+ 1

2

) − �
n+

1

2

h

‖‖‖‖� +max
n

‖‖‖‖r(tn+ 1

2

) − r
n+

1

2

h

‖‖‖‖0,Ω ≲ hk + Δt2.
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We remark that, as in the semi-discrete case, an accurate approximation of the 
acceleration field ü =

1

𝜌

(
f + ����+

)
 can be obtained by a local postprocessing with

It is straightforward to deduce from Theorem 8.2 that

9  Numerical results

In this section we show that the numerical rates of convergence delivered by the 
fully discrete scheme (7.1) are in accordance with the theoretical ones. For simplic-
ity, we restrict our tests to two-dimensional model problems and assume that the 
medium is isotropic, namely, we assume that the tensors C and D are given by

with coefficients 𝜇 > 0 , 𝜆 > 0 , a > 1 , and b > 1.
Convergence test In the first example, we set Ω = (0, 1) × (0, 1) , T = 1 and con-

sider an homogeneous medium with � = 1 , � = � = 1 , a = b = 3 , and with a con-
stant relaxation time � = 1 . We select the source f  in such a way that the exact 
solution is given by

The data necessary to initiate (7.1) are deduced directly from the exact solution.
The numerical results presented in Table 1 correspond to a space discretization 

based on the second order AFW element for a sequence of nested uniform triangu-
lar meshes Th of Ω . For each mesh size h we take Δt = h and the individual relative 
errors produced by the fully discrete method (7.1) are measured at the final time step 
as follows:

(8.5)ün
h
∶=

1

𝜌

⎧
⎪⎨⎪⎩
���

�
�
n+1∕2

h
+ �

n−1∕2

h

2

�+

+ Uhf (tn)

⎫
⎪⎬⎪⎭
, n = 1,… , L − 1 .

max
1≤n≤L−1 ‖ü(tn) − ün

h
‖0,Ω ≲ hk + Δt2.

C� = 2�� + �tr(�)I and D� = 2a�� + b�tr(�)I,

(9.1)u(x, t) =

(
(1 − x1)x

2
1
sin(�x2) cos t

(1 + t) sin(�x1) sin(�x2)

)
∀x∶=(x1, x2) ∈ Ω, ∀t ∈ [0, T].

Table 1  Convergence history 
for the AFW element of 
second order with Δt = h 
and coefficients � = � = 1 , 
a = b = 3 , � = � = 1 . The exact 
solution is given by (9.1)

h = Δt e
h
(�) r

h
(�) e

h
(�) r

h
(�) e

h
(ü) r

h
(ü)

1/8 1.06e−02 − 1.74e−02 − 2.57e+01 −
1/16 2.44e−03 2.12 3.95e−03 2.14 6.48e+00 1.99
1/32 5.89e−04 2.05 9.69e−04 2.03 1.63e+00 1.99
1/64 1.46e−04 2.01 2.37e−04 2.03 4.19e−01 1.96
1/128 3.61e−05 2.02 5.86e−05 2.01 1.06e−01 1.99
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where (�, r) and (�k
h
, rk

h
) , k = 0,… ,L , are the solutions of (3.10) and (7.1), respec-

tively. The approximation üL−1
h

 of the acceleration at t = tL−1 is obtained from for-
mula (8.5). Additionally, we introduce the experimental rates of convergence

where �h and �
ĥ
 are the errors corresponding to two consecutive triangulations with 

mesh sizes h and ĥ , respectively. We observe there that the expected quadratic con-
vergence rate of the error is attained in each variable.

Locking test. We point out that the mixed finite element method given in [11] 
for the elastodynamic problem (and which is extended here for viscoelasticity) was 
shown to be free from volumetric locking in the nearly incompressible case. Here, 
we carry out experiments to test the performance of the method for viscoelastic-
ity when 𝜆 >> 𝜇 . We maintain the same settings established in the former example 
and the same exact solution. We only change the values of the coefficients � and � 
that are now chosen as (�,�) = (1.5 × 102, 3) in a first test and (�,�) = (1.5 × 104, 3) 
in a second one. Their corresponding Poisson’s ratios are given by � ≃ 0.49 and 
� ≃ 0.4999 , respectively.

We observe from Table 2 that there is no degeneration of the convergence rates 
as Poisson’s ratio � approaches the incompressible limit 0.5. This seems to indicate 
that the scheme (7.1) is inmune to locking phenomenon in the nearly incompressible 
case.

Piecewise constant relaxation time Real materials can be modelled by allowing 
different relaxation times in different parts of the viscoelastic body. In this exper-
iment, we test the sensibility of our scheme regarding to jumps in the relaxation 

�h(�)∶=
‖�(t

L−
1

2

) − �
L−

1

2

h
‖�

‖�(t
L−

1

2

)‖� , �h(r)∶=
‖r(t

L−
1

2

) − r
L−

1

2

h
‖0,Ω

‖r(t
L−

1

2

)‖0,Ω ,

�h(ü)∶=
‖ü(tL−1) − üL−1

h
‖0,Ω

‖ü(tL−1)‖0,Ω ,

�h(⋆)∶=
log(�h(⋆)∕��h(⋆))

log(h∕�h)
∀⋆ ∈

{
�, r, ü

}
,

Table 2  Convergence history for the AFW element of second order with h = Δt and coefficients 
� = 3 , a = b = 3 , � = � = 1 . The results listed on the left and right sides of the table correspond to 
� = 1.5 × 102 and � = 1.5 × 104 , respectively. The exact solution is given by (9.1)

h = Δt � ≃ 0.49 � ≃ 0.4999

e
h
(�) r

h
(�) e

h
(�) r

h
(�) e

h
(�) r

h
(�) e

h
(�) r

h
(�)

1/8 8.76e−03 − 2.85e−02 − 8.79e−03 − 2.44e+00 −
1/16 1.78e−03 2.30 3.49e−03 3.03 1.78e−03 2.30 2.11e−01 3.53
1/32 4.33e−04 2.04 7.19e−04 2.28 4.34e−04 2.04 2.54e−02 3.06
1/64 1.07e−04 2.02 1.70e−04 2.08 1.07e−04 2.01 3.34e−03 2.92
1/128 2.65e−05 2.02 4.18e−05 2.03 2.65e−05 2.02 4.33e−04 2.95
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function �(x) . To this end, we let �(x) = �̂ in Ω1∶=(0, 1) × (0, 1∕2) and �(x) = 1 in 
Ω2∶=(0, 1) × (1∕2, 1) and fix the values T = 1 , � = 1 , � = � = 1 , and a = b = 3 for 
the rest of coefficients. Non-homogeneous transmission conditions

are considered on the interface Σ , where f (�̂) , g1(�̂) , and g2(�̂) are chosen in such a 
way that the exact solution is still given by (9.1). Here, nΣ stands for the unit normal 
vector on Σ oriented towards Ω2.

Table 3 displays the convergence history of the variable � for different values of 
�̂ . We notice that the quadratic convergence remains unaltered when we allow the 
material in Ω1 to relax more quickly (by at least two orders of magnitude) with 
respect to the one represented by the upper half of Ω . In turn, the convergence rate 
worsens when �̂� is too small because our stability estimates depend on ‖‖‖

1

�

‖‖‖L∞(Ω)
 . 

For this same reason, the method presented in this paper cannot deal with materials 
that are purely elastic in parts of the domain ( �(x) should vanish identically there). 
The important issue of elastic-viscoelastic composite structures will be addressed in 
a forthcoming work.
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