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Abstract

In this paper, we discuss the following rank-constrained matrix approximation problem
in the Frobenius norm: ||C — A X || = min subjectto tk (C; — A1X) = b, where b is an
appropriate chosen nonnegative integer. We solve the problem by applying the classical
rank-constrained matrix approximation, the singular value decomposition, the quotient
singular value decomposition and generalized inverses, and get two general forms of
the least squares solutions.
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1 Introduction

In this paper, we adopt the following notation. The symbol C™>*" (U™*™) denotes
the set of all m x n complex matrices (m X m unitary matrices), Iy denotes the k x k
identity matrix, O denotes a zero matrix of appropriate size, and || - || stands for the
matrix Frobenius norm. For A € C™*", A" and rk(A) stand for the conjugate
transpose and the rank of A, respectively.

The Moore-Penrose inverse of A € C™*" is defined as the unique matrix X € C"*™
satisfying

(1) AXA=A,(2) XAX = X, (3) (AX) = AX, (4) (XA = xA,

and is usually denoted by X = AT (see [1]). The symbol A {i, ..., j} is the set of
matrices X € C"*™ which satisfies equations (i), ..., (j) from among equations (1)—
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(4). A matrix X e Af{i,...,j}iscalledan {i, ..., j}-inverse of A, and is denoted by
AG-0) Tt is well known that AA(3 = AAT. Furthermore, we denote

Pyi=A"A, Ex=1,—AA T and Fy =1, — ATA.

Giventhat A € C"*" B € C"*k_and C € C!*", the column block matrix consisting
of A and B is denoted by (A, B), and its rank is denoted by rk (A, B); the row block
matrix consisting of A and C is denoted by (£ ), and its rank is denoted by rk (2 ). It
is well known that || (A, B) ||2 = ||A|I? + ||B||2. The two known formulas for ranks
of block matrices are given in [11],

tk (A, B) =tk (A) +rk (E4B) = 1k (B) + 1k (EgA), (1.1a)
rk (2) =1k (A) + 1k (CF4) = 1k (C) + rk (AF(). (1.1b)

In the literature, the minimum rank matrix approximations or rank-constrained
matrix approximations have been widely studied [1-3,5,6,8,9,12,14-17,20,22, etc].
Recently, Friedland and Torokhti [6] studied the problem of finding least square solu-
tions to the equation BXC = A subject to rk (X) < k in the Frobenius norm by
applying SVD; Wei and Wang [21] studied the problem of finding rank-k Hermitian
nonnegative definite least squares solutions to the equation BX B = A in the Frobe-
nius norm and discussed the ranges of the rank k; Sou and Rantzer [15] studied the
minimum rank matrix approximation problem in the spectral norm rn)}n rk(X) subject

to ||A — BXC|2 < 1; Wei and Shen [22] studied a more general problem ngn rk(X)
subject to |A — BXC|l» < &, where £ > 0 and 6 = myin A — BYC]|2, by applying

SVD and R-SVD; Tian and Wang [18] gave a least-squares solution of AXB = C
subject to tk(AX B — C) = min in the Frobenius norm. On the other hand, the min-
imum rank matrix approximations or rank-constrained matrix approximations have
found many applications in control theory [4,15,22], signal process [6] and numerical
algebra [3,8], etc.

Note that Golub et al. [8] studied the problem of finding rank-constrained least
square solutions to the equation (A, X) = (A, B) subject to k (A, X) < k in all
unitarily invariant norms by applying SVD and QR decomposition; Demmel [3] con-
sidered the least square solutions to (24 2) = (2 8) for X subjecttork(2 2) <k in
the Frobenius norm and the 2-norm; Wang [19] studied a general problem of deter-
mining the least squares solution X of (% I{ ) = (é g) subject to rk( I}g i) = k in the
Frobenius norm.

In [3,6,8], a commonly assumption is that the rank is less than or equal to k. In fact,
in most situation, the rank is equal to k. For instance, consider the descriptor linear
system

Ex(t) = Ax(t) + Bu(t). (1.2)

Applying a full-state derivative feedback controller u(t) = —K x(¢) to system (1.2),
we have the closed-loop system (E + BK)x(t) = Ax(t). The dynamical order is
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defined to be tk (E + BK) = p. One of the minimum gain problems is characterize
the set

2 = {K[IKI? = min subjectto 1k (E + BK) = p .

Therefore, Duan [4] studied the problem of finding rank-k least square solutions to
BX = A; Liu et al. [10] considered the problem k1(1)1(i)n ) |A — BXB|, in which A
1] =

and X are (skew) Hermitian matrices. In this paper, we study a more general problem
by applying SVD and Q-SVD. Assume that b is a prescribed nonnegative integer,
A e C"" A € CW" C € C™*P and C; € C"*P are given matrices. We
now investigate the problem of determining the least squares solution X of the matrix
equation AX = C subjecttork (C; — A1X) = b in the Frobenius norm. This problem
can be stated as follows.

Problem 1.1 Suppose that A € C"*", Ay € CV>*", C € C"*P and C; € C"*P are
given matrices. For an appropriate chosen nonnegative integer b, characterize the set

S={X|X eC™P, ||C— AX|| =min subjectto rk(C\ —A1X)=0b}. (1.3)

2 Preliminaries

In this section, we mention the following results for our further discussions.

Lemma 2.1 [4] Given that X1 € C**™ and the integer k| satisfying 0 < k; <
min {m 1, n1}, then there exists X» € CUM=)>M satisfying

A1\
rk <X2> =k

max {0, k1 — (my — s)} < rk (X)) < min{s, k1}.

if and only if

Lemma 2.2 Suppose that H € C"*", tk(H) = r, [ is a given nonnegative integer
with l < r, the decomposition of H is

where G € C"V>" k(G) =r, k <m; <m, k <ny <n, UandV are unitary
matrices of appropriate sizes. Then

S1 =95,
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where
S ={T|T eC™" 1k (T)=1,|T — H| = min}
and
00
S={T|T=v|oT |V, T eC™™ k(T)=1,|T — G| = min
00

The following result is the classical rank-constrained matrix approximation of
Eckart and Young [5], and Mirsky [12].

Lemma 2.3 Suppose that C € C**" withrk(C) = ¢, ¢ is a given nonnegative integer
with ¢ < c. Let the SVD [7] of C be

(A O\
c_u(o 0>v , @1

where A = diag{A1, ..., A}, A1 = -+ > A > 0, U and V are unitary matrices of
appropriate sizes. Then

1

2

min ||C — X||

¢
> M
rk(X)=cy

i=c1+1

Furthermore, when A¢; > A¢j+1,
X =Udiag {A1, ..., 2. 0,...,0} V7,

when py <c1 < pyr <randdp, > kp,p1 ="+ =Ap > Ap+1,
X =Udiag {11, Ay 20QQH 0, 0}V,

and Q is an arbitrary matrix satisfying Q € CP1=P)x€1=p2) qnd QH Q = Iey—p,.

Suppose that X} € C*"1, Xy € Clmi—9)xn1 rk(}é‘ ) =kyandk; < min{m, n}
be a given nonnegative integer, it is easy to check that

rk (X)) > ¢, if ky > c+(my — 5),
tk (X)) <ec, if k1 < c4+(my — ).

Suppose that C € C**"! with rk(C) = c. Consider the rank-constrained matrix
approximation

|C — X = min subject to rk <§;> =k, (2.2)

@ Springer



Least squares solutions to the rank-constrained matrix... Page50f18 47

under the condition k; < min{c+(m| — s), n1}. We have the following Lemma 2.4
by applying Lemma 2.1 and Lemma 2.3 to (2.2).

Lemma 2.4 Suppose that C € C**" withtk(C) = c, k| is a given nonnegative integer
with 0 < k; < min{c+(m| —s), n1}, and the SVD of C be given as in Lemma 2.3,
then,

(a)

(b)

ifc < ki <min{c+@m —s),n1},

min IC =Xl =0,
X, I’k(i(‘zl ):k1

and

(%)= (. 2y v)

where Xp € CUm=s)Xc o, e COm=)Xm=0) gnd rk (X)) = k| — c.
if0 <k <c,

] 2
min - C-Xll=| > A .

x,. rk<§;>=kl i=ki+1

and

- ) (3 8
X2 0 In—s X 0 ’
where Xy € CMI=)XC \when Ay > Mg+t
Ay =diag {A1, ... Ak )
when gy < ki <q1 <randry, > rgy11 = ... = Ay > Ag+1,
A =diag{Al,...,qu,kleQH},

in which Q is an arbitrary matrix satisfying Q € Clar—a)xki=a2) gnd QHQ =
Ikl—(h'

Lemma 2.5 [13] Suppose that A € C™ ", A; € C*", DH = (AH, A¥) and
k = rk(D), then there exist U € U™ and V € UY*Y and a nonsingular matrix
W e C*™*" such that

A=UXW and A =V W, (2.3)
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where r =k —1k(Ay), s =1k(A) +rk(Ay) —k,

r+s k—r—s n—k ros
EZr—i—s v 0 0 ’ \yzr I, 0 ’
m-—r—s 0 0 0 s \0 S
r k—r n—k s k—r—s

lew—k—i-r 0 0 0 and 91=s M 0 7
k—r 0 ¥ 0 k—r—s \0 Ix_,_

in which Sy and S| are both positive diagonal matrices.

If ) = diag(er;, o, ..., ) and S| = diag(B1, Ba. ..., Bs) satisfy 1 > aj >

> >0,1>B;>...> B >0,07+p7=1,i=1,...,s, and there exists a
positive diagonal matrix X, = diag (o1(D), ..., 0k (D)), in which o1(D), ..., ox(D)
are the positive singular values of D, and two unitary matrices P € C** and Q €
C*" satisty

Pis, 0 H
W= ,
< 0 Ink) Q
then (2.3) is the well-known Q-SVD of A and A;.

Denoting A~ = W'STUH and AT = WS V#, we know that A~ € A{1, 3},
so it suffices to check that AA~ = AAT.

3 Solutions to Problem 1.1

In this section, we solve Problem 1.1 proposed in Sect. 1, and get two general forms
of the least squares solutions.

Theorem 3.1 Suppose that A € C"*", A € C¥*", C e C"*P, Cy € C¥*P k, r, s,
and the decompositions of A and Ay are as in Lemma 2.5. Partition

p
p ~
X c r Ci
yHc, =Wk fCn) e _ & 3.1)
k—r Ci2 S
m—r—s \Cz
Let t denote the rank of C11, and let the SVD of C1; € CW=k+1)%P pe
_ T 0\.,m
C11—U1<0 0) v, (3.2)
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where T € C'*! is a nonsingular matrix, Uy € Uy_j4r and Vi € U,,. Partition

t p—t
CoVi=k—r (Cin. €m0 ), (3.3)
t p—t
CVi = (i57,0) (0. i) =5 (Cui, € ), (3.4)

Also suppose that the SVD of C is given in (2.1), and denotes tk(C) = c. Then there
exists a matrix X € C"*P satisfying (1.3) if and only if

t <b<min{rk (A}, C1),c+t+k—r—s,p} 3.5)

Ifc+t <b<min{rtk(A;, Cy),c+t+k—r—s, p}, then

mnNIC - Ax) = IG5 (3.6)
and a general form for X which satisfies (1.3) is
- ~ g -
X = w-! \I,l—l <<S1Slyl C11) Cim+ ((X2i1~j‘2;§VH>) v, 3.7
Z

where Z € C=0xp ) e Ck==9%t gnd X» € CK="=9% gre arbitrary matrices,
and Xy € CK=r=9xX(=1=0) sqtisfies rk (Xp) =b —1 — c.
Ift <b <c+t, then

1
c 2
. ~ 12
min |- AX|=(|C|"+ > A . (3.8)
rk(Ci—A1X)=b i—b141
and a general form for X which satisfies (1.3) is
G
A ~ ~ A1 O
-1 —1 1
X=w"! \111_1 (SlSl Cll),Clzz-I-(SlSl u o ) 0 o0]vH VlH ,
Yy 0 Ti—r—s X1 0
Z

(3.9)

where Z € C=hxp ) e Ch=r=)xt gnd Xp; € Chk=T=9%C¢ gpe arbitrary matrices,
and when Ap—t > Ap—r 41,

Al = diag{)"]’ "")"bfl};
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whenqgy <b—t <qy <randig > Ago1=...=Xrg; > dg+1,
Ay :diag{M,...,xqz,xb_,QQH},

in which Q is an arbitrary matrix satisfying Q € C@1=92xb=1=92) gpq QHQ =
Ib—t—qz-
Proof Partition

r 1t p_t
WX = k—r and Wi XoVi =k —r (X2, X )-
—k Z

Then from (3.2) and (3.3), we have

c“ o 00 };1
Cip ()‘-111 0 2

(@G
)8
(

Ci—AIX=V <

Ti=r - ¥ XV
0 T 0
) 0 0 vV, (3.10)
Ci21

,_.

=V 1
ke —X21 Cio — X2

According to (3.10),

t <b <min{rk (A;, Cy), p},
tk (C1 — A1X) =1k (C11) +1k (C122 — X22). (3.11)

Hence,
tk (Cioo — X22) = b —t. (3.12)
Denoting ki = b — t, we obtain
Xn=Cn+Y,

where Y e C*k="x(=1 gatisfies rk (Y) = k;. Furthermore, a general form for X
which satisfies 1k (C; — A1 X) = b is

X

X=wlv ' (X Cia + )V | (3.13)
z
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where X| € C™*7, Z € C"70xP and Xp; € C** are arbitrary matrices, and
Y € Chk=x(=1) gatisfies tk (Y) = k;.
Applying the decomposition (2.3) of A and (3.13), we gain

C — AX

~ X
Ci 1 000\ [ =y o :

=U C2 — 0 S] 00 < (1) I ) (XZ], C122 + Y) VIH
) k—r—s
Cs 0000 2

61 — X
=U | Co— (81571, 0) (Xa1, Cia +Y) VI ] (3.14)
G3

Since the Frobenius norm of a matrix is invariant under unitary transformation, by
applying (3.14), we obtain
. 2 =~ 12 . -~ 2
min |IC — AX]|| =”C3H +m1nHC]—X1H
X, rk(ci—A1X)=b X
+  min |G- (557", 0)

Xo1,Y,1K(Y)=k{
x (X1, Cio + Y) V! H2 (3.15)
It is easily to find that
min |Ci - x1] =0, (3.16)

and the matrix X satisfying (3.16) can be written uniquely as
X1 =C. (3.17)
Denote m; = k —r and n] = p — ¢, and partition

t ni

X721 = s Xou and Y = s e .
mp — s y mp —S§ Y

Then by applying (3.4), we obtain the following identity,

2= 5% 0 (e cum ey v [ = @0 - (5500 (5 )|
= H611 — Slrg\r]lelHZ
+ =58y H2 (3.18)
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Since §15, Uis nonsingular,

min
Xa11

)611 —51§f1X211H =0, (3.19)

and the matrix X»1; satisfying (3.19) can be written uniquely as
X211 =§1S]_1611- (3.20)

Furthermore, we denote X} = 513'\1_ ly 1 and X> = Y. Since S 1§f Uis nonsingular
and tk(Y) = ki, then rk (g) — k. By applying (3.18) and (3.19), we obtain the
following identity,

min H Cy— (513‘\1_1, O) (Xz], C122+Y) VIH H = min IIC — X1l .
Xo1.Y, 1K(Y)=k; A rk<§;>=k1
(3.21)
Then applying Lemma 2.1 to the above, it produces 0 < k; < min {c+(m| — 5),n1},
thatis, r < b < min{c+1t+k —r — s, p} Combining it with (3.11) leads to (3.5).
Combining (3.13-3.21), we gain a general form for X which satisfies (1.3) is
Ci

o~ 1A < o—1
X=w| ! ((Slsly C“)  Cim+ (SIS;@ Y1>> v |, (3.22)

where Z € C=0xP and Y € CKk—"=9% are arbitrary matrices, and Y| € C**"! and

Yy € CUM=9)Xm gatisfy
i\
rk <Y2) =b—t.

Applying Lemma 2.4 and (3.15-3.20) to (3.22) get (3.6-3.9). O

By applying generalized inverses, rank formulas and the above lemmas to simplify
Theorem 3.1, we obtain the following theorem.

Theorem 3.2 Suppose that A € C"*", A € C¥*", C e C"*P, Cy € C¥*P k, r, s,
and the decompositions of A and A1 are given in Lemma 2.5. Denote

é\: (PAlAfc_AAlicl) FEAICp (323)
¢ =1k (), (3.24)
t =I‘k(A1, Cl) —1k (Ay),

_ A1ATA A1ATC
d =1k < Al C ) , (3.25)
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and the SVD ofgas
~ A 0\..py ,
C=U (O O)V‘ , 2.1
where A = diag{A1, ..., e}, A1 = -+ > Ac > 0, Uy and V| are unitary matrices

of appropriate sizes. Then there exists a matrix X € C"*? satisfying (1.3) if and only

if
t <b<minf{rk (Ay, Cy),d —s, p}. (3.5)
Ifd+r—k <b<min{rk (A, Cy),d —s, p}, then

min IC —AX| = |[EAC], (3.6")
rk(Ci—A1X)=b

and a general form for X which satisfies (1.3) is

X=(A"—AJAA")C+(I-D"D)Z 3.7)
+ATAIATCPE, ¢, + (AT — A"AAT) VP, ¢, + AT Ci FE, ¢,
+ATAIACFE, ¢, + (A] — ATAAT) BoFg, ¢ .

where Z € C"*P and Y € CV*P are arbitrary matrix, and X, € CV*? satisfies

ATAACFE, ¢ )
tk(, 1 o\ Al =b—t. 3.26
((Al — ATAAT) X FE, ¢ (3.26)

Ift <b<d+r —k, then

1
c 2
min_[|C—AX[ = (1E4CIP+ Y 47) . (3.8)
rk(C1—A1 X)=b b1+l
and a general form for X which satisfies (1.3) is
X=(A"-A7AA")C+(I-DD)Z (3.9)

+ATAVATCP, ¢, + (AT — A"AAT) VP, ¢, + AT C1FE, ¢,
+ATAIAT X\ Fi, ¢, + (A7 — ATAAT) BoFg, o .

where Z € C"P and Y € CY*P are arbitrary matrices, and X, € C"*P and
Xy € CY*P satisfy

- AL O
X =U < 01 0) Vi, (3.27)
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and

A;AIA*Q?IFEAICI ) Y

rk _ _ 3.28
((Al — ATAAT) X FE, ¢ (9.28)

when Ap—t > Ap—i41,
Ay =diag{Aq, ..., Ap—t};
whenqy <b—t <qy <randig > Agy1=-"=Xxg > dg+1,
A= diag{Al,...,xqz,xb,,ggf’],

in which Q is an arbitrary matrix satisfying Q € C@1=42)xb=1=q2) gpq QHQ =
Ibftfqz.

Proof From (2.3) and A1A| = AlAj, it is easy to find that

T Ly—kr O\ 1
Iw—A1A1=V<w0 0>V ;

and
¥ Cii
EpCr = (Iw — A1Al) =V Nk (3.29)

It follows that rk (C11) =k (L = A1A]) C1) =1k (A1, €1) =k (A) =1.
From (2.3), A~ = W 'STU" and AT = W2 V¥ we obtain

0 0 0 0 0 0
mAa”=v|oSsito|lufandAar =U oSS o VAL (330)
0 0 0 0 0 0
This gives
(AIAT) AATAI = A|A™A. (3.31)
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Applying (3.31), (1.1a) and (1.1b) to (3.24), we obtain

¢ =1k ((Pa,a-C = AATC)) Fi )

o ((PA,A_C — AA;Q)) —tk (Ea, 1)

E4 Cy
— 1k (fl PAIA*CC‘I AATCl) —rk (Ap) — 1
— 1k ((AIAI)A?AIAI Alé‘]c) k-t
R I
=d—t—k+r.

Furthermore, applying (2.3) and (3.1-3.4) to (3.23), we obtain
R 0 0
c=ulo c|vf. (3.32)
0 0

Thus, rk(@) =1k(C) =c =d —t — k + r. Hence (3.5") follows from (3.5).
From (2.3) and (3.1), we obtain

0
(I-AAT)C=Esc=U]|0 | (3.33)

C3

Hence (3.6") follows from (3.6) and (3.33).

Since (3.32), C and C have the same singular values. Hence (3.8) follows from
(3.8) and (3.33).

Using (2.3), (3.1) (3.2) and (3.29), we obtian

L0 00
Pg,c, =V ( Of o) Vi and Fg, ¢, = Vi (o 1,,_,> v, (3.34)

From (2.3),(3.30) and (3.34),it is easy to find that

—_

(A= —ATA AT ) C=w!

(1I-DD)Z=wW"!

NOSS oo D)
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0
AT AACPg, ¢, =W ((Sl_loc“> : 0) v,

0

0

(A7 — AAAT) VPg, ¢, = W' (G)) , 0) vi ],
0
0
AT CiFg, ¢, =W [wr! (o, gm) v,

and
Ci
_ i ((Sis7iC
w! 11111<<1 ly ”),Clzz) vH
Z

= (A" —A{A\AT)C+ (I - D D) Z+ A{ A\A"CPg,
+ (A7 — ATAAT) DPs, ¢, + AT CiFE, ¢, (3.35)

where Z ¢ Crn=r, 57 e CwxP Y e Chr=9xt gnd 2 € CP—RxP gre arbitrary
matrices. Furthermore, using (3.30), (3.32) and (3.34), we obtain

0
A Y sisyle
ATAA™CFg, ¢, =W [ ! (o, ( 16 )) Vil (3.36)
0
Since /'E € C¥*P satisfies (3.26), we obtain
0
A B Y . 0
(A7 — A" AAT) XpFp, ¢, =W | 97! <0, (2{2)) v, (3.37)
0

where X5 € CKk—r=9x(P=1) gatisfies

C
rk(Xz) =b—1t.

Hence (3.7') follows from (3.22) and (3.35-3.37).
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Since C and C have the same singular values, by applying Lemma 2.2, (2.1), (2.1'),
(3.28), (3.30) and (3.34), we obtain

0
R < ol
ATAA" X Fg, o, =W o)) <0, <51510 Xl)) v, (3.38)
0
where X} € C**(P~) gatisfies ||C — X} || = min subject to rk(fé) = k1. Hence
(3.9) follows from (3.22), (3.35) and (3.38). O

We provide an example to illustrate that Theorem 3.2 is feasible.

Example 3.1 Take

1.16 0.8 1.96 0 1.16
0 0.8 0 0.8 1.6

A= 0 0 0 0 0 ,
-0.12 —-06 =072 0 —0.12
0 0 0 0 0

0 0.36 0 036 0.72
—-0224 0 0736 096 —0.224
A=\ 0.768 0 1.048 0.28 0.768 |,
0 0 0 0 0
0 0.48 0 0.48  0.96

1.2 8.6 0.8 3 14
1 1 1 0 1
C=|76 056 9.6 9.6 28| and
1.6 —-52 -0.6 4 2
82 192 -28 -28 96

11.12 =384 6 48 6
0 6.8 6.8 —2.8 9.6

Ci=| 0 124 124 96 28
—4.8 3.6 0 80 0

416  2.88 8 -36 8
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Thenr =1,s =2, k=4 m=n=w=p=5,1t=2,tk(A;, C;) =5,

1 12 0 1
01 0 1 2 08 0 06 0 0
w=|1 0 1 0 1[fsi=(" ,,)w=[0 08 0,
001 1 0 : 0 0 1
01 1 0 1
~ (06 0
=\o o08)
64 48 0 60 0 0,001,010
c 48 36 0 8 0 C I T R | N
(C”>_100 00| {G=l2 1 0 5 10/,
12 0 10 10 10 0 C; 577077710 710770
0 100 10 0 10 102 0 0 10
08 0 06 0 0
—06 0 08 0 0
U1=<(lg6 8'2),%: 0 0 0 09 028],
o 0 1 0 0 0
0 0 0 —028 0.96
10 0
T‘(o 100)’

and

8 0|6 68 124
(Cia1, Ci2) = | =6 10[8 9.6 2.8 |,
—6 0|8 6.8 124

1(0.6 0| —-19.8 —25.16 —45.88)

Cn0=3(73% 15 215 30 225

Compute the SVD of C by Matlab7 on a personal computer

U = —0.9997 0.0252 A= 18.6519 0O and
— 1 0.0252 0.9997) 7 0 13.1201

0.3483 —0.3175 —0.8820
Y =10.4360 —0.7781 0.4523
0.8298 0.5420 0.1326

Thus, by Theorem 3.1, there exists a rank-constrained least squares solution X to
Problem 1.1 if and only if 2 < b < 5. When b = 4,

min  ||C — AX| = 4292, (3.39)
rk(c,—-Ax)=4
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and a general form for X satisfying (3.39) is given as follows

1.5 05 —-05-05 -2 0
1.5 05 —1.5-05 —1 3.75
X=-1-05-05 05 05 1 10
05 05 —05 05 —1]|14.440.8y;4+0.2090x; — 0.1905x,
-1 0 1 0 1 21
30 3 0 30
3.75 3.75 0 3.75
5 0 25 50 s
19.2 — 0.6y +0.2787x] — 0.2540x5 30+0.6509x] — 0.5952x7 y; 30-+0.6746x] +0.7382x2
2 23 24 5
where x;, y; and z; are arbitrary,i = 1,2, j =1,2and/ =1, ...,5.
When b = 2,
min |C — AX|)* = 949.03 (3.40)

rk(c,—-A,x)=2

and a general form for X satisfying (3.40) is given as follows

1.5 05 —-0.5-0.5-2 0 30 3 0 30

1.5 05 —1.5-0.5-1 18.6 23.55 50 0 50
X=-]-05-05 05 05 1 22 21 37525 0 |,

05 05 —-0.5 05 —1 14.44+0.8y; 19.2 —0.6y; 30 y» 30

-1 0 1 0 1 71 22 73 24 25
where y; and z; are arbitrary, j = 1,2and/ =1, ..., 5.

Remark 3.1 By applying SVD and Q-SVD, we get two general forms of the least
squares solutions of AX = C subject to tk (C; — A1X) = b. One thing worthy of
note is that it seems hard to obtain one general form of the least squares solutions of
AXB = C subjectto tk (C;1 — A1 XBy) = b.

Investigate its reason, it is the matrix decomposition that is key tool to prove pro-
cessing of Theorems 3.1 and 3.2. Thus we will focus on introducing a corresponding
matrix decomposition in further study.
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