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Abstract
Recently, some matrix exponential-based discriminant analysis methods were pro-
posed for high dimensionality reduction. It has been shown that they often have 
more discriminant power than the corresponding discriminant analysis methods. 
However, one has to solve some large-scale matrix exponential eigenvalue prob-
lems which constitutes the bottleneck in this type of methods. The main contribu-
tion of this paper is twofold: First, we propose a framework of fast implementation 
on general matrix exponential-based discriminant analysis methods. The key is to 
equivalently transform large-scale matrix computation problems into much smaller 
ones. On the other hand, it was mentioned in Wang et al. (IEEE Trans Image Process 
23:920–930, 2014) that the exponential model is more reliable than the original one 
and suppresses the sensitivity to pertubations. However, the interpretation is only 
heuristic, and to the best of our knowledge, there is no theoretical justification for 
reliability and stability of the matrix discriminant analysis methods. To fill in this 
gap, the second contribution of our work is to provide stability analysis for the fast 
exponential discriminant analysis method from a theoretical point of view. Numeri-
cal experiments illustrate the numerical behavior of the proposed algorithm, and 
demonstrate that our algorithm is more stable than many state-of-the-art algorithms 
for high dimensionality reduction.
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1 Introduction

Many objects in the real world are stored or represented as high dimensional data, 
and a direct processing of the data with regular methods is unfeasible and imprac-
tical [12, 35]. Dimensionality reduction is a technique to represent high dimen-
sional data by their low-dimensional embedding, so that the low-dimensional data 
can be used effectively [10, 12, 20, 31, 35]. Nowadays, dimensionality reduction 
plays a crucial role in many application areas such as face recognition, machine 
learning, data mining, image reconstruction, information retrieval, and so on [12, 
20, 24, 35, 38–40].

Principal Component Analysis (PCA) [19, 33] and Linear Discriminant Analy-
sis (LDA) [2] are two extensively utilized approaches for dimensionality reduc-
tion. PCA is a unsupervised linear subspace transformation method that maxi-
mizes the variance of the transformed features in the projected subspace. LDA 
is a supervised linear subspace transformation method that encodes discriminant 
information by maximizing the between-class covariance, while minimizing 
the within-class covariance in the projected subspace. However, both PCA and 
LDA may fail to discover the underlying manifold structure [37], where the high 
dimensional image information lies in. In order to uncover the essential mani-
fold structure of the data, some manifold learning methods have been proposed, 
to name a few, Laplacianfaces [17], Locality Preserving Projections (LPP) [16], 
Unsupervised Discriminant Projections (UDP) [43], Marginal Fisher Analysis 
(MFA) [42], Local Discriminant Embedding (LDE) [4], etc.

In Yan et  al. [42], brought most of dimensionality reduction methods into a 
general framework called graph embedding. By embedding the high dimensional 
data into an optimal lower-dimensional space, the discriminant power obtained 
from graph embedding methods is usually stronger than classical classification 
methods. In the graph embedding framework, the neighbor relationship is meas-
ured by the artificially constructed adjacent graph. One concise criterion for fea-
ture extraction can be obtained from maximizing the ratio of the nonlocal scatter 
to the local scatter. Generally speaking, direct graph embedding and its exten-
sions, such as linearization, kernelization and tensorization, all belong to this 
framework [42].

Most of the above approaches involve matrix inversion operation which may 
lead to matrix singularity problem in numerical computation, especially when 
the number of samples is (much) smaller than the dimension of samples. This is 
called the small sample size problem (SSS) or the undersampled problem [25]. In 
order to deal with the SSS problem, many techniques were proposed in decades. 
For example, the regularized method [11], PCA+LDA [2, 23, 33], the null-space 
method [5], LDA/QR [44], and so on.

Recently, some matrix exponential-based discriminant analysis methods were 
proposed to cure the drawback of SSS problem. For instance, Exponential Dis-
criminant Analysis method (EDA) [46], Exponential Marginal Fisher Analy-
sis (EMFA) [15, 37], Exponential Locality Preserving Projections (ELPP) [36], 
Exponential Local Discriminant Embedding (ELDE) [8], Exponential Elastic 
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Preserving Projections (EEPP) [45], and so on. In [37], a general exponential 
framework for dimensionality reduction was proposed. As exponential of any 
square matrix is nonsingular [14], exponential transformation cures the drawback 
of the SSS problem naturally. Furthermore, the matrix exponential can be consid-
ered as the cumulative sum of the similarity/transition matrices after the random 
walk over the feature similarity matrix, and the behavior of the decay property of 
matrix exponential is more significant in emphasizing small distance pairs [37]. 
Consequently, the matrix exponential discriminant analysis methods often have 
more discriminant power than their original counterparts, and they are competi-
tive candidates for dimensionality reduction [1, 8, 9, 15, 36, 37, 39, 41, 45, 46].

In all the matrix exponential discriminant analysis methods, however, one has to 
compute two large-scale matrix exponentials and to solve a large-scale eigenprob-
lem. The computational cost is prohibitively large for data with high dimension. The 
first contribution of this paper is to propose a fast implementation framework for all 
the above mentioned matrix exponential-based discriminant analysis methods. The 
key is to equivalently transform the original large matrix computation problems of 
size d into smaller ones of size n, where n is the number of training samples being 
much smaller than the data dimension d. So the proposed algorithms will be much 
cheaper than their original counterparts. Moreover, we show that the transformation 
is mathematically equivalent, so there will be no recognition rate lost in the acceler-
ated algorithms.

As pointed out in [37, 46], the exponential model can be roughly interpreted as 
a random walk over the feature similarity matrix, which makes the feature similar-
ity matrix more reliable and suppresses the sensitivity to the size of neighbors. The 
interpretation is just heuristic, however, to the best of our knowledge, there is no the-
oretical justification for reliability and stability of the matrix discriminant analysis 
methods. To fill in this gap, the second contribution of our work is to provide stabil-
ity analysis for the fast exponential discriminant analysis methods from a theoretical 
point of view, and show why it is stable to the perturbation of the data matrix. This 
is also the main contribution of our work.

The remainder of this work is organized as follows. In Sect. 2, we give some pre-
liminaries for this work and present a general framework for the matrix exponential 
discriminant analysis methods. In Sect. 3, we focus on accelerating the matrix expo-
nential discriminant algorithms and propose a fast implementation framework. In 
Sect. 4, we provide stability analysis on the proposed algorithm. In Sect. 5, we per-
form some numerical experiments on some benchmark face databases to show the 
numerical behavior of our new algorithm. Section 6 gives some concluding remarks.

Let us introduce some notations. Given a matrix A, we denote by tr(A) the trace 
of A, and by exp(A) the matrix exponential of A. Let �max(A), �min(A) be the maxi-
mal and the minimal (nonzero) singular values of A, and let span{A} be the space 
spanned by the columns of A. Denote by AT ,AH the transpose and conjugate trans-
pose of A, respectively, and by A† the Moore-Penrose inverse of A. In this paper, �i 
stands for the vector of all ones with dimension i; and r, L for the reducing dimen-
sion and for the number of training samples in each class, respectively. Let ‖A‖F be 
the Frobenius norm of A, and let ‖A‖2 be the 2-norm of A, i.e., the largest singular 
value of A. Let A, B be two square matrices of the same size, then (A, B) represents 
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a matrix pair. Suppose that the two matrices X, Y have the same rows, then [X,  Y] 
denotes the matrix composed of the columns of X and Y, and sin∠(X, Y) denotes 
the distance between the two subspaces span{X} and span{Y} . Let I be the identity 
matrix and � be a zero matrix or vector, whose order are clear from the context.

2  Preliminaries

In this paper, we are interested in the following large generalized eigenvalue problem

where X = [�1, �2,… , �n] ∈ ℝ
d×n with each column �i (1 ≤ i ≤ n) being a sample, 

and the data dimension d is much larger than the number of samples, i.e., d ≫ n . 
The matrices F,H ∈ ℝ

n×n are symmetric positive semidefinite matrices of order n. 
The large-scale eigenproblem (2.1) arises in many applications in machine learn-
ing and dimensionality reduction. Indeed, all the eigenproblems appeared in graph 
embedding methods, such as LDA [25], LDE [4], LPP [16], MFA [42], Fast and 
Orthogonal Locality Preserving Projections (FOLPP) [27], and Sparsity Preserving 
Projections (SPP) [26], can be reformulated as the form of (2.1) [20, 37, 42]. Moreo-
ver, in many popular dimension reduction methods such as PCA [19, 33], Multi-
Dimensional Scaling (MDS) [32], ISOMAP [31], Neighborhood Preserving Projec-
tions (NPP) [21], Orthogonal Neighborhood Preserving Projection (ONPP) [22], 
and Orthogonal Locality Preserving Projections (OLPP) [21], all the eigenproblems 
involved are in the form of (2.1) [20]; see Table 1 in [42].

2.1  Linear discriminant analysis

LDA is one of notable subspace transformation methods for dimensionality reduc-
tion [25]. In this subsection, we illustrate how the generalized eigenvalues problem 
involved in LDA can be rewritten as the form of (2.1).

Suppose that the original data X = [C1,C2,… ,CK] , where Ci ∈ ℝ
d×ni is the data 

corresponding to the i-th class. We derive the mean vector of the data matrix as 
� =

∑n

i=1
�i∕n = X�n∕n , and the mean vector of the i-th class as �i =

∑
�j∈Ci

�j∕ni , 
i = 1, 2,… ,K . Then we define the within-class scatter matrix as SW = HWH

T
W

 and 
the between-class scatter matrix as SB = HBH

T
B
 [25], with

and

Moreover, the total scatter matrix ST = SB + SW . LDA encodes discriminant infor-
mation by maximizing the between-class scatter, and meanwhile minimizing the 
within-class scatter in the projected subspace. This resorts to solving the following 
optimization problem [2]

(2.1)XFXT� = �XHXT�,

HW = [C1 −�1�
T
n1
,C2 −�2�

T
n2
,… ,CK −�K�

T
nK
],

HB = [
√
n1(�1 −�),

√
n2(�2 −�),… ,

√
nK(�K −�)].



1 3

On general matrix exponential discriminant analysis methods… Page 5 of 34 18

whose solution is obtained from solving the generalized eigenvalue problem as fol-
lows [2]

We now show that (2.3) can be reformulated as a form of (2.1). Consider the diago-
nal matrix DK = diag(n1, n2,… , nK) , then under the above notations, we have

Recall that �i is the mean vector of i-th class, so it is a linear combination of data 
matrix X. Define

whose (i, j)-th entry is

Decompose the matrix column-by-column as P = [�1, �2,… , �K] , where �i denotes 
the i-th column of P. Then we have �i =

∑
�j∈Ci

�j∕ni = X�i∕ni, i = 1, 2,… ,K, and

From (2.4)–(2.7), we obtain

where LB = PD
−

1

2

K
− �n�

T
K
D

1

2

K
∕n ∈ ℝ

n×K . As a result, the between-class matrix can 
be expressed as

Next, we focus on the within-scatter matrix SW = HWH
T
W

 . Notice that

(2.2)
V∗ = arg max

V ∈ ℝ
d×r

VTV = I

tr
(
(VTSWV)

−1(VTSBV)
)
,

(2.3)HBH
T
B
� = �HWH

T
W
�.

(2.4)
HB =

(
[�1,�2,… ,�K] − [�,�,… ,�]

)
D

1

2

K

=
(
[�1,�2,… ,�K] −��T

K

)
D

1

2

K
.

(2.5)P =

⎡⎢⎢⎢⎣

�n1 � ⋯ �

� �n2 ⋯ �

⋮ ⋮ ⋱ ⋮

� � ⋯ �nK

⎤⎥⎥⎥⎦
∈ ℝ

n×K .

(2.6)Pij =

{
1, �i ∈ C(j),

0, else.

(2.7)[�1,�2,… ,�K] = XPD−1
K
.

HB = (XPD−1
K

− X�n�
T
K
∕n)D

1

2

K

= X(PD
−

1

2

K
− �n�

T
K
D

1

2

K
∕n)

= XLB,

SB = HBH
T
B
= XLBL

T
B
XT .
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By (2.7) and (2.8),

where LW = In − PD−1
K
PT ∈ ℝ

n×n . Thus, the within-class matrix SW can be reformu-
lated as

In conclusion, we have the following theorem.

Theorem 2.1 Under the above notations, we have

and (2.3) can be rewritten as

where

Remark 2.1 Denote by T̂ = �n�
T
n
∕n ∈ ℝ

n×n , Tj = �nj�
T
nj
∕nj ∈ ℝ

nj×nj , and by the block 
diagonal matrix T = diag(T1, T2,… , TK) , it was pointed out that [6]

In addition, denote by X̄ = X −��T
n
 , we have that [20]

see also [42, Eqn(12)]. Note that (2.9) is different from (2.13), and we express HB 
and HW as a linear combination of the columns of X. Recall that X̄ is a column rank-
deficient matrix even when X is of full column rank.

(2.8)

HW = [C1 −�1�
T
n1
,C2 −�2�

T
n2
,… ,CK −�K�

T
nK
]

= [C1,C2,… ,CK] − [�1�
T
n1
,�2�

T
n2
,… ,�K�

T
nK
]

= X − [�1�
T
n1
,�2�

T
n2
,… ,�K�

T
nK
].

HW = X − [�1,�2,… ,�K]P
T

= X − XPD−1
K
PT

= XLW ,

SW = XLWL
T
W
XT .

(2.9)SB = XLBL
T
B
XT , SW = XLWL

T
W
XT ,

(2.10)XLBL
T
B
XT� = �XLWL

T
W
XT�,

(2.11)LB = PD
−

1

2

K
− �n�

T
K
D

1

2

K
∕n, and LW = In − PD−1

K
PT .

(2.12)SB = X(T − T̂)XT , ST = X(I − T̂)XT .

(2.13)SB = X̄TX̄T , SW = X̄(I − T)X̄T ,
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2.2  A general exponential framework for dimensionality reduction

The main difference between the matrix exponential-based discriminant analysis 
methods and the classical discriminant analysis methods is that the former applies 
matrix exponential transformation on scatter matrices. More precisely, if we denote 
by

then in the matrix exponential-based discriminant analysis methods, such as EDA 
[46], EMFA [15, 37], ELPP [15], ELDE [8], and Exponential Unsupervised Discri-
minant Projections (EUDP) [37], all of them resort to solving the objective function 
as follows [1, 8, 9, 15, 36, 37, 39, 41, 46]

As SF and SH are symmetric, both exp(SF) and exp(SH) are positive definite. The 
matrix exponential-based discriminant analysis methods seek the projection matrix 
V∗ via solving the following symmetrical generalized eigenvalue problem [1, 8, 9, 
15, 36, 37, 39, 41, 45, 46]

A framework for the exponential-based discriminant analysis algorithms is pre-
sented in Algorithm  1. At the first glance, the computational complexities of the 
matrix exponential-based discriminant algorithms are prohibitively large and are 
much higher than those of the classical discriminant analysis algorithms. It will 
require O(d3) flops to form the two large matrix exponentials exp(SH) and exp(SF) 
explicitly, and another O(d3) flops to solve (2.14). Furthermore, we have to store the 
two large matrix exponentials which are d-by-d (possibly) dense matrices. There-
fore, it is unfavorable to compute and store these large matrix exponentials explic-
itly, and to solve the large eigenproblem (2.14) directly. Therefore, it is necessary to 
seek new strategies to speedup the matrix exponential-based discriminant analysis 
algorithms in practical calculations.

SH = XHXT , SF = XFXT ,

V∗ = arg max
V ∈ ℝ

d×r

VTV = I

tr
(
(VTexp(SH)V)

−1(VTexp(SF)V)
)
.

(2.14)exp(SF)� = �exp(SH)�.
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3  A Fast Implementation on Matrix Exponential‑based Discriminant 
Analysis Methods

In this section, we consider how to accelerate the matrix exponential-based discri-
minant analysis algorithms. The key is to equivalently transform the large matrix 
computation problems of size d into smaller ones of size n. Consequently, there 
is no need to form and store the two large matrix exponentials explicitly. To this 
aim, we first rewrite the matrices exp(SH) and exp(SF) as low-rank updates of the 
identity matrix, and then reduce the large eigenproblem (2.14) into smaller one.

3.1  Solving the large eigenvalue problem efficiently

The QR decomposition is a powerful tool for small-sample-size problems [25, 
44]. Consider the “economical” QR decomposition [13] of the data matrix 
X ∈ ℝ

d×n : X = QR , where Q ∈ ℝ
d×n is orthogonal and R ∈ ℝ

n×n is upper triangu-
lar. As d ≫ n , the QR decomposition refers to the economized QR decomposition 
throughout this paper. We have

where

are two n-by-n matrices. The following theorem indicates that there is a close rela-
tionship between the eigenpairs of the matrix pencil 

(
exp(SF), exp(SH)

)
 and those of (

exp(S̃F), exp(S̃H)
)
.

Theorem 3.1 Let X = QR be the economized QR decomposition of the data matrix 
X, where Q ∈ ℝ

d×n is orthonormal and R ∈ ℝ
n×n is upper triangular. Denote 

by S̃H = RHRT ∈ ℝ
n×n and by S̃F = RFRT ∈ ℝ

n×n . If (�, �) is an eigenpair of (
exp(S̃F), exp(S̃H)

)
 , then (�,Q�) is an eigenpair of 

(
exp(SF), exp(SH)

)
 , and vice 

versa.

Proof It is easy to verify that

On one hand, if exp(S̃F)� = �exp(S̃H)� , by (3.4)–(3.5), we have that

(3.1)SF = XFXT = Q(RFRT )QT = QS̃FQ
T ,

(3.2)SH = XHXT = Q(RHRT )QT = QS̃HQ
T ,

(3.3)S̃F = RFRT and S̃H = RHRT

(3.4)exp(SF) = Id + Q
(
exp(S̃F) − In

)
QT ,

(3.5)exp(SH) = Id + Q
(
exp(S̃H) − In

)
QT .
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On the other hand, if exp(SF)(Q�) = �exp(SH)(Q�) , then it follows from (3.4)–(3.5) 
that

Applying QT on both sides gives exp(S̃F)� = �exp(S̃H)� , which completes the proof.  
 ◻

Remark 3.1 By (3.1), one can reduce the d-by-d large-scale symmetric positive defi-
nite generalized eigenproblem of (SH , SF) into an n-by-n symmetric positive definite 
generalized eigenproblem of (S̃H , S̃F).

3.2  A fast matrix exponential discriminant analysis algorithm

In practice, it is required to compute r (r ≤ n) eigenpairs of (2.14), where r is the 
reducing dimension. By Theorem 3.1, we only need to solve the eigenproblems of 
the n × n symmetrical generalized eigenproblem with respect to the n-by-n matrix 
pencil 

(
exp(S̃F), exp(S̃H)

)
 , whose cost is in O(n3) flops [13]. The main algorithm 

of this paper is described as follows. 

As was suggested in [15, 37, 46], to prevent overflow, it is necessary to nor-
malize the scatter matrices SF and SH (say, by using their Frobenius norm) in Step 
1 of Algorithm 1. However, it is unfavorable to form and store these two matrices 
as they are very large and dense. The following theorem indicates that it only 
needs to normalize S̃F and S̃H of size n in practice; see Step 3 of Algorithm 2.

Theorem 3.2 Under the above notations, we have

exp(SF)(Q�) = [Id + Q
(
exp(S̃F) − In

)
QT ](Q�)

= Qexp(S̃F)� = �Qexp(S̃H)�

= �[Id + Q
(
exp(S̃H) − In

)
QT ](Q�)

= �exp(SH)(Q�).

Qexp(S̃F)� = �Qexp(S̃H)�.
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Proof We only prove (3.6), and the proof of (3.7) is similar. From (3.1) and the fact 
that ‖SF‖F = ‖QS̃FQT‖F = ‖S̃F‖F , we have

  ◻

So far we refrain from forming and storing the large matrices SF, SH and 
exp(SF) , exp(SH) in Algorithm  2. On one hand, we only need to store a d × n 
matrix Q and some n × n matrices in the new algorithm, and the main storage 
requirement of the algorithm is O(dn) as d ≫ n , rather than O(d2) . On the other 
hand, it is only required to compute the economized QR decomposition of X once 
for all, in O(dn2) flops, moreover, solving the small generalized eigenproblem 
exp(S̃F)� = �exp(S̃H)� needs O(n3) flops, rather than O(d3) flops. As a result, there 
is no need to form and store the two large matrix exponentials explicitly. Moreo-
ver, the transformations are mathematically equivalent, so the recognition rate as 
well as the standard derivation obtained from Algorithm 2 would be the same to 
those from Algorithm 1; see the numerical experiments performed in Sect. 5.

Remark 3.2 Recently, two inexact Krylov subspace algorithms, Arnoldi-EDA and 
Lanczos-EDA were proposed for solving the large matrix exponential eigenproblem 
arising in the Exponential Discriminant Analysis (EDA) method [39]. These two 
algorithms are based on Krylov subspace projection techniques and inexact solvers, 
in which the matrix exponentials need not to form or store explicitly, and the eigen-
pairs are solved only approximately.

However, in each step of the Arnoldi or Lanczos process, one has to perform a 
matrix exponential-vector multiplication of size d, in addition to Gram-Schmidt 
orthogonalizations. Thus, the proposed algorithm is cheaper than the two inexact 
Krylov subspace algorithms advocated in [39]; one refers to Sect. 5 for a comprehen-
sive comparison of Algorithm 2 with these two inexact Krylov subspace algorithms.

(3.6)exp
( SF

∥ SF ∥F

)
= Id + Q

(
exp

( S̃F

∥ S̃F ∥F

)
− In

)
QT ,

(3.7)exp
( −SH

∥ SH ∥F

)
= Id + Q

(
exp

( −S̃H

∥ S̃H ∥F

)
− In

)
QT .

exp
( SF

∥ SF ∥F

)
= Id +

QS̃FQ
T

∥ S̃F ∥F

+
QS̃2

F
QT

2! ∥ S̃F ∥2
F

+⋯

= Id + Q
( S̃F

∥ S̃F ∥F

+
S̃2
F

2! ∥ S̃F ∥2
F

+⋯
)
QT

= Id + Q
(
exp

( S̃F

∥ S̃F ∥F

)
− In

)
QT .
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4  Stability analysis on the proposed algorithm

In practical applications, however, the data is often perturbed or contaminated, 
and a natural question is [28]: whether the classification performance of the dis-
criminant methods will be affected by the perturbations seriously or not? In this 
section, we focus on this problem and show the stability of the exponential dis-
criminant methods. More precisely, we consider how the recognition rate will be 
affected by the perturbation on the original data.

Without loss of generality, we suppose that X is of full column rank and 
‖X‖F = 1 . Let E ∈ ℝ

d×n be a perturbation matrix with ‖E‖F = 𝜀 ≪ 1 , and denote 
by X = X + E the perturbed matrix of X, such that both the rank and the classifi-
cation of the data points after perturbation are unchanged. Indeed, as the elements 
in the matrices F and H are determined by the classification of the data points, we 
make the assumption that both F and H are unchanged under the perturbation of 
E. Otherwise, the modifications in H and F will be in the order of O(1) , which is 
not a perturbation problem any more; see, for example, (2.6).

Denote S
F
= XFXT and S

H
= XHXT , then the symmetric generalized exponen-

tial eigenvalue problem (2.14) turns out to be

To analyze the stability of the fast matrix exponential-based algorithms, we want 
to establish the relationship between the eigenspace of (2.14) and that of (4.1). Let 
V be the (orthonormalized) solution matrix obtained from X by using Algorithm 2, 
and let V  be that from X , then the distance (in terms of Frobinus norm) between the 
subspaces span{V} and span{V} is defined as [29]

Let �̂i be a sample from the training set, and �̂j be a sample from the testing set. 
Then the nearest neighbour classifier gives class membership via investigating the 
Euclidean distance as follows [7]

where ‖VT (�̂i − �̂j)‖2 is the 2-norm or the Euclidean norm of the vector VT (�̂i − �̂j) . 
The following theorem indicates that one can use sine of the angle between the two 
subspaces span{V} and span{V} as a criterion for stability of classification.

Theorem 4.1 [39] Let V ,V ∈ ℝ
d×r be orthonormal matrices whose columns are the 

“exact” and “computed” solutions of (2.14) and (4.1), respectively. Denote by 
dij = ‖VT (�̂i − �̂j)‖2 and d

ij
= ‖VT (�̂i − �̂j)‖2 the “exact” and the “computed” 

Euclidean distances, respectively. If ‖�̂j‖2, ‖�̂j‖2 = 1 and cos∠(V ,V) ≠ 0 , then

(4.1)exp(S
F
)v = �exp(S

H
)v.

(4.2)sinF ∠(V ,V) =
1√
2
‖(I − VVT )V‖F.

(4.3)dij = ‖VVT (�̂i − �̂j)‖2 = ‖VT (�̂i − �̂j)‖2,
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Indeed, the above theorem shows that if sin∠(V ,V) is sufficiently small, then the 
{dij}

�s and the {d
ij
}�s will be close to each other, where d

ij
= ‖VT (�̂i − �̂j)‖2 is an 

approximation to dij . Consequently, the recognition results of the “exact solution” and 
those of the “perturbed solution” are about the same. For more details, refer to [39].

Under the framework of Algorithm 2, we will divide the stability analysis into four 
steps.

(1) Firstly, according to Steps 1–2 of Algorithm 2, we consider the perturbation of E 
on S̃H and S̃F.

If we denote by

and by X(t) = X + tG , then X + tG has a unique QR decomposition X(t) = Q(t)R(t) 
for all |t| ≤ �1 [3, Corollary 2.2]. Consider the (economized) QR decomposition of 
X:

where 𝛥R = 𝜀1Ṙ(0) +O(𝜀2
1
) , 𝛥Q = 𝜀1Q̇(0) +O(𝜀2

1
) , and Ṙ(0), Q̇(0) are the first 

order derivatives of R(t) and Q(t) at t = 0 , respectively. It was shown that [3]

where �2(R) and �2(X) are the 2-norm condition number of R and X, respectively. 
Note that Q is orthonormal, so �2(R) = �2(X) , moreover, as ‖X‖F = 1 , we have

where �max(X) and �min(X) are the largest and the smallest (nonzero) singular values 
of X, respectively. Thus,

Let S̃
H
= RHRT , then we have

(4.4)
d
ij
− 2 sin∠(V ,V)

cos∠(V ,V)
≤ dij ≤ d

ij
cos∠(V ,V) + 2 sin∠(V ,V).

�1 = �∕‖X‖2, G = E∕�1,

X = QR = (Q + �Q)(R + �R),

‖Ṙ(0)‖F ≤ √
2𝜅2(R)‖QTG‖F and ‖𝛥Q‖F ≤ √

2𝜅2(X)𝜀1 +O(𝜀2
1
),

�2(X) = ‖X‖2‖X†‖2 =
�max(X)

�min(X)
≤ ‖X‖F

�min(X)
=

1

�min(X)
,

(4.5)‖Ṙ(0)‖F ≤ √
2𝜅2(R)‖QTG‖F ≤ √

2𝜅2(X)‖G‖F ≤
√
2𝜀

𝜎min(X)𝜀1
,

(4.6)‖�Q‖F ≤ √
2�2(X)�1 +O(�2

1
) ≤

√
2�

�min(X)‖X‖2 +O(�2).

(4.7)

�S
H
= (R + 𝛥R)H(R + 𝛥R)T

= RHRT + 𝜀1(RHṘT (0) + Ṙ(0)HRT ) + 𝜀2
1
Ṙ(0)HṘT (0) + (HRT + RH)O(𝜀2

1
).
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If we denote by

then S̃
H
= S̃H + �1 . Combining the above relation with (4.5) and (4.7), we arrive at

where we use the fact that ‖R‖2 = ‖X‖2 ≤ ‖X‖F = 1.
(2) Secondly, in Step 3 of Algorithm 2, we need to normalize S̃

H
 . Let

we investigate the perturbation of E on ‖Ŝ
H
− ŜH‖F and ‖exp(Ŝ

H
) − exp(ŜH)‖F.

Suppose that 𝜀∕𝜎min(X) ≪ 1 , then ‖△1 ‖F = O
�
𝜀∕𝜎min(X)

�
≪ 1 , and there 

exists a constant 0 ≪ 𝜂 ≤ 1 satisfying ‖S̃
H
‖F = �‖S̃H‖F + ‖�1‖F . Let �2 = Ŝ

H
− ŜH , 

we have from (4.8) that

Let

𝛥1 = 𝜀1(RHṘT (0) + Ṙ(0)HRT ) + 𝜀2
1
Ṙ(0)HṘT (0) + (HRT + RH)O(𝜀2

1
),

(4.8)

‖𝛥1‖F = ‖�S
H
− �SH‖F

≤ 𝜀1‖RHṘT (0) + Ṙ(0)HRT‖F + ‖𝜀2
1
Ṙ(0)HṘT (0)‖F + ‖HRT + RH‖FO(𝜀2

1
)

≤ 2𝜀1‖R‖2‖H‖2‖Ṙ(0)‖F + 𝜀2
1
‖Ṙ(0)‖2

F
‖H‖2 + 2‖H‖2‖R‖FO(𝜀2

1
)

≤ 2𝜀1‖X‖2‖H‖2
√
2𝜀

𝜎min(X)𝜀1
+ 𝜀2

1
‖H‖2 2𝜀2

𝜎2
min

(X)𝜀2
1

+O(𝜀2
1
)

≤ 2
√
2‖H‖2 𝜀

𝜎min(X)
+ 2‖H‖2 𝜀2

𝜎2
min

(X)
+O(𝜀2

1
)

= 2
√
2‖H‖2 𝜀

𝜎min(X)
+O

�
𝜀2

𝜎2
min

(X)

�
,

(4.9)Ŝ
H
= S̃

H
∕‖S̃

H
‖F, ŜH = S̃H∕‖S̃H‖F,

‖�2‖F = ‖Ŝ
H
− ŜH‖F

=

���‖S̃H‖F(S̃H + �1) − ‖S̃H + �1‖FS̃H���F
‖S̃

H
‖F‖S̃H‖F

=

���S̃H(‖S̃H‖F − ‖S̃H + �1‖F) + ‖S̃H‖F�1
���F

(�‖S̃H‖F + ‖�1‖F)‖S̃H‖F

≤
���‖S̃H‖F − ‖S̃H + �1‖F���‖S̃H‖F + ‖S̃H‖F‖�1‖F

�‖S̃H‖2F
≤ ‖�1‖F‖S̃H‖F + ‖S̃H‖F‖�1‖F

�‖S̃H‖2F
≤ 2‖�1‖F

�‖S̃H‖F
≤ 4

√
2‖H‖2

�‖RHRT‖F
⋅

�

�min(X)
+O

�
�2

�2
min

(X)

�
.
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then

Next, we investigate the relationship between exp(Ŝ
H
) and exp(ŜH) , under the condi-

tion that 𝜀∕𝜎min(X) ≪ 1 . For any matrices A,� ∈ ℝ
n×n and t > 0 , it follows that [34]

Note that ‖ exp(A)‖ ≤ e‖A‖ for any subordinate matrix norm [14, pp.237], we have

Specifically, if A is a symmetric positive definite (SPD) matrix, we conclude that

Let �3 = exp(Ŝ
H
) − exp(ŜH) , it follows from (4.11) and 𝜀∕𝜎min(X) ≪ 1 that

where we use �2 = Ŝ
H
− ŜH and �max(ŜH) ≤ ‖ŜH‖F = 1 . As 𝜀∕𝜎min(X) ≪ 1 , we can 

apply the Taylor expansion of e�1�∕�min(X) at 0, which gives

Thus,

(4.10)�1 =
4
√
2‖H‖2

�‖RHRT‖F
,

(4.11)‖�2‖F ≤ �1
�

�min(X)
+O

�
�2

�2
min

(X)

�
.

exp
(
(A + �)t

)
− exp(At) = ∫

t

0

exp
(
(A(t − s)

)
⋅ � ⋅ exp

(
(A + �)s

)
ds.

‖exp(A + �) − exp(A)‖F =
������

1

0

exp
�
(A(1 − s)

�
⋅ � ⋅ exp

�
(A + �)s

�
ds
�����F

≤ ‖�‖F �
1

0

‖exp(A(1 − s))‖2 ⋅ ‖exp
�
(A + �)s

�‖2ds

≤ ‖�‖F �
1

0

e‖A‖2(1−s) ⋅ e‖(A+�)‖2sds

≤ ‖�‖F �
1

0

e‖A‖2+‖�‖2sds

≤ ‖�‖F ⋅ e‖A‖2+‖�‖2 ≤ ‖�‖F ⋅ e‖A‖2+‖�‖F .

(4.12)‖exp(A + �) − exp(A)‖F ≤ ‖�‖F ⋅ e�max(A)+‖�‖F .

‖�3‖F =‖exp(Ŝ
H
) − exp(ŜH)‖F

≤‖�2‖F ⋅ e‖�2‖F+�max(ŜH )

≤e�1 �

�min(X)
e�1�∕�min(X) +O

�
�2

�2
min

(X)

�
,

e�1�∕�min(X) = 1 +
�1�

�min(X)
+O

(
�2

�2
min

(X)

)
.
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Analogously, let S̃
F
≡ RFRT , Ŝ

F
= S̃

F
∕‖S̃

F
‖F , ŜF = S̃F∕‖S̃F‖F , 

�4 ≡ exp(Ŝ
F
) − exp(ŜF) , and

where 0 ≪ �𝜂 ≤ 1 satisfying ‖S̃
F
‖F = �̂‖S̃F‖F + ‖S̃

F
− S̃F‖F . We can prove that

(3) Thirdly, we focus on the distance between the eigenspace of 
(
exp(ŜF), exp(ŜH)

)
 

and that of 
(
exp(Ŝ

F
), exp(Ŝ

H
)
)
.

We first need the following theorem:

Theorem 4.2 [30] Let the definite pair (J, S) be decomposed as following

and

where Y1 and Y2 have orthonormal columns and the column of Y1 span an 
eigenspace of (J,  S). Let the analogous decomposition be given for the pair 
(J̃, S̃) = (J + �J)(S + �S) . Set

if 𝛿 > 0 , then

where

(4.13)

‖�3‖F ≤ e�1�

�min(X)

�
1 +

�1�

�min(X)

�
+O

�
�2

�2
min

(X)

�

≤ e�1
�

�min(X)
+ e�2

1

�2

�2
min

(X)
+ e�1O

�
�3

�3
min

(X)

�

= e�1
�

�min(X)
+O

�
�2

�2
min

(X)

�
.

(4.14)�2 =
4
√
2‖F‖2

�̂‖RFRT‖F
,

(4.15)‖�4‖F = ‖exp(Ŝ
F
) − exp(ŜF)‖F ≤ e�2

�

�min(X)
+O

�
�2

�2
min

(X)

�
.

[
YH
1

YH
2

]
J[Y1, Y2] =

[
J1 0

0 J2

]
,

[
YH
1

YH
2

]
S[Y1, Y2] =

[
S1 0

0 S2

]
,

� ≡ min
i,j

{�((�i, �i), (�̃j, �̃j)) ∶ (�i, �i) ∈ �(J1, S1), (�̃j, �̃j) ∈ (J̃2, S̃2)},

(4.16)sinF∠(Y1, Ỹ1) ≤
√‖J2 + S2‖2
c(J, S) ⋅ c(S̃, J̃)

⋅

�
‖�J ⋅ Y1‖2F + ‖�S ⋅ Y1‖2F

�
,
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and

is a Crawford number [30].

Recall that both 
(
exp(ŜF), exp(ŜH)

)
 and 

(
exp(Ŝ

F
), exp(Ŝ

H
)
)
 are definite matrix 

pencils. According to [29, pp.79–80], let the columns of the orthonormal matrices Z1 
and Z

1
 span an eigenspace of 

(
exp(ŜF), exp(ŜH)

)
 and 

(
exp(Ŝ

F
), exp(Ŝ

H
)
)
 , respectively. 

Then there exist Z2, Z2
 such that [Z1, Z2], [Z1

, Z
2
] are nonsingular and Z

1
, Z

2
 are ortho-

normal, such that

and

In the terminology of Theorem 4.2, we denote by

and note that

where e = exp(1) , moreover,

where we use the fact that both ŜH and ŜF are semi-positive definite. Similarly, we 
have that c2

(
exp(Ŝ

F
), exp(Ŝ

H
)
) ≥ 2 . As a result,

�
(
(�, �), (�̃, �̃)

)
=

|��̃ − ��̃|√
(|�|2 + |�|2)(|�̃|2 + |�̃|2)

,

c(J, S) = min‖�‖2=1
����

H(J + iS)�
��� > 0.

[
ZH
1

ZH
2

]
exp(ŜF)[Z1, Z2] =

[
F1 0

0 F2

]
,

[
ZH
1

ZH
2

]
exp(ŜH)[Z1, Z2] =

[
H1 0

0 H2

]
,

[
ZH
1

ZH
2

]
exp(Ŝ

F
)[Z

1
, Z

2
] =

[
F
1

0

0 F
2

]
,

[
ZH
1

ZH
2

]
exp(Ŝ

H
)[Z

1
, Z

2
] =

[
H

1
0

0 H
2

]
.

�1 =

�
‖exp2(ŜH) + exp2(ŜF)‖2

c
�
exp(Ŝ

F
), exp(Ŝ

H
)
�
⋅ c
�
exp(ŜF), exp(ŜH)

� ,

�
‖exp2(ŜH) + exp2(ŜF)‖2 ≤

�
‖exp(ŜH)‖22 + ‖exp(ŜF)‖22

≤
�

e2�max(ŜH ) + e2�max(ŜF)

≤ √
2e,

(4.17)

c2
�
exp(ŜF), exp(ŜH)

�
= min‖�‖2=1

��
�Hexp(ŜF)�

�2
+
�
�Hexp(ŜH)�

��2

≥ �2
min

�
exp(ŜF)

�
+ �2

min

�
exp(ŜH)

�

≥ 2,
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On the other hand, (4.13) and (4.15) yield

Let

if 𝛿1 > 0 , we obtain from Theorem 4.2, (4.18) and (4.19) that

(iv) Finally, we determine the distance between the eigenspace of the matrix pair (
exp(SF), exp(SH)

)
 and that of 

(
exp(S

F
), exp(S

H
)
)
.

Indeed,

By (4.6) and (4.21),

(4.18)�1 ≤ e√
2
.

(4.19)

�
‖�3 ⋅ Z1‖2F + ‖�4 ⋅ Z1‖2F ≤

�
‖�3‖2F + ‖�4‖2F

≤ √
2max{‖�3‖F, ‖�4‖F}

≤ √
2emax{�1, �2}

�

�min(X)
+O

�
�2

�2
min

(X)

�
.

(4.20)

�1 = min
i,j

{
�((�i, �i), (�̃j, �̃j)) ∶ (�i, �i) ∈ �(F1,H1), (�̃j, �̃j) ∈ �(F

2
,H

2
)
}
,

(4.21)

sinF∠(Z1, Z1
) ≤ �−1

1
�1

�
‖�3 ⋅ Z1‖2F + ‖�4 ⋅ Z1‖2F

≤ �−1
1
e2 max{�1, �2}

�

�min(X)
+O

�
�2

�2
min

(X)

�
.

(4.22)

sinF∠(QZ1,QZ1
) =

1√
2
‖(Id − QZ1Z

T
1
QT )QZ

1
‖F

=
1√
2
‖(Id − QZ1Z

T
1
QT )(Q + �Q)Z

1
‖F

≤ 1√
2
‖(Id − QZ1Z

T
1
QT )QZ

1
‖F +

1√
2
‖(Id − QZ1Z

T
1
QT )�QZ

1
‖F

≤ sinF∠(QZ1,QZ1
) +

1√
2
‖�Q‖F

= sinF∠(Z1, Z1
) +

1√
2
‖�Q‖F.
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In summary, we have the main theorem in this paper:

Theorem 4.3 Under the above notations and assumptions, if 𝛿1 > 0 , then

where V = QZ1 , V = QZ
1
 are orthonormal bases for the eigenspaces of the definite 

pairs 
(
exp(S

F
), exp(S

H
)
)
 and 

(
exp(SF), exp(SH)

)
 , respectively.

Remark 4.1 Given a perturbation matrix E to the data matrix X, whose norm is 
in the order of � , Theorem 4.3 indicates that the perturbation to the “exact” solu-
tion V will be in the order of �∕�min(X) . Thus, if 𝜀 ≪ 1 and 𝜎min(X) ≫ 0 , we have 
sinF∠(V ,V) ≪ 1 , and the approximation obtained from Algorithm 2 will be insensi-
tive to the perturbation.

On the other hand, we note that the upper bound provided in Theorem 4.3 may be 
not sharp and even pessimistic in practice. However, it reveals that the stability of 
matrix exponential discriminant analysis methods is closely related to the value of 
�∕�min(X) , and thus �(X) = �max(X)∕�min(X) could be used as a condition number to 
the distance between the two subspaces span{V} and span{V}.

5  Numerical experiments

In this section, we carry out some numerical experiments to illustrate the numerical 
behavior and demonstrate the efficiency of Algorithm 2. One refers to [1, 8, 9, 15, 
36, 37, 39, 41, 46] for superiority of the exponential-based methods over many state-
of-the-art methods for recognition. The aim of this section is two-fold. First, we 
show that Algorithm 2 runs much faster than its original counterpart Algorithm 1, 
while the classification accuracy and the standard deviation of the former is compa-
rable to that of the latter. Second, we show the stability of Algorithm 2 over many 
popular algorithms for dimensionality reduction and face recognition.

Four benchmark face databases, Yale1, CMU PIE2, AR3 and Feret4 are used. All 
the experiments are run on a Hp workstation with 16 cores double Intel(R)Xeon(R) 
E5-2640 v3 processors, and with CPU 2.60 GHz and RAM 128 GB. The operation 

sinF∠(QZ1,QZ1
) ≤ �−1

1
e2 max{�1, �2}

�

�min(X)
+O

�
�2

�2
min

(X)

�
+

�

�min(X)‖X‖2 +O(�2)

=
�
�−1
1
e2 max{�1, �2} + �−1

max
(X)

� �

�min(X)
+O

�
�2

�2
min

(X)

�
.

(4.23)

sinF∠(V ,V) ≤ (
�−1
1
e2 max{�1, �2} + �−1

max
(X)

) �

�min(X)
+O

(
�2

�2
min

(X)

)

1 http://cvc.yale.edu/proje cts/yalef aces/yalef aces.html.
2 http://www.ri.cmu.edu/proje cts/proje ct_418.html.
3 http://rvl1.ecn.purdu e.edu/aleix /aleix _face_DB.html.
4 http://www.nist.gov/itl/iad/ig/color feret .cfm.

http://cvc.yale.edu/projects/yalefaces/yalefaces.html
http://www.ri.cmu.edu/projects/project_418.html
http://rvl1.ecn.purdue.edu/aleix/aleix_face_DB.html
http://www.nist.gov/itl/iad/ig/colorferet.cfm
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system is 64-bit Windows 10. All the numerical results are obtained from using 
MATLAB R2018b. In all the algorithms, we use the nearest neighbor classifier 
(NN) [7] for classification, in which the distance is chosen as the Euclidean dis-
tance. In all the matrix exponential related algorithms, we use the MATLAB built-in 
functions expm.m to compute the matrix exponential, and make use of eig.m to 
solve the eigenvalue problem. Moreover, we exploit the MATLAB built-in functions 
qr.m and orth.m for the (economized) QR decomposition and for orthonormal-
izing the projection matrix V, respectively.

In each experiment, we randomly select L images from each class as the training 
set, and the rest of the images are used as the testing set. That is, there are n = KL 
images in the training set, where K is the number of classes. Each experiment will 
be repeated for 10 times, and the numerical results, i.e., the CPU time in seconds, 
the recognition rate and the standard deviation (SD), are the mean values from the 
10 runs.

5.1  Efficiency of the proposed algorithm

In this subsection, we aim to show the superiority of Algorithm 2 over Algorithm 1. 
We apply our fast implementation on the following matrix exponential-based discri-
minant analysis methods proposed recently:

• EDA: the Matrix Exponential Discriminant Analysis method proposed in [46]. 
The application of Algorithm 2 on EDA is denoted by FEDA (Alg. 2). As a com-
parison, we also run the two inexact Krylov-type algorithms, i.e., Arnoldi-EDA 
and Lanczos-EDA proposed in [39]. The stopping criterion for the two algo-
rithms is chosen as � = 10−4.

• EMFA: the Exponential Marginal Fisher Analysis method proposed in [15, 37]. 
The application of Algorithm 2 on EMFA is denoted by FEMFA (Alg. 2).

• ELPP: the Exponential Locality Preserving Projection method proposed in [36]. 
The application of Algorithm 2 on ELPP is denoted by FELPP (Alg. 2).

• ELDE: the Exponential Local Discriminant Embedding method proposed in [8]. 
The application of Algorithm 2 on ELPP is denoted by FELDE(Alg.2).

In this experiment, we choose K1 = L − 1 and K2 = 2K1 in MFA, EMFA and FEMFA 
(Alg. 2), and use K1 = L − 1 and K2 = 10 in LDE, ELDE and FELDE(Alg.2), 
where K1 and K2 are the number of nearest neighbors in the same class and different 
classes, respectively.

(1) First, we illustrate the superiority of Algorithm 2 over its original counterpart 
as well as the two inexact Krylov-type algorithms.

There are total 165 images for 15 persons in the Yale facial database, with 11 
images for each individual. The images demonstrate variation with the following 
expressions or configurations: (1) lighting: center light, left light, and right light; 
(2) with/without glasses; (3) facial expressions: normal, happy, sad, sleepy, sur-
prised, and winkling. The original size of images is 320 × 243 pixels, and we crop 
the images to d = 64 × 64 and 100 × 100 pixels in this example. We randomly pick 
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L = 2, 3, 4, 5 images from each class as the training set, and the remaining images 
are used as the testing set. The data dimension d is chosen as 4096 and 10000, 
respectively, the number of classes K = 15 , and we choose the reducing dimension 
r = K − 1 = 14.

There are eighteen algorithms on this problem altogether: EDA and its fast imple-
mentation FEDA as well as its two inexact Krylov-type algorithms Arnoldi-EDA 
and Lanczos-EDA; EMFA, ELDE, ELPP and their fast implementations. In order 
to measure the times and accuracy when PCA is used as a preprocessing step on 
the exponential methods, the PCA plus exponential graph embedding methods are 
also run on this problem [28], i.e, PCA + EDA, PCA + LDA EMFA, PCA + LDA 
ELDE, PCA + LDA ELPP, in which we fix the dimensionality reduction of PCA to 
n − 1 . Notice that Algorithm 2 and PCA plus exponential graph embedding methods 
have comparable amount of computational cost. We also list the numerical results 
of the original PCA plus graph embedding methods algorithms (PCA + LDA LDA, 
PCA + LDA MFA, PCA + LDA LDE, PCA + LDA LPP) in our experiment, where 
we preserve 99% energy in the PCA stage. Table 1 lists the numerical results.

It is obvious to see from Table  1 that our proposed algorithms are very effec-
tive. For example, as d = 10,000 , the four matrix exponential-based algorithms are 
very slow, which used about 166 s. As a comparison, the four fast algorithms run 
much faster than their original counterparts, especially when the dimension d is 
large. Indeed, all the fast algorithms require less than 0.1 s, implying that our new 
algorithms are over 1660 times faster than the original algorithms. This is because 
our fast algorithms only need to compute matrix exponentials and solve eigenvalue 
problems of n × n matrices, instead of d × d matrices that are required in their origi-
nal counterparts. Specifically, the proposed FEDA (Alg.2) is about three times faster 
than the two Krylov-type algorithms Arnoldi-EDA and Lanczos-EDA. On the other 
hand, we observe that the recognition rates and the standard deviations of the fast 
algorithms and their original counterparts are the same. This is because the fast 
algorithms and their original algorithms are mathematically equivalent.

Furthermore, it is seen that cropping the original images may lose some useful 
information and thus may result in a low recognition accuracy. For instance, the 
recognition rate of the exponential methods is about 86% when d = 10000, L = 2 , 
while it decreases to about 75% as d = 4096, L = 2 . Therefore, it is interesting to 
consider high dimensionality reduction problems for the (uncropped) data. In this 
case, our fast implementation is preferable as d is large.

For this Yale data base, we see that the CPU timings of PCA plus exponential 
graph embedding algorithms and PCA plus graph embedding algorithms are com-
parable, which is a little faster than Algorithm 2. This is because the PCA-preproc-
essing algorithms construct the adjacency matrices by using the “reduced” data 
matrices instead of the “original” data matrices; see also Table 2. On the other hand, 
the PCA plus exponential algorithms and Algorithm  2 share about the same rec-
ognition rates which are a little lower than those from the PCA plus exponential 
graph embedding algorithms in some cases. However, as will be shown latter, the 
exponential-based algorithms are more stable to perturbations.

(2) Next, we show the feasibility of our new algorithms on data with very high 
dimensionality.
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We consider the CMU PIE (Pose, Illumination, Expression) database. It is taken 
from CMU 3D Room, which includes over 40000 facial images of 68 individu-
als. For each individual, it has 13 different poses, under 43 different illumination 
and 4 different expressions. We choose total 800 images of 40 people as the sub-
set, and for each individual we select 20 images with different illuminations, poses 
and expressions. The size of images is d = 486 × 640 pixels. We randomly choose 
L = 2, 3, 4, 5 images from each class as the training set, and use the rest as the test-
ing set.

In the CMU PIE database, the data dimension d = 311040 , the number of classes 
K = 40 , and we choose the reducing dimension r = K − 1 = 39 . We run the eight-
een algorithms on this problem, and the numerical results are listed in Table 2. It is 
seen that EDA, EMFA, ELDE and ELPP do not work at all for this problem, because 
they have to deal with matrix exponential problems of size 311040 × 311040 . 
Indeed, all of them suffer from the difficulty of out-of-memory (abbreviated as 
“O.M.” in Table 2). As a comparison, the four fast algorithms and two inexact Kry-
lov-type algorithms perform quite well, and FEDA is about four times faster than 
Arnoldi-EDA and Lanczos-EDA. So Algorithm 2 can deal with data with very high 
dimensionality.

For the CMU PIE database, we see that the recognition rates from all the algo-
rithms are comparable. On the other hand, Algorithm 2 is slower than the other two 
PCA-processing algorithms. Indeed, the PCA-preprocessing algorithms construct 
the adjacency matrices by using the “reduced” data matrices whose size is much 
smaller than the “original” data matrices. Furthermore, FEMFA (Alg. 2) is slower 
than the other three fast exponential-based algorithms for this problem. This is due 
to the fact that the overhead for constructing scatter matrices in the MFA-type algo-
rithm is a little higher than that for the other three algorithms.

(3) We demonstrate that our fast algorithms can be more powerful than origi-
nal PCA plus graph embedding methods and other popular LDA-based methods for 
dimensionality reduction.

We consider the AR database, which contains 1680 face images of 120 individ-
uals, with 14 images per people. In the AR database, all images are cropped and 
scaled to 50 × 40 . We randomly select L = 2, 3, 4, 5 images from each class as the 
training set, and the rest are used as the testing set. The data dimension d = 2000 , 
the number of classes K = 120 , and we choose the reducing dimension r = 50.

To illustrate the competitiveness of Algorithm 2, we compare it with some PCA 
plus graph embedding methods. PCA preprocessed algorithms are popular for 
dimensionality reduction [2, 33]. The algorithms for comparison include PCA + 
LDA LDA, PCA + LDA MFA, PCA + LDA LDE, and PCA + LDA LPP, in which 
we preserve 99% energy in the PCA stage, followed by the corresponding algo-
rithms. Also we run some popular LDA-based methods for dimensionality reduc-
tion including the regularized LDA (RLDA) (the regularized parameter is chosen as 
0.001) [11], and the null space LDA (NLDA) [5], QRLDA [44], GSVDLDA [18]. 
The numerical results are given in Table 3.

It is seen from Table 3 that the recognition rates obtained from the fast algorithms 
based on Algorithm  2 (FEDA, FEMFA, FELPP, FELDE) are (much) higher than 
the original PCA pre-processed methods (PCA + LDA LDA, PCA + LDA MFA, 
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PCA + LDA LPP, PCA + LDA LDE), especially when L is small. Meanwhile, the 
standard deviations of the FEDA, FEMFA, FELPP, FELDE (Alg.2) are often lower 
than those of other original PCA pre-processed methods (PCA + LDA LDA, PCA 
+ LDA MFA, PCA + LDA LPP, PCA + LDA LDE). Again, all the fast algorithms 
based on Algorithm 2 run much faster than the original matrix exponential-based 
algorithms. We see that the CPU time used in Algorithm  2 is comparable to the 
PCA pre-processed algorithm, and at the same time, Algorithm 2 shares the same 
recognition rates and standard derivations as the original matrix exponential-based 
algorithms. In conclusion, our new algorithms possess the advantages of both the 
original matrix exponential-based algorithms and the PCA pre-processed algo-
rithms, and meanwhile diminish the disadvantages of those two algorithms.

In addition, we find that the recognition rates of FEDA (Alg. 2) are higher than 
those of PCA + LDA LDA and GSVDLDA. Though the recognition rates and stand-
ard deviations obtained form FEDA (Alg. 2), EDA, RLDA, NLDA, Arnoldi-EDA, 
Lanczos-EDA and QRLDA are similar, QRLDA runs faster than FEDA (Alg. 2), 
and FEDA(Alg.2) run much faster than other algorithms. This demonstrates that our 
fast algorithms FEDA (Alg. 2) is more powerful than these LDA-based methods, 
expect for QRLDA. Although our algorithm FEDA (Alg. 2) is weaker than QRLDA 
in terms of CPU time, in next subsection, we will show that FEDA (Alg. 2) is more 
stable than QRLDA.

5.2  Stability of the proposed algorithm

In this subsection, we aim to illustrate the stability of Algorithm 2, and show the 
effectiveness of the theoretical analysis given in Sect. 4. The test set is the FERET 
database, which consists of 14051 eight-bit grayscale images of human faces with 
views ranging from frontal to left and right profiles.

To show the stability of Algorithm 2, we perturb the training set X as X = X + E , 
where E is a Gaussian matrix generated by using the MATLAB command nor-
mrnd(0, l ,[d,n]), i.e., a d-by-n zero-mean Gaussian distributed matrix with 
variance l:

Here � is a user-described parameter, which is chosen as � = 10−1, 10−2 , 10−3 and 
10−4 in the experiment, moreover, ‖E‖F∕‖X‖F = �.

We first run the four fast algorithms FEDA (Alg. 2), FEMFA (Alg. 2), 
FELDE(Alg.2) and FELPP (Alg. 2) on this problem. We compare them with the 
four corresponding PCA plus algorithms PCA + LDA LDA, PCA + LDA MFA, 
PCA + LDA LDE and PCA + LDA LPP, where 99% energy is preserved in the PCA 
stage. Table  4 lists the recognition rates of the algorithms with and without (i.e., 
� = 0, l = 0 ) perturbation. All the experiments are repeated for 10 times, and the 
numerical results are the mean from the 10 runs.

Again, we see from Table 4 that the recognition rates of the four fast exponen-
tial-based algorithms are much higher than those from the four PCA pre-processed 
algorithms. This again demonstrates the efficiency of the exponential-based methods 

� = �������(�, �, [�, �]); � = � ∗ ����(�,� ����) ∗ �∕����(�,� ����).
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for face recognition. In terms of recognition accuracy, we see that the four fast expo-
nential-based algorithms are much more stable than the four PCA pre-processed 
algorithms.

In order to show this more precisely, we define “variation” of recognition rates as 
follows:

Table 4  Example Sect. 5.2: recognition rates of the algorithms with and without perturbation

The FERET database, d = 6400 , K = 200 , L = 3 , n = KL , r = 50 , �
min

(X) ≈ 0.0358

Variance Algorithms Recognition rates Original

l (Methods) � = 10
−1 (%) � = 10

−2 (%) � = 10
−3 (%) � = 10

−4 (%) �, l = 0 (%)

FEDA (Alg. 2) 60.90 62.20 62.16 62.18 62.18
PCA + LDA 

LDA(99%)
23.43 32.58 32.35 32.43 35.59

FEMFA (Alg. 2) 60.14 60.36 60.51 60.55 60.54
l = 0.1 PCA + LDA MFA 

(99%)
22.79 37.85 37.34 37.21 37.15

FELDE (Alg.2) 63.06 63.70 63.66 63.54 63.54
PCA + LDA 

LDE(99%)
23.51 37.75 37.32 37.26 37.37

FELPP (Alg. 2) 59.69 58.76 58.60 58.61 58.61
PCA + LDA 

LPP(99%)
11.31 22.46 22.73 22.68 22.59

FEDA (Alg. 2) 61.01 62.23 62.18 62.16 62.18
PCA + LDA 

LDA(99%)
24.64 33.88 32.05 32.75 35.59

FEMFA (Alg. 2) 60.00 60.38 60.45 60.55 60.54
l = 0.01 PCA + LDA MFA 

(99%)
22.96 36.89 37.06 37.29 37.15

FELDE (Alg.2) 62.68 63.35 63.61 63.54 63.54
PCA + LDA 

LDE(99%)
24.19 37.07 37.21 37.39 37.37

FELPP (Alg. 2) 59.62 58.79 58.64 58.61 58.61
PCA + LDA 

LPP(99%)
11.01 23.04 22.91 22.84 22.59

FEDA (Alg. 2) 61.10 62.36 62.16 62.18 62.18
PCA + LDA 

LDA(99%)
24.18 33.04 32.65 32.59 35.59

FEMFA (Alg. 2) 59.91 60.31 60.54 60.55 60.54
l = 0.001 PCA + LDA MFA 

(99%)
21.71 37.14 37.37 37.16 37.15

FELDE (Alg.2) 62.81 63.73 63.65 63.54 63.54
PCA + LDA 

LDE(99%)
22.46 36.89 37.20 37.20 37.37

FELPP (Alg. 2) 59.58 58.75 58.64 58.61 58.61
PCA + LDA 

LPP(99%)
10.65 22.88 22.76 22.95 22.59
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where “Perturbed recognition rate” and “Original recognition rate” stand for the rec-
ognition rates of algorithms “with” and “without” perturbation, respectively. Fig-
ure 1 (the upper figure) plots the figure of variation for the eight algorithms when 
� = 10−1, 10−2, 10−3 and 10−4 with l = 0.01 . It is obvious to see from Table 5 and 
Fig. 1 (the upper figure) that the exponential-based algorithms are much more stable 
than the PCA plus algorithms, because the variation values of the former are much 
smaller than those of the latter.

To interpret this more precisely, we plot all the singular values of the training 
set X in Fig.  2, and the smallest nonzero singular value is about 0.0358, where 
those close to zero are caused by rounding off errors. By Theorem 4.3, the distance 
between V and V  are bounded by O

(
�∕�min(X)

)
 , which will be much less than 1 as � 

��������� =
|��������� ����������� ���� − �������� ����������� ����|

�������� ����������� ����
,

Table 5  Example Sect. 5.2: variation of recognition rates

The FERET database, d = 6400 , K = 200 , L = 3 , n = KL , r = 50 , �
min

(X) ≈ 0.0358

Variance Algorithms Variation of recognition rates

l (Methods) � = 10
−1 (%) � = 10

−2 (%) � = 10
−3 (%) � = 10

−4 (%)

l = 0.1 FEDA (Alg. 2) 2.05 0.04 0.02 0.00
PCA + LDA LDA(99%) 34.18 8.47 9.10 8.89
FEMFA (Alg. 2) 0.66 0.29 0.04 0.02
PCA + LDA MFA (99%) 38.66 1.88 0.50 0.17
FELDE (Alg.2) 0.75 0.26 0.20 0.00
PCA + LDA LDE(99%) 37.09 1.00 0.13 0.30
FELPP (Alg. 2) 1.83 0.26 0.02 0.00
PCA + LDA LPP(99%) 49.92 0.55 0.61 0.39

l = 0.01 FEDA (Alg. 2) 1.87 0.08 0.00 0.02
PCA + LDA LDA(99%) 30.77 4.81 9.94 7.97
FEMFA (Alg. 2) 0.89 0.27 0.14 0.02
PCA + LDA MFA (99%) 38.19 0.71 0.24 0.37
FELDE (Alg.2) 1.36 0.30 0.12 0.00
PCA + LDA LDE(99%) 35.28 0.80 0.43 0.03
FELPP (Alg. 2) 1.73 0.30 0.04 0.00
PCA + LDA LPP(99%) 51.25 1.99 1.44 1.11

l = 0.001 FEDA (Alg. 2) 1.73 0.30 0.02 0.00
PCA + LDA LDA(99%) 32.07 7.17 8.25 8.43
FEMFA (Alg. 2) 1.03 0.37 0.00 0.02
PCA + LDA MFA (99%) 41.55 0.03 0.61 0.03
FELDE (Alg.2) 1.14 0.30 0.18 0.00
PCA + LDA LDE(99%) 39.90 1.30 0.47 0.47
FELPP (Alg. 2) 1.64 0.23 0.04 0.00
PCA + LDA LPP(99%) 52.85 1.27 0.77 1.60
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is small enough, say, � = 10−4 . In terms of Theorem 4.1, the recognition rates from 
the perturbed data are about the same as those from the unperturbed one. This shows 
the effectiveness of our theoretical results. Interestingly, we see that the four fast 
exponential-based algorithms are still very robust even when � is much larger than 
the smallest singular value, say, � = 10−1.

Next, we compare FEDA (Alg. 2) with some popular discriminant analysis meth-
ods including NLDA [5], QRLDA [44], GSVDLDA [18], and RLDA [11], where 
the regularized parameter in RLDA is set to be 0.001. The recognition rates with and 
without perturbation are listed on Table 6, and the variation of the recognition rates 

Fig. 1  Variation of the recognition rates on the FERET database, d = 6400 , K = 200 , L = 3 , and n = KL , 
l = 0.01 . The upper is for comparing our fast algorithms (FEDA, FEMFA, FELPP, FELDE) with the four 
corresponding PCA plus algorithms (PCA + LDA LDA, PCA + LDA MFA, PCA + LDA LPP, PCA 
+ LDA LDE). The lower is for comparing the six LDA-based methods including PCA + LDA LDA, 
FEDA, RLDA, NLDA, QRLDA and GSVDLDA
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is given in Table 7. We see from Table 6 that the recognition rates of FEDA (Alg. 2) 
are higher than those of the others in most cases, which demonstrates the superiority 
of the exponential discriminant methods for recognition. Furthermore, it is observed 
from Table 7 and Fig. 1 (the lower figure) that FEDA (Alg. 2) is the most stable one 

Fig. 2  Singular values of the training set X, the FERET database, d = 6400 , K = 200 , L = 3 , n = KL

Table 6  Example Sect. 5.2: recognition rates of the algorithms with and without perturbation

The FERET database, d = 6400 , K = 200 , L = 3 , n = KL , r = 50

Variance Algorithms Recognition rates Original

l (Methods) � = 10
−1 � = 10

−2 � = 10
−3 � = 10

−4 �, l = 0

l = 0.1 PCA + LDA LDA(99%) 25.54% 33.84% 33.04% 32.28% 35.59%
RLDA 61.54% 59.73% 59.70% 59.71% 59.71%
NLDA 61.13% 58.23% 58.16% 58.06% 58.09%
FEDA (Alg. 2) 61.12% 62.11% 62.18% 62.18% 62.18%
QRLDA 23.35% 39.43% 39.92% 39.35% 40.10%
GSVDLDA 10.76% 9.70% 9.55% 9.75% 11.88%

l = 0.01 PCA + LDA LDA(99%) 24.89% 33.81% 32.18% 32.56% 35.59%
RLDA 61.16% 59.73% 59.73% 59.71% 59.71%
NLDA 60.78% 58.25% 58.00% 58.11% 58.09%
FEDA (Alg. 2) 60.71% 62.17% 62.18% 62.18% 62.18%
QRLDA 23.56% 39.23% 39.46% 39.24% 40.10%
GSVDLDA 11.38% 9.36% 9.11% 9.49% 11.88%

l = 0.001 PCA + LDA LDA(99%) 24.41% 33.74% 31.91% 32.05% 35.59%
RLDA 61.26% 59.60% 59.67% 59.71% 59.71%
NLDA 60.79% 58.06% 58.06% 58.11% 58.09%
FEDA (Alg. 2) 60.93% 62.13% 62.20% 62.16% 62.18%
QRLDA 23.28% 39.36% 39.11% 39.34% 40.10%
GSVDLDA 11.77% 10.18% 9.31% 9.83% 11.88%
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compared with others. Thus, Algorithm 2 is both fast and stable, and it is a competi-
tive candidate for high dimensionality reduction and recognition.

6  Conclusion

Exponential discriminant analysis methods can be utilized to settle the small-sam-
ple-size problem arising in dimensionality reduction, and they often have more dis-
criminant power than their original counterparts. However, one has to solve large-
scale matrix exponential eigenproblems which are the bottleneck in this type of 
methods.

The first contribution of this paper is to propose a fast implementation framework 
on exponential discriminant analysis methods. To this aim, we first reformulate 
large-scale matrix exponential of size d to a concise form, and then reduce the large-
scale exponential eigenproblem to a small-sized one of size n, where d is dimension 
of the data and n is the number of samples. Our new algorithm runs much faster than 
its original counterpart, with no recognition rate lost.

The second contribution of this paper is to show the stability of the exponential 
discriminant analysis methods from a matrix perturbation point of view. The key 
result indicates that, unlike conventional discriminant analysis methods, the expo-
nential discriminant methods refrain from the difficulty of (possible) small Crawford 

Table 7  Example Sect. 5.2: variation of recognition rates

The FERET database, d = 6400 , K = 200 , L = 3 , n = KL , r = 50

Variance Algorithms Variation of recognition rates

l (Methods) � = 10
−1 � = 10

−2 � = 10
−3 � = 10

−4

l = 0.1 PCA + LDA LDA(99%) 28.24% 4.92% 7.17% 9.31%
RLDA 3.06% 0.02% 0.02% 0.00%
NLDA 5.23% 0.24% 0.13% 0.04%
FEDA (Alg. 2) 1.69% 0.10% 0.00% 0.00%
QRLDA 41.77% 1.68% 0.44% 1.87%
GSVDLDA 9.37% 18.32% 19.58% 17.89%

l = 0.01 PCA + LDA LDA(99%) 30.07% 4.99% 9.59% 8.50%
RLDA 2.43% 0.02% 0.02% 0.00%
NLDA 4.63% 0.28% 0.15% 0.04%
FEDA (Alg. 2) 2.35% 0.00% 0.00% 0.00%
QRLDA 41.24% 2.18% 1.59% 2.15%
GSVDLDA 4.21% 21.16% 23.26% 20.11%

l = 0.001 PCA + LDA LDA(99%) 31.40% 5.20% 10.33% 9.94%
RLDA 2.60% 0.19% 0.06% 0.00%
NLDA 4.65% 0.04% 0.04% 0.04%
FEDA (Alg. 2) 2.01% 0.08% 0.04% 0.02%
QRLDA 41.96% 1.84% 2.46% 1.90%
GSVDLDA 0.84% 14.32% 21.58% 17.26%
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number; see (4.17). Numerical experiments illustrate the numerical behavior of the 
new algorithm and demonstrate the effectiveness of the theoretical results. Further-
more, we point out that our framework can be generalized to all exponential-based 
matrix transformation methods, and it is favorable for data with high dimension and 
small number of training samples.
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