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Abstract
In this article, we study the time dependent convection–diffusion–reaction equation
coupled with the Darcy equation. We propose and analyze two numerical schemes
based on finite element methods for the discretization in space and the implicit Euler
method for the discretization in time. An optimal a priori error estimate is then derived
for each numerical scheme. Finally, we present some numerical experiments that
confirm the theoretical accuracy of the discretization.
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1 Introduction

Let � be a connected bounded open set in IRd , d = 2, 3, with a Lipschitz-continuous
boundary � = ∂�, and let [0, T ] be an interval of IR. In this work, we study the
concentration distribution of a fluid in a porous medium modelled by a time depen-
dent convection–diffusion–reaction equation coupled with Darcy’s law. The system
of equations is

(P)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν(C(x, t))u(x, t) + ∇ p(x, t) = f(x, t,C(x, t)) in�×]0, T [,
(div u)(x, t) = 0 in�×]0, T [,

∂C

∂t
(x, t) − α�C(x, t) + (u(x, t) · ∇ C)(x, t) + r0C(x, t) = g(x, t) in�×]0, T [,

(u · n)(x, t) = 0 on� × [0, T ],
C(x, t) = 0 on� × [0, T ],
C(x, 0) = 0 in�,

where n is the unit outward normal vector on �. The unknowns are the velocity u,
the pressure p and the concentration C of the fluid. The function f represents a force
density that depends on the concentration C and the function g represents an external
concentration source. The viscosity ν also depends on the concentration C but the
diffusion coefficient α and the parameter r0 are positive constants. To simplify, a
homogeneous Dirichlet boundary condition is prescribed on the concentration C , but
the present analysis easily extends to a non homogeneous boundary condition.

The existenceof aweak solutionof (P) is established in [8,12].As far as its numerical
approximation is concerned, problem (P) was treated for example in [16,17]. In these
works, the authors used the semi-implicit Euler method for the time discretization
and the Raviart–Thomas H(div,�) finite element method for the space discretization
of the velocity/pressure unknowns. They established an a priori error estimate that
is valid in 2-dimensions and place themselves in a somewhat restrictive framework,
where � is a square, discretized by square cells. Moreover, in order to derive the
estimate, the authors imposed multiple conditions on the space and time steps, which
lead to a time step �t = o(h) for the lowest-order Raviart–Thomas scheme. The heat
equation coupled with the Navier–Stokes system has been treated by many works (see
for instanceBernardi,Métivet and Pernaud-Thomas [4], Deteix, Jendoubi andYakoubi
[11], or Gaultier and Lezaun [13]). The stationary coupling of Darcy’s system with
the heat equation where the viscosity is constant but the exterior force depends on the
temperature (like in the model proposed by Boussinesq [7]) was analyzed by Bernardi,
Yacoubi and Maarouf [6] and discretized with a spectral method. The same stationary
system but coupled by a nonlinear viscosity depending on the temperature is studied
by Bernadi et al. in [5], where they propose and analyze two numerical schemes based
on finite element methods. In [19,20], the authors discretize a problem similar to
(P) using Raviart–Thomas elements methods for the discretization in space. For the
discretization in time, Rivière andWalkington in [20] used theDiscontinuousGalerkin
(DG) method and Li et al. in [19] used the Interior Penalty Discontinuous Galerkin
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(IPDG) method. These two works do not establish a priori error estimates but rather
prove the convergence of the schemes using compactness results for functions that
may be discontinuous in time. Vassilev and Yotov coupled in [23] the non-stationary
Stokes-Darcy equation with the time dependent Transport equation, and established
an a priori error estimate.

In this work, we study two types of discrete schemes for the full discretization
of Problem (P) in time and space and for both, we prove existence and uniqueness
and derive optimal a priori error estimates for the solutions. The first scheme is the
lowest order Raviart–Thomas scheme for the velocity/pressure unknowns, for which
we extend and improve the results of [16,17], first by considering general domains
covered by simplicial meshes, then by extending the proof to the three-dimensional
case.

The second scheme uses the P1-bubble / P1 scheme for the velocity/pressure
unknowns, which is known as the “mini-element” in the Stokes context [2]. Both
schemes use theP1 scheme for the concentration unknown. Finally, we perform several
numerical tests to validate the theoretical results. They show that, in certain circum-
stances, the second scheme, although of higher numerical complexity, may have a
better accuracy/complexity ratio.

The outline of the paper is as follows:

• In Sect. 2, we introduce some notations and functional spaces that are useful for
the study of the problem.

• In Sect. 3, we introduce two variational formulations.
• Section 4 is devoted to the study of two numerical schemes and the establishment
of an a priori error estimation under regularity assumptions of the exact solutions.

• Some numerical experiments are presented in Sect. 5.

2 Preliminaries

In this section, we recall the main notations and results which we use later on. We
introduce the Sobolev space

Wm,r (�)d =
{
v ∈ Lr (�)d; ∂kv ∈ Lr (�)d , ∀|k| ≤ m

}
,

where k = {k1, . . . , kd} is a vector of nonnegative integers, such that |k| = k1+· · ·+kd
and

∂kv = ∂ |k|v
∂k1x1 . . . ∂kd xd

.

This space is equipped with the semi-norm

|v|Wm,r (�)d =
⎛

⎝
∑

|k|=m

∫

�

|∂kv|r dx
⎞

⎠

1
r

,
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and is a Banach space for the norm

‖ v ‖Wm,r (�)d=
(

m∑

l=0

∫

�

|v|rWl,r (�)d
dx

) 1
r

.

When r = 2, this space is the Hilbert space Hm(�)d . In particular, we consider the
following spaces

H1
0 (�)d =

{
v ∈ H1(�)d; v|∂� = 0

}
,

and its dual H−1(�)d .
We shall also introduce

L2
0(�) =

{

q ∈ L2(�);
∫

�

q(x)dx = 0

}

.

We define the following scalar product in L2(�):

(v,w) =
∫

�

v(x)w(x)dx, ∀v,w ∈ L2(�).

We recall the following Poincaré and Sobolev inequalities:

Lemma 2.1 For any p ≥ 1 when d = 1 or 2, or 1 ≤ p ≤ 2d

d − 2
when d ≥ 3, there

exist two positive constants Sp and S0p such that

∀v ∈ H1
0 (�)d , ‖ v ‖L p(�)d≤ S0p|v|H1

0 (�)d ,

and

∀v ∈ H1(�)d , ‖ v ‖L p(�)d≤ Sp ‖ v ‖H1(�)d .

We shall also use the following continuous embedding:

∀q > d, W 1,q(�) ↪→ L∞(�). (2.1)

We recall the standard spaces for Darcy’s equations

H(div,�) = {v ∈ L2(�)d; div v ∈ L2(�)}, (2.2)

H0(div,�) = {v ∈ H(div,�); (v · n)|� = 0}, (2.3)

and
V = {v ∈ H0(div,�); div v = 0}, (2.4)

equipped with the norm

‖v‖2H(div,�) = ‖v‖2L2(�)d
+ ‖div v‖2L2(�)

. (2.5)
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Finally, we recall the inf-sup condition between L2
0(�) and H0(div,�),

inf
q∈L2

0(�)

sup
v∈H0(div,�)

∫

�

(div v)q dx

‖v‖H(div,�)‖q‖L2(�)

≥ β, (2.6)

with a constantβ > 0, and the inf-sup condition between H1(�)∩L2
0(�) and L2(�)d ,

inf
q∈H1(�)∩L2

0(�)

sup
v∈L2(�)d

∫

�

v.∇ q dx

‖v‖L2(�)d |q|H1(�)

≥ 1. (2.7)

Condition (2.6) follows immediately by solving a Laplace equation in � with a Neu-
mann boundary condition on �, and condition (2.7) by choosing v = ∇ q. As usual,
for handling time-dependent problems, it is convenient to consider functions defined
on a time interval ]a, b[ with values in a separable functional space W equipped with
a norm ‖ . ‖W . Then, for any r ≥ 1, we introduce the space

Lr (a, b;W ) =
{

f mesurable on ]a, b[;
∫ b

a
‖ f (t) ‖rW dt < ∞

}

;

equipped with the norm

‖ f ‖Lr (a,b;W )=
(∫ b

a
‖ f (t) ‖rW dt

) 1
r

.

If r = ∞, then

L∞ (a, b;W ) =
{

f mesurable on ]a, b[; sup
t∈[a,b]

‖ f (t) ‖W < ∞
}

.

Remark 2.2 Lr (0, T ;W ) is a Banach space if W is a Banach space.

In addition, we define C j (0, T ;W ) as the space of functions C j in time with values
in W .

Remark 2.3 Let a and b be two real numbers.

(1) For any positive real number ε, we have

ab ≤ 1

2ε
a2 + 1

2
εb2. (2.8)

(2) We also have

a(a − b) = 1

2
a2 − 1

2
b2 + 1

2
(a − b)2. (2.9)
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3 Variational formulations

In this section, we start by writing a variational formulation of problem (P). Next, we
prove the existence and the uniqueness of the solution. We assume that the data of the
problem verify the following assumptions:

Assumption 3.1 We assume that the data f , g and ν verify:

(1) f can be written as follows:

f(x, t,C) = f0(x, t) + f1(x,C), (3.1)

where f0 ∈ L∞(0, T ; L2(�)d) and f1(C) is (uniformly in x) c∗
f1
-Lipschitz with

respect to its second variable with values in IRd . In addition, we suppose that

∀x ∈ �,∀ξ ∈ IR, |f1(x, ξ)| ≤ cf1 |ξ |, (3.2)

where cf1 is a positive constant.
(2) g ∈ L2

(
0, T , L2(�)

)
.

(3) ν is λ-Lipschitz on IR and there exist two strictly positive constants ν1 and ν2 such
that, for any θ ∈ IR

ν1 ≤ ν(θ) ≤ ν2. (3.3)

There are two possible choices of spaces for Darcy’s velocity and pressure (u, p). The
first choice is L∞(0, T ; H0(div,�)) × L∞(0, T ; L2

0(�)); it corresponds to a mixed
formulation and is analyzed in this section. The second choice is L∞(0, T ; L2(�)d)×
L∞(0, T ; (H1(�)) ∩ L2

0(�)); it leads to an alternative formulation equivalent to the
first. In both cases, the concentration C is in L2(0, T ; H1

0 (�)). Then, whereas there
is no difficulty in setting Darcy’s system in variational form, a variational formulation
of the concentration equation is not that obvious. Indeed, the convection term u · ∇ C
cannot be tested by an H1(�) function, since it is only in L1(�). Therefore, we choose
the test functions in H1

0 (�) ∩ L∞(�). Thus, we propose the following variational
problem: for all t ∈ [0, T ],

(V )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (u(t), p(t),C(t)) ∈ H0(div, �) × L2
0(�) × H1

0 (�) such that, C(0) = 0 and

∀ v ∈ H0(div, �),

∫

�

ν(C(t))u(t) · v dx −
∫

�

p(t)(div v) dx =
∫

�

f(., t,C(t)) · v dx ,

∀ q ∈ L2
0(�),

∫

�

q(div u(t)) dx = 0,

∀ S ∈ H1
0 (�) ∩ L∞(�),

∫

�

∂C

∂t
(t)Sdx + α

∫

�

∇ C(t) · ∇ S dx +
∫

�

(u(t) · ∇ C(t))S dx

+r0

∫

�

C(t) S dx =
∫

�

g(t) S dx .

A straightforward argument shows that any triplet of functions (u(t), p(t),C(t)) in
H0(div,�) × L2

0(�) × H1
0 (�) that solves the first three lines of problem (P) in the
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sense of distributions in�, and the last two lines in the sense of traces in H−1/2(�) and
H1/2(�) respectively, is a solution of (V). Conversely, any solution (u(t), p(t),C(t))
of problem (V) solves problem (P) in the above sense.

For the a priori bound on the concentration C , we have the following theorem:

Theorem 3.2 Every solution of (V) such that C ∈ L∞([0, T ]×�) verifies the bounds:

‖C‖2L∞(0,T ;L2(�))
+α‖C‖2

L2(0,T ;H1
0 (�))

+2r0‖C‖2L2(0,T ;L2(�))
≤ 2

(S02 )
2

α
‖g‖2L2(0,T ;L2(�))

(3.4)
and

‖u(t)‖L2(�)d ≤ 1

ν1

(‖f0(t)‖L2(�)d + cf1‖C‖L∞(0,T ;L2(�))

)
. (3.5)

Proof By testing the last line of (V)with S = C(t), and bynoticing that
∫

�

(u·∇C)C =
0, we use the Cauchy–Schwarz inequality and get:

1

2

d

dt
‖C(t)‖2L2(�)

+ α‖∇C(t)‖2L2(�)
+ r0‖C(t)‖2L2(�)

≤ ‖g(t)‖L2(�)‖C(t)‖L2(�).

We use Relation (2.8) with ε = α

(S02 )
2
and Lemma 2.1 and we integrate between 0

and t to obtain

‖C(t)‖2L2(�)
+ α‖C‖2

L2(0,t;H1
0 (�))

+ 2r0‖C‖2L2(0,t;L2(�))
≤ (S02 )

2

α
‖g‖2L2(0,t;L2(�))

.

The last relation leads to the following one:

‖C‖2
L∞(0,T ;L2(�))

+ α‖C‖2
L2(0,T ;H1

0 (�))
+ 2r0‖C‖2

L2(0,T ;L2(�))
≤ 2

(S02 )
2

α
‖g‖2L2(0,T ;L2(�))

.

Next, by testing the first line of (V) with v = u(t) and using the second line, we
immediately derive from (3.1), (3.2) and (3.3) the following a priori bound:

‖u(t)‖L2(�)d ≤ 1

ν1

(‖f0(t)‖L2(�)d + cf1‖C‖L∞(0,T ;L2(�))

)
. (3.6)

�

Alternative variational formulation

The variational problem (V ) is well adapted to locally conservative discrete schemes.
However, the numerical implementation of such schemes is not straightforward and
can be simplified by eliminating the divergence term from the first two equations of
(V ) by means of Green’s formula, thus reducing the regularity of u. This leads to the
following alternative formulation: for all t ∈ [0, T ],
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(Va)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (u(t), p(t),C(t)) ∈ L2(�)d × (H1(�) ∩ L2
0(�)) × H1

0 (�) such that

∀ v ∈ L2(�)d ,

∫

�

ν(C(t))u(t) · v dx +
∫

�

∇ p(t) · v dx =
∫

�

f(., t,C(t)) · v dx ,

∀ q ∈ H1(�) ∩ L2
0(�),

∫

�

∇ q · u(t) dx = 0,

∀ S ∈ H1
0 (�) ∩ L∞(�),

∫

�

∂C

∂t
(t)Sdx + α

∫

�

∇ C(t) · ∇ S dx +
∫

�

(u(t) · ∇ C(t))S dx

+r0

∫

�

C(t) S dx =
∫

�

g(t) S dx .

This variational formulation is obviously equivalent to (V ). It leads to numerical
schemes that are simpler to implement.

4 Discretization

In this section, we propose a space-time discretization of the problem (P), derive and
prove an a priori error estimation. We use the semi-implicit Euler method for the
time discretization and the finite element method for the space discretization. For the
time discretization, we introduce a partition of the interval [0, T ] into N subintervals
[tn−1, tn] of length τ (the time step). For the space discretization, we assume that �

is a polygon when d = 2 or polyhedron when d = 3, so it can be completely meshed.
Now, we describe the discretization space. A regular family of triangulations (see
Ciarlet [9]) (Th)h of �, is a set of closed non degenerate triangles or tetrahedra, called
elements, satisfying,

• for each h, �̄ is the union of all elements of Th ;
• the intersection of two distinct elements of Th is either empty, a common vertex,
or an entire common edge or face;

• the ratio of the diameter of an element K in Th to the diameter of its inscribed
circle or ball is bounded by a constant independent of h.

As usual, h denotes the maximal diameter of all elements of Th . For each K in Th , we
denote by P1(K ) the space of restrictions to K of polynomials in d variables and total
degree at most one.

In what follows, c, c′,C,C ′, c1, . . . stand for generic constants which may vary
from line to line but are always independent of h. For a given triangulation Th , we
define the following finite dimensional spaces:

Zh = {Sh ∈ C0(�̄); ∀ K ∈ Th, Sh |K ∈ P1(K )} and Xh = Zh ∩ H1
0 (�).

(4.1)
We shall use the following result: There exists an approximation operator (when d = 2,
see Bernardi and Girault [3] or Clément [10]; when d = 2 or d = 3, see Scott and
Zhang [22]), Rh in L(W 1,p(�); Zh) and in L(W 1,p(�) ∩ H1

0 (�); Xh) such that for
all K in Th , m = 0, 1, l = 0, 1, and all p ≥ 2,
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∀ S ∈ Wl+1,p(�), |S − Rh(S)|Wm,p(K ) ≤ c(p,m, l) hl+1−m |S|Wl+1,p(�K ),

(4.2)
where �K is the macro element containing the values of S used in defining Rh(S).

Furthermore, we introduce the following inverse inequalities: for any number p ≥
2, for any dimension d, and for any non negative integer r , there exist constants c0I (p)
such that for any polynomial function vh of degree r on K ,

‖vh‖L p(K ) ≤ c0I (p)h
d
p − d

2
K ‖vh‖L2(K ). (4.3)

4.1 First discrete scheme

The velocity and pressure are discretized in space by the Raviart–Thomas RT0 ele-
ments. More precisely, the discrete spaces (Wh,1, Mh,1) are defined as follows:

Wh = {vh ∈ H(div,�); vh(x)|K = aK x + bK , aK ∈ IR,bK ∈ IRd , ∀ K ∈ Th},
Wh,1 = Wh ∩ H0(div,�), (4.4)

Mh = {qh ∈ L2(�); ∀ K ∈ Th, qh |K is constant} and Mh,1 = Mh ∩ L2
0(�).

(4.5)

The kernel of the divergence in Wh,1 is denoted by Vh,1,

Vh,1 = {vh ∈ Wh,1; div vh = 0 in �}. (4.6)

There exists an approximation operator ξ1h belonging to L(H1(�);Wh) and to
L(H1(�) ∩ H0(div,�);Wh,1) such that for all K in Th (Roberts and Thomas [21]):

∀ v ∈ H1(�)d , ‖v − ξ1h (v)‖L2(K )d ≤ c1 h|v|H1(K )d , (4.7)

and

∀ v ∈ H1(�)d s.t. div v ∈ H1(�), ‖div(v − ξ1h (v))‖L2(K ) ≤ c2 h|div v|H1(K ).

(4.8)
Furthermore, if div u = 0 then div(ξ1h (u)) = 0. In addition, we shall use the operator
ρh that belongs to L(L2(�); Mh) ∩ L(L2

0(�); Mh,1), defined by

ρh(q)|K = 1

|K |
∫

K
q dx , ∀ K ∈ Th . (4.9)

This operator satisfies the following result

∀q ∈ H1(�), ‖q − ρh(q)‖L2(K ) ≤ c h |q|H1(K ). (4.10)
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The following discrete inf-sup condition holds (see Roberts and Thomas [21]):

∀ qh ∈ Mh,1, sup
vh∈Wh,1

∫

�

qh(div vh) dx

‖vh‖H(div,�)

≥ β1‖qh‖L2(�), (4.11)

with a constant β1 > 0 independent of h.
We then consider the straightforward discretization of Problem (V ):

(Vh,1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

HavingCn−1
h ∈ Xh , Find (unh , p

n
h ) ∈ Wh,1 × Mh,1 such that

∀ vh ∈ Wh,1,

∫

�

ν(Cn−1
h )unh · vh dx −

∫

�

pnh (div vh) dx =
∫

�

fn(Cn−1
h ) · vh dx ,

∀ qh ∈ Mh,1,

∫

�

qh(div unh) dx = 0,

Having Cn−1
h ∈ Xh , Find Cn

h ∈ Xh such that

∀ Sh ∈ Xh ,

∫

�

Cn
h − Cn−1

h

τ
Sh dx + α

∫

�

∇ Cn
h · ∇ Sh dx +

∫

�

(unh · ∇ Cn
h )Sh dx

+r0

∫

�

Cn
h Sh dx =

∫

�

gn Sh dx,

where C0
h = 0, gn and fn(Cn−1

h ) are given as

gn = 1

τ

∫ tn

tn−1

g(s)ds,

fn(Cn−1
h ) = fn0 + f1(C

n−1
h ), where fn0 = f0(tn). (4.12)

It is easy to see that the second equation of the above system implies that div unh = 0
in �, since unh ∈ Wh,1 implies that div unh ∈ Mh,1. Hence this scheme preserves the
zero divergence condition. This and the conformity of Ch imply in turn that

∫

�
(unh ·

∇Ch)Ch = 0 for all Ch ∈ Xh .
For the existence and uniqueness of the solution of (Vh,1), we have the following

theorem:

Theorem 4.1 (Existence and uniqueness of the solution of (Vh,1)) At each time step
n and for a given Cn−1

h ∈ Xh, Problem (Vh,1) has a unique solution (unh, p
n
h ,C

n
h ) ∈

Wh,1 × Mh,1 × Xh which verifies, for m = 1, . . . , N, the following bounds

‖umh ‖L2(�)d ≤ 1

ν1

(‖f0‖L∞(0,T ;L2(�)d ) + cf1‖Cm−1
h ‖L2(�)

)
(4.13)

and

‖Cm
h ‖2L2(�)

+ α

m∑

n=1

τ |Cn
h |2H1(�)

+ 2r0

m∑

n=1

τ‖Cn
h‖2L2(�)

≤ (S02 )
2

α
‖g‖2L2(0,T ;L2(�))

,

(4.14)
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where c is positive constant independent of h and m.

Proof It is clear that the first equation of Problem (Vh,1) has a unique solution (unh, p
n
h)

as a consequence of the coerciveness of the corresponding bilinear form on Wh,1 ×
Wh,1 and the inf-sup condition (4.11). Thus, knowing unh ∈ Wh,1 and C

n−1
h ∈ Xh , the

third equation of Problem (Vh,1) also admits a unique solution Cn
h ∈ Xh . Therefore,

by taking vh = unh in the first equation we get (4.13), and Sh = Cn
h in the third

equation of Problem (Vh,1)we get, using the Cauchy–Schwarz inequality, Lemma 2.1
and Remark 2.3

1

2
(‖Cn

h‖2L2(�)
−‖Cn−1

h ‖2L2(�)
)+ α

2
τ |Cn

h |2H1(�)
+τr0‖Cn

h‖2L2(�)
≤ (S02 )

2

2α
τ‖gn‖2L2(�)

.

(4.15)
We sum over n = 1, . . . ,m and we obtain (4.14). �

4.2 Second discrete scheme

Let K be an element of Th with vertices ai , 1 ≤ i ≤ d + 1, and corresponding
barycentric coordinates λi . We denote by bK ∈ Pd+1(K ) the basic bubble function

bK (x) = λ1(x) . . . λd+1(x). (4.16)

We observe that bK (x) = 0 on ∂K and that bK (x) > 0 in the interior of K .
Let (Wh,2, Mh,2) be a pair of discrete spaces approximating L2(�)d × (H1(�) ∩

L2
0(�)

)
defined by

Wh,2 = {vh ∈ (C0(�̄))d; ∀ K ∈ Th, vh |K ∈ P(K )d}, (4.17)

M̃h = {qh ∈ C0(�̄); ∀ K ∈ Th, qh |K ∈ P1(K )} and Mh,2 = M̃h ∩ L2
0(�),

(4.18)

where

P(K ) = P1(K ) ⊕ Vect{bK },

is the space associated to the discretisation in space by the “mini-élément” introduced
by Arnold et al. in [2].

Let Vh,2 be the kernel of the divergence in Wh,2,

Vh,2 = {vh ∈ Wh,2; ∀qh ∈ Mh,2,

∫

�

vh · ∇qh dx = 0}. (4.19)

We shall use a variant of Rh denoted byFh which is constructed in [5, p. 336] and has
the following properties:

∀ v ∈ H1(�)d , ||v − Fh(v)||L2(K )d ≤ C h||v||H1(�K )d , (4.20)

and Fh(v) ∈ Vh,2 when div v = 0.
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Regarding the pressure, since Zh coincides with M̃h , an easy modification of Rh

yields an operator rh in L(H1(�); M̃h) and in L(H1(�) ∩ L2
0(�); Mh,2) (see for

instance Abboud, Girault and Sayah [1]), satisfying (4.2). We approximate problem
(Va) by the following discrete scheme:

(Vh,2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

HavingCn−1
h ∈ Xh, Find (unh, p

n
h ) ∈ Wh,2 × Mh,2 such as

∀ vh ∈ Wh,2,

∫

�

ν(Cn−1
h )unh · vh dx +

∫

�

∇ pnh · vh dx =
∫

�

fn(Cn−1
h ) · vh dx ,

∀ qh ∈ Mh,2,

∫

�

∇ qh · unh dx = 0,

Having Cn−1
h ∈ Xh,Find Cn

h ∈ Xh such that

∀ Sh ∈ Xh,

∫

�

Cn
h − Cn−1

h

τ
Sh dx + α

∫

�

∇ Cn
h · ∇ Sh dx +

∫

�

(unh · ∇ Cn
h )Sh dx

+1

2

∫

�

div (unh)C
n
h Sh dx + r0

∫

�

Cn
h Sh dx

=
∫

�

gn Sh dx .

where as usual, the second nonlinear term in the last equation is added to compensate
the fact that div unh �= 0. It is well-known that Green’s formula and the functions
regularity imply that

∫

�

(unh · ∇ Cn
h )Sh dx + 1

2

∫

�

(div unh)C
n
h Sh dx

= 1

2

(∫

�

(unh · ∇ Cn
h )Sh dx −

∫

�

(unh · ∇ Sh)C
n
h dx

)

, (4.21)

so that the nonlinear term is antisymmetric. One of the key points for studying (Vh,2)
is the discrete inf-sup condition satisfied by the pair of spaces (Wh,2, Mh,2) (see for
instance [5]):

∀ qh ∈ Mh,2, sup
vh∈Wh,2

∫

�

∇ qh · vh dx
‖vh‖L2(�)d

≥ β2 |qh |H1(�), (4.22)

with a constant β2 > 0 independent of h.
By following the same steps of the proof of Theorem (4.1), we deduce the following

theorem:

Theorem 4.2 (Existence and uniqueness of the solution of (Vh,2)) At each time step
n and for a given Cn−1

h ∈ Xh, Problem (Vh,2) has a unique solution (unh, p
n
h ,C

n
h ) ∈

Wh,2 × Mh,2 × Xh which verifies, for m = 1, . . . , N, the following bounds
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‖umh ‖L2(�)d ≤ 1

ν1

(‖f0‖L∞(0,T ;L2(�)d ) + cf1‖Cm−1
h ‖L2(�)

)
(4.23)

and

‖Cm
h ‖2L2(�)

+ α

m∑

n=1

τ |Cn
h |2H1(�)

+ 2r0

m∑

n=1

τ‖Cn
h‖2L2(�)

≤ (S02 )
2

α
‖g‖2L2(0,T ;L2(�))

,

(4.24)
where c is positive constant independent of h and m.

5 A priori error estimate

In this section, we establish the a priori estimates corresponding to the proposed
numerical schemes. We begin by establishing the error estimates corresponding to
the velocity and the pressure, and then we will establish those corresponding to the
concentration for both schemes (Vh,1) and (Vh,2).

In all the rest of the paper, we denote by un = u(tn), pn = p(tn) and Cn = C(tn).

Theorem 5.1 Let (u, p,C) be the solution of Problem (V ) and (unh, p
n
h ,C

n
h ) be the

solution of Problem (Vh,1). If u ∈ L∞(0, T ; H1(�)d) ∩ L∞(0, T ; L∞(�)d),
∂u
∂t

∈
L2(0, T ; L4(�)d), p ∈ L∞(0, T ; H1(�)), C ∈ L∞(0, T ;W 2,4(�)) and

∂C

∂t
∈

L2(0, T ;W 1,4(�)) and under Assumption 3.1, there exist positive constants c, c1, c′,
c′′ depending on u and α such that,

‖un − unh‖L2(�)d

≤ 1

ν1

(
ch + (c∗

f1 + λ‖u‖L∞(0,T ;L∞(�)d ))||Cn − Cn−1
h ||L2(�)

)
, (5.1)

‖pn − pnh‖L2(�) ≤ c′h + ν2

β1
‖un − unh‖L2(�)d

+ 1

β1
(c∗

f1 + λ‖u‖L∞(0,T ;L∞(�)d ))||Cn − Cn−1
h ||L2(�), (5.2)

and

sup
0≤n≤N

‖Cn
h − Cn‖2L2(�)

+ α

N∑

n=1

τ |Cn
h − Cn|21,�

+
N∑

n=1

‖(Cn
h − Cn) − (Cn−1

h − Cn−1)‖2L2(�)

+r0

N∑

n=1

τ‖Cn
h − Cn‖2L2(�)

≤ c′′(h2 + τ 2) + c1

N∑

n=1

τ‖unh − un‖2L2(�)d
. (5.3)
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Proof Let (u, p,C) and (unh, p
n
h ,C

n
h ) solve respectively (V ) and (Vh,1).We shall prove

first (5.1), next (5.2), and finally (5.3).
We start by estimating the error on the velocity approximation. By taking the dif-

ference between the first equations of (V ) for t = tn and (Vh,1) and testing with
v = vh ∈ Vh,1, we obtain

∫

�

ν(Cn−1
h (x))(un − unh)(x) · vh(x)dx =

∫

�

(f1(Cn(x)) − f1(C
n−1
h (x))) · vh(x)dx

+
∫

�

(ν(Cn−1
h (x)) − ν(Cn(x)))un(x) · vh(x)dx. (5.4)

By inserting ξ1hu
n , taking vh = ξ1hu

n − unh , using the triangle inequality and the
properties of ξ1h , and using the properties of f1 and ν, we obtain

ν1‖un−unh‖L2(�)d ≤ ch+c∗
f1 ||Cn−Cn−1

h ||L2(�)+λ‖u‖L∞(0,T ;L∞(�)d )||Cn−Cn−1
h ||L2(�).

Hence, we deduce (5.1).
To prove the error estimate on the pressure, we take the difference between the first

equations of (V ) (for t = tn) and (Vh,1), insert ρh(pn), test with vh inWh,1, and obtain

∫

�

(ρh(p
n) − pnh)(x)div vh(x)dx =

∫

�

(ρh(p
n) − pn)(x)div vh(x)dx

+ ∫
�

ν(Cn−1
h )(un − unh)(x) · vh(x)dx

+
∫

�

(ν(Cn(x)) − ν(Cn−1
h (x)))un(x) · vh(x)dx

−
∫

�

(f1(Cn(x)) − f1(C
n−1
h (x))) · vh(x)dx.

(5.5)
It follows from the inf-sup condition (4.11) that there exists vh inWh,1 such that

div vh = ρh(p
n) − pnh and ‖vh‖H(div,�) ≤ 1

β1
‖ρh(pn) − pnh‖L2(�).

With this vh , (5.5) implies (5.2) by using the properties of ρh .
Let us now focus on (5.3). We choose the test function Sh = rnh = Cn

h − RhCn in
the third equation of (Vh,1) and multiply it by the time step τ . Then, we subtract the
third equation of (V ) integrated over [tn−1; tn]. We obtain, using the definition of gn

by (4.12):

(

(Cn
h − Cn−1

h ) − (Cn − Cn−1), rnh

)

+ α

(

τ∇Cn
h −

∫ tn

tn−1

∇C(t)dt,∇rnh

)

+
(

τunh · ∇Cn
h −

∫ tn

tn−1

u(t) · ∇C(t)dt, rnh

)

+ r0

(

τCn
h −

∫ tn

tn−1

C(t)dt, rnh

)

= 0.

(5.6)
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The first term in the left-hand side of (5.6) can be bounded, by inserting RhCn and
RhCn−1 and using (2.9). We obtain:
(

(Cn
h − Cn−1

h ) − (Cn − Cn−1), rnh

)

= 1

2
‖rnh ‖2L2(�)

− 1

2
‖rn−1

h ‖2L2(�)
+ 1

2
‖rnh − rn−1

h ‖2L2(�)

+
(

(Cn−1 − RhC
n−1) − (Cn − RhC

n), rnh

)

.

(5.7)
The last term of the previous equality can be bounded as follows, for any ξ1 > 0,
thanks to (2.8)
∣
∣
∣
∣

(

(Cn−1 − RhC
n−1) − (Cn − RhC

n), rnh

)∣
∣
∣
∣ =

∣
∣
∣
∣−
(∫ tn

tn−1

(RhC
′ − C ′)(t)dt, rnh

)∣
∣
∣
∣

≤ c2h2

2ξ1

∫ tn

tn−1

‖C ′(t)‖2H1(�)
dt + τξ1

2
‖rnh ‖2L2(�)

≤ c2h2

2ξ1
‖∂C

∂t
‖2L2(tn−1,tn;H1(�))

+ (S02 )
2 τξ1

2
|rnh |21,�. (5.8)

By choosing ξ1 = α

25(S02 )
2
, we obtain

∣
∣
∣
∣

(

(Cn−1−RhC
n−1)−(Cn−RhC

n), rnh

)∣
∣
∣
∣ ≤ c1h

2‖∂C

∂t
‖2L2(tn−1,tn;H1(�))

+ α

50
τ |rnh |21,�,

(5.9)
where c1 is positive constant independent of h and τ .

The second term of the left-hand side of (5.6) can be bounded, by inserting

τ(∇RhCn,∇rnh ) and
∫ tn

tn−1

(∇RhC(t),∇rnh )dt . We have:

α

(

τ∇Cn
h −

∫ tn

tn−1

∇C(t)dt,∇rnh

)

= ατ |rnh |21,� + α

∫ tn

tn−1

(∇(RhC
n − RhC(t)),∇rnh )dt

+ α

∫ tn

tn−1

(∇(RhC(t) − C(t)),∇rnh )dt .

(5.10)

Since Cn − C(t) =
∫ tn

t
C ′(s)ds, then we have by using the stability of the operator

Rh in H1
0 (�), the Fubini theorem, the Cauchy–Schwarz inequality and (2.8) for any

ξ2 > 0:

∣
∣
∣
∣α

∫ tn

tn−1

(∇(RhC
n − RhC(t)), ∇rnh )dt

∣
∣
∣
∣ ≤ α

∫ tn

tn−1

∫ tn

t
|RhC

′(s)|1,�|rnh |1,�dsdt

≤ αc|rnh |1,�
∫ tn

tn−1

|C ′(s)|1,�(s − tn−1)ds

≤ αc2τ 2ξ2

2
√
3

‖∂C

∂t
‖2L2(tn−1,tn;H1(�))

+ τα

2
√
3ξ2

|rnh |21,�.

(5.11)
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In addition, we apply the Cauchy–Schwarz inequality, (2.8) and (4.2) to obtain for any
ξ3 > 0:

∣
∣
∣
∣α

∫ tn

tn−1

(∇(RhC(t) − C(t)),∇rnh )dt

∣
∣
∣
∣ ≤

αξ3

2

∫ tn

tn−1

|(RhC − C)(t)|21,�dt + τα

2ξ3
|rnh |21,�

≤ αc2h2ξ3
2

‖C‖2L2(tn−1,tn;H2(�))
+ τα

2ξ3
|rnh |21,�.

(5.12)
By choosing ξ2 = 25/

√
3 and ξ3 = 25, we obtain, using the properties of the operator

Rh and (5.10), (5.11) and (5.12)

∣
∣
∣
∣α

(

τ∇Cn
h −

∫ tn

tn−1

∇C(t)dt,∇rnh

)

− ατ |rnh |21,�
∣
∣
∣
∣ ≤ c1h

2‖C‖2L2(tn−1,tn;H2(�))

+ c2τ
2‖∂C

∂t
‖2L2(tn−1,tn;H1(�))

+ α

25
τ |rnh |21,�,

(5.13)
where c1 and c2 are positive constants independent of h and τ .
Let the third term in the left-hand side of (5.6) be denoted by

b =
(

τunh · ∇Cn
h −

∫ tn

tn−1

u(t) · ∇C(t)dt, rnh

)

. (5.14)

We insert

(∫ tn

tn−1

unh · ∇C(t)dt, rnh

)

and τ(unh · ∇RhCn, rnh ) to get by noticing that

(unh · ∇rnh , rnh ) = 0 :

b = b1+b2 =
(∫ tn

tn−1

unh ·∇(RhC
n−C(t))dt, rnh

)

+
(∫ tn

tn−1

(unh−u(t))·∇C(t)dt, rnh

)

.

(5.15)
We insert ±τ(unh · ∇Cn, rnh ) in b1 and we get:

b1 =
(∫ tn

tn−1

unh · ∇(RhC
n − Cn)dt, rnh

)

+
(∫ tn

tn−1

unh · ∇(Cn − C(t))dt, rnh

)

.

(5.16)
Using the L2-L4-L4 generalized Cauchy–Schwarz inequality, (4.2) and Lemma 2.1,
we obtain, for any ξ4 > 0:

∣
∣
∣
∣

( ∫ tn

tn−1

unh · ∇(RhC
n − Cn)dt, rnh

)∣
∣
∣
∣ ≤ τ‖unh‖L2(�)d‖RhC

n − Cn‖W 1,4(�)‖rnh ‖L4(�)

≤ cτh‖unh‖L2(�)d‖C‖L∞(0,T ;W 2,4(�))‖rnh ‖L4(�)

≤ c2ξ4h2τ

2
‖unh‖2L2(�)d

‖C‖2L∞(0,T ;W 2,4(�))
+ τ(S04 )

2

2ξ4
|rnh |21,�. (5.17)
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By choosing ξ4 = 25(S04 )
2/α, we obtain by using (4.13):

∣
∣
∣
∣

( ∫ tn

tn−1

unh · ∇(RhC
n − Cn)dt, rnh

)∣
∣
∣
∣ ≤ c3h

2τ‖C‖2L∞(0,T ;W 2,4(�))
+ α

50
τ |rnh |21,�.

(5.18)
By treating as above, we have for any ξ5 > 0:

∣
∣
∣
∣

( ∫ tn

tn−1

unh · ∇(Cn − C(t))dt, rnh

)∣
∣
∣
∣ =

∣
∣
∣
∣

( ∫ tn

tn−1

∫ tn

t
unh · ∇C ′(s)dsdt, rnh

)∣
∣
∣
∣

=
∣
∣
∣
∣

( ∫ tn

tn−1

∫ tn−1

s
unh · ∇C ′(s)dtds, rnh

)∣
∣
∣
∣

≤ ‖unh‖L2(�)d‖rnh ‖L4(�)

∫ tn

tn−1

‖∇C ′(s)‖L4(�)(s − tn−1)ds

≤ τ 2ξ5

6
‖unh‖2L2(�)d

‖∂C

∂t
‖2L2(tn−1,tn;W 1,4(�))

+ τ(S04 )
2

2ξ5
|rnh |21,�. (5.19)

We deduce by regrouping (5.16), (5.18) and (5.19) (for ξ5 = 25(S04 )
2/α) that

|b1| ≤ c3τh
2‖C‖2L∞(0,T ;W 2,4(�))

+ c4τ
2‖∂C

∂t
‖2L2(tn−1,tn;W 1,4(�))

+ α

25
τ |rnh |21,�.

(5.20)
We insert un in b2 and we get, using the L2-L4-L4 inequality

|b2| =
∣
∣
∣
∣

( ∫ tn

tn−1

(unh − un) · ∇C(t)dt, rnh

)

+
(∫ tn

tn−1

∫ tn

t
u′(s) · ∇C(t)dsdt, rnh

)∣
∣
∣
∣

≤ τ‖unh − un‖L2(�)d‖C‖L∞(0,T ;W 1,4(�))‖rnh ‖L4(�)

+ τ 3/2||C ||L∞(0,T ;H1(�))||
∂u
∂t

||L2(tn−1,tn;L4(�)d )‖rnh ‖L4(�). (5.21)

By using (2.8) and Lemma 2.1 and taking ξ = 25(S04 )
2/α, we obtain:

|b2| ≤ c51τ‖C‖2L∞(0,T ;W 1,4(�))
‖unh − un‖2L2(�)d

+ c52τ
2||C ||2L∞(0,T ;H1(�))

||∂u
∂t

||2L2(tn−1,tn;L4(�)d )
+ α

25
τ |rnh |21,�.

(5.22)

Finally, we combine (5.14), (5.20) and (5.22), and we deduce that

∣
∣
∣
∣

(

τuh · ∇Cn
h −

∫ tn

tn−1

u · ∇C(t)dt, rnh

)∣
∣
∣
∣

≤ c3τh
2‖C‖2L∞(0,T ;W 2,4(�))

+ c4τ
2‖∂C

∂t
‖2L2(tn−1,tn;W 1,4(�))
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+c51τ‖C‖2L∞(0,T ;W 1,4(�))
‖unh − un‖2L2(�)d

+c52τ
2||C ||2L∞(0,T ;H1(�))

||∂u
∂t

||2L2(tn−1,tn;L4(�)d )
+ 2α

25
τ |rnh |21,�, (5.23)

where c3, c4, c51 and c52 are positive constants independent of h and τ .
The last term in the left-hand side of (5.6) can be bounded, by inserting

±(τ RhCn, rnh ) and ±τ(Cn, rnh )

(

τCn
h −

∫ tn

tn−1

C(t)dt, rnh

)

= τ(Cn
h − RhC

n, rnh ) + τ(RhC
n − Cn, rnh )

+
(∫ tn

tn−1

(Cn − C(t))dt, rnh

)

so that

∣
∣
∣
∣

(

τCn
h −

∫ tn

tn−1

C(t)dt, rnh

)

− τ‖rnh ‖2L2(�)

∣
∣
∣
∣

≤ τ

∣
∣
∣
∣(RhC

n − Cn, rnh )

∣
∣
∣
∣+
∣
∣
∣
∣

( ∫ tn

tn−1

(Cn − C(t))dt, rnh

)∣
∣
∣
∣. (5.24)

Moreover, using the approximation properties of Rh , we have:

τ

∣
∣
∣
∣(RhC

n − Cn, rnh )

∣
∣
∣
∣ ≤ τ‖RhC

n − Cn‖L2(�)‖rnh ‖L2(�)

≤ cτh‖rnh ‖L2(�)‖C‖L∞(0,T ;H1(�))

≤ c2h2τξ6

2
‖C‖2L∞(0,T ;H1(�))

+ τ(S02 )
2

2ξ6
|rnh |21,�. (5.25)

Furthermore,

∣
∣
∣
∣

( ∫ tn

tn−1

(Cn − C(t))dt, rnh

)∣
∣
∣
∣ =

∣
∣
∣
∣

( ∫ tn

tn−1

∫ tn

t
C ′(s)dsdt, rnh

)∣
∣
∣
∣

≤ τ 3/2√
3

‖rnh ‖L2(�)‖
∂C

∂t
‖L2(tn−1,tn;L2(�))

≤ ξ7τ
2

6
‖∂C

∂t
‖2L2(tn−1,tn;L2(�))

+ τ(S02 )
2

2ξ7
|rnh |21,�.

(5.26)

Next, we combine (5.24), (5.25) and (5.26), and we choose ξ6 = ξ7 = 25(S02 )
2

α
to

obtain:
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∣
∣
∣
∣

(

τCn
h −

∫ tn

tn−1

C(t)dt, rnh

)

−τ‖rnh ‖2L2(�)

∣
∣
∣
∣ ≤ c6τh

2‖C‖2L∞(0,T ;H1(�))

+ c7τ
2‖∂C

∂t
‖2L2(tn−1,tn;L2(�))

+ α

25
τ |rnh |21,�, (5.27)

where c6 and c7 are positive constants independent of τ and h.
Now we use (5.6), (5.7), (5.9), (5.13), (5.23) and (5.27) and we sum over n from 1 to
m ≤ N . This leads to

1

2
‖rmh ‖2L2(�)

+ 1

2

m∑

n=1

‖rnh − rn−1
h ‖2L2(�)

+ α

m∑

n=1

τ |rnh |21,�+r0

m∑

n=1

τ‖rnh ‖2L2(�)

≤ c(h2 + τ 2) + c′
m∑

n=1

τ‖unh − un‖2L2(�)d
+ 9α

50

m∑

n=1

τ |rnh |21,�.

Finally, we obtain

sup
0≤n≤N

‖Cn
h − Cn‖2L2(�)

+ α

N∑

n=1

τ |Cn
h − Cn|21,�

+
N∑

n=1

‖(Cn
h − Cn) − (Cn−1

h − Cn−1)‖2L2(�)

+r0

N∑

n=1

τ‖Cn
h − Cn‖2L2(�)

≤ c(h2 + τ 2) + c′
N∑

n=1

τ‖unh − un‖2L2(�)d
,

where c and c′ are positive constants independent of h and τ . �
Remark 5.2 If the viscosity ν is constant independent of C , it suffices to take u ∈
L∞(0, T ; H1(�)d) in Theorem 5.1, as in this case, Eq. (5.4) becomes
∫

�

ν(un − unh)(x) · vh(x)dx =
∫

�

(f1(Cn(x)) − f1(C
n−1
h (x))) · vh(x)dx. (5.28)

Corollary 5.3 Under the assumptions of Theorem 5.1, we have the a priori error esti-
mates corresponding to (Vh,1):

sup
0≤n≤N

‖un − unh‖L2(�)d ≤ c(h + τ),

sup
0≤n≤N

‖pn − pnh‖L2(�) ≤ c′(h + τ),

sup
0≤n≤N

‖Cn
h − Cn‖2L2(�)

+ α

N∑

n=1

τ |Cn
h − Cn|21,� ≤ c′′(h2 + τ 2),

(5.29)

where c, c′ and c′′ are independent of h and τ .

Proof Wefirst consider relation (5.1). By insertingCn−1 and using the triangle inequal-
ity, we have
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N∑

n=1

τ‖unh − un‖2L2(�)d
≤c

(
N∑

n=1

τ‖Cn−1
h − Cn−1‖2L2(�)

+
N∑

n=1

τ

∫

�

∣
∣
∫ tn

tn−1

C ′(s)ds
∣
∣2dx

)

.

We then deduce from (5.3) the following relation

sup
0≤n≤N

‖Cn
h−Cn‖2L2(�)

+α

N∑

n=1

τ |Cn
h−Cn |21,� ≤ c(h2+τ 2)+c′

N∑

n=1

τ‖Cn−1
h −Cn−1‖2L2(�)

.

(5.30)
Finally, the following inequality follows from the discrete Grönwall Lemma

sup
0≤n≤N

‖Cn
h − Cn‖2L2(�)

+ α

N∑

n=1

τ |Cn
h − Cn|21,� ≤ c′′(h2 + τ 2). (5.31)

It is crucial to note that in the right-hand side of (5.30),
∑N

n=1 τ is bounded by the
final time T which is a quantity that does not depend on N ; thus the constant c′′ that
appears in (5.31) does not depend on τ .

Inequality (5.31) and Inequalities (5.1) and (5.2) yield the desired bounds in (5.29).
�

Theorem 5.4 Let (u, p,C) be the solution of Problem (Va) and (unh, p
n
h ,C

n
h ) be

the solution of Problem (Vh,2). If u ∈ L∞(0, T ; H1(�)d) ∩ L∞(0, T ; L∞(�)d),

p ∈ L∞(0, T ; H2(�)), C ∈ L∞(0, T ;W 2,4(�)) and
∂C

∂t
∈ L2(0, T ;W 1,4(�)) and

under Assumption 3.1, there exist positive constants c, c1, c′, c′′ depending on u and
α such that,

‖un − unh‖L2(�)d

≤ 1

ν1

(
ch + (c∗

f1 + λ‖u‖L∞(0,T :L∞(�)d ))||Cn − Cn−1
h ||L2(�)

)
, (5.32)

|pn − pnh |1,� ≤ c′h + ν2

β2
‖un − unh‖L2(�)d

+ 1

β2
(c∗

f1 + λ‖u‖L∞(0,T :L∞(�)d ))||Cn − Cn−1
h ||L2(�), (5.33)

and

sup
0≤n≤N

‖Cn
h − Cn‖2L2(�)

+ α

N∑

n=1

τ |Cn
h − Cn|21,�

+
N∑

n=1

‖(Cn
h − Cn) − (Cn−1

h − Cn−1)‖2L2(�)

+r0

N∑

n=1

τ‖Cn
h − Cn‖2L2(�)

≤ c′′(h2 + τ 2) + c1

m∑

n=1

τ‖unn − un‖2L2(�)d
. (5.34)
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Proof Let (u, p,C) and (unh, p
n
h ,C

n
h ) solve respectively (Va) and (Vh,2). We shall

prove first (5.32), next (5.33), and finally (5.34).
Let us estimate the velocity error. By taking the difference between the first equa-

tions of (Va) and (Vh,2) and testing with v = vh ∈ Vh,2, we obtain

∫

�

ν(Cn−1
h (x))(un − unh)(x) · vh(x)dx =

∫

�

(f1(Cn(x)) − f1(C
n−1
h (x))) · vh(x)dx

+
∫

�

(ν(Cn−1
h (x)) − ν(Cn(x)))un(x) · vh(x)dx

−
∫

�

∇(pn − rh(p
n)) · vhdx. (5.35)

By inserting Fhun , choosing vh = (Fhun − unh) which belongs to Vh,2 using the
triangle inequality and the approximation properties of Fh and rh and the bounds on
ν, we obtain (5.32).

To prove the error estimate on the pressure, we take the difference between the first
equations of (Va) and (Vh,2), insert ∇rh(pn), test with vh inWh,2, and we obtain

∫

�

∇(pnh − rh(p
n))(x) · vh(x)dx =

∫

�

∇(pn − rh(p
n))(x) · vh(x)dx

+
∫

�

ν(Cn−1
h )(un − unh)(x) · vh(x)dx

+
∫

�

(ν(Cn(x)) − ν(Cn−1
h )(x))un(x) · vh(x)dx

−
∫

�

(f1(Cn(x)) − f1(C
n−1
h (x))) · vh(x)dx.

(5.36)

It follows from the inf-sup condition (4.22) and by applying the Cauchy–Schwarz
inequality to the right-hand side of (5.36) and Assumption 3.1 that

|pnh − rh(p
n)|1,� ≤ 1

β2

[

|pn − rh(p
n)|1,� + ν2‖un − unh‖L2(�)d

+(c∗
f1 + λ‖u‖L∞(0,T :L∞(�)d ))||Cn − Cn−1

h ||L2(�)

]

.

(5.37)

Inserting rh(pn) in |pn − pnh |1,� and using a triangular inequality and (5.37) implies
(5.33) by using the properties of rh .

Now we prove (5.34). We choose the test function Sh = rnh = Cn
h − RhCn in the

third equation of (Vh,2) and multiply it by the time step τ . Then, we subtract the third
equation of (Va) integrated over [tn−1; tn]. We obtain:
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(

(Cn
h − Cn−1

h ) − (Cn − Cn−1), rnh

)

+ α

(

τ∇Cn
h −

∫ tn

tn−1

∇C(t)dt,∇rnh

)

+
(

τunh · ∇Cn
h −

∫ tn

tn−1

u(t) · ∇C(t)dt, rnh

)

+ τ

2
(div unhC

n
h , rnh ) + r0

(

τCn
h −

∫ tn

tn−1

C(t)dt, rnh

)

= 0. (5.38)

All the terms of (5.38) can be treated as the proof of Theorem 5.1 (see (5.9), (5.13),
(5.27)) except the non-linear one denoted by bn.

By inserting ±τ(unh · ∇RhCn, rnh ), ±τ

2
(div unh RhCn, rnh ), bn becomes:

bn = τ(unh · ∇(Cn
h − RhC

n), rnh ) + τ(unh · ∇RhC
n, rnh ) −

(∫ tn

tn−1

u(t) · ∇C(t)dt, rnh

)

+ τ

2
(div unh(C

n
h − RhC

n), rnh ) + τ

2
(div unh RhC

n, rnh ).

Then,we insert±τ(unh ·∇Cn, rnh ),±
(∫ tn

tn−1

unh · ∇C(t)dt, rnh

)

and±τ

2
(div unh C

n, rnh )

to get by noticing that τ(unh · ∇(Cn
h − RhCn), rnh ) + τ

2
(div unh(C

n
h − RhC

n), rnh ) = 0:

bn = τ(unh · ∇(RhC
n − Cn), rnh ) +

(∫ tn

tn−1

unh · ∇(Cn − C(t))dt, rnh

)

+
∫ tn

tn−1

((unh − u(t)) · ∇C(t)dt, rnh )

+ τ

2
(div unh(RhC

n − Cn), rnh ) + τ

2
(div unh C

n, rnh ). (5.39)

The sum of the first two terms in the right-hand side of (5.39) is exactly the expression
of b1 in (5.16). The third term in the right-hand side of (5.39) is exactly b2 as defined
in (5.15). Therefore, these terms can be treated exactly as in the proof of theorem 5.1.
The last two terms, denoted below as bn,4 and bn,5 can be treated as follows:

bn,4 = τ

2
(div unh(RhC

n − Cn), rnh )

= −τ

2
(unh · ∇(RhC

n − Cn), rnh ) − τ

2
(unh · ∇rnh , (RhC

n − Cn))

= b1n,4 + b2n,4,

where, using Lemma 2.1, (2.8) and (4.2), we have, for any ξ̄1 > 0

|b1n,4| ≤ τ

2
‖unh‖L2(�)d‖∇(RhC

n − Cn)‖L4(�)‖rnh ‖L4(�)

≤ ch2τ ξ̄1

8
‖unh‖2L2(�)d

‖C‖2L∞(0,T ;W 2,4(�))
+ τ(S04 )

2

2ξ̄1
|rnh |21,�
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and where, using (4.2) and (4.3) with d ≤ 3 we have, for any ξ̄2 > 0

|b2n,4| ≤ τ

2
‖unh‖L4(�)d‖∇rnh ‖L2(�)‖RhC

n − Cn‖L4(�)

≤ ch2

2
τ‖unh‖L2(�)d × h− d

4 |rnh |1,�‖Cn‖W 2,4(�)

≤ cξ̄2
8

h
8−d
2 τ‖unh‖2L2(�)d

‖C‖2L∞(0,T ;W 1,4(�))
+ τ

2ξ̄2
|rnh |21,�.

Note that in the bounds of |b1n,4| and |b2n,4|, the L2(�) norm of unh can be bounded
by a constant depending only on the data of the problem through Theorem 4.2 using
both (4.23) and (4.24). Note also that 8−d

2 ≥ 2 for d ≤ 3, which is sufficient for our
proof.

Moreover, bn,5 can be decomposed in the same way and treated as follows (where
we use that div un = 0):

bn,5 = τ

2
(div (unh − un)Cn, rnh )

= −τ

2
((unh − un) · ∇Cn, rnh ) − τ

2
((unh − un) · ∇rnh ,Cn)

= b1n,5 + b2n,5.

Using Lemma 2.1 and (2.8) we have, for any ξ̄3 > 0

|b1n,5| = |τ
2
((unh − un) · ∇Cn, rnh )|

≤ τ

2
‖unh − un‖L2(�)d‖C‖L∞(0,T ;W 1,4(�))‖rnh ‖L4(�)

≤ τ ξ̄3

8
‖unh − un‖2L2(�)d

‖C‖2L∞(0,T ;W 1,4(�))
+ τ(S04 )

2

2ξ̄3
|rnh |21,�

and for any ξ̄4 > 0

|b2n,5| = |τ
2
((unh − un) · ∇rnh ,Cn)|

≤ τ

2
‖unh − un‖L2(�)d‖Cn‖L∞(�)|rnh |1,�

≤ τ ξ̄4

8
‖unh − un‖2L2(�)d

‖C‖2L∞([0,T ]×�) + τ

2ξ̄4
|rnh |21,�.

By using the above bounds with a suitable choice of ξ̄i , i = 1, . . . , 4, and summing
over n from 1 to m ≤ N , we get
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1

2
‖rmh ‖2L2(�)

+ 1

2

m∑

n=1

‖rnh − rn−1
h ‖2L2(�)

+ α

m∑

n=1

τ |rnh |21,�+r0

m∑

n=1

τ‖rnh ‖2L2(�)

≤ c(h2 + τ 2) + c
m∑

n=1

τ‖unn − un‖2L2(�)d
,

and we deduce finally (5.34). �
Corollary 5.5 Under the assumption of Theorem 5.4, we have the a priori error esti-
mates corresponding to (Vh,2):

sup
0≤n≤N

‖un − unh‖L2(�)d ≤ c(h + τ),

sup
0≤n≤N

|pn − pnh |H1(�) ≤ c′(h + τ),

sup
0≤n≤N

‖Cn
h − Cn‖2L2(�)

+ α

N∑

n=1

τ |Cn
h − Cn|21,� ≤ c′′(h2 + τ 2),

(5.40)

where c, c′ and c′′ are independent of h and τ .

6 Numerical results

To validate the theoretical results, we perform several numerical simulations using
Freefem++ (see [18]). We consider a square domain � =]0, 1[2. Each edge is divided
into N equal segments so that � is divided into 2N 2 triangles. For the numerical
tests, we consider α = 1, r0 = 1, f1(C) = C + 1 and ν(C) = sin(C) + 2. We
choose the right-hand sides f0 and g so that the exact solution is given by (u, p,C) =
(e−t/4curlψ, p,C) where ψ , p and C are defined by

ψ(x, y) = e
−100

(
(x− 1

2 )2+(y− 1
2 )2
)

,

p(x, y, t) = (t + 1) cos (πx) cos (π y),

C(x, y, t) = sin t x2(x − 1)2y2(y − 1)2. (6.1)

We define the following total relative error between the exact and numerical solu-
tions:

err =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

sup
1≤n≤N

|unh − un |2L2(�)2
+ sup

1≤n≤N
|pnh − pn |2L2(�)

+
N∑

n=1

τ |Cn
h − Cn |2H1(�)

sup
1≤n≤N

|un |2L2(�)2
+ sup

1≤n≤N
|pn |2L2(�)

+
N∑

n=1

τ |Cn |2H1(�)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1/2

.

(6.2)
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Fig. 1 Pressure error with respect to the mesh size
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Fig. 2 Velocity error with respect to the mesh size

We test the algorithms for N ranging from60 to 120, by a step of 10with T = 1, h = 1

N
and τ = h. Moreover, in order to be able to compare the accuracy of the schemes on
similar number of unknowns and non-zero entries in the matrices associated to the
linear systems, we also use N = 30 for the second scheme and N = 240 for the first
one.

Figures 1, 2, and 3 show, in logarithmic scale, the curves of the errors on the
pressure, the velocity and the concentration, respectively, according to the mesh step
h for the first and second schemes (Vh,1) and (Vh,2). Figure 4 represents, in logarithmic
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Fig. 3 Concentration error with respect to the mesh size
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Fig. 4 Total relative error with respect to the mesh size

scale, the curve of the total relative error according to the mesh step h for the first
and second discrete schemes (Vh,1) and (Vh,2). Their respective slopes are 1.0013
and 1.0142 which is in conformity with the theoretical order of convergence of both
schemes. We also note that the second scheme, which uses higher order polynomials
for the pressure than the first scheme, yields a second order accuracy on this variable.

In order to include a more complete comparison of the accuracy of the two schemes
with respect to their numerical complexity, we show on Figs. 4, 5 and 6 their total
relative errors, not only with respect to the mesh size, but also with respect to the
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Fig. 5 Total relative error with respect to the number of unknowns
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Fig. 6 Total relative error with respect to the number of non-zero coefficients in the matrices

number of unknowns and with respect to the number of non-zero coefficients in the
associated matrices. In all three figures, the curve of the second scheme is below the
one of the first scheme, which means that, for a given complexity, the second scheme
is more accurate than the first one for this particular example. It is probable that this
advantage is linked to the high stiffness of the exact solution, which is better captured
by the second scheme which uses higher-order polynomials.
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