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Abstract
For the numerical solution of linear systems that arise from discretized linear par-
tial differential equations, multigrid and domain decomposition methods are well
established. Multigrid methods are known to have optimal complexity and domain
decomposition methods are in particular useful for parallelization of the implemented
algorithm. For linear random operator equations, the classical theory is not directly
applicable, since condition numbers of system matrices may be close to degenerate
due to non-uniform random input. It is shown that iterative methods converge in the
strong, i.e. L p, sense if the random input satisfies certain integrability conditions. As
a main result, standard multigrid and domain decomposition methods are applicable
in the case of linear elliptic partial differential equations with lognormal diffusion
coefficients and converge strongly with deterministic bounds on the computational
work which are essentially optimal. This enables the application of multilevel Monte
Carlo methods with rigorous, deterministic bounds on the computational work.

Keywords Strong error estimates · Multigrid methods · Domain decomposition
methods · Uncertainty quantification · Random PDEs with lognormal coefficients ·
Multilevel Monte Carlo

Mathematics Subject Classification 65N15 · 65N30 · 65C30 · 65C05

1 Introduction

Mathematical models of partial differential equations (PDEs) with random input
receive increasing attention in recent years. In particular, linear diffusion equations
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with random coefficients tomodel randommedia are considered and respective system
responses or quantities of interest are studied, cf. [12,13,15,16,27,36]. Generally, the
random input is function valued and will be referred to as random field. In the numer-
ical analysis of these problems constants in error estimates become random variables
and may have a distribution with unbounded support. In the case that quantities of
interest are moments of system responses, numerical analysis has been performed if
certain integrability conditions are satisfied by the random system input. There, the
case of Gaussian random fields (GRFs) as random inputs is frequently considered.
Multilevel techniques such as multilevel Monte Carlo (MLMC) have been established
to accelerate the approximation of moments. There, sample numbers are chosen in
a greedy technique to optimize the error versus the required computational cost, cf.
[3,13,21,22,24,36]. The requirement of MLMC to be efficient is a small variance
between higher levels or to put it differently, the strong error between higher levels
has to convergewith an available rate. In the case that finite element (FE) discretizations
are used and the random input is unbounded such as GRFs, the numerical analysis and
numerical experiments presented in these references relied on sparse direct solvers,
cf. [13,27,36]. Hence, the applicability of iterative methods which are known to be
fast for deterministic problems is of natural interest, e.g., so-called full multigrid is
well-known to have optimal complexity in the case of Poisson’s equation, cf. [2].

In this paper we establish rigorously the strong convergence of a wide class of stan-
dard iterative solvers, which yields essentially optimal computational cost estimates
also in the case of GRF input with low spatial regularity. As an application, MLMC
is discussed with deterministic, essentially optimal estimates of the computation cost,
which was previously unknown. By optimal, we mean that solutions of linear systems
under considerationwith dimensionO(N )maybe approximated in computational cost
O(N ) consistently with the overall discretization error. In the computational uncer-
tainty quantification (UQ) literature, iterative solvers have been considered mostly in
the context of stochastic collocation and stochastic Galerkin, cf. [18,35,38]. A partic-
ular variant of MLMC with multigrid for GRF inputs has been proposed in [30] and
computational experiments have been performed.

The present manuscript analyzes the applicability and strong convergence of well
established iterativemethods for operator equations with unbounded random input in a
general setting. LetA be a random, continuous linear operator from V to V∗ on a prob-
ability space (Ω,F , P) that is P-almost surely (P-a.s.) boundedly invertible, where V
is a Hilbert space and V∗ its dual space. Let its expectation E(A) be well-defined. In
the present paper we are interested in the numerical analysis of approximations of the
solution u to the random linear equation that for P-almost every (P-a.e.) ω ∈ Ω

A(ω)u(ω) = f , (1)

where f ∈ V∗ is deterministic, in the strong sense, by iterative methods such as
multigrid and domain decomposition methods. This can be rewritten in variational
form to find u : Ω → V such that for P-a.e. ω

aω(u(ω), v) := V∗〈A(ω)u(ω), v〉V = V∗〈f , v〉V ∀v ∈ V.
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Let us assume that there are strictly positive random variables â and ǎ such that for
P-a.e. ω

ǎ(ω) V∗〈E(A)v , v〉V ≤ V∗〈A(ω)v , v〉V ≤ â(ω) V∗〈E(A)v , v〉V ∀v ∈ V. (2)

We will be particularly interested in the case that â and ǎ−1 are unbounded random
variables. This is for example the case for elliptic PDEs with lognormal coefficients.
Thus, preconditioned finite dimensional discretizations suffer from random condi-
tion numbers that are unbounded and respectively iterative methods contract with
random contraction numbers, which may have realizations arbitrarily close to one
with positive probability. At first sight one may overcome this with random itera-
tion numbers specified by a threshold of residual errors with the disadvantage of
the occurrence of large iteration numbers, when samples of the random contraction
number are close to one. Also, bounds on the computational work for such strategies
would be probabilistic. A main new contribution of this paper is that deterministic
iteration numbers exist that allow for strong convergence, i.e., convergence of well-
known iterative methods in the Lq(Ω;V)-norm, q ∈ [1,+∞), such as multigrid,
multilevel preconditioned conjugate gradient, or domain decomposition. This is pos-
sible due to tail bounds of the random contraction numbers, which for example are
satisfied in the important case of elliptic PDEs with lognormal coefficients. As a con-
sequence, deterministic, essentially optimal complexity bounds are implied for the
solution of resulting random linear systems when multigrid or domain decomposition
methods are applied. This enables also rigorous, deterministic, essentially optimal
complexity bounds for MLMC approximations of mean fields, which was previously
unknown. Assumptions on the computational cost of PDE solvers that were made
in previous papers [13,27,36] to obtain complexity bounds of MLMC and partly
to calibrate the MLMC estimator are pervaded by the new theory presented in this
manuscript. We will treat the case that aω(·, ·) is symmetric for P-a.e. ω. However, the
presented theory can be extended to certain non-symmetric operators, see for example
[6, Sect. 11].

In Sect. 2, we will review iterative methods as they were formulated in [39] in
order to discuss various multilevel method in an unified framework. It will also be
highlighted which parts in the framework and in the iterative methods are random.
As a main result, we will develop integrability conditions on the random contraction
numbers in Sect. 3 that result in sufficiently strong tail bounds in order to ensure
strong convergence in the setting of multilevel discretizations of (1). The integrability
conditions posed in Sect. 3 are analyzed for several multilevel methods such as multi-
grid, the so-called BPX preconditioner, cf. [10], and domain decomposition methods
in Sects. 4 and 5. An important application of the presented theory are lognormal
diffusion problems, which are briefly reviewed in Sect. 6. In particular deterministic
bounds on the computational work without assumptions on the PDE solver of MLMC
are implied, which is concluded in Sect. 7.1. Numerical experiments with GRF input
are presented in Sect. 7.2 and confirm the theoretical analysis.
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2 Iterativemethods

In this section,we review iterativemethods to approximate solutions to linear equations
on a finite dimensional inner product space (V , (·, ·)), where ‖ · ‖ denotes the norm
that is induced by (·, ·). Let us consider the random linear equation that for P-a.e. ω

A(ω)u(ω) = f , (3)

where A : V → V is a random linear operator that is P-a.s. symmetric positive
definite with respect to (·, ·). Hence, (3) is P-a.s. uniquely solvable. Note that we will
often omit dependencies of random quantities on ω for notational convenience. Let
us denote the bilinear form that is induced by A by (·, ·)A and let λmax(A), λmin(A)

denote the maximal and minimal eigenvalue of A. The condition number of A is
denoted by κ(A) and ρ(A) denotes the spectral radius. This notation will also be used
for other linear operators that occur. Note that since A is random, λmax(A), λmin(A),
κ(A), and ρ(A) are random variables. In particular, the review article [39] enables the
discussion of multigrid and domain decomposition methods in an unified framework.
Thesemethods allow in some cases for optimal preconditioning or uniform contraction
numbers with respect to the dimension of V . In this section, we will mainly follow
[39] and introduce abstract algorithms, which in later sections will be used as BPX
or additive Schwarz preconditioner, symmetric multigrid, and overlapping domain
decomposition method. We will also highlight which of the occurring objects in this
review section are random.

Since A is P-a.s. symmetric positive definite, the conjugate gradient (CG) method
implies after n ∈ N iterations with initial guess U 0 the error bound that for P-a.e. ω

‖u(ω) −Un(ω)‖A(ω) ≤ 2

(√
κ(A(ω)) − 1√
κ(A(ω)) + 1

)n
‖u(ω) −U 0(ω)‖A(ω).

Since the random condition number κ(A) may depend on the dimension of the linear
space V , we consider the preconditioned linear system that for P-a.e. ω

B(ω)A(ω)u(ω) = B(ω) f , (4)

where the random linear operator B is chosen to be symmetric positive definite with
respect to (·, ·). The random operator B shall satisfy that P-a.s. κ(BA) ≤ κ(A), which
then accelerates the convergence of the CGmethod. The combination of precondition-
ing and CG will be referred to as preconditioned conjugate gradient (PCG) method.

Another method to be discussed is the linear iterative method of the form

Un+1(ω) = Un(ω) + B(ω)( f − A(ω)Un(ω)), n ∈ N0, (5)

for P-a.e. ω, where B is a suitable random operator that is not necessarily sym-
metric and U 0 is given. Note that this linear iterative methods converges P-a.s. if
‖ Id−BA‖A < 1, P-a.s. Alternatively, one could also introduce a relaxed version of
B with relaxation parameter in (0, 2/ρ(BA)) to guarantee convergence with random
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contraction number (κ(BA) − 1)/(κ(BA) + 1), cf. [39, Proposition 2.3]. Also we
remark that generally the contraction number of the PCG method is smaller, cf. [39,
Proposition 2.2], which is why one may say that PCG accelerates convergence.

Lemma 1 Let Ã : V → V be a symmetric positive definite operator with respect to
(·, ·) and let B̃ : V → V be a symmetric positive definite preconditioner with respect
to (·, ·) for Ã. If there exists positive random variables c0, c1 such that for P-a.e.
ω ∈ Ω

c0(ω)(v, v) Ã ≤ (v, v)A(ω) ≤ c1(ω)(v, v) Ã ∀v ∈ V ,

then for P-a.e. ω ∈ Ω

κ(B̃ A(ω)) ≤ κ(B̃ Ã)
c1(ω)

c0(ω)
.

Proof Since B̃ Ã is symmetric positive definite with respect to (·, ·) Ã, it holds that

κ(B̃ Ã) = λmax(B̃ Ã)

λmin(B̃ Ã)

and for every v ∈ V ,

|λmax(B̃ Ã)|−1(v, v) Ã ≤ (B̃−1v, v) ≤ |λmax(B̃ Ã)|−1(v, v) Ã.

Thus, by the third equivalence in [39, Lemma 2.1],

λmax(B̃ Ã)−1(Av, v) ≤ (B̃−1v, v) ≤ λmin(B̃ Ã)−1(Av, v).

Then, the assumption of the lemma implies that

c−1
1 λmax(B̃ Ã)−1(Av, v) ≤ (B̃−1v, v) ≤ c−1

0 λmin(B̃ Ã)−1(Av, v),

which implies the claim by the condition number estimate in [39, Lemma 2.1]. �
For J ∈ N, let us assume a decomposition of V in subspaces (Vj : j = 1, . . . , J ),

i.e., it holds that Vj ⊂ V , j = 1, . . . , J , and

V =
J∑

j=1

Vj . (6)

We define the orthogonal projections Q j , Pj : V → Vj for every v ∈ V by

(Q jv,w j ) := (v,w j ), (APjv,w j ) := (Av,w j ) ∀w j ∈ Vj

and the operator A j : Vj → Vj for every v ∈ Vj by

(A jv,w j ) := (Av,w j ) ∀w j ∈ Vj ,
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j = 1, . . . , J . Consequently it holds for every j = 1, . . . , J that A j Pj = Q j A,
which implies that if u is the random solution of (3), then u j := Pju satisfied for
P-a.e. ω

A j (ω)u j (ω) = f j ,

where f j := Q j f , j = 1, . . . , J . Note that A j , Pj are random whereas Q j is
deterministic, j = 1, . . . , J . Let R j : Vj → Vj , j = 1, . . . , J , be random symmetric
positive definite operators with respect to (·, ·), which shall approximate the inverse
of A j respectively. Thus,

Ba :=
J∑

j=1

R j Q j (7)

is also symmetric positive definite, cf. [39, Lemma 3.1], and shall be used as precon-
ditioner for A.

Algorithm 1 Apply the PCGmethod to (4)with the random preconditioner Ba defined
in (7).

A multilevel iteration can be defined under the assumption that there are nested
subspaces satisfying

M1 ⊂ M2 ⊂ · · · ⊂ MJ = V , (8)

where we also define operators Q̂ j , P̂j : MJ → Mj and Â j : Mj → Mj for j =
1, . . . , J respectively. The randommultilevel iterations B̂s

j : Mj → Mj , j = 1, . . . , J

with parameters m, k ∈ N will be defined iteratively. Set B̂s
1 := Â−1

1 and assume that
B̂s
j−1 : Mj−1 → Mj−1 is already defined. For every g ∈ Mj the multigrid V-cycle

iteration B̂s
j g is defined by:

1. v := R̂ j g
2. w := v + B̂s

j−1 Q̂ j−1(g − Â jv)

3. B̂s
j g := w + R̂ j (g − Â jw)

Algorithm 2 Let U 0 be given, then Un is defined by the linear iteration in (5) with
B = B̂s

J .

According to [9, Eq. (2.14)] the residual operator is given by

Ês
J = (Id−B̂s

J ÂJ ) = (Id−T̂J ) · · · (Id−T̂1)(Id−T̂ ∗
1 ) · · · (Id−T̂ ∗

J ),

where
T̂ j := R̂ j Â j P̂j .

For the convergence of Algorithm 1 we have to prove bounds of κ(BA), whereas for
Algorithm2wehave to show that ‖Ês

J ‖A ≤ δ for some randomvariable δ taking values
in (0, 1) P-a.s. The additive preconditioner in Algorithm 1 will in later applications
be the BPX, if the nested decomposition (8) is considered, or the additive Schwarz
preconditioner. Algorithm 2 is multigrid by symmetric V-cycle.
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In [39], assumptions are introduced involving two parameters K0 and K1 that allow
to discuss their convergence. Here K0 and K1 are positive random variables. We recall
the two conditions [39, Eqs. (4.2) and (4.3)]. There exists a positive random variable
K0 such that for every v ∈ V , there exists a decomposition v =∑J

j=1 v j with v j ∈ Vj ,
j = 1, . . . , J , such that for P-a.e. ω

J∑
j=1

(R−1
j (ω)v j , v j ) ≤ K0(ω)(A(ω)v, v). (A.1)

There exists a positive random variable K1 such that for P-a.e. ω and for every
S ⊂ {1, . . . , J } × {1, . . . , J } and v j , w j ∈ V , j = 1, . . . , J ,

∑
(i, j)∈S

(Ti (ω)vi , Tj (ω)w j )A(ω)

≤ K1(ω)

(
J∑

i=1

(Ti (ω)vi , vi )A(ω)

)1/2⎛
⎝ J∑

j=1

(Tj (ω)w j , w j )A(ω)

⎞
⎠

1/2

. (A.2)

Theorem 2 Let assumptions (A.1) and (A.2) be satisfied. Let Ba be the random pre-
conditioner given by (7). Then, for P-a.e. ω

κ(Ba(ω)A(ω)) ≤ K0(ω)K1(ω). (9)

The residual operator Ês
J from Algorithm 2 satisfies for P-a.e. ω

‖Ês
J (ω)‖A(ω) ≤ 1 − 2 − ν

K0(ω)(1 + K1(ω))2
, (10)

where ν ≥ max j=1,...,J {ρ(R j (ω)A j (ω))}.
Proof The first assertion is explicitly [39, Theorems 4.1]. The second assertion follows
by [39, Theorems 4.4 and Proposition 3.5]. �
The random parameters K0 and K1 can be estimated in some cases with [39, Lem-
mas 4.5, 4.6, and 4.7]. Let us state a specific case of [39, Lemma 4.6] as the following
lemma.

Lemma 3 Let K3 be a positive random variable that is independent of J and let
γ ∈ (0, 1) be deterministic. If for P-a.e. ω and for every v,w ∈ V and every i, j ∈
{1, . . . , J } it holds that

(Ti (ω)v, Tj (ω)w)A(ω) ≤ K3(ω)νγ |i− j |(Ti (ω)v, v)
1/2
A(ω)(Tj (ω)w,w)

1/2
A(ω), (11)

then

K1(ω) ≤ K3(ω)ν
2

1 − γ
.
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Note that (11) is often called strengthened Cauchy–Schwarz inequality.
The operator B̂s

J can also be used as preconditioner in a PCG method to acceler-
ate convergence. The respective condition number can be bounded by the following
proposition in combination with Theorem 2.

Proposition 4 Let δ be a random variable taking values in (0, 1). If for P-a.e. ω,

‖ Id−B̂s
J (ω)A(ω)‖A(ω) ≤ δ(ω),

then κ(B(ω)A(ω)) ≤ 1/(1 − δ(ω)).

Proof Since the operator Id−B̂s
J A can be written as E∗E , where E∗ denotes the

adjoint operator of E , for some appropriate E that was discussed above, it holds that
((Id−B̂s

J A)v, v)A = ‖E∗v‖2A ≥ 0 for every v ∈ V . Hence,

(B̂s
J Av, v)A ≤ (v, v)A ∀v ∈ V . (12)

The assumption implies that

(1 − δ)(v, v)A ≤ (B̂s
J Av, v)A ∀v ∈ V , (13)

which then implies the assertion. �

3 Strong convergence of iterativemethods

We recall the possibly infinite dimensionalHilbert spaceV and let (H, (·, ·)) be another
Hilbert space such that the embedding H ⊂ V is continuous. Let (V
 : 
 ∈ N) be a
nested sequence of finite dimensional subspaces of V , i.e., V1 ⊂ V2 ⊂ · · · ⊂ V . Let
the finite dimensional spaces V
 have dimensions N
 := dim(V
), 
 ∈ N. Similar to
Sect. 2, we introduce random operators A
, P
, R
, T
, and Q
 with respect to the
inner product (·, ·) of H, 
 ∈ N. The inner product (·, ·)E(A) on V is given by

(v ,w )E(A) := V∗〈E(A)v ,w 〉V ∀v ,w ∈ V.

The inner product (·, ·)A with respect to the random symmetric operator A will also
be considered.

For every 
 ∈ N, we consider the variational form of (1) on the subspace V
.
For every 
 ∈ N, this gives rise to the following linear equation. We seek to find
u
 : Ω → V
 such that for P-a.e. ω

V∗〈A
(ω)u
(ω), v
〉V = V∗〈f , v
〉V ∀v
 ∈ V
.

This is uniquely solvable by the Lax–Milgram lemma using (2).
We assume that the random solution u : Ω → V of the problem in (1) is approx-

imated by the Galerkin approximations u
, 
 ∈ N. such that for every 
 ∈ N and for
P-a.e. ω

‖u(ω) − u
(ω)‖A(ω) ≤ C(ω)hs
. (14)
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We apply an iterative method such as Algorithm 1 or 2 with random contraction
number δ, that is independent of 
, with n iterations and solve exactly on level 1, i.e.,
starting withUn


−1 as initial guess for level 
 we carry out n iterations of the algorithm
with a random contraction number δ that takes values in (0, 1). Hence, we obtain
a sequence Un


 , 
 ∈ N, where we set Un
1 := u1. This multilevel process was used

in [2, Sect. 3] to derive optimal complexity bounds for the solution of certain linear
equations and is also commonly referred to as “full multigrid”.

Lemma 5 Let us assume that (u
 : 
 ∈ N) satisfies (14) for some s > 0 and let the
sequence (h
, 
 ∈ N) satisfy that h
 = γ 
h0, 
 ∈ N, for some fixed h0 > 0 and
γ ∈ (0, 1). Then, for every 
 ∈ N, Un


 and for P-a.e. ω

‖u(ω) −Un

 (ω)‖A(ω) ≤ 2C(ω)

(

−1∑
k=0

hs
−kδ(ω)nk

)

= 2C(ω)

(

−1∑
k=0

(γ −sδ(ω)n)k

)
hs
.

Proof The argument is for example given in [7, Chapter 10]. �
For any Banach space (B, ‖ · ‖B) and any p ∈ [1,+∞), let us denote the space of

strongly measurable mappings X : Ω → B such that ‖X‖p
B is integrable with respect

to the probability measure P by L p(Ω; B). For B = R, we simply write L p(Ω).

Theorem 6 Let the assumptions of Lemma 5 be satisfied. Let us assume that (C/
√
ǎ) ∈

L p(Ω) for some p ∈ [1,+∞), where ǎ is defined in (2) and C is given in (14). Further,
assume that 1/(1 − δ) ∈ L p′

(Ω) for some p′ ∈ [1,+∞). For every η ∈ (0, 1), every
deterministic number of iterations n ∈ N, q ∈ [1, p], and r := p′(p − q)/(pq) it
holds that for every 
 ≥ 2

‖u −Un

 ‖Lq (Ω;V) ≤ Cr

(
hs
 + n−r ) ,

where

Cr := 2max

{
‖C/

√
ǎ‖Lq (Ω)

1 − η
, ‖C/

√
ǎ‖L p(Ω)

hs1
1 − γ s

∥∥∥∥ 1

1 − δ

∥∥∥∥
r

L p′ (Ω)

log

(
1

ηγ s

)r}
.

Proof The idea of the proof is to decompose the probability space into Ω = Ωn ∪
(Ωn)

c, where
Ωn := {ω ∈ Ω : δ(ω)n < ηγ s}

and therefore (Ωn)
c = {ω ∈ Ω : δ(ω)n ≥ ηγ s}. Note that both sets are measurable.

For notational convenience, we omitω in the following when discussing subsets ofΩ .
Our goal is to show, how the probability of (Ωn)

c tends to zero for increasing values
of n ∈ N, to be able to justify the applicability of a classical argument on the sets
Ωn , n ∈ N. Naturally, Ωn1 ⊂ Ωn2 for every choice of natural numbers n1 ≤ n2. We

123



46 Page 10 of 26 L. Herrmann

recall a version of the Markov inequality, cf. [5, Eq. (2.1)], i.e., for a random variable
X taking values in (1,+∞) and a non-decreasing function φ such that φ(t) > 0 it
holds that

P(X ≥ t) ≤ P(φ(X) ≥ φ(t)) ≤ E(φ(X))

φ(t)
, t ∈ (1,+∞).

We select the non-decreasing positive function φ(t) := t p
′
. Then, for X = 1/(1 − δ)

and every t ∈ (1,+∞) it holds that

P

(
1

1 − δ
≥ t

)
≤ E

((
1

1 − δ

)p′)
1

t p′ . (15)

Since for every r ∈ (0, 1), {δ ≥ r} = {1/(1 − δ) ≥ 1/(1 − r)}, we conclude that

P((Ωn)
c) = P

(
δn ≥ ηγ s) = P

(
δ ≥ (ηγ s)1/n) = P

(
1

1 − δ
≥ 1

1 − (ηγ s)1/n

)
.

We observe that the function x �→ (1 − (ηγ s)1/x )x from (1,+∞) to (0,+∞) is
increasing. Since the rule of L’Hospital implies that limx→+∞(1 − (ηγ s)1/x )x =
log(1/(ηγ s)), we conclude that for every n ∈ N

1 − (ηγ s)1/n ≤ log

(
1

ηγ s

)
1

n
.

For every n ∈ N, we choose t := 1/(1 − (ηγ s)1/n) in (15), and conclude that for
every n ∈ N it holds that

P((Ωn)
c) ≤ E

((
1

1 − δ

)p′)
log

(
1

ηγ s

)p′ (
1

n

)p′

. (16)

Hence, we have established estimates for the probability of the sets (Ωn)
c, n ∈ N. We

apply Lemma 5, (2), and decompose the probability space into Ω = Ωn ∪ (Ωn)
c to

obtain that for q as in the statement of the theorem

E(‖u −Un

 ‖q

E(A)
) ≤ E

⎛
⎝
(
2

C√
ǎ


−1∑
k=0

hs
−kδ
nk

)q⎞
⎠

= E

⎛
⎝
(
2

C√
ǎ


−1∑
k=0

(γ −sδn)k

)q

1Ωn

⎞
⎠ hsp


+ E

⎛
⎝
(
2

C√
ǎ


−1∑
k=0

hs
−kδ
nk

)q

1(Ωn)c

⎞
⎠ .
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Since on Ωn holds that γ −sδn < η, we obtain with a geometric series argument that

E

⎛
⎝
(
2

C√
ǎ


−1∑
k=0

(γ −sδn)k

)q

1Ωn

⎞
⎠ hsq
 ≤ 2q E

(( C√
ǎ

)q)( 1

1 − η

)q
hsq
 .

The relation h
 = γ 
h0, 
 ∈ N, implies that for every 
 ≥ 2 it holds that
∑
−1

k=0 h
s

−k ≤∑


≥1 γ 
sh0 = hs1/(1−γ s). TheHölder inequalitywith r1 = p/q and r2 = p/(p−q)

implies with the tail bound of δn in (16) that

E

⎛
⎝
(
2

C√
ǎ


−1∑
k=0

hs
−kδ
nk

)q

1(Ωn)c

⎞
⎠

≤ 2q
∥∥∥∥ C√

ǎ

∥∥∥∥
q

L p(Ω)

(
hs1

1 − γ s

)q
E
(
1(Ωn)c

)1/r2

≤ 2q
∥∥∥∥ C√

ǎ

∥∥∥∥
q

L p(Ω)

(
hs1

1 − γ s

)q ∥∥∥∥ 1

1 − δ

∥∥∥∥
rq

L p′ (Ω)

log

(
1

ηγ s

)rq (1
n

)rq
,

which finishes the proof of the theorem. �
Remark 7 Let X be a random variable with values in (0, 1) such that 1/(1 − X) ∈
L p(Ω) for some p ∈ [1,+∞), then (16) implies that for every η < 1 and n ∈ N

P
(
Xn ≥ η

) ≤
∥∥∥∥ 1

1 − X

∥∥∥∥
p

L p(Ω)

log
(
η−1
)p

n−p.

We illustrate the assumptions in Theorem 6 on C and ǎ in the following example.

Example 8 Consider the random coefficient function a given by a(ω, x) = exp(y(ω)

ψ(x)) for a.e. x ∈ D, P-a.e. ω ∈ Ω , where ψ ∈ W 1,∞(D) and y is stan-
dard normally distributed. It is easy to see that ‖ǎ−1‖L p(Ω) ≤ ‖a‖L p(Ω;L∞(D)) ≤
exp(p‖ψ‖2L∞(D)/2) for every p ∈ [1,+∞), where ǎ = ess inf x∈D{a(x)}.

Let us consider the elliptic Dirichlet problem Au := −∇ · (a∇u) = f on a
convex polygon D with f ∈ L2(D), which has a unique solution u : Ω → H1

0 (D)

that satisfies ‖u‖H1
0 (D) ≤ ‖ f ‖H−1(D)/ǎ, P-a.s. The Sobolev spaces are denoted by

Hk(D), k ∈ N, and H1
0 (D) := {v ∈ H1(D) : v|∂D = 0} with dual space H−1(D).

Since ψ ∈ W 1,∞(D), we may write −Δu = f /a + y∇ψ · ∇u. Since the Dirichlet
Laplacian is boundedly invertible from L2(D) to H2(D) ∩ H1

0 (D), ‖u‖H2(D) ≤
Cǎ−1(|y|‖ψ‖W 1,∞(D) + 1)‖ f ‖L2(D) P-a.s., where the constant C neither depends on
a nor on f . Then, Céa’s lemma implies with a standard approximation property in FE
spaces that (14) holds with C = C

√‖a‖L∞(D)ǎ−1(|y|‖ψ‖W 1,∞(D) + 1)‖ f ‖L2(D) and
s = 1. By a multiple application of the Cauchy–Schwarz inequality, we conclude that
(C/

√
ǎ) ∈ L p(Ω) for every p ∈ [1,+∞).

The case p′ = +∞ in Theorem 6 is trivial, since then the random contraction
number may be upper bounded to be uniformly strictly less than one, i.e., if p′ = +∞

123



46 Page 12 of 26 L. Herrmann

in Theorem 6, then ess supω∈Ω δ(ω) < 1. In this case, the standard theory applies
with δ = ess supω∈Ω δ(ω) < 1.

4 Multigrid methods

Here, we provide sufficient conditions under which the strengthened Cauchy–Schwarz
inequality holdswith explicit dependence on the operatorA. This will allow us to show
Lq(Ω) bounds of the condition numbers and tail bounds of the random contraction
number in order to apply the strong error bounds from Theorem 6.

We will provide a proof in the case of a random, symmetric elliptic differential
operators. To be specific, let H1

0 (D), Hs(D), s ∈ [−1, 2], be the Sobolev–Slobodeckij
spaces for some polytopal domain D ⊂ R

d , d ≥ 1 arbitrary, such that H−s(D) is the
dual space of Hs(D), s ∈ [0, 1], and H0(D) = L2(D). The reader is referred to [23,
Chapter 1] for details on Sobolev spaces. We consider the class of random symmetric
operators

A := −
d∑

i, j=1

∂

∂xi

(
ai j

∂

∂x j

)
+ a : H1

0 (D) → (H1
0 (D))∗, (17)

where (ai j (x))i, j=1,...,d is a random symmetric matrices for a.e. x ∈ D. Let us
assume that D = ⋃K

k=1 Dk , where the subdomains Dk are pairwise disjoint with
a polytopal boundary. Furthermore, we assume that the random fields a and ai j are
strongly measurable as mappings from Ω to L∞(D), and ai j |Dk is strongly mea-
surable as a mapping from Ω to Ws,p(Dk) such that s > d/p, k = 1, . . . , K ,
i, j = 1, . . . , d, where Ws,p(Dk), s ≥ 0, p ∈ [1,+∞), k = 1, . . . , K , denote
the Sobolev–Slobodeckij spaces, cf. [23, Definition 1.3.2.1]. We assume that for P-
a.e.ω, ess infx∈D{a(ω, x)} ≥ 0 and that there exists a strictly positive random variable
ǎ such that for P-a.e. ω

ess inf
x∈D

⎧⎨
⎩

d∑
i, j=1

ai j (ω, x)ξiξ j

⎫⎬
⎭ ≥ ǎ(ω)|ξ |2 ∀ξ ∈ R

d .

The corresponding random bilinear form a(·, ·) is for P-a.e. ω given by

aω(v ,w ) =
d∑

i, j=1

∫
D
ai j (ω)

∂v
∂x j

∂w
∂xi

+ a(ω)vwdx ∀v ,w ∈ H1
0 (D).

Furthermore, let â be a positive random variable such that for P-a.e. ω

ǎ(ω)

∫
D

|∇v |2dx ≤ aω(v , v) ≤ â(ω)

∫
D

|∇v |2dx ∀v ∈ H1
0 (D). (18)

The following example is a class of random coefficients, which will be further dis-
cussed in Sects. 6 and 7.2.
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Example 9 The class of lognormal random coefficient fields ai j = exp(Z)δi j and
a = 0, where Z : Ω → Ws,p(D), s > d/p, is a strongly measurable Gaussian
random field and δi j denotes the Kronecker symbol, satisfy these conditions; see
ahead in Sect. 7.2 for a class of instances of such GRFs.

The proof of the strengthened Cauchy–Schwarz inequality, see (11), draws on [9,
Sects. 4 and 5] and [39, Sect. 4]. The setting in reference [9] allows for low Hölder
regularity of the coefficients of elliptic operators, but does not provide a strengthened
Cauchy–Schwarz inequality needed for the setting of assumptions (A.1) and (A.2).
The strengthened Cauchy–Schwarz inequality proved in [39, Lemmas 6.1 and 6.3]
is limited to coefficients with W 1,∞(D) regularity. Here, a strengthened Cauchy–
Schwarz inequality will be proved with explicit dependence on the coefficients that
is valid for arbitrary low Hölder regularity of the coefficients and also allows for
jumps across ∂Dk (see ahead Proposition 11). We will identify estimates with explicit
dependence on the random coefficients of A.

Let (T
, 
 ∈ N) be a nested sequence of shape regular simplicial, uniformly refined
meshes of D. Note that in one refinement step one simplex is refined into 2d subsim-
plices. For every k = 1, . . . , K and 
 ∈ N, we require that Dk = ⋃

τ∈T
,Dk∩τ �=∅ τ .
Let V
 ⊂ V be the space of piecewise polynomial function with respect to the mesh
T
, 
 ∈ N. For simplicity, we will consider here only first order FE, i.e., polynomial
degree one. Define−Δ
 : V
 → V
 by the bilinear form (w
, v
) �→ ∫

D ∇w
 ·∇v
dx
over V
 × V
, 
 ∈ N. By [9, Eq. (5.1)], there exists a deterministic constant C > 0
such that for every j ∈ N and every v ∈ V j with v =∑ j

i=1 vi , vi ∈ Vi , such that

j∑
i=1

λmax(−Δi )‖vi‖2L2(D)
≤ C

∫
D

|∇v|2dx . (19)

Moreover, the following inverse estimates hold. There exists a constant C such that
for every v ∈ V


‖v‖H1(D) ≤ Ch−1

 ‖v‖L2(D) and ‖v‖H1+s (D) ≤ Ch−s


 ‖v‖H1(D), (20)

where
h
 := max

τ∈T


{diam(τ )}
and s ∈ (0, 1/2), cf. [14, Theorem 3.2.6] and [11, Eq. (10.1)]. These inverse estimates
are sharp, which can be seen by choosing v to be a nodal basis function of the FE
space V
. Since by (18) for P-a.e. ω

ǎ(ω)λmax(−Δ
) ≤ λmax(A
(ω)) ≤ â(ω)λmax(−Δ
), (21)

we also observe that for P-a.e. ω

λmax(A
(ω)) ≥ Cǎ(ω)h−2

 , (22)

which for −Δ
 is a consequence of the sharpness of (20).
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We require the following assumptions on the smoothers (R j : j = 1, . . . , J ). There
exists a deterministic ν ∈ (0, 2) such that for every j = 1, . . . , J , and P-a.e. ω

(Tj (ω)v, Tj (ω)v)A(ω) ≤ ν(Tj (ω)v, v)A(ω) ∀v ∈ V j . (B)

There exists deterministic c0, c1 > 0 such that for every j = 1, . . . , J , and for
P-a.e. ω

c0
‖v‖2

L2(D)

λmax(A j (ω))
≤ (R j (ω)v, v) ≤ c1

‖v‖2
L2(D)

λmax(A j (ω))
∀v ∈ V j . (C)

Assume that there exists γ ∈ (0, 1) such that for all i, j ∈ N satisfying i ≤ j it
holds that

h j

hi
≤ γ j−i , (D)

Note that (B) implies that ρ(Ri Ai ) ≤ ν for every i . There exist smoothers that satisfy
these assumptions, cf. [6, Chapter 8] and [8,10].

Lemma 10 Let s ∈ (0, 1/2) and p ∈ (d/s,+∞), then for P-a.e. ω, for every η > 0,
φ ∈ H1(D), and ψ ∈ H1+s(D) it holds that

|a(ω)(φ,ψ)| ≤ C̃(ω)(η−1‖φ‖2L2(D)
+ ηs/(1−s)‖φ‖2H1(D)

)1/2‖ψ‖H1+s (D),

where for a deterministic constant C independent of (ai j , a : i, j = 1, . . . , d)

C̃(ω) := C

⎛
⎝ max

k=1,...,K

d∑
i, j=1

‖ai j (ω)‖Ws,p(Dk ) + ‖a(ω)‖L∞(D)

⎞
⎠ .

Proof The following argument originates from the proof of [9, Lemma 4.3]. We will
track the dependence on the random elliptic coefficients (ai j , a : i, j = 1, . . . , d).
Let us fix k ∈ {1, . . . , K }. There exists a bounded linear extension operator Ik :
H1(Dk) → H1(Rd), cf. [23, Theorem 1.4.3.1]. For every function v : Dk → R the
zero extension to R

d is denoted by ṽ. LetF denote the Fourier transform on R
d . We

obtain with Plancherel’s theorem

∫
Dk

ai j
∂φ

∂xi

∂ψ

∂x j
dx =

∫
Rd

∂(Ikφ)

∂xi

˜

ai j
∂ψ

∂x j
dx

=
(
F

(
∂(Ikφ)

∂xi

)
,F

(
˜

ai j
∂ψ

∂x j

))
L2(Rd )

.
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Recall that ‖(1+|ξ |2)s/2F (v)‖L2(Rd ) is theBessel potential norm in theHilbert case of
order s of a function v. The fact that in theHilbert caseBessel potential and Slobodeckij
spaces are equal with equivalent norms, cf. [37, Definition 2.3.1(d), Theorem 2.3.2(d),
Eq. 4.4.1(8)], and the boundedness of the zero extension as an operator from Hs(Dk)

to Hs(Rd), cf. [23, Corollary 1.4.4.5], imply with the Cauchy–Schwarz inequality and
differentiation rules for F that there exists a constant C such that

∫
Dk

ai j
∂φ

∂xi

∂ψ

∂x j
dx

≤ C

(∫
Rd

|ξ |2
(1 + |ξ |2)sF (Ikφ)dξ

)1/2 ∥∥∥∥ai j ∂ψ

∂x j

∥∥∥∥
Hs (Dk )

≤ C(η−1‖φ‖2L2(Dk )
+ ηs/(1−s)‖φ‖2H1(Dk )

)1/2
∥∥∥∥ai j ∂ψ

∂x j

∥∥∥∥
Hs (Dk )

,

where the inequality |ξ |2/(1− |ξ |2)s ≤ η−1 + ηs/(1−s)(1+ |ξ |2) is derived with ele-
mentary manipulations for every η > 0 and every ξ ∈ R

d . By [23, Theorem 1.4.4.2],
the multiplication of elements of Ws,p(Dk) is a bounded linear operator on Hs(Dk).
Thus, by summingover k and by theCauchy–Schwarz inequality there exists a constant
C such that
∫
D
ai j

∂φ

∂xi

∂ψ

∂x j
dx

≤ C max
k=1,...,K

‖ai j‖Ws,p(Dk )(η
−1‖φ‖2L2(D)

+ ηs/(1−s)‖φ‖2H1(D)
)1/2‖ψ‖H1+s (D).

Since it also holds that
∫
D
aφψdx ≤ ‖a‖L∞(D)(η

−1‖φ‖2L2(D)
+ ηs/(1−s)‖φ‖2H1(D)

)1/2‖ψ‖H1+s (D),

the assertion of the lemma follows. �
Proposition 11 Let Assumptions (B) and (C) be satisfied by the smoothers (R j : j =
1 . . . , J ), let Assumption (D) hold, and let s ∈ (0, 1/2) and p ∈ (d/s,+∞).

Then for some deterministic constant C independent of J the inequality (A.2) holds
with the random variable

K1 := C

⎛
⎝ max

k=1,...,K

d∑
i, j=1

‖ai j‖Ws,p(Dk ) + ‖a‖L∞(D)

⎞
⎠

2 (
1

ǎ

)2
.

Proof The proof of this proposition merges ideas of the proofs of [9, Lemma 4.2] and
[39, Lemma 6.3] to obtain a strengthened Cauchy–Schwarz inequality with explicit
dependence on the coefficients (ai j , a : i, j = 1, . . . , d) in the setting considered here
that allows for low spatial regularity of (ai j ), i, j = 1, . . . , d. We may assume that
j ≥ i due to the symmetry of (·, ·)A and let w ∈ Vi and φ ∈ V j be arbitrary, which
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are both elements of H1+s(D) due to s < 1/2. The first inverse estimate in (20) and
Lemma 10 imply that

|a(w, φ)| ≤ C̃(η−1 + ηs/(1−s)h−2
j )1/2‖φ‖L2(D)‖w‖H1+s (D),

where we tacitly absorbed the deterministic constant in (20) into C̃. The random
variable C̃ is stated in Lemma 10. Then, the second inverse estimate in (20), (22), and
the choice η := h2(1−s)

j results in

a(w, φ) ≤ C̃
√

λmax(A j )

ǎ
2

(
h j

hi

)s
‖φ‖L2(D)‖w‖H1(D),

where we again tacitly absorbed the deterministic constant in (22) into C̃ as well as
the constant in (20). Since

‖A jw‖2
L2(D)

λmax(A j )
= λmax(A j )

−1

(
sup
φ∈V j

a(w, φ)

‖φ‖L2(D)

)2

,

we conclude with (18) and the assumption of the lemma that for every w ∈ Vi

(Tjw,w)A ≤ c1
‖A jw‖2

L2(D)

λmax(A j )
≤ c14C̃2

(
1

ǎ

)2 (h j

hi

)2s
(w,w)A. (23)

We argue in a similar fashion as in the second part of the proof of [39, Lemma 6.3], i.e.,
we conclude with the Cauchy–Schwarz inequality, (23), and with the scaling property
of the smoothers in (B) that

(Tjv, Tiw)A ≤ (Tjv, v)
1/2
A (Tj Tiw, Tiw)

1/2
A

≤ C̃2
(
1

ǎ

)2
(Tjv, v)

1/2
A

(
h j

hi

)2s
(Tiw, Tiw)

1/2
A

≤ C̃2η
(
1

ǎ

)2 (h j

hi

)2s
(Tjv, v)

1/2
A (Tiw,w)

1/2
A ,

where we again absorbed deterministic constants into C̃. Since h j/hi ≤ γ j−i by
assumption, the assertion of the proposition follows with Lemma 3. �
Proposition 12 Let the smoothers (R j : j = 1, . . . , J ) satisfy Assumption (C) with
a deterministic constant c0. There exists a deterministic constant C independent of j
such that inequality (A.1) holds with the random variable

K0 := C
â

ǎ
.

123



Strong convergence analysis of iterative solvers for… Page 17 of 26 46

Proof Since the assumption implies that (R−1
i vi , vi ) ≤ λmax(Ai )/c0 (vi , vi ), the

assertion of the proposition follows with (18), (19), and (21). �

5 Domain decompositionmethods

Wewill consider overlapping domain decompositionmethods in the setting of assump-
tions (A.1) and (A.2) and for the random elliptic operator defined in (17). We denote
by V0 ⊂ V a coarse first order FE space with mesh width h0 of the type introduced
in Sect. 4. The first order FE space with a fine grid is denoted by Ṽ ⊂ V . For a given
set of overlapping subdomains (Dj : j = 1, . . . , J ) of D such that D = ⋃J

j=1 D j .
These subdomains result for example by extending a given disjoint set of subdomains
by a multiple of h0 in each spatial direction such that the union of its closures con-
tains D. Also we assume that the boundary ∂Dj aligns with the considered mesh,
j = 1, . . . , J . The FE spaces V j , j = 1, . . . , J , are subspaces of Ṽ and are defined
by

V j := {v ∈ Ṽ : v(x) = 0 ∀x ∈ D\Dj }, j = 1, . . . , J

So, we consider the redundant space decomposition

Ṽ =
J∑

j=0

V j .

We consider the case that symmetric multigrid solvers from Sect. 4 (Assumptions (B),
(C), and (D) are satisfied) are used as so-called subpaces solvers (R j : j = 0, . . . , J ),
which are random here. Therefore, suppose that the spaces V j have nested subspaces
M j,1 ⊂ . . . ⊂ M j,J ′( j) = V j , j = 0, . . . , J . Naturally, only few levels are used on
the subspace V0, i.e. J ′(0) = O(1). As in Sect. 4, we seek for random variables K0
and K1 with explicit dependence on the random operatorA in (17), in order to obtain
Lq(Ω)-estimates for the condition numbers using additive Schwarz preconditioners.

Proposition 13 There exists a deterministic constant C > 0 that is independent of J
and J ′( j), j = 0, . . . , J , such that inequality (A.1) holds with the random variable

K0 := C

(
â

ǎ

)4
(â)2

(ǎ)6

⎛
⎜⎝1 +

⎛
⎝ max

k=1,...,K

d∑
i, j=1

‖ai j‖Ws,p(Dk ) + ‖a‖L∞(D)

⎞
⎠

4
⎞
⎟⎠ .

Proof By (18) and [39, Lemmas 4.5 and 7.1],

K0 ≤ â

ǎ

1

min j=0,...,J λmin(R jA j )
.
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Since the R j ’s are chosen to be symmetric multigrid solvers, Propositions 12 and 11,
Theorem 2, and (13) imply there exists a deterministic constant c > 0 such that for
every j = 0, . . . , J ,

λmin(R jA j ) ≥ c
(ǎ)5

â

⎛
⎜⎝1 +

⎛
⎝ max

k=1,...,K

d∑
i, j=1

‖ai j‖Ws,p(Dk ) + ‖a‖L∞(D)

⎞
⎠

4
⎞
⎟⎠

−1

.

This implies the assertion of the proposition. �
Proposition 14 Inequality (A.2) holds with the deterministic number

K1 := (1 + |{(i, j) ∈ {1, . . . , J }2 : Di ∩ Dj }|)

Proof The assertion will follow by [39, Lemma 4.7] after we show an estimate of
the form of Assumption (B). By (12), it holds that λmax(R jA j ) ≤ 1, j = 0, . . . , J .
Let j = 0, . . . , J be arbitrary. Since R j is a symmetric multigrid solver, R jA j is
symmetric and positive definite with respect to (·, ·)A. There exists an orthonormal
basis of eigenvectors of R jA j with respect to (·, ·)A such that R jA jvi = λivi . Hence,
for every v ∈ V j , v =∑i (v, vi )Avi and

(R jA jv, R jA jv)A =
∑
i

λ2i ((v, vi )A)2

≤ λmax(R jA j )
∑
i

λi ((v, vi )A)2 = (R jA jv, v)A,

which implies the estimate of the proposition with [39, Lemma 4.7]. �

6 Application to lognormal diffusion problems

The presented theory in Sects. 3, 4, and 5 is in particular applicable to lognormal
diffusion problems. Let Z be a GRF on D that takes values in Hölder spaces Ct (D)

such that for some t ∈ (0, 1]

Z ∈ Lq(Ω;Ct (D)) and exp(Z) ∈ Lq(Ω;C0(D)) ∀q ∈ [1,+∞), (E)

see ahead Sect. 7.2 for a class of instances of such GFRs. Since for every v ∈ Ct (D),
t ∈ (0, 1], ‖ exp(v)‖Ct (D) ≤ ‖ exp(v)‖C0(D)(1 + ‖v‖Ct (D)), the assumption in (E)
implies by the Cauchy–Schwarz inequality

exp(Z) ∈ Lq(Ω;Ct (D)) ∀q ∈ [1,+∞)

For the lognomal coefficient a := exp(Z), we consider the elliptic diffusion prob-
lem with Dirichlet boundary conditions in variational form to find u : Ω → V such
that for P-a.e. ω
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aω(u(ω), v) =
∫
D
a(ω)∇u(ω) · ∇v = V∗〈f , v〉V ∀v ∈ V. (24)

where V = H1
0 (D). Well-posedness and approximation by Finite Elements is well-

known, cf. [12,13,36].We use the FE spacesV
 from Sect. 4 with maximal mesh width
h
 of T
, 
 ∈ N, and remark that for each 
, the space V
 may have the additional
structure for overlapping domain decomposition methods with multigrid subspace
solvers as introduced in Sect. 5.

Elements of H1+s(D), s ∈ [0, 1], can be approximated by functions in V
, cf. [14,
Theorem 3.2.1], i.e., there exists a deterministic constant C > 0 such that for every
v ∈ H1+s(D) there is w
 ∈ V
 such that

‖v − w
‖V ≤ Chs
‖v‖H1+s (D). (25)

Note that the approximation property stated in [14, Theorem 3.2.1] can be interpo-
lated to also hold for non-integer order Sobolev spaces. The following regularity
estimate makes the dependence on the coefficient a explicit. For every s ∈
[0,min{t, t−Δ})\{1/2} there exists a deterministic constant C > 0 such that for P-a.e.
ω

‖u(ω)‖H1+s (D) ≤ C
‖a(ω)‖C0(D)‖a(ω)‖2

Ct (D)

(minx∈D a(ω, x))4
‖ f ‖H−1+s (D), (26)

where t−Δ is themaximal value such that the inverse of theDirichlet Laplacian satisfies
(−Δ)−1 : H−1+t−Δ(D) → V ∩ H1+t−Δ(D) is bounded. Recall that D ⊂ R

d is a
polytope. For d = 2, the estimate (26) is due to [36, Lemma 5.2] (for d = 3, the
reader is referred to [36, Remark 5.2(c)]). The solution u can be approximated in V


by the FE approximation denoted by u
, in the Lq(Ω,V)-norm, 
 ∈ N. Specifically,
by Céa’s lemma, (25), and (26), there exists a deterministic constant C > 0 that is
independent of a such that for P-a.e. ω and every 
 ∈ N

‖u(ω) − u
(ω)‖Lq (Ω;V) ≤ C

∥∥∥∥∥
‖a(ω)‖2

C0(D)
‖a(ω)‖2

Ct (D)

(minx∈D a(ω, x))5

∥∥∥∥∥
Lq (Ω)

‖f ‖H−1+s (D) h
s

.

Finiteness of the right hand side follows by the Cauchy–Schwarz inequality using the
Assumption (E). Since the embedding Ct (D) ⊂ Ws,p(D) is continuous for every
0 < s < t and every p ∈ [1,+∞), the conditions from Sects. 4 and 5 are satisfied.
Let

Un

 : Ω → V
 (27)

be the result of n ∈ N iterations of an iterative algorithm introduced in the previous
sections, with initial guess Un


−1, 2 ≤ 
 ∈ N, and Un
1 = u1. The iterative methods are

symmetric multigrid (see Algorithms 2) or PCG using the BPX preconditioner (see
Algorithm 1) in Sect. 4. In the setting of Sect. 5,Un


 : Ω → V
 in (27) may result from
n ∈ N iterations of PCG using the additive Schwarz preconditioner (see Algorithm 1),
where symmetric multigrid (see Algorithm 2) is used as subspace solvers.
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Theorem 15 For 0 < s < t ≤ 1 and every q, r ∈ [1,+∞), there exists a constant
C > 0 such that for every number of iterations n ∈ N and 
 ≥ 2,

‖u −Un

 ‖Lq (Ω;V) ≤ C(hs
 + n−r ).

Proof By the Cauchy–Schwarz inequality, ‖a‖2
C0(D)

‖a‖2
Ct (D)

(minx∈D a(x))−5 ∈
L p(Ω) for every p ∈ [1,+∞), which is one of the conditions of Theorem 6.

It remains to verify the needed properties of the random contraction number in
the conditions of Theorem 6. In the framework of assumptions (A.1) and (A.2), by
Theorem2 the randomcontraction number δ satisfies for the linear iteration 1/(1−δ) ≤
K0(1+K1)

2/(2−ν). In the case of multigrid, Propositions 11 and 12 and the Cauchy–
Schwarz inequality imply that 1/(1 − δ) ∈ L p′

(Ω) for every p′ ∈ [1,+∞). For
overlapping domain decomposition methods, this statement is due to Propositions 13
and 14. If the additive preconditioner is applied with PCG, the random contraction
number δ satisfies by Theorem 2, 1/(1 − δ) ≤ √

K0K1 + 1. By the same argument,
1/(1 − δ) ∈ L p′

(Ω) for every p′ ∈ [1,+∞). Hence, the parameter r in Theorem 6
may be arbitrarily large, which implies the assertion. �
Corollary 16 In the setting of Theorem 15, let Un


 result from n ∈ N iterations of PCG
with a deterministic preconditioner B̃ j such that κ(B̃ j E(A j )) is bounded uniformly
in j . Then, the strong convergence estimate of Theorem 15 also holds.

Proof By Lemma 1, for P-a.e. ω, κ(B̃ jA j (ω)) ≤ â(ω)/ǎ(ω)κ(B̃ j E(A j )). Since
â/ǎ ∈ Lq ′

(Ω) for everyq ′ ∈ [1,+∞), the claim follows as in the proof ofTheorem15.
�

Corollary 17 In the setting of Theorem 15, for every ε > 0 there exists a constant
Cq,ε,s > 0 that is independent of h
 such that for every 
 ≥ 2

‖u −Un

 ‖Lq (Ω;V) ≤ Cq,ε,s h

s

.

with a deterministic number of iterations given by n = �n0h−ε

 � for a deterministic

constant n0 > 0.
The cost for one sample of Un


 is

O(h−d−ε

 )

with deterministic constants that are independent of h
, 
 ≥ 0.

Proof The cost of one iteration is O(h−d

 ), since the matrix vector product has cost

O(h−d

′ ) for the sparse stiffnessmatrices that result taking the nodal basis ofV
′ , 
′ ≤ 
.

The error contributions in the estimate of Theorem 15 are equilibrated for this
choice of iteration number, since r in Theorem 15 can be chosen arbitrarily large, i.e.,
r = s/ε is admissible. �
Remark 18 The established theory in this paper is also applicable for deterministic
preconditioners that do not imply uniform condition numbers. A possible class of
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examples are so-called “algebraic multigrid” (AMG) preconditioners for which amul-
tilevel convergence theory does not seem to be available, cf. [40, Sect. 5]. However,
if such a deterministic symmetric AMG preconditioner could be tuned to E(A j ) or
any operator which is spectrally equivalent in the sense of (2), the respective iterative
method also converges strongly as in Theorem 15 by a similar argument applying
Corollary 16. Note that in the example (24) (see also Example 9), if Z is stationary,
then E(A) is the Dirichlet Laplacian multiplied by E(exp(Z)), which is constant with
respect to x ∈ D.

7 Application tomultilevel Monte Carlo

Multilevel Monte Carlo methods make the numerical approximation of moments of
random quantities feasible where sampling is computationally costly. The analysis of
the computational cost versus accuracy of MLMC that does not rely on additional
assumptions on the used PDE solver is an application of the presented theory in
previous sections. The MLMC estimator with L ∈ N levels to approximate the mean
field E(u) is given by

EML
L (UnL

L ) :=
L∑


=1

EM

(Un



 −Un
−1

−1 ),

where (EM

: 
 = 1, . . . , L) are Monte Carlo estimators that are mutually indepen-

dent. We used the convention that Un0
0 := 0. Sample numbers M
, 
 = 1, . . . , L are

chosen to optimize the accuracy versus the computational cost.

7.1 Computational cost versus accuracy

In the literature [13,22], generic asymptotic bounds of the required computational cost
for a certain accuracy with MLMC are given that pose assumptions on the behavior
of ‖u − u
‖L2(Ω;V) = O(hs
) and on the required computational cost to sample u
. In
[13], the assumption on the decay of ‖u − u
‖L2(Ω;V) = O(hs
) was verified without
investigating the computational cost to sample u
. In the present paper this is achieved
by Corollary 17, i.e., ‖u −Un



 ‖L2(Ω;V) = O(hs
) with computational costO(h−d−ε

 )

to sample Un



 for any ε > 0, where the implied constants depend on ε. Thus, by [13,
Theorem 4.1], an error threshold 0 < TOL, i.e.,

‖ E(u) − EML
L (UnL

L )‖L2(Ω;V) = O(TOL),

can be achieved with computational cost

workL =
{
O(TOL−2) if 2s > d + ε,

O(TOL−(d+ε)/s) if 2s < d + ε,
(28)
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where d = 1, 2, 3 is the dimension of the domain D. We have assumed that a fast
method is available to sample the random coefficient a. This is for example the case for
certain stationary Gaussian random fields (GRFs), which can be sampled by truncated
Karhunen Loève series or circulant embedding which are fast, FFT based techniques,
cf. [34, Chapter 7].

7.2 Numerical experiments

We consider a class of centered, stationary GRFs that are solutions to the white noise
stochastic PDE

(−Δ + κ2)α/2Z = W on D̃, (29)

where D̃ is a superset of the domain D, W is spatial white noise on D̃ (cf. [1]),
ν = α − d/2 > 0, and κ > 0. It is well-known that for D̃ = R

d , the GRF Z has
so-called Matérn covariance with smoothness parameter ν and length scale parameter
λ = √

ν/κ , cf. [33].
In our numerical experiments, we will choose d = 2 and D = [0, 1]2. A sta-

tionary GRF as a solution to (29) results by restricting Z to the domain D. It is
convenient to choose D̃ = [−1/2, 3/2]2 with periodic boundary conditions. Note
that dist(D, ∂ D̃) = 1/2, and we consider values of the correlation length, which are
smaller or equal than this window size, cf. [29]. The solution Z to (29) can be obtained
by a spectral Galerkin method using the eigenfunctions of the Laplacian with periodic
boundary conditions on D̃ normalized in L2(D̃). Since these eigenfunctions separate,
we denote them with double indices (ψk1,k2)k1,k2∈N0 . We observe that white noise W
applied to any ONB yields a sequence of independent standard normally distributed
random variables. Since this ONB diagonalizes the operator (−Δ + κ2)α/2, the sta-
tionary GRF Z can be explicitly expanded with respect to this basis. The random
coefficients with respect to this ONB are given by

1

(π2(k21 + k22) + κ2)α/2
yk1,k2 , k1, k2 ∈ N0,

where (yk1,k2)k1,k2∈N0 is a sequence of independent, standard normally distributed
random variables. For σ > 0, to be determined later, the GRF Z will be rescaled such
that the pointwise variance satisfies

E(Z(x)2) = σ 2, ∀x ∈ D.

The expansion of Z can be truncated for numerical purposes and efficiently imple-
mented with FFT. For any k̃ ∈ N, let us denote the truncation of the expansion of Z
to the terms such that k1, k2 ≤ k̃ by Zk̃ . By an argument similar to the proof of [27,
Theorem 2.2], for every t ∈ (0, ν), ε ∈ (0, ν − t), and every q ∈ [1,+∞), there exists
a constant C > 0 such that for every truncation k̃ ∈ N

‖Z − Zk̃‖Lq (Ω;Ct (D̃)) ≤ Ck̃−(ν−t−ε).
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The additional error introduced by truncating the expansion of Z is consistent with
the FE discretization error if k̃ is chosen level-dependently such that k̃
 = �̃k1h−ν


 �
for some k̃1 > 0 at our disposal and FE mesh width h
. The reader is referred to
the discussion in [27, Sects. 3 and 5]. As a consequence of Fernique’s theorem, we
may conclude similarly as in [12, Proposition 3.10]. that exp(Z) ∈ Lq(Ω;C0(D))

for every q ∈ [1,+∞); see also [27, Proposition B.1]. Thus, the assumptions in (E)
are verified by the GRF Z and the developed theoretical error estimates of this paper,
in particular Corollary 17 and (28), hold.

The GRF Z is taken as a random input and we seek to approximate the expectation
of the solution to (24) with a MLMC estimator, where a = exp(Z) and right hand
side f (x1, x2) = sin(πx1) sin(πx2). We use the sample numbers according to [26,
Eqs. (44) and (47)], i.e., for M∗ ∈ N

M
 = �M1h
(2s+d+ε)/2)

 �, 
 = 2, . . . , L, (30)

and

M1 = M∗
{

�2sL/2� if d + ε < 2s,

�2(2s+d+ε)L/2� if d + ε > 2s,
(31)

here with M∗ = 5 and L = 1, . . . , 8 levels. For the level dependent truncation of
the expansion of the GRF, we use k̃
 = �̃k1h−ν


 � with k̃1 = 2. We consider a full
multigrid cycle with PCG using BPX with Jacobi smoothers and a direct solver on
the lowest level. We recall that the iteration numbers depend mildly on the level of
the MLMC estimator and will be chosen by n
 = �n0h−ε


 � for 0 < ε � 1. We
use a triangulation of D, which is uniformly refined, resulting in FE spaces V
 ⊂ V ,

 ≥ 1, with maximal mesh width h
, which incorporate Dirichlet boundary condi-
tions. The FE spaces are spanned by a nodal basis. The implementation uses the FE
C++ library BETL, cf. [28], the GRF is implemented using FFTW, cf. [17], and the
execution of MLMC is parallelized using the MPI-based wrapper gMLQMC, cf. [19].
Since the GRF Z may be periodically extended, [0, 2]2 can be used as a computa-
tional domain, which eases implementation. The L2(Ω;V)-normwill be estimated by

‖ E(u) − EML
L (UnL

L )‖2
L2(Ω;V)

≈∑R
j=1 ‖ E(u) − ̂EML

L (UnL
L )

( j)
‖2V/(R − 1) where R

i.i.d. realizations of EML
L (UnL

L ) are used. The reference solution is approximated by
the average of R = 20 realizations of EML

L (UnL
L ) with L = 9, sample numbers (30)

and (31) with M∗ = 40, and a sparse direct solver.
In Fig. 1a, b, the error is plotted versus the degrees of freedom in the FE space of the

highest level that is active in the MLMC estimator. The empirical rate is computed by
least squares taking into account the five data pairs corresponding to finer resolution.
The fitted lines are shifted down for better visability. We remark that the relation to
the total required work is asymptotically workL = O(h−d−ε

L ). Thus, the rate implied
by (28) is for ν = 0.5 approximately 0.25. We observe that the performance of
the iterative solver is in the required range of accuracy as good as a sparse direct
solver. In Fig. 1a, b, the rate seems to depend on the value of the correlation length.
Sometimes for practitioners, a smaller value for the correlation length is of interest.
However, the performance of the iterative solver is still as good as the sparse direct
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(a) ν = 0.5, σ = 1.0, λ = 0.5,
and R = 20

(b) ν = 0.5, σ = 1.0, λ = 0.1,
and R = 20

Fig. 1 Comparison of full multigrid cycle using PCG with BPX with n0 = 5, ε = 0.05 to a sparse direct
solver

solver. These numerical tests were performed with iteration numbers n
 = �n0h−ε

 �

for 0 < ε � 1. The presented theory also underpins the strategy to apply PCG with
a stopping criterion and use n
 as an upper bound of the iteration numbers. This way,
one may benefit from certain superlinear convergence effects of CG, cf. [4], which
were for ease of exposition not accounted for in the presented theory.

8 Conclusions and extensions

In the study of linear random operator equations with non-uniform input a rigor-
ous framework has been established to verify strong convergence of a wide range of
iterative solvers. This includes standard solvers such as multigrid, domain decom-
position, and preconditioned conjugate gradient. In the case of lognormal random
input, essentially optimal, deterministic complexity bounds are implied. This offers
an alternative to direct solvers for this type of problems. For MLMC, we concluded
deterministic, essentially optimal computational cost versus accuracy estimates, which
is a novel result. Numerical experiments with CG preconditioned by BPX confirmed
these asymptotic bounds and we conclude that standard iterative solvers are applicable
in the case of lognormal Hölder continuous input. Assumptions on the computational
cost of PDE solvers are also common in the context of multilevel quasi-Monte Carlo
methods (MLQMC) for PDE problems, cf. [20,26,31,32]. Applicability of iterative
solvers for MLQMC in a certain setting has been analyzed by the author in [25].
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