
Calcolo (2019) 56:47
https://doi.org/10.1007/s10092-019-0339-y

Least squares solutions to the rank-constrainedmatrix
approximation problem in the Frobenius norm

Hongxing Wang1

Received: 22 September 2017 / Revised: 1 October 2019 / Accepted: 9 October 2019 / Published online: 23
October 2019
© Istituto di Informatica e Telematica (IIT) 2019

Abstract
In this paper,we discuss the following rank-constrainedmatrix approximation problem
in the Frobenius norm: ‖C−AX‖ = min subject to rk (C1 − A1X) = b, where b is an
appropriate chosen nonnegative integer.We solve the problemby applying the classical
rank-constrainedmatrix approximation, the singular value decomposition, the quotient
singular value decomposition and generalized inverses, and get two general forms of
the least squares solutions.
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1 Introduction

In this paper, we adopt the following notation. The symbol Cm×n (Um×m) denotes
the set of all m × n complex matrices (m × m unitary matrices), Ik denotes the k × k
identity matrix, 0 denotes a zero matrix of appropriate size, and ‖ · ‖ stands for the
matrix Frobenius norm. For A ∈ C

m×n , AH and rk(A) stand for the conjugate
transpose and the rank of A, respectively.

TheMoore-Penrose inverse of A ∈ C
m×n is defined as the uniquematrix X ∈ C

n×m

satisfying

(1) AX A = A, (2) X AX = X , (3) (AX)H = AX , (4) (X A)H = X A,

and is usually denoted by X = A† (see [1]). The symbol A {i, . . . , j} is the set of
matrices X ∈ C

n×m which satisfies equations (i) , . . . , ( j) from among equations (1)–
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(4). A matrix X ∈ A {i, . . . , j} is called an {i, . . . , j}-inverse of A, and is denoted by
A(i,..., j). It is well known that AA(1,3) = AA†. Furthermore, we denote

PA = A†A, EA = Im − AA† and FA = In − A†A.

Given that A ∈ C
m×n , B ∈ C

m×k , and C ∈ C
l×n , the column block matrix consisting

of A and B is denoted by
(
A, B

)
, and its rank is denoted by rk

(
A, B

)
; the row block

matrix consisting of A and C is denoted by
(
A
C

)
, and its rank is denoted by rk

(
A
C

)
. It

is well known that ‖ (
A, B

) ‖2 = ‖A‖2 + ‖B‖2. The two known formulas for ranks
of block matrices are given in [11],

rk
(
A, B

) = rk (A) + rk (EAB) = rk (B) + rk (EB A), (1.1a)

rk

(
A
C

)
= rk (A) + rk (CFA) = rk (C) + rk (AFC ). (1.1b)

In the literature, the minimum rank matrix approximations or rank-constrained
matrix approximations have been widely studied [1–3,5,6,8,9,12,14–17,20,22, etc].
Recently, Friedland and Torokhti [6] studied the problem of finding least square solu-
tions to the equation BXC = A subject to rk (X) ≤ k in the Frobenius norm by
applying SVD; Wei and Wang [21] studied the problem of finding rank-k Hermitian
nonnegative definite least squares solutions to the equation BXBH = A in the Frobe-
nius norm and discussed the ranges of the rank k; Sou and Rantzer [15] studied the
minimum rank matrix approximation problem in the spectral norm min

X
rk(X) subject

to ‖A − BXC‖2 < 1; Wei and Shen [22] studied a more general problem min
X

rk(X)

subject to ‖A − BXC‖2 < ξ , where ξ ≥ θ and θ = min
Y

‖A − BYC‖2, by applying

SVD and R-SVD; Tian and Wang [18] gave a least-squares solution of AXB = C
subject to rk(AXB − C) = min in the Frobenius norm. On the other hand, the min-
imum rank matrix approximations or rank-constrained matrix approximations have
found many applications in control theory [4,15,22], signal process [6] and numerical
algebra [3,8], etc.

Note that Golub et al. [8] studied the problem of finding rank-constrained least
square solutions to the equation

(
A, X

) = (
A, B

)
subject to rk

(
A, X

) ≤ k in all
unitarily invariant norms by applying SVD and QR decomposition; Demmel [3] con-
sidered the least square solutions to

(
A B
C X

) = (
A B
C D

)
for X subject to rk

(
A B
C X

) ≤ k in
the Frobenius norm and the 2-norm; Wang [19] studied a general problem of deter-
mining the least squares solution X of

(
X J
K L

) = (
A B
C D

)
subject to rk

(
X J
K L

) = k in the
Frobenius norm.

In [3,6,8], a commonly assumption is that the rank is less than or equal to k. In fact,
in most situation, the rank is equal to k. For instance, consider the descriptor linear
system

Eẋ(t) = Ax(t) + Bu(t). (1.2)

Applying a full-state derivative feedback controller u(t) = −K ẋ(t) to system (1.2),
we have the closed-loop system (E + BK )ẋ(t) = Ax(t). The dynamical order is
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defined to be rk (E + BK ) = p. One of the minimum gain problems is characterize
the set

W =
{
K

∣∣∣‖K‖2 = min subject to rk (E + BK ) = p
}
.

Therefore, Duan [4] studied the problem of finding rank-k least square solutions to
BX = A; Liu et al. [10] considered the problem min

rk(X)=k
‖A − BXBH‖, in which A

and X are (skew) Hermitian matrices. In this paper, we study a more general problem
by applying SVD and Q-SVD. Assume that b is a prescribed nonnegative integer,
A ∈ C

m×n , A1 ∈ C
w×n , C ∈ C

m×p and C1 ∈ C
w×p are given matrices. We

now investigate the problem of determining the least squares solution X of the matrix
equation AX = C subject to rk (C1 − A1X) = b in the Frobenius norm. This problem
can be stated as follows.

Problem 1.1 Suppose that A ∈ C
m×n, A1 ∈ C

w×n, C ∈ C
m×p and C1 ∈ C

w×p are
given matrices. For an appropriate chosen nonnegative integer b, characterize the set

S = {
X

∣∣X ∈ C
n×p, ‖C − AX‖ = min subject to rk (C1 − A1X) = b

}
. (1.3)

2 Preliminaries

In this section, we mention the following results for our further discussions.

Lemma 2.1 [4] Given that X1 ∈ C
s×n1 and the integer k1 satisfying 0 ≤ k1 ≤

min {m1, n1}, then there exists X2 ∈ C
(m1−s)×n1 satisfying

rk

(X1
X2

)
= k1

if and only if

max {0, k1 − (m1 − s)} ≤ rk (X1) ≤ min {s, k1}.

Lemma 2.2 Suppose that H ∈ C
m×n, rk(H) = r , l is a given nonnegative integer

with l ≤ r , the decomposition of H is

H = U

⎛

⎝
0 0
0 G
0 0

⎞

⎠ V H ,

where G ∈ C
m1×n1 , rk(G) = r , k ≤ m1 ≤ m, k ≤ n1 ≤ n, U and V are unitary

matrices of appropriate sizes. Then

S1 = S2,
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where

S1 = {
T̃

∣∣T̃ ∈ C
m×n, rk

(
T̃

) = l,
∥∥T̃ − H

∥∥ = min
}

and

S2 =
⎧
⎨

⎩
T̃

∣∣∣∣∣
∣
T̃ = U

⎛

⎝
0 0
0 T
0 0

⎞

⎠ V H , T ∈ C
m1×n1, rk (T ) = l, ‖T − G‖ = min

⎫
⎬

⎭
.

The following result is the classical rank-constrained matrix approximation of
Eckart and Young [5], and Mirsky [12].

Lemma 2.3 Suppose that C ∈ C
s×n1 with rk(C) = c, c1 is a given nonnegative integer

with c1 ≤ c. Let the SVD [7] of C be

C = U
(

� 0
0 0

)
VH , (2.1)

where � = diag {λ1, . . . , λc}, λ1 ≥ · · · ≥ λc > 0, U and V are unitary matrices of
appropriate sizes. Then

min
rk(X )=c1

‖C − X‖ =
⎛

⎝
c∑

i=c1+1

λ2i

⎞

⎠

1
2

.

Furthermore, when λc1 > λc1+1,

X = Udiag {
λ1, . . . , λc1 , 0, . . . , 0

}VH ;
when p2 < c1 < p1 ≤ r and λp2 > λp2+1 = · · · = λp1 > λp1+1,

X = Udiag
{
λ1, . . . , λp2 , λtQQH , 0, . . . , 0

}
VH ,

and Q is an arbitrary matrix satisfying Q ∈ C(p1−p2)×(c1−p2) and QHQ = Ic1−p2 .

Suppose thatX1 ∈ C
s×n1 ,X2 ∈ C

(m1−s)×n1 , rk
( X1
X2

)
= k1 and k1 ≤ min{m1, n1}

be a given nonnegative integer, it is easy to check that

{
rk (X1) > c, if k1 > c+(m1 − s),
rk (X1) ≤ c, if k1 ≤ c+(m1 − s).

Suppose that C ∈ C
s×n1 with rk(C) = c. Consider the rank-constrained matrix

approximation

‖C − X1‖ = min subject to rk

(X1
X2

)
= k1, (2.2)
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under the condition k1 ≤ min{c+(m1 − s), n1}. We have the following Lemma 2.4
by applying Lemma 2.1 and Lemma 2.3 to (2.2).

Lemma 2.4 Suppose that C ∈ C
s×n1 with rk(C) = c, k1 is a given nonnegative integer

with 0 ≤ k1 ≤ min {c+(m1 − s), n1}, and the SVD of C be given as in Lemma 2.3,
then,

(a) if c ≤ k1 ≤ min {c+(m1 − s), n1},

min
X1, rk

( X1
X2

)
=k1

‖C − X1‖ = 0,

and
(X1
X2

)
=

( C(X21, X22
)VH

)
,

where X21 ∈ C
(m1−s)×c, X22 ∈ C

(m1−s)×(n1−c) and rk (X22) = k1 − c.
(b) if 0 ≤ k1 < c,

min
X1, rk

(X1
X2

)
=k1

‖C − X1‖ =
⎛

⎝
c∑

i=k1+1

λ2i

⎞

⎠

1
2

,

and

(X1
X2

)
=

(U 0
0 Im1−s

) ⎛

⎝
�1 0
0 0

X21 0

⎞

⎠VH ,

where X21 ∈ C
(m1−s)×c, when λk1 > λk1+1,

�1 = diag
{
λ1, . . . , λk1

};

when q2 < k1 < q1 ≤ r and λq2 > λq2+1 = . . . = λq1 > λq1+1,

�1 = diag
{
λ1, . . . , λq2 , λk1QQH

}
,

in which Q is an arbitrary matrix satisfying Q ∈ C(q1−q2)×(k1−q2) and QHQ =
Ik1−q2 .

Lemma 2.5 [13] Suppose that A ∈ C
m×n, A1 ∈ C

w×n, DH = (
AH , AH

1

)
and

k = rk(D), then there exist U ∈ U
m×m and V ∈ U

w×w and a nonsingular matrix
W ∈ C

n×n such that

A = U�W and A1 = V�1W , (2.3)
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where r = k − rk(A1), s = rk(A) + rk(A1) − k,

� =
(
r + s k − r − s n − k

r + s � 0 0

m − r − s 0 0 0

)

, � =
(
r s

r Ir 0

s 0 S1

)

,

�1 =
(
r k − r n − k

w − k + r 0 0 0

k − r 0 �1 0

)

and 91 =
(

s k − r − s

s Ŝ1 0

k − r − s 0 Ik−r−s

)

,

in which S1 and Ŝ1 are both positive diagonal matrices.

If S1 = diag(α1, α2, . . . , αs) and Ŝ1 = diag(β1, β2, . . . , βs) satisfy 1 > α1 ≥
. . . ≥ αs > 0, 1 > βs ≥ . . . ≥ β1 > 0, α2

i + β2
i = 1, i = 1, . . . , s, and there exists a

positive diagonal matrix�2 = diag (σ1(D), . . . , σk(D)), in which σ1(D), . . . , σk(D)

are the positive singular values of D, and two unitary matrices P ∈ C
k×k and Q ∈

C
n×n satisfy

W =
(
PH�2 0

0 In−k

)
QH ,

then (2.3) is the well-known Q-SVD of A and A1.
Denoting A− = W−1�†UH and A−

1 = W−1�
†
1V

H , we know that A− ∈ A{1, 3},
so it suffices to check that AA− = AA†.

3 Solutions to Problem 1.1

In this section, we solve Problem 1.1 proposed in Sect. 1, and get two general forms
of the least squares solutions.

Theorem 3.1 Suppose that A ∈ C
m×n, A1 ∈ C

w×n, C ∈ C
m×p, C1 ∈ C

w×p, k, r , s,
and the decompositions of A and A1 are as in Lemma 2.5. Partition

V HC1 =
(

p

w − k + r C11

k − r C12

)

, UHC =
⎛

⎜
⎝

p

r Ĉ1

s Ĉ2

m − r − s Ĉ3

⎞

⎟
⎠. (3.1)

Let t denote the rank of C11, and let the SVD of C11 ∈ C(w−k+r)×p be

C11 = U1

(
T 0
0 0

)
V H
1 , (3.2)
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where T ∈ C
t×t is a nonsingular matrix, U1 ∈ Uw−k+r and V1 ∈ Up. Partition

C12V1 =
( t p − t

k − r C121, C122

)
, (3.3)

Ĉ2V1 − (
S1 Ŝ

−1
1 , 0

) (
0, C122

) =
( t p − t

s Ĉ11, C
)
, (3.4)

Also suppose that the SVD of C is given in (2.1), and denotes rk(C) = c. Then there
exists a matrix X ∈ C

n×p satisfying (1.3) if and only if

t ≤ b ≤ min {rk (A1, C1) , c + t + k − r − s, p}. (3.5)

If c + t ≤ b ≤ min {rk (A1, C1) , c + t + k − r − s, p}, then

min
rk(C1−A1X)=b

‖C − AX‖ = ∥∥Ĉ3
∥∥ , (3.6)

and a general form for X which satisfies (1.3) is

X = W−1

⎛

⎜
⎜
⎝

Ĉ1

�−1
1

((
Ŝ1S

−1
1 Ĉ11
Y

)
, C122 +

(
Ŝ1S

−1
1 C(X21, X22

)VH

))
V H
1

Z

⎞

⎟
⎟
⎠, (3.7)

where Z ∈ C(n−k)×p, Y ∈ C
(k−r−s)×t and X21 ∈ C

(k−r−s)×c are arbitrary matrices,
and X22 ∈ C

(k−r−s)×(p−t−c) satisfies rk (X22) = b − t − c.
If t ≤ b < c + t , then

min
rk(C1−A1X)=b

‖C − AX‖ =
(

∥
∥Ĉ3

∥
∥2 +

c∑

i=b−t+1

λ2i

) 1
2

, (3.8)

and a general form for X which satisfies (1.3) is

X =W−1

⎛

⎜
⎜⎜⎜
⎝

Ĉ1

�−1
1

⎛

⎝
(
Ŝ1S

−1
1 Ĉ11
Y

)
, C122 +

(
Ŝ1S

−1
1 U 0
0 Ik−r−s

) ⎛

⎝
�1 0
0 0

X21 0

⎞

⎠VH

⎞

⎠ V H
1

Z

⎞

⎟
⎟⎟⎟
⎠
,

(3.9)

where Z ∈ C(n−k)×p, Y ∈ C
(k−r−s)×t and X21 ∈ C

(k−r−s)×c are arbitrary matrices,
and when λb−t > λb−t+1,

�1 = diag {λ1, . . . , λb−t };
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when q2 < b − t < q1 ≤ r and λq2 > λq2+1 = . . . = λq1 > λq1+1,

�1 = diag
{
λ1, . . . , λq2 , λb−tQQH

}
,

in which Q is an arbitrary matrix satisfying Q ∈ C(q1−q2)×(b−t−q2) and QHQ =
Ib−t−q2 .

Proof Partition

WX =
⎛

⎜
⎝

p

r X1

k − r X2

n − k Z

⎞

⎟
⎠ and �1X2V1 =

( t p − t

k − r X21, X22

)
.

Then from (3.2) and (3.3), we have

C1 − A1X = V

⎛

⎝
(
C11
C12

)
−

(
0 0 0
0 �1 0

)
⎛

⎝
X1
X2
Z

⎞

⎠

⎞

⎠

= V

(
U1 0
0 Ik−r

) ⎛

⎝

(
T 0
0 0

)

C12V1 − �1X2V1

⎞

⎠ V H
1

= V

(
U1 0
0 Ik−r

) ⎛

⎝
T 0
0 0

C121 − X21 C122 − X22

⎞

⎠ V H
1 . (3.10)

According to (3.10),

t ≤ b ≤ min {rk (A1, C1) , p},
rk (C1 − A1X) = rk (C11) + rk (C122 − X22). (3.11)

Hence,

rk (C122 − X22) = b − t . (3.12)

Denoting k1 = b − t , we obtain

X22 = C122 + Y ,

where Y ∈ C(k−r)×(p−t) satisfies rk (Y ) = k1. Furthermore, a general form for X
which satisfies rk (C1 − A1X) = b is

X = W−1

⎛

⎝
X1

�−1
1

(
X21, C122 + Y

)
V H
1

Z

⎞

⎠, (3.13)
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where X1 ∈ C
r×p, Z ∈ C(n−k)×p and X21 ∈ C(k−r)×t are arbitrary matrices, and

Y ∈ C(k−r)×(p−t) satisfies rk (Y ) = k1.
Applying the decomposition (2.3) of A and (3.13), we gain

C − AX

= U

⎛

⎜
⎜
⎝

⎛

⎝
Ĉ1

Ĉ2

Ĉ3

⎞

⎠ −
⎛

⎝
Ir 0 0 0
0 S1 0 0
0 0 0 0

⎞

⎠

⎛

⎜
⎜
⎝

X1(
Ŝ−1
1 0
0 Ik−r−s

) (
X21, C122 + Y

)
V H
1

Z

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

= U

⎛

⎝
Ĉ1 − X1

Ĉ2 − (
S1 Ŝ

−1
1 , 0

) (
X21, C122 + Y

)
V H
1

Ĉ3

⎞

⎠. (3.14)

Since the Frobenius norm of a matrix is invariant under unitary transformation, by
applying (3.14), we obtain

min
X , rk(C1−A1X)=b

‖C − AX‖2 = ∥∥Ĉ3
∥∥2 + min

X1

∥∥Ĉ1 − X1
∥∥2

+ min
X21,Y ,rk(Y )=k1

∥∥Ĉ2 − (
S1 Ŝ

−1
1 , 0

)

× (
X21, C122 + Y

)
V H
1

∥
∥∥
2
. (3.15)

It is easily to find that

min
X1

∥∥Ĉ1 − X1
∥∥ = 0, (3.16)

and the matrix X1 satisfying (3.16) can be written uniquely as

X1 = Ĉ1. (3.17)

Denote m1 = k − r and n1 = p − t , and partition

X21 =
(

t

s X211

m1 − s Y

)

and Y =
(
n1

s Y1
m1 − s Y2

)

.

Then by applying (3.4), we obtain the following identity,

∥∥∥C2 − (
S1 Ŝ

−1
1 , 0

) (
X21, C122 + Y

)
V H
1

∥∥∥
2 =

∥∥∥∥
(
Ĉ11, C

) − (
S1 Ŝ

−1
1 , 0

) (
X211 Y1
Y Y2

)∥∥∥∥

2

=
∥
∥∥Ĉ11 − S1 Ŝ

−1
1 X211

∥
∥∥
2

+
∥∥∥C − S1 Ŝ

−1
1 Y1

∥∥∥
2
. (3.18)
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Since S1 Ŝ
−1
1 is nonsingular,

min
X211

∥∥∥Ĉ11 − S1 Ŝ
−1
1 X211

∥∥∥ = 0, (3.19)

and the matrix X211 satisfying (3.19) can be written uniquely as

X211 = Ŝ1S
−1
1 Ĉ11. (3.20)

Furthermore, we denote X1 = S1 Ŝ
−1
1 Y1 and X2 = Y2. Since S1 Ŝ

−1
1 is nonsingular

and rk(Y ) = k1, then rk
(X1
X2

)
= k1. By applying (3.18) and (3.19), we obtain the

following identity,

min
X21,Y , rk(Y )=k1

∥∥
∥C2 − (

S1 Ŝ
−1
1 , 0

) (
X21, C122+Y

)
V H
1

∥∥
∥= min

X1, rk
(X1
X2

)
=k1

‖C − X1‖ .

(3.21)

Then applying Lemma 2.1 to the above, it produces 0 ≤ k1 ≤ min {c+(m1 − s), n1},
that is, t ≤ b ≤ min {c + t + k − r − s, p}. Combining it with (3.11) leads to (3.5).
Combining (3.13–3.21), we gain a general form for X which satisfies (1.3) is

X = W−1

⎛

⎜⎜
⎝

Ĉ1

�−1
1

((
Ŝ1S

−1
1 Ĉ11
Y

)
, C122 +

(
Ŝ1S

−1
1 Y1
Y2

))
V H
1

Z

⎞

⎟⎟
⎠, (3.22)

whereZ ∈ C(n−k)×p and Y ∈ C
(k−r−s)×t are arbitrary matrices, and Y1 ∈ C

s×n1 and
Y2 ∈ C

(m1−s)×n1 satisfy

rk

(
Y1
Y2

)
= b − t .

Applying Lemma 2.4 and (3.15–3.20) to (3.22) get (3.6–3.9). ��
By applying generalized inverses, rank formulas and the above lemmas to simplify

Theorem 3.1, we obtain the following theorem.

Theorem 3.2 Suppose that A ∈ C
m×n, A1 ∈ C

w×n, C ∈ C
m×p, C1 ∈ C

w×p, k, r , s,
and the decompositions of A and A1 are given in Lemma 2.5. Denote

Ĉ = (
PA1A−C − AA−

1 C1
)
FEA1C1 , (3.23)

c = rk
(Ĉ)

, (3.24)

t = rk
(
A1, C1

) − rk (A1),

d = rk

(
A1A−A A1A−C

A1 C1

)
, (3.25)
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and the SVD of Ĉ as

Ĉ = U1

(
� 0
0 0

)
VH
1 , (2.1′)

where � = diag {λ1, . . . , λc}, λ1 ≥ · · · ≥ λc > 0, U1 and V1 are unitary matrices
of appropriate sizes. Then there exists a matrix X ∈ C

n×p satisfying (1.3) if and only
if

t ≤ b ≤ min {rk (A1, C1) , d − s, p}. (3.5′)

If d + r − k ≤ b ≤ min {rk (A1, C1) , d − s, p}, then

min
rk(C1−A1X)=b

‖C − AX‖ = ‖EAC‖, (3.6′)

and a general form for X which satisfies (1.3) is

X = (
A− − A−

1 A1A
−)

C + (
I − D−D

) Ẑ (3.7′)
+ A−

1 A1A
−CPEA1C1 + (

A−
1 − A−AA−

1

) ŶPEA1C1 + A−
1 C1FEA1C1

+ A−
1 A1A

−ĈFEA1C1 + (
A−
1 − A−AA−

1

) X̂2FEA1C1 ,

where Ẑ ∈ C
n×p and Ŷ ∈ C

w×p are arbitrary matrix, and X̂2 ∈ C
w×p satisfies

rk

(
A−
1 A1A−ĈFEA1C1(

A−
1 − A−AA−

1

) X̂2FEA1C1

)
= b − t . (3.26)

If t ≤ b < d + r − k, then

min
rk(C1−A1X)=b

‖C − AX‖ =
(

‖EAC‖2 +
c∑

i=b−t+1

λ2i

) 1
2

, (3.8′)

and a general form for X which satisfies (1.3) is

X = (
A− − A−

1 A1A
−)

C + (
I − D−D

) Ẑ (3.9′)
+ A−

1 A1A
−CPEA1C1 + (

A−
1 − A−AA−

1

) ŶPEA1C1 + A−
1 C1FEA1C1

+ A−
1 A1A

−X̂1FEA1C1 + (
A−
1 − A−AA−

1

) X̂2FEA1C1 ,

where Ẑ ∈ C
n×p and Ŷ ∈ C

w×p are arbitrary matrices, and X̂1 ∈ C
w×p and

X̂2 ∈ C
w×p satisfy

X̂1 = U1

(
�1 0
0 0

)
VH
1 , (3.27)
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and

rk

(
A−
1 A1A−X̂1FEA1C1(

A−
1 − A−AA−

1

) X̂2FEA1C1

)
= b − t, (3.28)

when λb−t > λb−t+1,

�1 = diag {λ1, . . . , λb−t };

when q2 < b − t < q1 ≤ r and λq2 > λq2+1 = · · · = λq1 > λq1+1,

�1 = diag
{
λ1, . . . , λq2 , λb−tQQH

}
,

in which Q is an arbitrary matrix satisfying Q ∈ C(q1−q2)×(b−t−q2) and QHQ =
Ib−t−q2 .

Proof From (2.3) and A1A
−
1 = A1A

†
1, it is easy to find that

Iw − A1A
†
1 = V

(
Iw−k+r 0

0 0

)
V H ,

and

EA1C1 =
(
Iw − A1A

†
1

)
C1 = V

(
C11
0

)
. (3.29)

It follows that rk (C11) = rk
((

Iw − A1A
†
1

)
C1

)
= rk

(
A1, C1

) − rk (A1) = t .

From (2.3), A− = W−1�†UH and A−
1 = W−1�

†
1V

H , we obtain

A1A
− = V

⎛

⎝
0 0 0
0 Ŝ1S

−1
1 0

0 0 0

⎞

⎠UH and AA−
1 = U

⎛

⎝
0 0 0
0 S1 Ŝ

−1
1 0

0 0 0

⎞

⎠ V H . (3.30)

This gives

(
A1A

−)
AA−

1 A1 = A1A
−A. (3.31)
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Applying (3.31), (1.1a) and (1.1b) to (3.24), we obtain

c = rk
((

PA1A−C − AA−
1 C1

)
FEA1C1

)

= rk

((
PA1A−C − AA−

1 C1
)

EA1C1

)
− rk

(
EA1C1

)

= rk

(
0 PA1A−C − AA−

1 C1
A1 C1

)
− rk (A1) − t

= rk

((
A1A−)

AA−
1 A1 A1A−C

A1 C1

)
− k + r − t

= rk

(
A1A−A A1A−C

A1 C1

)
− k + r − t

= d − t − k + r .

Furthermore, applying (2.3) and (3.1–3.4) to (3.23), we obtain

Ĉ = U

⎛

⎝
0 0
0 C
0 0

⎞

⎠ V H
1 . (3.32)

Thus, rk(Ĉ) = rk(C) = c = d − t − k + r . Hence (3.5′) follows from (3.5).
From (2.3) and (3.1), we obtain

(
I − AA−)

C = EAC = U

⎛

⎝
0
0
Ĉ3

⎞

⎠. (3.33)

Hence (3.6′) follows from (3.6) and (3.33).
Since (3.32), C and Ĉ have the same singular values. Hence (3.8′) follows from

(3.8) and (3.33).
Using (2.3), (3.1) (3.2) and (3.29), we obtian

PEA1C1 = V1

(
It 0
0 0

)
V H
1 and FEA1C1 = V1

(
0 0
0 Ip−t

)
V H
1 . (3.34)

From (2.3),(3.30) and (3.34),it is easy to find that

(
A− − A−

1 A1A
−)

C = W−1

⎛

⎝
Ĉ1
0
0

⎞

⎠,

(
I − D−D

) Ẑ = W−1

⎛

⎝
0
0
Z

⎞

⎠,
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A−
1 A1A

−CPEA1C1 = W−1

⎛

⎜⎜
⎝

0((
S−1
1 Ĉ11
0

)
, 0

)
V H
1

0

⎞

⎟⎟
⎠,

(
A−
1 − A−AA−

1

) ŶPEA1C1 = W−1

⎛

⎜⎜
⎝

0((
0
Y

)
, 0

)
V H
1

0

⎞

⎟⎟
⎠,

A−
1 C1FEA1C1 = W−1

⎛

⎝
0

�−1
1

(
0, C122

)
V H
1

0

⎞

⎠,

and

W−1

⎛

⎜⎜
⎝

Ĉ1

�−1
1

((
Ŝ1S

−1
1 Ĉ11
Y

)
, C122

)
V H
1

Z

⎞

⎟⎟
⎠

= (
A− − A−

1 A1A
−)

C + (
I − D−D

) Ẑ + A−
1 A1A

−CPEA1C1

+ (
A−
1 − A−AA−

1

) ŶPEA1C1 + A−
1 C1FEA1C1 , (3.35)

where Ẑ ∈ C
n×p, Ŷ ∈ C

w×p, Y ∈ C
(k−r−s)×t and Z ∈ C

(n−k)×p are arbitrary
matrices. Furthermore, using (3.30), (3.32) and (3.34), we obtain

A−
1 A1A

−ĈFEA1C1 = W−1

⎛

⎜
⎜
⎝

0

�−1
1

(
0,

(
Ŝ1S

−1
1 C
0

))
V H
1

0

⎞

⎟
⎟
⎠. (3.36)

Since X̂2 ∈ C
w×p satisfies (3.26), we obtain

(
A−
1 − A−AA−

1

) X̂2FEA1C1 = W−1

⎛

⎜
⎜
⎝

0

�−1
1

(
0,

(
0
X2

))
V H
1

0

⎞

⎟
⎟
⎠, (3.37)

where X2 ∈ C
(k−r−s)×(p−t) satisfies

rk

( C
X2

)
= b − t .

Hence (3.7′) follows from (3.22) and (3.35–3.37).
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Since C and Ĉ have the same singular values, by applying Lemma 2.2, (2.1), (2.1′),
(3.28), (3.30) and (3.34), we obtain

A−
1 A1A

−X̂1FEA1C1 = W−1

⎛

⎜⎜
⎝

0

�−1
1

(
0,

(
Ŝ1S

−1
1 X1
0

))
V H
1

0

⎞

⎟⎟
⎠, (3.38)

where X1 ∈ C
s×(p−t) satisfies ‖C − X1‖ = min subject to rk

(X1
X2

)
= k1. Hence

(3.9′) follows from (3.22), (3.35) and (3.38). ��

We provide an example to illustrate that Theorem 3.2 is feasible.

Example 3.1 Take

A=

⎛

⎜⎜⎜
⎜
⎝

1.16 0.8 1.96 0 1.16
0 0.8 0 0.8 1.6
0 0 0 0 0

−0.12 −0.6 −0.72 0 −0.12
0 0 0 0 0

⎞

⎟⎟⎟
⎟
⎠

,

A1=

⎛

⎜⎜⎜⎜
⎝

0 0.36 0 0.36 0.72
−0.224 0 0.736 0.96 −0.224
0.768 0 1.048 0.28 0.768
0 0 0 0 0
0 0.48 0 0.48 0.96

⎞

⎟⎟⎟⎟
⎠

,

C=

⎛

⎜⎜
⎜⎜
⎝

1.2 8.6 0.8 3 14
1 1 1 0 1
7.6 0.56 9.6 9.6 2.8
1.6 −5.2 −0.6 4 2
8.2 1.92 −2.8 −2.8 9.6

⎞

⎟⎟
⎟⎟
⎠

and

C1=

⎛

⎜⎜⎜⎜
⎝

11.12 −3.84 6 48 6
0 6.8 6.8 −2.8 9.6
0 12.4 12.4 9.6 2.8

−4.8 3.6 0 80 0
4.16 2.88 8 −36 8

⎞

⎟⎟⎟⎟
⎠

.
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Then r = 1, s = 2, k = 4, m = n = w = p = 5, t = 2, rk (A1, C1) = 5,

W =

⎛

⎜⎜⎜
⎜
⎝

1 1 2 0 1
0 1 0 1 2
1 0 1 0 1
0 0 1 1 0
0 1 1 0 1

⎞

⎟⎟⎟
⎟
⎠

, S1=
(
0.8 0
0 0.6

)
, �1=

⎛

⎝
0.6 0 0
0 0.8 0
0 0 1

⎞

⎠,

Ŝ1=
(
0.6 0
0 0.8

)
,

(
C11
C12

)
=

⎛

⎜⎜⎜
⎜
⎝

6.4 −4.8 0 60 0
−4.8 3.6 0 80 0.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 0 10 0 10
0 10 10 10 0
0 10 10 0 10

⎞

⎟⎟⎟
⎟
⎠

,

⎛

⎝
Ĉ1

Ĉ2

Ĉ3

⎞

⎠=

⎛

⎜⎜⎜
⎜
⎝

0 10 1 0 10.. . . . . . . . . . . . . . . . . . . . . . . . . . .
1 1 1 0 1
2 1 0 5 10.. . . . . . . . . . . . . . . . . . . . . . . . . . .
5 0 10 10 0
10 2 0 0 10

⎞

⎟⎟⎟
⎟
⎠

,

U1 =
(
0.8 0.6
−0.6 0.8

)
, V1 =

⎛

⎜
⎜⎜⎜
⎝

0.8 0 0.6 0 0
−0.6 0 0.8 0 0
0 0 0 0.96 0.28
0 1 0 0 0
0 0 0 −0.28 0.96

⎞

⎟
⎟⎟⎟
⎠

,

T =
(
10 0
0 100

)
,

and

(
C121, C122

) =
⎛

⎝
8 0 6 6.8 12.4

−6 10 8 9.6 2.8
−6 0 8 6.8 12.4

⎞

⎠,

(
Ĉ11, C

) = 1

3

(
0.6 0 −19.8 −25.16 −45.88
3 15 −12 −30 22.5

)
.

Compute the SVD of C by Matlab7 on a personal computer

U =
(−0.9997 0.0252

0.0252 0.9997

)
,� =

(
18.6519 0

0 13.1201

)
and

V =
⎛

⎝
0.3483 −0.3175 −0.8820
0.4360 −0.7781 0.4523
0.8298 0.5420 0.1326

⎞

⎠.

Thus, by Theorem 3.1, there exists a rank-constrained least squares solution X to
Problem 1.1 if and only if 2 ≤ b ≤ 5. When b = 4,

min
rk(C1−A1X)=4

‖C − AX‖ = 429
1
2 , (3.39)
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and a general form for X satisfying (3.39) is given as follows

X = 1

3

⎛

⎜⎜
⎜⎜
⎝

1.5 0.5 −0.5 −0.5 −2
1.5 0.5 −1.5 −0.5 −1

−0.5 −0.5 0.5 0.5 1
0.5 0.5 −0.5 0.5 −1
−1 0 1 0 1

⎞

⎟⎟
⎟⎟
⎠

⎛

⎜⎜
⎜⎜
⎝

0
3.75
10

14.4+0.8y1+0.2090x1 − 0.1905x2
z1

∣∣
∣∣∣
∣∣∣
∣∣

30 3 0 30
3.75 3.75 0 3.75
5 0 25 50

19.2 − 0.6y1+0.2787x1 − 0.2540x2 30+0.6509x1 − 0.5952x2 y2 30+0.6746x1+0.7382x2
z2 z3 z4 z5

⎞

⎟⎟⎟
⎟
⎠

,

where xi , y j and zl are arbitrary, i = 1, 2, j = 1, 2 and l = 1, . . . , 5.
When b = 2,

min
rk(C1−A1X)=2

‖C − AX‖2 = 949.03 (3.40)

and a general form for X satisfying (3.40) is given as follows

X = 1

3

⎛

⎜⎜⎜⎜
⎝

1.5 0.5 −0.5 −0.5 −2
1.5 0.5 −1.5 −0.5 −1

−0.5 −0.5 0.5 0.5 1
0.5 0.5 −0.5 0.5 −1
−1 0 1 0 1

⎞

⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

0 30 3 0 30
18.6 23.55 50 0 50
22 21 37.5 25 0

14.4 + 0.8y1 19.2 − 0.6y1 30 y2 30
z1 z2 z3 z4 z5

⎞

⎟⎟⎟⎟
⎠

,

where y j and zl are arbitrary, j = 1, 2 and l = 1, . . . , 5.

Remark 3.1 By applying SVD and Q-SVD, we get two general forms of the least
squares solutions of AX = C subject to rk (C1 − A1X) = b. One thing worthy of
note is that it seems hard to obtain one general form of the least squares solutions of
AXB = C subject to rk (C1 − A1XB1) = b.

Investigate its reason, it is the matrix decomposition that is key tool to prove pro-
cessing of Theorems 3.1 and 3.2. Thus we will focus on introducing a corresponding
matrix decomposition in further study.
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