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Abstract
For the large sparse complex symmetric linear systems, we construct a precondi-
tioned triangular splitting (PTS) iterationmethod based on utilizing the preconditioned
technique and the triangular splitting of a matrix. Compared with the two-parameter
two-step scale-splitting one established by Salkuyeh and Siahkolaei (Calcolo 55:8,
2018), PTS iteration method does not involve the complex arithmetic. The conver-
gence theory of the PTS iteration method is established and the spectral properties of
the PTS-preconditioned matrix are analyzed. In addition, by applying the minimum
residual technique to the PTS iteration method, we develop the minimum residual
PTS (MRPTS) iteration method to further improve the efficiency of the PTS one, then
establish the corresponding convergence theory. Also, inexact version of the MRPTS
iteration method and its convergence properties are presented. Numerical experiments
are reported to verify the effectiveness of the proposed methods.
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1 Introduction

In this paper we consider iterative methods for solving the complex symmetric linear
systems of the form:

Ax ≡ (W + iT )x = b, (1)

where W , T ∈ R
n×n are symmetric positive semi-definite matrices with at least one

of them, for example, W , being positive definite, b ∈ R
n and i = √−1.

Linear systems of the form (1) arise frequently frommany practical problems in sci-
entific computing and engineering applications, such as FFT-based solution of certain
time-dependent PDEs, diffuse optical tomography, molecular scattering, Helmholtz
equations [9,10,22,23,35], and many more, see e.g. [18].

Due to the universal existence and significance of the complex symmetric linear
systems, there has been a surge of interest in (1), and numerous solution techniques
have been proposed for this type of system in recent years. Based on the Hermi-
tian and skew-Hermitian splitting (HSS) of the matrix A in (1): A = H + S with
H = 1

2 (A + A∗) = W and S = 1
2 (A − A∗) = iT , Bai et al. [14] initially established

the HSS iteration method. Here, A∗ denotes the conjugate transpose of the matrix A.
However, a shifted skew-Hermitian linear system needs to be solved at each iteration
step of the HSS iteration method. To overcome this difficult, Bai et al. [9] skillfully
designed a modified HSS (MHSS) method. Then, Bai et al. [10] proposed a precon-
ditioned version of the MHSS iteration method called PMHSS for solving (1), and
proved it is convergent unconditionally. Due to the excellent properties of the PMHSS
iteration method, it is a matter of great concern and its some modified and generalized
versions are derived recently. Dehghan et al. [21] presented the generalized PMHSS
(GPMHSS) iteration method by introducing an additional parameter. After that, the
lopsided PMHSS (LPMHSS) iteration method was proposed by Li et al. [26], which
outperforms the PMHSS one when the real part of the coefficient matrix is dominant.
In addition to the aforementioned methods, there exist other meaningful variants of
the MHSS method, see [37,39] for more details.

Moreover, by multiplying a complex number through both sides of the complex
system (1), Hezari et al. [23] designed a scale-splitting (SCSP) iterationmethod. Using
the idea of [23], Zheng et al. [42] proposed a double-step scale splitting (DSS) iteration
method. Subsequently, Salkuyeh and Siahkolaei [32] constructed a two-parameter ver-
sion of the DSS iteration method called the two-parameter two-step SCSP (TTSCSP)
method, which is more efficient than the DSS one and some known ones. The TTSCSP
iteration method can be described as follows:

The two-parameter two-step SCSP (TTSCSP) iteration method (see [32]) Let α and
β be two positive constants. Given an initial guess x (0). For k = 0, 1, 2, . . ., until x (k)

converges, compute

⎧
⎨

⎩

(αW + T )x (k+ 1
2 ) = i(W − αT )x (k) + (α − i)b,

(βT + W )x (k+1) = i(βW − T )x (k+ 1
2 ) + (1 − βi)b.

(2)
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The iteration matrix of the TTSCSP iteration method is

T (α, β) = (βT + W )−1(βW − T )(αW + T )−1(αT − W ). (3)

Besides, the CRI (the combination method of real part and imaginary part) iter-
ation method was derived by Wang et al. [34], where coefficient matrices of the
two sub-linear systems are the same as those in the DSS one. Recently, Xiao and
Wang [36] constructed the parameterized variant of the fixed-point iteration adding
the asymmetric error (PFPAE) iteration method for solving (1). To further accelerate
the convergence rates of the PFPAE and the DSS iteration methods, Huang et al. [24]
used the idea of PFPAE method and the scaling technique to design the two-step
parameterized (TSP) iteration method. Some numerical experiments showed that the
performance of the TSP method is superior to some existing ones.

As stated in [8], in order to simplify data handling and construct efficient precon-
ditioning matrix, it is beneficial to transform (1) with x = u + iv, b = p + iq and
u, v, p, q ∈ R

n into the two-by-two block real equivalent formulation

A
(
u
v

)

=
(
W − T
T W

)(
u
v

)

=
(
p
q

)

(4)

with u and v being unknown vectors. This can avoid complex arithmetic when solving
it. And it may be efficiently solved in real arithmetics by many iteration methods. The
linear system (4) can be formally regarded as a special case of the generalized saddle
point problem [17] and frequently arises from many important practical problems.
As an illustration, the distributed control problem can be transformed into the linear
system:

⎛

⎝
M 0 K
0 βM − M
K − M 0

⎞

⎠

⎛

⎝
y
u
p

⎞

⎠ =
⎛

⎝
b
0
d

⎞

⎠ ,

by using the discretize-then optimize method [5], where M and K are the mass matrix
and the stiffness matrix, respectively.

For saddle point problems, Bai et al. [15] established the generalized successive
overrelaxation (GSOR) iteration method. After that, Bai and Wang [16] proposed the
parameterized inexact Uzawa (PIU) iteration method, which is a generalized version
of the GSOR one. Based on [15], Salkuyeh et al. [31] defined the GSOR iteration
method for solving the linear system (4) recently. To further improve the efficiency
of the GSOR iteration method, Hezari et al. [22] designed the preconditioned GSOR
(PGSOR) iteration method for (4), whose optimal convergence factor is smaller than
that of the GSOR one. Alternatively in [27], Li et al. newly derived a symmetric
block triangular splitting (SBTS) iteration method. Then its preconditioned variant
was proposed by Zhang et al. [41], which performs better than the SBTS one under
some restrictions. Recently,Axelsson andSalkuyeh [3] designed a novelmethod called
the transformed matrix iteration (TMIT) method by transforming (4) into
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(
W + αT 2αW + (α2 − 1)T

T W + αT

)(
ū
v̄

)

=
(
p + αq

q

)

,

and using the triangular splitting of the corresponding coefficient matrix. And the
corresponding transformed matrix preconditioner (TMP) was also given. The authors
proved that the proposed method and the preconditioned matrix have tight eigenvalue
bounds. Numerical results included in [3] showed that the proposed method and pre-
conditioner outperform some existing ones. For more iteration methods for linear
system (4), we refer to [2,8,11,25,28,33,40] and the references therein.

It can be seen from (2) that a potential difficulty with the TTSCSP iteration method
is the need to use complex arithmetic, whichmay cost some computing times. To over-
come this disadvantage, in this current work, we are going to develop a new approach
called the preconditioned triangular splitting (PTS) method for solving (4). Although
its convergence factor is the same as that of the TTSCSP one, in the PTS iteration
method we deal only with real arithmetic. So it is expect that the PTS iteration method
exhibits better numerical results than the TTSCSP one. Besides as a solver, the PTS
iteration is also used as a preconditioner to accelerate Krylov subspace methods such
as the generalized minimal residual (GMRES) method. In order to further improve the
convergence behavior of the PTS iteration method, we establish the minimum residual
PTS (MRPTS) iterationmethod by introducing a variable for the PTS iterationmethod.
It is noteworthy that this idea comes essentially from [38], which is firstly applied to
develop the MRHSS iteration method in [38]. Besides, by adopting the approximate
solution strategy, we correspondingly design an inexact MRPTS (IMRPTS) iteration
method. Theoretically, we discuss the convergence of the proposed methods and the
spectral properties of the PTS-preconditioned matrix.

The organization of this paper is as follows. The next section introduces the PTS
iteration method and analyzes its convergence. In Sect. 3, we propose the PTS precon-
ditioner and study the spectral properties of the PTS-preconditioned matrix.We derive
theMRPTS iteration method and investigate its convergence properties in Sect. 4. The
inexact MRPTS iteration method and its convergence analysis are given in Sect. 5.
Section 6 is devoted to some numerical results to demonstrate that the performances
of the proposed methods are better than the aforementioned ones. Finally, in Sect. 7
we put forth some concluding remarks to end the paper.

We end this section with an introduction of some notations that will be used in
the subsequent analysis. For a square matrix H , ρ(H), κ(H) and det(H) denote
the spectral radius, the condition number and the determinant of H , respectively.
Moreover, the Euclidean norm of a vector or a matrix is represented by ‖ · ‖2.

2 The preconditioned triangular splitting (PTS) iterationmethod

In this section, we establish the preconditioned triangular splitting (PTS) iteration
method and its convergence properties.
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Firstly, we premultiply (4) with the block matrix

P =
(

α I I
−β I I

)

with α, β > 0 and obtain

PA
(
u
v

)

=
(

αW + T W − αT
T − βW βT + W

)(
u
v

)

=
(

α p + q
q − β p

)

:= b̄. (5)

Here, the matrix P is nonsingular owing to the fact that det(P) = α + β > 0.
Then we split the coefficient matrix of (5) into

Ā := PA =
(

αW + T W − αT
T − βW βT + W

)

=
(

αW + T 0
T − βW βT + W

)

−
(
0 αT − W
0 0

)

:= M(α, β) − N (α, β), (6)

which is the block lower and upper triangular splitting of the matrix Ā.
Based on the splitting (6), we construct the preconditioned triangular spitting (PTS)

iterative scheme:

(
αW + T 0
T − βW βT + W

)(
u(k+1)

v(k+1)

)

=
(
0 αT − W
0 0

)(
u(k)

v(k)

)

+
(

α p + q
q − β p

)

,

(7)

which results in the following PTS iteration method.
The preconditioned triangular spitting (PTS) iteration method Let α, β > 0. Given

initial vectors u(0) and v(0). For k = 0, 1, 2, . . ., until (u(k); v(k)) converges, compute

{
(αW + T )u(k+1) = (αT − W )v(k) + α p + q,

(βT + W )v(k+1) = (βW − T )u(k+1) + q − β p.
(8)

It is noteworthy that the motivation of constructing the PTS iteration method stems
from [3] where Axelsson and Salkuyeh transformed the given matrix to a proper form
and designed the efficient method. The idea of using such a simple block two-by-two
matrix P in (5) to transform the block two-by-twomatrixAwas first given byAxelsson
and Kucherov [1]. This idea was further generalized by Bai [6,8], in which the author
also first technically employed blockGauss–Seidel and block symmetricGauss–Seidel
splitting techniques to the corresponding transformed matrix and obtained the rotated
block triangular preconditionings based on PMHSS.Moreover, the idea of introducing
different parameters into the twoblock equations separately is dated back to [13,15,16].

The iteration scheme (8) indicates that themain costs at each stepof thePTS iteration
method are solving two linear subsystems with respect to the symmetric positive
definite matrices αW + T and βT + W . They can be solved exactly by the Cholesky
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factorization or inexactly by the conjugate gradient (CG) or the preconditioned CG
(PCG) methods.

It follows from (7) that the iteration matrix of the PTS iteration method is

G(α, β) =
(

αW + T 0
T − βW βT + W

)−1 ( 0 αT − W
0 0

)

=
(

(αW + T )−1 0
−(βT + W )−1(T − βW )(αW + T )−1 (βT + W )−1

)(
0 αT − W
0 0

)

=
(
0 (αW + T )−1(αT − W )

0 (βT + W )−1(T − βW )(αW + T )−1(W − αT )

)

=
(
0 (αW + T )−1(αT − W )

0 T (α, β)

)

. (9)

Remark 2.1 Equation (9) implies that ρ(G(α, β)) = ρ(T (α, β)), and the PTS and the
TTSCSP iteration methods have the same optimal convergence factors for the same
linear systems. However, the PTS iteration method in (8) does not involve complex
arithmetic compared with the TTSCSP one in (2). So it may cost less times than the
TTSCSP one, which is illustrated by the numerical experiments.

In what follows, according to Theorem 3 in [32], we obtain the convergence con-
ditions of the PTS iteration method.

Theorem 2.1 [32] Let the matrices W and T be symmetric positive definite and sym-
metric positive semidefinite, respectively. Then, the PTS iterationmethod is convergent
if α and β satisfy

0 < β < α and α >
1

2

(
1

μs
− μs

)

and β >
1

2

(
1

μn
− μn

)

,

where μs and μn are the minimum and maximum nonzero eigenvalues of the matrix

W− 1
2 TW− 1

2 , respectively.

3 The PTS preconditioner

The present section consists of twomain parts. In the first part, the PTS preconditioner
and its implementing procedure are presented. The second one is concerned with the
spectral properties of the PTS-preconditioned matrix.

It is known that the Krylov subspace methods, such as the GMRES method, are
a class of efficient iteration methods for solving large sparse linear system (4) [30].
However, in many practical problems, the coefficient matrices of linear system (4)
are ill-conditioned. This makes the Krylov subspace methods often suffer from slow
convergence or even stagnation, so preconditioning is in most cases indispensable for
the iterative solution of (4).
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3.1 The PTS preconditioner and its implementing procedure

It can be observed in (6) that the PTS iterationmethod is induced by thematrix splitting
Ā = M(α, β) −N (α, β). The splitting matrixM(α, β) can be employed to precon-
dition the coefficient matrix of (5) and will be referred to as the PTS preconditioner.
The form of the PTS preconditioner is

PPTS =
(

αW + T 0
T − βW βT + W

)

. (10)

Note that the PTS preconditioner is used to precondition the linear system (5), not (4).
In order to apply the PTS preconditioner of the form (10) within a Krylov-type

method, it is necessary to solve the following linear system at each step:

(
αW + T 0
T − βW βT + W

)(
z1
z2

)

=
(
r1
r2

)

, (11)

with z1, z2, r1, r2 ∈ R
n . In view of (11), we have the following algorithmic imple-

mentation of the PTS iterations:

Algorithm 3.1 For a given vector r = (r1; r2), the vector z = (z1; z2) of the linear
system (11) can be solved according to the following procedure:

(1) solve z1 from the linear subsystem (αW + T )z1 = r1;
(2) compute t1 = r2 − (T − βW )z1;
(3) solve z2 from the linear subsystem (βT + W )z2 = t1.

Remark 3.1 The form of PTS preconditioner is similar to that of the rotated block
lower triangular (RBLT) preconditioner [6], which is structured as

PRBLT = 1√
2α2 + 2

(
I − I
I I

)(
αW + T 0
αT − W αW + T

)

.

Note that two linear subsystems with different coefficient matrices need to be solved
at each step of the PTS iteration, whereas in the RBLT iterations, the coefficient matri-
ces of the two linear subsystems are the same. Nevertheless, the PTS preconditioner
contains two parameters, and we expert that choosing proper parameters can lead to
less iteration steps than the RBLT one.

3.2 Spectral analysis of the PTS-preconditionedmatrix

The convergence behaviors of the Krylov subspaces methods are closely related to
the eigenvalues and eigenvectors of the coefficient matrices [7] as well as the sizes of
the Jordan blocks [4]. In view of this fact, next we study the spectral distribution and
independency of the eigenvectors of the PTS-preconditioned matrix P−1

PTSĀ.
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Theorem 3.1 Let W be symmetric positive definite and T be symmetric positive semi-
definite, respectively. Denote by μi (1 ≤ i ≤ n) the eigenvalues of the matrix S =
W− 1

2 TW− 1
2 , and by μmax and μmin the maximum and minimum values among them,

respectively. Then the eigenvalues λ of the PTS-preconditioned matrix are all real
numbers, which contain an eigenvalue 1 with multiplicity at least n, and the remaining
ones are of the form:

(α + β)(μ2
i + 1)

βμ2
i + (αβ + 1)μi + α

. (12)

Their upper and the lower bounds are

(a) If μmax ≤ 1, then

min

{
(α + β)(μ2

max + 1)

βμ2
max + (αβ + 1)μmax + α

,
2(α + β)μ2

min

βμ2
min + (αβ + 1)μmin + α

}

≤ λ ≤ max

{
(α + β)(μ2

min + 1)

βμ2
min + (αβ + 1)μmin + α

,
2(α + β)

βμ2
min + (αβ + 1)μmin + α

}

;
(13)

(b) If μmin ≥ 1, then

min

{
2(α + β)

βμ2
max + (αβ + 1)μmax + α

,
(α + β)(μ2

min + 1)

βμ2
min + (αβ + 1)μmin + α

}

≤ λ ≤ max

{
(α + β)(μ2

max + 1)

βμ2
max + (αβ + 1)μmax + α

,
2(α + β)μ2

max

βμ2
max + (αβ + 1)μmax + α

}

;
(14)

(c) If μmin = μ1 ≤ μ2 ≤ · · · ≤ μk ≤ 1 ≤ μk+1 ≤ · · · ≤ μn = μmax, then

(α + β)min

{
μ2
k + 1

(βμk + 1)(α + μk)
,

2μ2
min

(βμmin + 1)(α + μmin)
,

2

(βμmax + 1)(α + μmax)
,

μ2
k+1 + 1

(βμk+1 + 1)(α + μk+1)

}

≤ λ ≤ (α + β)max

{
μ2
min + 1

(βμmin + 1)(α + μmin)
,

2

(βμmin + 1)(α + μmin)
,

μ2
max + 1

(βμmax + 1)(α + μmax)
,

2μ2
max

(βμmax + 1)(α + μmax)

}

.
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Furthermore, the quasi-optimal parameters of the PTS-preconditioned matrix are

α∗ =
1 − μmaxμmin +

√

(1 + μ2
min)(1 + μ2

max)

μmax + μmin
,

β∗ =
μmaxμmin − 1 +

√

(1 + μ2
min)(1 + μ2

max)

μmax + μmin
, (15)

which minimize the upper bound of |λ − 1|. Then

|λ − 1| ≤
⎛

⎝
μmax

√

1 + μ2
min − μmin

√
1 + μ2

max

μmax

√

1 + μ2
min + μmax

√
1 + μ2

max

⎞

⎠

2

, (16)

if the quasi-optimal parameters are adopted.

Proof It follows from (9) that

P−1
PTSĀ = I − G(α, β)

=
(
I − (αW + T )−1(αT − W )

0 I − T (α, β)

)

=
(
I − (αW + T )−1(αT − W )

0 I − (βT + W )−1(T − βW )(αW + T )−1(W − αT )

)

=
(
W− 1

2 0

0 W− 1
2

)(
I − (α I + S)−1(αS − I )
0 I − (βS + I )−1(S − β I )(α I + S)−1(I − αS)

)(
W

1
2 0

0 W
1
2

)

with S = W− 1
2 TW− 1

2 , which is similar to the matrix

(
I − (α I + S)−1(αS − I )
0 (α + β)(βS + I )−1(S2 + I )(α I + S)−1

)

. (17)

The above relation confirms that the eigenvalues of the PTS-preconditioned matrix
are given by 1 with algebraic multiplicity at least n, and the remaining eigenvalues are
those of the matrix (α +β)(βS+ I )−1(S2 + I )(α I + S)−1. Let μi (1 ≤ i ≤ n) be the
eigenvalues of the matrix S, then the remaining eigenvalues of P−1

PTSĀ are of the form
(12). From Lemma 2 of [31], we see that μi ∈ R and hence λ ∈ R. Straightforward
computations reveal that

g(μi ) := ∂

∂μi

(
(α + β)(μ2

i + 1)

βμ2
i + (αβ + 1)μi + α

)

= (α + β)[(αβ + 1)(μ2
i − 1) + 2μi (α − β)]

(βμ2
i + (αβ + 1)μi + α)2

. (18)

Now we discuss the eigenvalue distributions of P−1
PTSĀ in the following cases:
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• If μmax ≤ 1 and α ≤ β, then μ2
i − 1 ≤ 0 for all i = 1, 2, . . . , n and hence

g(μi ) ≤ 0, which leads to

(α + β)(μ2
max + 1)

βμ2
max + (αβ + 1)μmax + α

≤ λ ≤ (α + β)(μ2
min + 1)

βμ2
min + (αβ + 1)μmin + α

; (19)

if μmax ≤ 1 and α > β, then

(α + β)(μ2
i + 1)

βμ2
i + (αβ + 1)μi + α

≤ 2(α + β)

βμ2
i + (αβ + 1)μi + α

≤ 2(α + β)

βμ2
min + (αβ + 1)μmin + α

,
(α + β)(μ2

i + 1)

βμ2
i + (αβ + 1)μi + α

≥ 2μ2
i (α + β)

βμ2
i + (αβ + 1)μi + α

.

In addition, it is not difficult to verify that

h(μi ) := ∂

∂μi

(
2μ2

i (α + β)

βμ2
i + (αβ + 1)μi + α

)

= 2(α + β)[(αβ + 1)μ2
i + 2αμi ]

(βμ2
i + (αβ + 1)μi + α)2

> 0.

(20)

One may deduce the following result

2(α + β)μ2
min

βμ2
min + (αβ + 1)μmin + α

≤ λ ≤ 2(α + β)

βμ2
min + (αβ + 1)μmin + α

,

which together with (19) gives (13).
• If μmin ≥ 1 and α ≥ β, then μ2

i − 1 ≥ 0 for all i = 1, 2, . . . , n and hence
g(μi ) ≥ 0. As a consequence,

(α + β)(μ2
min + 1)

βμ2
min + (αβ + 1)μmin + α

≤ λ ≤ (α + β)(μ2
max + 1)

βμ2
max + (αβ + 1)μmax + α

is valid; if μmin ≥ 1 and α < β, then we derive

(α + β)(μ2
i + 1)

βμ2
i + (αβ + 1)μi + α

≤ 2(α + β)μ2
i

βμ2
i + (αβ + 1)μi + α

≤ 2(α + β)μ2
max

βμ2
max + (αβ + 1)μmax + α

,
(α + β)(μ2

i + 1)

βμ2
i + (αβ + 1)μi + α

≥ 2(α + β)

βμ2
i + (αβ + 1)μi + α
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≥ 2(α + β)

βμ2
max + (αβ + 1)μmax + α

in view of (20). This leads to (14) what we were proving.
• If μmin = μ1 ≤ μ2 ≤ · · · ≤ μk ≤ 1 ≤ μk+1 ≤ · · · ≤ μn = μmax, then similar to
the derivation of (13) and (14), the following inequalities can be obtained

min

{
(α + β)(μ2

k + 1)

βμ2
k + (αβ + 1)μk + α

,
2(α + β)μ2

min

βμ2
min + (αβ + 1)μmin + α

}

≤ {λ|μ1 ≤ μ2 ≤ · · · ≤ μk ≤ 1}

≤ max

{
(α + β)(μ2

min + 1)

βμ2
min + (αβ + 1)μmin + α

,
2(α + β)

βμ2
min + (αβ + 1)μmin + α

}

(21)

and

min

{
2(α + β)

βμ2
max + (αβ + 1)μmax + α

,
(α + β)(μ2

k+1 + 1)

βμ2
k+1 + (αβ + 1)μk+1 + α

}

≤ {λ|1 ≤ μk+1 ≤ · · · ≤ μn}
≤ max

{
(α + β)(μ2

max + 1)

βμ2
max + (αβ + 1)μmax + α

,
2(α + β)μ2

max

βμ2
max + (αβ + 1)μmax + α

}

.

(22)

Combining (21) and (22) yields that

(α + β)min

{
μ2
k + 1

(βμk + 1)(α + μk)
,

2μ2
min

(βμmin + 1)(α + μmin)
,

2

(βμmax + 1)(α + μmax)
,

μ2
k+1 + 1

(βμk+1 + 1)(α + μk+1)

}

≤ λ ≤ (α + β)max

{
μ2
min + 1

(βμmin + 1)(α + μmin)
,

2

(βμmin + 1)(α + μmin)
,

μ2
max + 1

(βμmax + 1)(α + μmax)
,

2μ2
max

(βμmax + 1)(α + μmax)

}

.

Furthermore, it is known that λ = 1 − λ holds, where λ stands for the eigenvalue
of the PTS iteration matrix. By Theorem 1 of [32], we have

|λ − 1| ≤ max
1≤i≤n

∣
∣
∣
∣
1 − αμi

α + μi

∣
∣
∣
∣

∣
∣
∣
∣

β − μi

1 + βμi

∣
∣
∣
∣ := σ(α, β). (23)
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Minimizing the upper bound σ(α, β) of |λ−1| in (23) may lead to clustered spectrum
of the PTS-preconditioned matrix. Hence, all we need is to determine the quasi-
optimal parameters which minimize σ(α, β). According to Theorem 2 of [32], the
quasi-optimal parameters in (15) are obtained. Substituting them into (23) directly
derives (16). This completes our proof of this theorem. 	

Theorem 3.2 Let W be symmetric positive definite and T be symmetric positive semi-
definite, respectively. Then the eigenvalues λ of the PTS-preconditioned matrix are 1
or satisfy

• When α → 0+ and β → 0+, then λ → 0+;
• When α → +∞ and β → +∞, then λ → 0+;
• When α → +∞ and β → 0+, then μ2

min + 1 ≤ λ ≤ μ2
max + 1;

• When α → 0+ and β → +∞, then 1
μ2
max

+ 1 ≤ λ ≤ 1
μ2
min

+ 1.

Proof From Theorem 3.2, it can be seen that λ = 1 or

λ = (α + β)(μ2
i + 1)

βμ2
i + (αβ + 1)μi + α

, i = 1, 2, . . . , n. (24)

When α → 0+ and β → 0+, then λ → 0+ in view of (24); when α → +∞ and
β → +∞, we infer that

λ =
(
1
α

+ 1
β

)
(μ2

i + 1)

1
α
μ2
i + (1 + 1

αβ
)μi + 1

β

→ 0+;

when α → +∞ and β → 0+, it follows from straightforward computations that

λ =
(
1 + β

α

)
(μ2

i + 1)

β
α
μ2
i + (β + 1

α
)μi + 1

→ μ2
i + 1,

thus, μ2
min + 1 ≤ λ ≤ μ2

max + 1 holds. At last, when α → 0+ and β → +∞, it holds
that

λ =
(
1 + α

β

)
(μ2

i + 1)

μ2
i + (α + 1

β
)μi + α

β

→ 1 + 1

μ2
i

,

which yields that 1
μ2
max

+ 1 ≤ λ ≤ 1
μ2
min

+ 1. 	


Theorem 3.2 implies that the PTS-preconditioned matrix has clustered spectrum if
proper parameters are chosen. Meanwhile, both α and β can not be adopted so small
or large that the PTS-preconditioned matrix becomes too close to being singular.
Moreover, when α → +∞ and β → 0+ or α → 0+ and β → +∞, we get
μ2
min + 1 ≤ λ ≤ μ2

max + 1 or 1
μ2
max

+ 1 ≤ λ ≤ 1
μ2
min

+ 1, respectively in accordance to
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Theorem 3.2. However, when μmin  μmax, the spectrum of the PTS-preconditioned
may be very scattered. Thus more proper choice of the parameters contained in the
PTS preconditioner needs to be investigated.

As mentioned in [7], when the coefficient matrix A is nonsymmetric but diagonal-
izable with the eigenvector matrix V , the kth residual of the Krylov subspace methods
is bounded by

‖r (k)‖2 ≤ κ(V ) min
ψk (0)=1

max
1≤i≤n

|ψk(λi )|‖b‖2, (25)

where ψk(x) is the polynomial of degree not greater than k. This indicates that the
Euclidean norm of the residual is determined not only by the eigenvalues, but also by
the eigenvectors of A for this case. The following theorem gives some analyses about
the eigenvector distributions of the PTS-preconditioned matrix.

Theorem 3.3 Let W be symmetric positive definite and T be symmetric positive semi-
definite, respectively, then the PTS-preconditioned matrix has 2n linearly independent
eigenvectors. There are

(1) i linearly independent eigenvectors of the form

(
W− 1

2 0

0 W− 1
2

)[
Ii
0

]

that cor-

respond to the eigenvalue 1, where Ii denotes the i × i (i ≥ n) unit matrix;
(2) 2n − i linearly independent eigenvectors of the form

(
W− 1

2 0

0 W− 1
2

)[
DV̄
V̄

]

with D = diag(βμ1+1
β−μ1

, . . . ,
βμ2n−i+1
β−μ2n−i

) that correspond to the eigenvalues
(α+β)(μ2

k+1)

βμ2
k+(αβ+1)μk+α

(1 ≤ k ≤ 2n − i), where V̄ is the eigenvectors corresponding to

the nonunit eigenvalues of P−1
PTSĀ.

Besides, let

H =
(
W− 1

2 0

0 W− 1
2

)(
Ii DV̄
0 V̄

)

(26)

be the 2n linearly independent eigenvectors of P−1
PTSĀ, then its condition number

satisfies

κ2(H) ≤
[
μ̄2
max + 2 + μ̄max

√
μ̄2
max + 4

]√
λmax

2
√

λmin
,

where λmax and λmin are the maximum and minimum eigenvalues of the matrix W,
respectively, and

μ̄max = max

{∣
∣
∣
∣
βμ̃min + 1

μ̃min − β

∣
∣
∣
∣ ,

∣
∣
∣
∣
βμ̃max + 1

β − μ̃max

∣
∣
∣
∣

}

(27)
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is the maximum value of the diagonal elements of D in modulus, with μ̃max and
μ̃min being the maximum and minimum nonunit eigenvalues of G defined in (28),
respectively.

Proof According to Theorem 3.1, we see thatP−1
PTSĀ has the structure of the following

form:

P−1
PTSĀ =

(
W− 1

2 0

0 W− 1
2

)(
I − (α I + S)−1(αS − I )
0 (α + β)(βS + I )−1(S2 + I )(α I + S)−1

)(
W

1
2 0

0 W
1
2

)

.

Now we first consider the eigenvectors of the matrix

G =
(
I − (α I + S)−1(αS − I )
0 (α + β)(βS + I )−1(S2 + I )(α I + S)−1

)

. (28)

Equation (28) implies that thematrixG has the eigenvalue 1withmultiplicity at least n,
and the remaining ones are those of the matrix (α+β)(βS+ I )−1(S2+ I )(α I + S)−1.
We can check easily

G

[
In
0

]

=
(
I − (α I + S)−1(αS − I )
0 (α + β)(βS + I )−1(S2 + I )(α I + S)−1

)[
In
0

]

=
[
In
0

]

.

Then G has n linearly independent eigenvectors of the form

[
In
0

]

that correspond to

the eigenvalue 1. In addition, taking into account that S is symmetric positive semi-
definite matrix, there exists an orthogonal matrix V such that G = V
V T , where 


is the diagonal matrix with the eigenvalues of S as its diagonal elements. Let (x; y)
be the eigenvector of G that corresponds to the eigenvalue λ, then it has

G

[
x
y

]

= λ

[
x
y

]

.

We rewrite the above equation in the form

{
x + (α I + S)−1(I − αS)y = λx,

(α + β)(βS + I )−1(S2 + I )(α I + S)−1y = λy.
(29)

If y = 0, then from first equation of (29) it can be deduced that (λ − 1)x = 0. This
leads to λ = 1 due to x �= 0 in this case. Hence (x; y) belongs to the Case (1).
Now we consider the case that y �= 0. Notice that λ �= 1, otherwise (29) implies
that y = (βS + I )−1(S − β I )(α I + S)−1(I − αS)y = 0 in contradiction with the
assumption that y �= 0. The second equation of (29) reveals that λ is the eigenvalue
of (α + β)(βS + I )−1(S2 + I )(α I + S)−1, and therefore

λk = (α + β)(μ2
k + 1)

βμ2
k + (αβ + 1)μk + α

= 1 − (μk − β)(1 − αμk)

(βμi + 1)(α + μk)
, 1 ≤ k ≤ 2n − i
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with μk being the eigenvalues of the matrix S. It follows from λk �= 1 that (μk −
β)(1 − αμk) �= 0. For this case, we assume that yk = vk . Then

xk + 1 − αμk

α + μk
vk =

[

1 − (μk − β)(1 − αμk)

(βμi + 1)(α + μk)

]

xk, 1 ≤ k ≤ 2n − i,

that is

1 − αμk

α + μk
vk = − (μk − β)(1 − αμk)

(βμi + 1)(α + μk)
xk, 1 ≤ k ≤ 2n − i,

which can be simplified as

xk = βμk + 1

β − μk
vk, 1 ≤ k ≤ 2n − i .

As a result, it holds that
[

βμk+1
β−μk

vk; vk

]
is the eigenvector of the matrix G that cor-

responds to the nonunit eigenvalue
(α+β)(μ2

k+1)

βμ2
k+(αβ+1)μk+α

. Since vk (1 ≤ k ≤ 2n − i) are

linearly independent, there are 2n−i linearly independent eigenvectors corresponding
to the nonunit eigenvalues of G. Then the conclusions shown in (1) and (2) follow by
the above analysis andLemma 4.1 of [19], and the independence of the 2n eigenvectors
of G is given by the nonsingularity of the matrix H defined as in (26).

In the sequel, we turn to discuss the condition number of the matrix H in (26). It
follows from straightforward computations that

H =
(
W− 1

2 0

0 W− 1
2

)(
Ii DV̄
0 V̄

)

=
(
W− 1

2 0

0 W− 1
2

)
⎛

⎜
⎜
⎝

Ii−n 0 0 0
0 I2n−i 0 DV̄
0 0 Ii−n 0
0 0 0 V̄

⎞

⎟
⎟
⎠

=
(
W− 1

2 0

0 W− 1
2

)
⎛

⎜
⎜
⎝

Ii−n 0 0 0
0 I2n−i 0 D
0 0 Ii−n 0
0 0 0 I2n−i

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

Ii−n 0 0 0
0 I2n−i 0 0
0 0 Ii−n 0
0 0 0 V̄

⎞

⎟
⎟
⎠ .

By making use of the expression of the matrix H in the above equation we obtain

κ2(H) ≤ κ2

((
W− 1

2 0

0 W− 1
2

))

κ2

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

Ii−n 0 0 0
0 I2n−i 0 D
0 0 Ii−n 0
0 0 0 I2n−i

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

κ2

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

Ii−n 0 0 0
0 I2n−i 0 0
0 0 Ii−n 0
0 0 0 V̄

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠
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=
√

λmax

λmin
κ2

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

Ii−n 0 0 0
0 I2n−i 0 D
0 0 Ii−n 0
0 0 0 I2n−i

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

=
[
μ̄2
max + 2 + μ̄max

√
μ̄2
max + 4

]√
λmax

2
√

λmin

with μ̄max being themaximumvalue of the diagonal entry of D inmodulus and defined
as in (27). 	


Remark 3.2 Theorem 3.3 shows that the PTS-preconditioned matrix has 2n linearly
independent eigenvectors. Asmentioned in [7] and shown in (25), if the matrix formed
by the eigenvectors is well-conditioned in this case, at each additional iteration the
degree increases by one and the accuracy can be quickly achieved. Thus a proper
parameter β should be taken to make the upper bound of κ2(H) in Theorem 3.3 as
small as possible.

The GMRESmethod will terminate when the degree of the minimum polynomial is
attained. In particular, the degree of theminimumpolynomial is equal to the dimension
of the corresponding Krylov subspace [30]. In the sequel, some upper bounds of the
dimension of the Krylov subspace K (P−1

PTSĀ,P−1
PTSb̄) are given.

Theorem 3.4 Let W be symmetric positive definite and T be symmetric positive
semi-definite, respectively, then the degree of the minimum polynomial of the PTS-
preconditionedmatrix is less thann+1, i.e., K (P−1

PTSĀ,P−1
PTSb̄) ≤ n + 1; in particular,

if the matrix (α+β)(βS+ I )−1(S2+ I )(α I +S)−1 has q distinct nonunit eigenvalues,
then the degree of the minimum polynomial of the PTS-preconditioned matrix is less
than q + 1, i.e., K (P−1

PTSĀ,P−1
PTSb̄) ≤ q + 1.

Proof It follows from Theorem 3.3 that P−1
PTSĀ has 2n linearly independent eigenvec-

tors, which means that P−1
PTSĀ is diagonalizable, and hence

pmin(P−1
PTSĀ) ≤ p

(

(x − 1)
n∏

k=1

[
(α + β)(μ2

k + 1)

βμ2
k + (αβ + 1)μk + α

])

= n + 1,

where pmin(A) and p(g(x)) represent the degrees of the minimal polynomial of the
matrix A and g(x), respectively. In addition, if the matrix (α + β)(βS + I )−1(S2 +
I )(α I + S)−1 has q distinct nonunit eigenvalues, then it has

pmin(P−1
PTSĀ) ≤ p

(

(x − 1)
q∏

k=1

[
(α + β)(μ2

k + 1)

βμ2
k + (αβ + 1)μk + α

])

= q + 1,

which completes the proof of this theorem. 	
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4 Theminimum residual PTS (MRPTS) iterationmethod and its
convergence properties

In order to further improve the efficiency of the PTS iteration method, we generalize
the PTS iteration method and derive a minimum residual PTS (MRPTS) iteration
method in this section.

In [38], the authors defined the minimize residual HSS (MRHSS) iteration method
by introducing two parameters into the HSS iteration method. These parameters are
adopted by minimizing the residual norms at each step of the HSS iteration scheme.
Numerical experiments in [38] showed that the MRHSS method has advantages over
the HSS one.

The PTS iteration method in (7) can be rewritten as

(
u(k+1)

v(k+1)

)

=
(
u(k)

v(k)

)

+
(

αW + T 0
T − βW βT + W

)−1 (

b̄ − Ā
(
u(k)

v(k)

))

. (30)

By applying the idea of [38], we introduce a variable βk into (30), which leads to a
new iteration scheme of the form

(
u(k+1)

v(k+1)

)

=
(
u(k)

v(k)

)

+ βk

(
αW + T 0
T − βW βT + W

)−1 (

b̄ − Ā
(
u(k)

v(k)

))

. (31)

As mentioned in [38], if proper parameter βk is chosen, the convergence rate of
(31) may be faster than that of (7). Next we discuss the optimal value of βk in the
MRPTS method. Inasmuch as (5) is a real linear system, it should be proper to adopt
βk in the real field R here.

The residual form of the iteration scheme (31) can be written as

r (k+1) = r (k) − βkĀM(α, β)−1r (k), (32)

where r (k) = b̄ − Ā(u(k); v(k)) ∈ R
2n .

In view of Equation (8) in [38] and (32), ‖r (k+1)‖22 can be briefly expressed as

‖r (k+1)‖22 = (r (k+1), r (k+1)) = (r (k) − βkĀM(α, β)−1r (k), r (k)

−βkĀM(α, β)−1r (k))

= (r (k), r (k)) − (r (k), βkĀM(α, β)−1r (k))

− (βkĀM(α, β)−1r (k), r (k)) + β2
k ‖ĀM(α, β)−1r (k)‖22

= ‖r (k)‖22 − 2βk(r
(k), ĀM(α, β)−1r (k)) + β2

k ‖ĀM(α, β)−1r (k)‖22.

As a matter of fact, (r (k), ĀM(α, β)−1r (k)) = (ĀM(α, β)−1r (k), r (k)) due to the
facts that both ĀM(α, β)−1 and r (k) are real matrices and (r (k))T ĀM(α, β)−1r (k) =
(ĀM(α, β)−1r (k))T r (k). One then obtains

βk = (r (k), ĀM(α, β)−1r (k))

‖ĀM(α, β)−1r (k)‖22
(33)
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by solving the equation
∂‖r (k+1)‖22

∂βk
= 0. Furthermore, we can easily check that

∂2‖r (k+1)‖22
∂β2

k

= 2‖ĀM(α, β)−1r (k)‖22 ≥ 0.

If ‖ĀM(α, β)−1r (k)‖22 = 0, then r (k) = 0 by the nonsingularity of Ā and M(α, β).
Hence (u(k); v(k)) is the exact solution of (4), and we need not construct βk to obtain
(u(k+1); v(k+1)) in this case. Then we assume that r (k) �= 0 for k = 0, 1, 2, . . .
throughout this paper. Under this assumption, it has

∂2‖r (k+1)‖22
∂β2

k

= 2‖ĀM(α, β)−1r (k)‖22 > 0,

which implies thatβk defined as in (33) is theminimumpoint of the function ‖r (k+1)‖2.
Therefore, we can form the following detailed implementation of the MRPTS iter-

ation method:
The minimum residual PTS (MRPTS) iteration method Let α, β > 0. Given ε > 0,

an initial guess (u(0); v(0)) and right-hand side vector b = (p; q) of (4). For k =
0, 1, 2, . . ., until (u(k); v(k)) converges,

Step 1: compute r̄ (0) = b − A(u(0); v(0)), and divide r̄ (0) into (r̄ (0)
1 ; r̄ (0)

2 ) with

r̄ (0)
1 , r̄ (0)

2 ∈ R
n ;

Step 2: compute r (0)
1 = αr̄ (0)

1 + r̄ (0)
2 and r (0)

2 = r̄ (0)
2 − βr̄ (0)

1 , and set r (0) =
(r (0)

1 ; r (0)
2 ) and k = 0;

Step 3: if ‖b−A(u(k);v(k))‖2‖b‖2 < ε, then stop; otherwise, continue;

Step 4: solve (αW + T )t (k)1 = r (k)
1 ;

Step 5: compute t (k)2 = r (k)
2 − (T − βW )t (k)1 ;

Step 5: solve (βT + W )t (k)3 = t (k)2 ;

Step 6: compute t (k)4 = (αW +T )t (k)1 + (W −αT )t (k)3 and t (k)5 = (T −βW )t (k)1 +
(βT + W )t (k)3 and set t (k) = (t (k)4 ; t (k)5 );
Step 7: compute the value of βk :

βk = (r (k), t (k))

‖t (k)‖22
= (r (k)

1 )T t (k)4 + (r (k)
2 )T t (k)5

‖t (k)4 ‖22 + ‖t (k)5 ‖22
;

Step 8: compute u(k+1) = u(k) + βk t
(k)
1 , v(k+1) = v(k) + βk t

(k)
3 , r (k+1)

1 = r (k)
1 −

βk t
(k)
4 and r (k+1)

2 = r (k)
2 − βk t

(k)
5 ; set k = k + 1 and return to Step 3.

Remark 4.1 When βk = 1, the MRPTS iteration method automatically reduces to
the PTS one. With a suitable choice of the parameter βk the convergence rate of the
MRPTS iteration method may be accelerated so as to be faster than the PTS one.
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In what follows, the convergence properties of the MRPTS iteration method for
solving the complex symmetric linear systems are discussed. To this end, we first
demonstrate the following lemma.

Lemma 4.1 Let A = diag(a1, . . . , an) and B = diag(b1, . . . , bn) be two n × n real
diagonal matrices, then

∥
∥
∥
∥

(
AB A
0 0

)∥
∥
∥
∥
2

= max
1≤i≤n

{

ai
√

1 + b2i

}

.

Proof Direct computations give

∥
∥
∥
∥

(
AB A
0 0

)∥
∥
∥
∥
2

=
√

ρ

((
AB 0
A 0

)(
AB A
0 0

))

=
√

ρ

((
A2B2 A2B
A2B A2

))

:= √
ρ(H).

Note that the nonzero blocks of H are all diagonal matrices, then its eigenvalues are
those of the matrices

Hi =
(
a2i b

2
i a2i bi

a2i bi a2i

)

, 1 ≤ i ≤ n.

By direct calculations, we then immediately achieve the conclusion that we were
proving. 	


Theorem 4.1 Let W be symmetric positive definite and T be symmetric positive semi-
definite, respectively. Then the MRPTS iteration method is convergent if for any θ ∈
[0, π

2 ], the parameters α and β satisfy

max

⎧
⎨

⎩

1 − (βμmin + 1)
√

λmin
λmax

cos θ

μmin
, 0

⎫
⎬

⎭
< α <

1 + (βμmin + 1)
√

λmin
λmax

cos θ

μmax
,

max {μmin − (α + μmax) tan θ, 0} ≤ β ≤ μmin + (α + μmin) tan θ. (34)

Proof Since βk defined as in (33) is the minimum point of the function ‖r (k+1)‖2, it
holds that

‖r (k+1)‖2 = ‖r (k) − βkĀM(α, β)−1r (k)‖2
≤ ‖r (k) − ĀM(α, β)−1r (k)‖2
= ‖(I − ĀM(α, β)−1)r (k)‖2
= ‖N (α, β)M(α, β)−1r (k)‖2
≤ ‖N (α, β)M(α, β)−1‖2‖r (k)‖2.

Straightforward computations reveal that
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N (α, β)M(α, β)−1

=
(
0 αT − W
0 0

)(
αW + T 0
T − βW βT + W

)−1

=
(
0 αT − W
0 0

)(
(αW + T )−1 0

−(βT + W )−1(T − βW )(αW + T )−1 (βT + W )−1

)

=
(

(αT − W )(βT + W )−1(βW − T )(αW + T )−1 (αT − W )(βT + W )−1

0 0

)

=
(
W

1
2 0

0 W
1
2

)(
(αS − I )(βS + I )−1(β I − S)(α I + S)−1 (αS − I )(βS + I )−1

0 0

)

(
W− 1

2 0

0 W− 1
2

)

.

Therefore, by making use of Lemma 4.1, we can conduct the estimate

‖N (α, β)M(α, β)−1‖2

≤
√

λmin

λmax

∥
∥
∥
∥

(
(αS − I )(βS + I )−1(β I − S)(α I + S)−1 (αS − I )(βS + I )−1

0 0

)∥
∥
∥
∥
2

≤
√

λmax

λmin
max
1≤i≤n

∣
∣
∣
∣
αμi − 1

βμi + 1

∣
∣
∣
∣

√

1 +
∣
∣
∣
∣
β − μi

α + μi

∣
∣
∣
∣

2

:= �(α, β, λmax, λmin) (35)

with λmax and λmin being the maximum and minimum eigenvalues ofW , respectively.
To get ‖N (α, β)M(α, β)−1‖2 < 1, it is enough to have

∣
∣
∣
∣
αμi − 1

βμi + 1

∣
∣
∣
∣

2
(

1 +
∣
∣
∣
∣
β − μi

α + μi

∣
∣
∣
∣

2
)

<
λmin

λmax
(36)

for all μi (1 ≤ i ≤ n). For notational simplicity we denote by

c̄ =
∣
∣
∣
∣
αμi − 1

βμi + 1

∣
∣
∣
∣ , d̄ =

∣
∣
∣
∣
β − μi

α + μi

∣
∣
∣
∣ , g =

√
λmin

λmax
.

If c̄ < g cos θ and d̄ < tan θ hold for any θ ∈ [0, π
2 ], then c̄2(1 + d̄2) < g2, which is

exactly (36). It follows from straightforward computations that a sufficient condition
for guaranteeing c̄ < g cos θ and d̄ < tan θ is (34). Thus if (34) holds, we deduce that

‖r (k+1)‖2 ≤ ‖N (α, β)M(α, β)−1‖2‖r (k)‖2 ≤ �(α, β, λmax, λmin)‖r (k)‖2 < ‖r (k)‖2,

which results in

lim
k→+∞ ‖r (k+1)‖2 ≤ lim

k→+∞ �(α, β, λmax, λmin)‖r (k)‖2
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= lim
k→+∞ �(α, β, λmax, λmin)

k‖r (0)‖2 = 0,

i.e., the MRPTS iteration method is convergent. 	

In the following, we study the choice for the parameters of the MRPTS iteration

method, which can be used in practical computation. At each step of the MRPTS
iteration method, two linear subsystems with the coefficient matrices αW + T and
βT + W require to be solved. By applying the idea of [20], the authors in [24] gave a
strategy for choosing the parameters of the TSP iteration method. According to [24],
the parameters α and β should satisfy

‖(α I + W− 1
2 TW− 1

2 )−1‖2 · ‖α I + W− 1
2 TW− 1

2 ‖2
= ‖(βW− 1

2 TW− 1
2 + I )−1‖2 · ‖βW− 1

2 TW− 1
2 + I‖2,

which is equivalent to (αβ−1)(μmax−μmin) = 0. Owing to the fact thatμmax �= μmin
holds in many practical problems, we consider to adopt proper parameters α and β

satisfying αβ = 1 and the conditions of Theorem 3.1 in the MRPTS iteration method.
The numerical results in Sect. 6 will illustrate the effectiveness of theMRPTS iteration
method by using this strategy.Here,μmax andμmin denote themaximumandminimum

eigenvalues of W− 1
2 TW− 1

2 , respectively.

5 The inexact MRPTS iterationmethod

The two half-steps at each step of the MRPTS iteration require finding solutions with
the coefficient matrices αW + T and βT + W . If the problem size is very large,
then using the direct methods like the Cholesky factorization to solve these problems
is time consuming. To overcome this disadvantage, we prefer to utilize the inexact
methods to solve these two linear equations. More specifically, we may employ the
CG or PCG methods to solve the linear systems with coefficient matrices αW + T
and βT + W , because they are symmetric positive definite. This yields the inexact
MRPTS (IMRPTS) iteration for solving the linear system (4) as follows.

The inexact MRPTS (IMRPTS) iteration method Given an initial guess (ū(0); v̄(0)),
for k = 0, 1, 2, . . ., until (ū(k); v̄(k)) converges, solve (ū(k+1); v̄(k+1)) approximately
from

(
αW + T 0
T − βW βT + W

)(
z̄(k)1

z̄(k)2

)

≈
(
r (k)
1

r (k)
2

)

= b̄ − Ā
(
ū(k)

v̄(k)

)

by employing the CG (or PCG) method to solve the linear subsystems with the coef-
ficient matrices αW + T and βT + W ; then compute (w̄

(k)
1 ; w̄

(k)
2 ) by

(
w̄

(k)
1

w̄
(k)
2

)

=
(

αW + T W − αT
T − βW βT + W

)(
z̄(k)1

z̄(k)2

)

,
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and compute (ū(k+1); v̄(k+1)) by

(
ū(k+1)

v̄(k+1)

)

=
(
ū(k)

v̄(k)

)

+ (r̄ (k)
1 )T w̄

(k)
1 + (r̄ (k)

2 )T w̄
(k)
2

‖w̄(k)
1 ‖22 + ‖w̄(k)

2 ‖22

(
z̄(k)1

z̄(k)2

)

, (37)

where α and β are given positive constants.
To simplify numerical implementation and convergence analysis, we may rewrite

the above IMRPTS iteration method as the following equivalent scheme.
Given an initial guess (ū(0); v̄(0)) and right-hand side vector b = (p; q) of (4), for

k = 0, 1, 2, . . ., until (ū(k); v̄(k)) converges,

1. compute r̄ (k) = b−A(ū(k); v̄(k)), and divide r̄ (k) into (r̄ (k)
1 ; r̄ (k)

2 ) with r̄ (k)
1 , r̄ (k)

2 ∈
R
n ;

2. compute r (k)
1 = αr̄ (k)

1 + r̄ (k)
2 and r (k)

2 = r̄ (k)
2 − βr̄ (k)

1 ;

3. approximate the solution of (αW+T )z̄(k)1 = r (k)
1 by the CG (or PCG)method until

z̄(k)1 is such that the residual p̄(k) = r (k)
1 −(αW+T )z̄(k)1 satisfies‖ p̄(k)‖ ≤ εk‖r̄ (k)

1 ‖;
4. compute t̄ (k) = r (k)

2 − (T − βW )z(k)1 ;

5. solve (βT+W )z̄(k)2 = t̄ (k) by theCG (or PCG)method to compute the approximate

solution z̄(k)2 until it is such that the residual q̄(k) = t̄ (k) − (βT + W )z̄(k)2 satisfies
‖q̄(k)‖ ≤ ηk‖t̄ (k)‖;

6. compute w̄
(k)
1 = (αW + T )z̄(k)1 + (W − αT )z̄(k)2 and w̄

(k)
2 = (T − βW )z̄(k)1 +

(βT + W )z̄(k)2 ;
7. compute the value of β̄k :

β̄k = (r̄ (k)
1 )T w̄

(k)
1 + (r̄ (k)

2 )T w̄
(k)
2

‖w̄(k)
1 ‖22 + ‖w̄(k)

2 ‖22
;

8. compute ū(k+1) = ū(k) + βk z̄
(k)
1 , v̄(k+1) = v̄(k) + βk z̄

(k)
2 , and (r̄ (k+1)

1 ; r̄ (k+1)
2 ) =

b − A(ū(k+1); v̄(k+1)).

Here, ‖ · ‖ is a norm of a vector, and {εk} and {ηk} are two prescribed tolerances.
Next, we analyze the convergence of the IMRPTS method. To this end, we con-

sider a vector norm |||x |||M2 = ‖M2x‖2 (∀x ∈ C
n) defined as in [14] and let

δk = max{εk, ηk}.
Motivated by Theorem 3.1 of [14], we establish the following result related to the

convergence property of the MRPTS iteration method.

Theorem 5.1 Let W , T ∈ R
n×n be symmetric positive definite and symmetric positive

semi-definite, respectively, and let α and β be positive constants satisfying the condi-
tion (34), and x̄ (k) = (ū(k); v̄(k)). If {x̄ (k)} is an iterative sequence generated by the
IMRPTS iteration method and if x∗ ∈ C

n is the exact solution of the system (4), then

|||x̄ (k+1) − x∗|||Ā ≤ ψ(k)|||x̄ (k) − x∗|||Ā,
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where

ψ(k) = �(α, β, λmax, λmin) + δk‖ĀM(α, β)−1‖2.

In particular, if

�(α, β, λmax, λmin)(1 + δk) + δk < 1, (38)

then the sequence {x̄ (k)} converges to x∗, where δk = max{εk, ηk}.
Proof It follows from Steps 3 and 5 of the IMRPTS iteration method in the above and
the definition of δk that

M(α, β)

(
z̄(k)1

z̄(k)2

)

=
(

αW + T 0
T − βW βT + W

)(
z̄(k)1

z̄(k)2

)

=
(
r (k)
1

r (k)
2

)

+
(
p̄(k)

q̄(k)

)

,

∥
∥
∥
∥

(
p̄(k)

q̄(k)

)∥
∥
∥
∥
2

=
∥
∥
∥
∥
∥

(
r (k)
1

r (k)
2

)

−
(

αW + T 0
T − βW βT + W

)(
z̄(k)1

z̄(k)2

)∥
∥
∥
∥
∥
2

≤ δk

∥
∥
∥
∥
∥

(
r (k)
1

r (k)
2

)∥
∥
∥
∥
∥
2

,

which along with (37) results in

x̄ (k+1) = x̄ (k) + β̄k(z̄
(k)
1 ; z̄(k)2 )

= x̄ (k) + β̄kM(α, β)−1[(r (k)
1 ; r (k)

2 ) + ( p̄(k); q̄(k))]
= x̄ (k) + β̄kM(α, β)−1(r (k)

1 ; r (k)
2 ) + β̄kM(α, β)−1( p̄(k); q̄(k))

and

r (k+1) = r (k) − β̄kĀ(z̄(k)1 ; z̄(k)2 ).

The combination of the above two equations yields the following result

|||x̄ (k+1) − x∗|||Ā
= ‖r (k+1)‖2
= ‖r (k) − β̄kĀ(z̄(k)1 ; z̄(k)2 )‖2
≤ ‖r (k) − Ā(z̄(k)1 ; z̄(k)2 )‖2
= ‖r (k) − ĀM(α, β)−1(r (k)

1 ; r (k)
2 ) − ĀM(α, β)−1( p̄(k); q̄(k))‖2

≤ ‖r (k) − ĀM(α, β)−1(r (k)
1 ; r (k)

2 )‖2 + ‖ĀM(α, β)−1( p̄(k); q̄(k))‖2
≤ ‖N (α, β)M(α, β)−1‖2‖r (k)‖2 + ‖ĀM(α, β)−1( p̄(k); q̄(k))‖2
≤ �(α, β, λmax, λmin)‖r (k)‖2 + ‖ĀM(α, β)−1‖2‖( p̄(k); q̄(k))‖2
≤ �(α, β, λmax, λmin)‖r (k)‖2 + δk‖ĀM(α, β)−1‖2‖r (k)‖2
= (�(α, β, λmax, λmin) + δk‖ĀM(α, β)−1‖2)‖r (k)‖2
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= (�(α, β, λmax, λmin) + δk‖ĀM(α, β)−1‖2)|||x̄ (k) − x∗|||Ā.

Under the condition (34), it has �(α, β, λmax, λmin) < 1. If {δk} is chosen such that

�(α, β, λmax, λmin) + δk‖ĀM(α, β)−1‖2 < 1,

then the iterative sequence {x̄ (k)} converges to the exact solution x∗ of (4). Moreover,
in view of (35) we deduce that

‖ĀM(α, β)−1‖2 = ‖I − N (α, β)M(α, β)−1‖2
≤ ‖I‖2 + ‖N (α, β)M(α, β)−1‖2
≤ 1 + �(α, β, λmax, λmin),

from which one gives the following result

ψ(k) ≤ �(α, β, λmax, λmin)(1 + δk) + δk .

Then a sufficient condition for guaranteeing ψ(k) < 1 is (38). Up to now, the proof
has been completed. 	

Remark 5.1 Theorem 5.1 can be utilized for the inexact PTS (IPTS) iteration method
due to the fact that it is the special case of the IMRPTS one.

6 Numerical experiments

In this section, we present the results of numerical experiments aimed at validating
the effectiveness of the proposed methods and comparing their numerical behaviors
with those of some known ones. Further, we exhibit the numerical advantages of the
PTS preconditioner over the PMHSS, additive block diagonal (ABD) [12], RBLT and
block triangular (BT) [29] ones. Here, the preconditioned matrix V in the PMHSS
iteration method is taken as W . For the tested iteration methods, their parameters are
the experimentally found optimal ones which minimize the total number of iterations.
In all tables, the parameters αpre and βpre are the ones that satisfyαβ = 1 andminimize
the IT of the MRPTS iteration method. Numerical results are compared in terms of
both the number of iteration steps (denoted by “IT”) and the elapsed CPU time in
seconds (denoted by “CPU”).

All experiments are carried out using MATLAB (version R2016b) on a personal
computer with Intel (R) Pentium (R) CPU G3240T 2.870GHz, 16.0 GB memory and
Windows 10 system. In actual computations, the initial vector is taken to be the zero
vector. All iterations are terminated once the current relative residual (denoted by
“RES”) norm is reduced by a factor of 1012 or the number of iteration steps exceeds
500, or the CPU times are over 3600s. The latter two are indicated by “–” in the
numerical tables.
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Table 1 Numerical results for different iteration methods for Example 6.1 when (�, μ) = (π, 0.02)

Method m 128 256 512 1024

PMHSS αexp 0.9 0.9 0.9 0.9

IT 77 77 77 77

CPU 1.2922 5.3227 45.5343 211.9940

RES 6.94e−13 7.51e−13 7.69e−13 7.73e−13

SCSP ωexp 1.37 1.38 1.39 1.40

IT 80 78 77 75

CPU 0.6274 2.9585 21.2163 99.5001

RES 7.80e−13 9.35e−13 7.81e−13 8.93e−13

CRI αexp 1 1 1 1

IT 27 26 24 23

CPU 0.5145 2.2184 15.9938 70.0917

RES 4.63e−13 4.13e−13 9.27e−13 8.38e−13

TMIT αexp 0.62 0.62 0.62 0.62

IT 19 18 17 17

CPU 0.3046 1.3647 6.1151 29.4480

RES 4.73e−13 6.51e−13 9.03e−13 3.25e−13

MRTMIT αexp 0.62 0.61 0.60 0.60

IT 19 17 16 17

CPU 0.2591 1.1849 6.1693 34.3332

RES 1.86e−13 6.99e−13 2.73e−13 4.74e−13

TTSCSP αexp 0.45 0.45 0.45 0.45

βexp 0.12 0.12 0.12 0.12

IT 19 19 19 18

CPU 0.3545 1.7036 11.1996 51.6492

RES 8.82e−13 6.52e−13 6.44e−13 5.47e−13

PTS αexp 0.45 0.45 0.45 0.45

βexp 0.10 0.10 0.10 0.10

IT 20 19 19 18

CPU 0.3045 1.4996 7.7722 35.3665

RES 6.16e−13 7.93e−13 3.04e−13 7.14e−13

MRPTS αexp 1 1 1 1

βexp 0.94 0.94 0.97 0.955

IT 17 16 15 15

CPU 0.2827 1.3486 6.4089 29.4228

RES 2.65e−13 3.39e−13 5.01e−13 6.91e−13

MRPTS αpre 1.5 1.4 1.4 1.4

βpre 0.6667 0.7143 0.7143 0.7143

IT 17 17 18 18

CPU 0.2899 1.4722 7.6980 39.1278

RES 4.82e−13 2.91e−13 8.58e−13 1.76e−13
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Table 2 When (σ1, σ2) = (10, 100), numerical results for different iteration methods for Example 6.2

Method m 128 256 512 1024

PMHSS αexp 1 1 1 1

IT 80 81 81 81

CPU 1.1685 5.7358 46.3507 230.1828

RES 9.58e−13 8.31e−13 8.87e−13 9.04e−13

SCSP ωexp 1.36 1.38 1.39 1.39

IT 90 89 87 86

CPU 0.6972 3.3356 24.8934 124.1379

RES 8.58e−13 8.94e−13 9.99e−13 7.95e−13

CRI αexp 1 1 1 1

IT 36 34 33 31

CPU 0.6013 2.6913 21.0440 92.8868

RES 5.27e−13 7.50e−13 5.32e−13 7.57e−13

TMIT αexp 0.64 0.64 0.63 0.63

IT 20 19 18 18

CPU 0.2767 1.3588 6.4789 34.9853

RES 6.19e−13 8.04e−13 8.40e−13 2.98e−13

MRTMIT αexp 0.57 0.59 0.60 0.60

IT 19 17 19 19

CPU 0.2943 1.3628 8.2398 37.1222

RES 3.26e−13 9.39e−13 8.24e−13 4.20e−13

TTSCSP αexp 0.45 0.45 0.45 0.45

βexp 0.12 0.11 0.11 0.11

IT 22 22 21 21

CPU 0.3701 1.7815 12.4429 57.7445

RES 8.48e−13 4.65e−13 7.39e−13 5.93e−13

PTS αexp 0.45 0.45 0.45 0.45

βexp 0.12 0.10 0.10 0.10

IT 23 22 21 21

CPU 0.3561 1.7389 8.0597 38.9969

RES 7.01e−13 6.82e−13 9.26e−13 6.54e−13

MRPTS αexp 1 1 1 1

βexp 0.925 0.96 0.96 0.96

IT 17 17 17 16

CPU 0.2802 1.3915 6.8732 31.1029

RES 4.95e−13 5.52e−13 8.97e−13 8.24e−13

MRPTS αpre 1.1 1.1 1.03 1.03

βpre 0.9091 0.9091 0.9709 0.9709

IT 17 17 17 16

CPU 0.2919 1.4525 7.3702 32.9961

RES 3.76e−13 9.78e−13 3.39e−13 9.25e−13
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Table 3 Numerical results for different iteration methods for Example 6.3

Method m 128 256 512 1024

PMHSS αexp 0.7 0.8 1 1.1

IT 61 62 65 69

CPU 1.3952 7.0130 60.2707 290.3031

RES 7.40e−13 9.18e−13 8.86e−13 8.28e−13

SCSP ωexp 1.13 1.01 0.95 0.93

IT 82 122 165 198

CPU 0.8134 6.9190 74.9659 452.8848

RES 9.63e−13 8.97e−13 8.48e−13 9.42e−13

CRI αexp 1 1 1 1

IT 36 36 36 35

CPU 0.8589 4.5805 35.5885 163.6716

RES 9.75e−13 7.46e−13 5.28e−13 7.52e−13

TMIT αexp 0.68 0.77 0.80 0.82

IT 23 26 27 28

CPU 0.5068 3.0231 14.9228 76.4157

RES 5.24e−13 5.88e−13 6.47e−13 7.74e−13

MRTMIT αexp 0.62 0.59 0.66 0.66

IT 21 23 25 27

CPU 0.4260 2.6903 14.3862 78.0856

RES 3.41e−13 6.17e−13 7.25e−13 9.01e−13

TTSCSP αexp 0.36 0.24 0.17 0.14

βexp 0.22 0.22 0.22 0.22

IT 22 27 31 34

CPU 0.5998 3.5273 28.3587 151.4894

RES 5.68e−13 8.65e−13 8.98e−13 6.17e−13

PTS αexp 0.37 0.24 0.17 0.14

βexp 0.23 0.22 0.22 0.22

IT 22 27 32 36

CPU 0.5012 3.2822 18.3237 101.2192

RES 6.85e−13 6.82e−13 6.38e−13 5.13e−13

MRPTS αexp 1.05 1.03 1.02 1.02

βexp 0.92 0.935 0.935 0.935

IT 15 16 17 17

CPU 0.3879 2.1892 10.7612 53.4980

RES 6.81e−13 4.09e−13 1.07e−13 9.37e−13

MRPTS αpre 1.08 1.07 1.07 1.05

βpre 0.9259 0.9346 0.9346 0.9524

IT 16 16 18 20

CPU 0.4031 2.1111 12.1748 68.3381

RES 5.39e−13 9.95e−13 2.76e−13 4.21e−13
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Table 4 Numerical results for different iteration methods for Example 6.4

Method m 128 256 512 1024

PMHSS αexp 1.4 1.4 1.4 1.4

IT 43 43 43 43

CPU 2.0576 9.6673 49.9618 232.8513

RES 8.21e−13 7.68e−13 7.38e−13 7.24e−13

SCSP ωexp 0.6 0.6 0.6 0.6

IT 21 21 21 21

CPU 0.3891 1.5661 8.1872 38.2184

RES 4.99e−13 6.55e−13 7.61e−13 8.26e−13

CRI αexp 1 1 1 1

IT 41 41 41 41

CPU 1.2365 6.0289 30.5952 145.7394

RES 8.93e−13 9.04e−13 9.08e−13 9.09e−13

TMIT αexp 0.62 0.63 0.64 0.64

IT 22 22 22 22

CPU 0.5672 2.4507 12.6579 67.2756

RES 5.38e−13 2.94e−13 5.10e−13 5.28e−13

MRTMIT αexp 0.67 0.72 0.68 0.65

IT 16 17 17 16

CPU 0.4417 2.0956 10.9334 48.0135

RES 7.89e−13 3.26e−13 3.32e−13 9.56e−13

TTSCSP αexp 0.35 0.35 0.35 0.35

βexp 1.1 1.1 1.1 1.1

IT 9 9 9 9

CPU 0.3271 1.4220 7.3943 37.1068

RES 5.46e−13 8.65e−13 1.90e−13 1.23e−13

PTS αexp 0.38 0.38 0.38 0.38

βexp 1.12 1.1 1.1 1.1

IT 10 9 9 9

CPU 0.3139 1.2316 5.8765 27.3067

RES 3.75e−14 9.86e−13 9.23e−13 8.88e−13

MRPTS αexp 1 1 1 1

βexp 3.6 3.6 3.6 3.6

IT 9 9 9 9

CPU 0.2897 1.2349 6.3891 28.5775

RES 8.96e−13 8.53e−13 6.29e−13 4.11e−13

MRPTS αpre 0.60 0.60 0.60 0.60

βpre 1.6667 1.6667 1.6667 1.6667

IT 9 9 9 10

CPU 0.3110 1.3474 7.0470 34.5838

RES 9.58e−13 6.85e−14 8.98e−14 1.90e−13
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Table 5 Numerical results for the tested preconditioned GMRESmethods for Example 6.1 when (�, μ) =
(π, 0.02)

Method m 128 256 512 1024

PMHSS-GMRES αexp 10 10 10 10

IT 22 22 22 22

CPU 0.6463 2.0176 9.8752 47.1681

RES 6.26e−14 6.32e−14 6.09e−14 6.17e−14

ABD-GMRES αexp 2 2 2 2

IT 15 15 15 15

CPU 0.3068 1.5090 7.6157 36.5362

RES 3.82e−13 3.57e−13 3.43e−13 3.36e−13

RBLT-GMRES αexp 1 1 1 1

IT 12 12 12 12

CPU 0.2440 1.1996 5.8368 26.5757

RES 7.45e−13 7.62e−13 7.27e−13 6.83e−13

BT-GMRES αexp 1 1 1 1

IT 8 8 9 9

CPU 0.2799 1.3940 7.7004 36.2910

RES 5.86e−13 6.75e−13 5.24e−14 7.26e−14

PTS-GMRES αexp 25 25 25 25

βexp 0.1 0.1 0.1 0.1

IT 7 7 7 7

CPU 0.1914 0.9720 4.9159 22.5076

RES 2.94e−14 3.96e−14 4.76e−14 5.67e−14

Example 6.1 We consider the following complex symmetric linear system [9,10]:

[(−� 2M + K ) + i(�CV + CH )]x = b,

whereM and K are the inertia and the stiffnessmatrices,CV andCH are the viscous and
the hysteretic damping matrices, respectively, and� is the driving circular frequency.
We take CH = μK with μ a damping coefficient, M = I , CV = 10I , and K the five-
point centered difference matrix approximating the negative Laplacian operator with
homogeneous Dirichlet boundary conditions, on a uniform mesh in the unit square
[0, 1] × [0, 1] with the mesh-size h = 1/(m + 1). The matrix K ∈ R

n×n possesses
the tensor-product form K = I ⊗ Vm + Vm ⊗ I , with Vm = h−2tridiag(−1, 2,−1) ∈
R
m×m . Hence, K is an n × n block-tridiagonal matrix, with n = m2. In addition, we

set the right-hand side vector b to be b = (1 + i)A1, with 1 being the vector of all
entries equal to 1. The linear system is normalized by multiplying both sides with h2.

Example 6.2 Consider the complex Helmholtz equation [22,36,39]:

−�u + σ1u + iσ2u = f
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Table 6 When (σ1, σ2) = (10, 100), numerical results for different tested preconditionedGMRESmethods
for Example 6.2

Method m 128 256 512 1024

PMHSS-GMRES αexp 10 10 10 10

IT 27 27 27 27

CPU 0.5379 2.4658 12.0660 60.7561

RES 7.95e−13 8.69e−13 8.50e−13 8.01e−13

ABD-GMRES αexp 3 3 3 3

IT 19 19 19 19

CPU 0.3383 1.8114 9.4279 44.8177

RES 3.02e−13 1.98e−13 1.57e−13 2.08e−13

RBLT-GMRES αexp 1 1 1 1

IT 16 16 16 16

CPU 0.3231 1.5035 7.0927 34.0243

RES 9.21e−14 1.03e−13 1.03e−13 9.77e−14

BT-GMRES αexp 0.2 0.25 0.25 0.26

IT 11 11 11 11

CPU 0.3452 1.7248 8.8147 42.4493

RES 4.65e−14 5.12e−14 5.60e−13 4.76e−13

PTS-GMRES αexp 10 10 10 10

βexp 0.2 0.2 0.2 0.18

IT 9 9 9 8

CPU 0.2122 1.0711 5.0687 21.7177

RES 5.63e−14 5.41e−14 8.74e−13 6.64e−13

with σ1 and σ2 being real coefficient functions. Here, u satisfies Dirichlet boundary
conditions in the square D = [0, 1] × [0, 1]. By discretizing this equation with finite
differences on an m × m grid with mesh size h = 1/(m + 1), we obtain a complex
linear system

[(K + σ1 I ) + iσ2 I ]x = b,

where the matrix K ∈ R
n×n possesses the tensor-product form

K = I ⊗ Bm + Bm ⊗ I with Bm = 1

h2
· tridiag(−1, 2,−1) ∈ R

m×m .

Actually, K is the five-point centered difference matrix approximating the negative
Laplacian operator L = −�. In our tests, let the right-hand side vector b = (1+ i)A1
with 1 being the vector of all entries are equal to 1. As before, we normalize the
complex linear system by multiplying both sides by h2.
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Table 7 Numerical results for the tested preconditioned GMRES methods for Example 6.3

Method m 128 256 512 1024

PMHSS-GMRES αexp 10 1 1 1

IT 27 27 27 28

CPU 0.7345 3.7177 18.3317 94.7583

RES 6.47e−13 5.50e−13 9.92e−13 5.03e−13

ABD-GMRES αexp 3 3 3 3

IT 24 32 44 58

CPU 0.7191 4.7093 36.6458 222.9774

RES 1.57e−13 6.78e−13 3.30e−13 7.06e−13

RBLT-GMRES αexp 1 1 1 1

IT 14 14 14 15

CPU 0.4030 1.9504 9.5837 49.6874

RES 6.19e−13 3.99e−13 7.56e−13 9.45e−14

BT-GMRES αexp 0.3 0.5 0.6 0.8

IT 11 13 15 16

CPU 0.4833 2.9832 17.4067 79.3832

RES 2.55e−13 3.84e−13 3.69e−13 5.46e−13

PTS-GMRES αexp 10 5 3 2

βexp 0.5 1 1 1

IT 9 11 13 15

CPU 0.2994 1.7480 9.7903 53.9726

RES 8.12e−13 5.00e−13 5.03e−13 1.70e−13

Example 6.3 [9,10] Consider the linear system of equations (W + iT )x = b, with

T = I ⊗ V + V ⊗ I and W = 10(I ⊗ Vc + Vc ⊗ I ) + 9(e1e
T
m + eme

T
1 ) ⊗ I ,

where V = tridiag(− 1, 2,− 1) ∈ R
m×m , Vc = V − e1eTm − emeT1 ∈ R

m×m and e1
and em are the first and last unit vectors in R

m , respectively. We take the right-hand
side vector b to be b = (1 + i)A1, with 1 being the vector of all entries equal to 1.

Here T andW correspond to thefive-point centered differencematrices approximat-
ing the negative Laplacian operator with homogeneous Dirichlet boundary conditions
and periodic boundary conditions, respectively, on a uniform mesh in the unit square
[0, 1] × [0, 1] with the mesh-size h = 1

m+1 .

Example 6.4 [9,10] Consider the linear system of equations

[(

K + 3 − √
3

τ
I

)

+ i

(

K + 3 + √
3

τ
I

)]

x = b,

where τ is the time step-size and K is the five-point centered difference matrix
approximating the negative Laplacian operator L = −� with homogeneous Dirich-
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Table 8 Numerical results for the tested preconditioned GMRES methods for Example 6.4

Method m 128 256 512 1024

PMHSS-GMRES αexp 0.8 1 1 1

IT 19 21 21 21

CPU 0.8336 4.0443 19.1729 86.8263

RES 9.15e−13 2.15e−13 3.62e−13 3.26e−13

ABD-GMRES αexp 1 0.9 0.7 0.45

IT 36 38 39 40

CPU 1.6088 9.3486 41.7325 189.9543

RES 8.05e−13 4.61e−13 9.53e−13 2.99e−13

RBLT-GMRES αexp 1 1 1 1

IT 11 11 11 11

CPU 0.4322 1.8226 8.7787 40.4093

RES 8.04e−14 1.97e−13 2.62e−13 1.83e−13

BT-GMRES αexp 1.5 1.5 1.5 1.5

IT 10 10 10 10

CPU 0.5510 2.4560 11.6316 53.5778

RES 5.32e−14 1.86e−13 5.34e−13 8.96e−13

PTS-GMRES αexp 1.5 1.4 1.4 1.4

βexp 6.6 8 8 8.3

IT 8 8 8 8

CPU 0.3598 1.6274 8.3472 34.8529

RES 8.56e−13 6.40e−13 9.08e−13 9.78e−13

let boundary conditions, on a uniform mesh in the unit square [0, 1] × [0, 1] with
the mesh-size h = 1

m+1 . The matrix K ∈ R
n×n possesses the tensor-product form

K = I ⊗ Vm + Vm ⊗ I , with Vm = h−2tridiag(−1, 2,−1) ∈ R
m×m . Hence, K is an

n × n block-tridiagonal matrix, with n = m2. We take

W = K + 3 − √
3

τ
I and T = K + 3 + √

3

τ
I ,

and the right-hand side vector b with its j th entry b j being given by

b j = (1 − i) j

τ( j + 1)2
, j = 1, 2, . . . , n.

In our tests, we take τ = h. Besides, we normalize coefficient matrix and right-hand
side by multiplying both by h2.

For all the tested exact iteration methods, we apply the Cholesky factorization
incorporated with the symmetric approximate minimum degree reordering [30] for
solving the sub-systems. To do so, the symamd.m command of Matlab [32] is used
here.
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Table 9 Numerical results for the tested inexact iterationmethods forExample 6.1when (�,μ) = (π, 0.02)

Method m 128 256 512 1024

IPMHSS αexp 1 1 1 0.9

IT 78 79 79 79

CPU 1.5407 6.1557 43.7370 229.8173

RES 7.69e−13 7.55e−13 7.68e−13 8.81e−13

ISCSP ωexp 1.45 1.49 1.50 1.50

IT 69 68 69 71

CPU 0.5260 2.7028 31.0392 170.0237

RES 9.97e−13 7.02e−13 7.99e−13 7.10e−13

IPGSOR αexp 0.85 0.85 0.85 0.85

ωexp 1.7 1.7 1.65 1.75

IT 18 18 18 18

CPU 0.4626 2.4784 14.7452 95.8220

RES 1.94e−13 3.85e−13 7.83e−13 2.92e−13

ITMIT αexp 0.64 0.63 0.63 0.64

IT 20 19 19 18

CPU 0.5998 2.8607 20.4515 113.6930

RES 5.49e−13 8.15e−13 3.32e−13 7.62e−13

ITTSCSP αexp 0.49 0.5 0.5 0.5

βexp 0.14 0.14 0.15 0.15

IT 24 24 25 25

CPU 0.8768 5.9890 72.8336 518.9691

RES 6.24e−13 6.66e−13 8.93e−13 7.50e−13

IPTS αexp 0.47 0.52 0.54 0.55

βexp 0.135 0.14 0.15 0.15

IT 24 26 26 26

CPU 0.7987 4.3849 40.3469 346.9023

RES 9.17e−13 4.00e−13 6.82e−13 6.45e−13

IMRPTS αexp 1.95 1.93 2 2.1

βexp 0.9 0.93 0.95 0.98

IT 18 19 19 19

CPU 0.3837 2.0781 13.6492 72.2002

RES 3.14e−13 6.92e−13 6.19e−13 9.10e−13

The experimentally found optimal parameters, IT and CPU times of the tested
exact iteration methods for Examples 6.1–6.4 with respect to different problem sizes
are listed in Tables 1, 2, 3, 4, 5, 6, 7 and 8. FromTables 1, 2, 3 and 4, we observe that the
PTS iterationmethod outperforms the PMHSS, SCSP andCRI ones, and the advantage
of the PTS one becomes more pronounced as the system size increases. By comparing
with the PTS and the TTSCSP iteration methods, we find that their IT are almost the
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Table 10 When (σ1, σ2) = (10, 100), numerical results for different inexact iteration methods for Exam-
ple 6.2

Method m 128 256 512 1024

IPMHSS αexp 1.1 0.9 1 1

IT 81 82 83 84

CPU 0.9684 4.3253 30.9399 168.8756

RES 9.68e−13 9.63e−13 9.38e−13 7.93e−13

ISCSP ωexp 1.39 1.39 1.43 1.45

IT 83 85 83 82

CPU 0.4926 2.0362 22.4343 114.9036

RES 8.56e−13 9.32e−13 7.79e−13 8.56e−13

IPGSOR αexp 0.85 0.85 0.85 0.85

ωexp 1.65 1.65 1.65 1.65

IT 18 18 18 18

CPU 0.2906 1.5107 10.0339 51.4547

RES 3.53e−13 6.42e−13 4.17e−13 8.22e−13

ITMIT αexp 0.63 0.63 0.63 0.63

IT 21 20 19 19

CPU 0.3499 1.8590 12.7252 72.6571

RES 6.91e−13 9.58e−13 8.75e−13 4.06e−13

ITTSCSP αexp 0.43 0.43 0.43 0.44

βexp 0.1 0.1 0.1 0.1

IT 24 25 25 25

CPU 0.4688 2.4933 27.5653 158.0234

RES 4.94e−13 4.27e−13 8.22e−13 7.73e−13

IPTS αexp 0.43 0.43 0.43 0.44

βexp 0.1 0.1 0.1 0.1

IT 25 25 25 25

CPU 0.4692 2.2133 14.1735 71.4201

RES 7.69e−13 6.31e−13 5.04e−13 7.64e−13

IMRPTS αexp 1.9 1.7 1.7 1.7

βexp 0.95 0.9 0.85 0.82

IT 19 19 19 20

CPU 0.2782 1.4461 8.9909 49.7253

RES 7.88e−13 7.08e−13 9.61e−13 6.80e−13

same. This is owing to the fact that they have the same optimal convergence factors as
remarked in Sect. 2. While the PTS iteration method requires less CPU times than the
latter one. The reason is that in the TTSCSP iteration method we deal with complex
arithmetic whereas in the PTS one we deal only with real arithmetic. The MRPTS
iteration method performs better than the PMHSS, SCSP, CRI and PTS ones, and its
IT is almost unchanged even decreases with respect to m. Meanwhile, the numerical
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Table 11 Numerical results for different inexact iteration methods for Example 6.3

Method m 128 256 512 1024

IPMHSS αexp 0.7 0.7 0.9 1

IT 65 66 68 70

CPU 2.8161 16.7937 151.8701 962.7204

RES 8.77e−13 9.90e−13 8.52e−13 9.78e−13

ISCSP ωexp 1.23 1.17 1.14 1.10

IT 81 95 101 120

CPU 2.3751 16.2250 229.4278 1.3692e+03

RES 7.02e−13 7.51e−13 9.26e−13 8.24e−13

IPGSOR αexp 0.85 0.85 0.83 0.81

ωexp 1.3 1.25 1.25 1.25

IT 19 20 22 23

CPU 1.2541 7.5418 66.5938 419.1550

RES 4.02e−13 6.22e−13 7.13e−13 9.25e−13

ITMIT αexp 0.68 0.77 0.81 0.84

IT 21 22 24 24

CPU 1.3878 8.4091 68.9586 419.0472

RES 6.12e−13 8.97e−13 3.45e−13 5.43e−13

ITTSCSP αexp 0.4 0.34 0.32 0.31

βexp 0.17 0.17 0.17 0.17

IT 21 23 24 25

CPU 2.1806 12.2523 172.6473 915.1399

RES 7.19e−13 6.89e−13 7.75e−13 5.50e−13

IPTS αexp 0.41 0.28 0.26 0.22

βexp 0.17 0.18 0.2 0.2

IT 22 30 37 43

CPU 1.6197 13.4279 147.9300 944.9223

RES 9.06e−13 8.32e−13 9.31e−13 6.88e−07

IMRPTS αexp 1.7 1.8 1 1

βexp 0.95 1 0.94 0.96

IT 19 21 23 23

CPU 1.3415 9.4876 65.7000 408.5504

RES 6.97e−13 8.15e−13 8.17e−13 6.82e−13

behaviors of the MRPTS, MRTMIT (The minimum residual version of TMIT) and
TMIT iteration methods are comparable for Examples 6.1 and 6.2, while the former
is the most efficient method for Examples 6.3 and 6.4. In addition, it is apparent that
the experimentally found optimal parameters of the MRPTS method are stable, which
brings great convenience for us to find those for large systems. As the numerical results
of Tables 5, 6, 7 and 8 show, the computing efficiency of the PTS preconditioner is
superior to the other ones in terms of IT and CPU times.
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Table 12 Numerical results for different inexact iteration methods for Example 6.4

Method m 128 256 512 1024

IPMHSS αexp 1.1 1.1 1.2 1.2

IT 44 43 43 43

CPU 0.4967 1.8970 11.1667 49.3969

RES 7.36e−13 8.85e−13 6.96e−13 7.92e−13

ISCSP ωexp 0.61 0.61 0.62 0.62

IT 21 21 21 21

CPU 0.1365 0.5524 5.1019 23.2132

RES 5.79e−13 6.69e−13 6.91e−13 8.07e−13

IPGSOR αexp 0.85 0.85 0.85 0.85

ωexp 1.02 1.02 1.02 1.02

IT 18 18 18 17

CPU 0.1865 0.7953 4.5397 19.1206

RES 3.44e−13 2.29e−13 2.52e−13 6.50e−13

ITMIT αexp 0.62 0.62 0.62 0.62

IT 25 26 26 26

CPU 0.3397 1.4859 7.9846 31.9640

RES 7.28e−13 5.76e−13 4.40e−13 7.71e−13

ITTSCSP αexp 0.34 0.34 0.34 0.34

βexp 1.12 1.12 1.05 1.05

IT 10 10 10 10

CPU 0.1342 0.5078 4.7300 22.2256

RES 2.66e−13 8.12e−13 5.74e−13 3.10e−13

IPTS αexp 0.36 0.36 0.36 0.36

βexp 1 1 1 1

IT 14 14 14 14

CPU 0.1682 0.6762 3.7657 16.8961

RES 1.39e−13 2.13e−13 3.24e−13 4.88e−13

IMRPTS αexp 0.98 0.98 0.98 0.98

βexp 3.3 3.3 3.3 3.3

IT 13 13 13 13

CPU 0.1674 0.6586 3.7577 16.9447

RES 8.81e−14 2.12e−13 5.28e−13 3.85e−13

The numerical performances of the MRPTS iteration method with the parameters
αpre and βpre and with the experimentally found optimal parameters are comparable.
Thus, the strategy for choosing the parameters αpre and βpre of the MRPTS iteration
method can be applicable for the practical problems.

Besides, Tables 9, 10, 11 and 12 report the numerical results of the tested inexact
iteration methods. We adopt the PCG method as the inner solver for the tested inexact
methods. More concretely, we employ the modified incomplete Cholesky factor-
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ization (Matlab code: ichol(C,struct(‘michol’,‘on’,‘type’,‘ict’,
‘droptol’,1e-1))) as the preconditioner in the PCG method, as it was used in
[32]. The stopping tolerance used for the inner PCG iteration method is 10−1. Note
that the parameters adopted in Table 9 are the ones that minimize the IT of the tested
methods without the condition that the diagonal elements of the matrix is nonpositive
when applying the function ichol of Matlab for Example 6.1.

By comparing the results in Tables 9, 10, 11 and 12, we can see that, the IPTS
iteration method is more efficient than the ITTSCSP one for most cases from the CPU
times point of view. For Examples 6.1 and 6.2, the IMRPTS iteration method returns
better numerical results than the other tested ones. The exception is that the IT of the
ITMIT and the IPGSOR iteration methods are less than that of the IMRPTS one, while
the latter outperforms the ITMIT and the IPGSOR ones with respect to the CPU times.
For Examples 6.3 and 6.4, the IMRPTS iteration method performs the best among the
tested ones. Another important fact which can be pointed out is that the convergence
behavior of the IMRPTS iteration method is insensitive to m and almost independent
to the problem size.

7 Concluding remarks

In the current paper, we first establish a preconditioned triangular splitting (PTS) itera-
tion method, which avoids involving complex arithmetic compared with the TTSCSP
one derived in [32]. Besides, by using the minimum residual technique put forward in
[38], we construct a minimum residual PTS (MRPTS) iterationmethod which exhibits
higher calculation efficiency than the PTS one. The inexact version of theMRPTS iter-
ation method is also derived. We establish the convergence theories for the proposed
iteration methods and investigate the spectral properties of the PTS-preconditioned
matrix in detail. Finally, numerical experiments validate the effectiveness of the pro-
posed methods, and they are superior to some known ones in terms of the iterations
and CPU times.

However, in this work the parameters of the proposed iteration methods and pre-
conditioner in the numerical experiments are the experimentally found optimal ones
or the proper ones satisfying αβ = 1. The choice of the optimal parameters of them
has not been derived, which needs further discussions in our future work.

Acknowledgements Wewould like to express our sincere thanks to the editor and the anonymous reviewer
for their valuable suggestions and constructive comments which greatly improved the presentation of this
paper.
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