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Abstract
The paper introduces two new extragradient algorithms for solving a pseudomonotone
equilibrium problem with a Lipschitz-type condition recently presented by Mastroeni
in auxiliary problemprinciple. The algorithmuses variable stepsizeswhich are updated
at each iteration and based on some previous iterates. The advantage of the algorithms
is that they are done without the prior knowledge of Lipschitz-type constants and also
without any linesearch procedure. The convergence of the algorithms is established
under mild assumptions. In the case where the equilibrium bifunction is strongly
pseudomonotone, the R-linear rate of convergence of the newalgorithms is formulated.
Several of fundamental experiments are provided to illustrate the numerical behavior
of the algorithms and also to compare with others.
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1 Introduction

The paper considers some methods for approximating solutions of an equilibrium
problem in a real Hilbert space H . Let C be a nonempty closed convex subset of H .
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Recall that an equilibrium problem (shortly, EP) for a bifunction f : C × C → � is
stated as follows:

Find x∗ ∈ C such that f (x∗, y) ≥ 0, ∀y ∈ C . (EP)

Let us denote by EP( f ,C) the solution set of problem (EP). Mathematically,
problem (EP) can be considered as a general model in the sense that it unifies in a
simple form numerous knownmodels as optimization problems, fixed point problems,
variational inequalites as well as Nash equilibrium problems [6–8,10,20,26]. This
can explain why problem (EP) becomes an attractive field in recent years. Together
with theoretical results of solution existence, approximation methods to solutions of
problem (EP) are also interesting. The first notable method for solving problem (EP)
can be the proximal pointmethod [19,25]. Themain idea of thismethod is to replace the
original problem by a family of regularization equilibrium subproblems which can be
solved more easily. The regularized solutions can converge finitely or asymptotically
to some solution of the original problem.

In this paper, we are interested in the proximal-like method [9] which is also called
the extragradient method [27] due to the early contributions on the saddle point prob-
lems in [21]. The convergence of the extragradient method is established in [27]
under the assumptions that the bifunction is pseudomonotone and satisties a Lipschitz-
type condition presented in [24]. Another method, named the modified extragradient
method in [22], can be considered as an improvement of the extragradient method in
[9,27] where the complexity of the algorithm is reduced. Unlike [9,27], the modified
method in [22] only requires to proceed one value of bifunction by iteration. Some
other methods for solving problem (EP) can be found, for example, in the works
[1–4,6,13–18,23,28–30].

At this stage, it is worth mentioning that the methods in [22,27] are used under the
requirement that the Lipschitz-type constants must be known. This means that those
constants must be input parameters of the algorithms. Unfortunately, Lipschitz-type
constants in general are unknown or even with complex non-linear problems they
are still difficult to approximate. In those cases, methods with a linesearch procedure
have been considered. However, a linesearch often requiresmany computations at each
iterationwhich is inherently time-consuming. Recently, the author in [11,12] has intro-
duced some extragradient-like algorithms with previously taking suitable stepsizes to
avoid the finding of the Lipschitz-type constants of bifunction. The convergence of
the methods in [11,12] is proved under the assumption of strong pseudomonotonicity
of bifunction. Without this assumption, those methods cannot converge, see in [11,
Remark 2] or [12, Remark 4.6].

In this paper, motivated and inspired by the aforementioned results, we introduce
two iterative algorithms with new stepsize rules for solving a pseudomonotone and
Lipschitz-type equilibrium problem in a real Hilbert space. The variable stepsizes
are generated by the algorithms at each iteration, based on some previous iterates,
and without any linesearch procedure. Unlike the results in [22,27], the proposed
algorithms are performedwithout the prior knowledge of the Lipschitz-type constants.
The convergence of the new algorithms is established under some standard conditions.
In the case where the bifunction is strongly pseudomonotone, the R-linear rate of
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convergence of the algorithms has been proved contrary to the algorithms in [11,12].
Some experiments are performed to show the numerical behavior of the proposed
algorithms, and also to compare with others.

This paper is organized as follows: Sect. 2 recalls some definitions and results used
in the paper. Sect. 3 presents the new algorithms and proves their convergence while
Sect. 4 deals with their rate of convergence. Several fundamental experiments are
provided in Sect. 5.

2 Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H . We
begin with some concepts of monotonicity of a bifunction f : C ×C → �, see [7,26]
for more details. The bifunction f is called:
(a) γ -strongly monotone on C if there exists γ > 0 such that

f (x, y) + f (y, x) ≤ −γ ||x − y||2, ∀x, y ∈ C;

(b) monotone if

f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ C;

(c) γ -strongly pseudomonotone on C if there exists γ > 0 such that

f (x, y) ≥ 0 	⇒ f (y, x) ≤ −γ ||x − y||2, ∀x, y ∈ C;

(d) pseudomonotone on C if

f (x, y) ≥ 0 	⇒ f (y, x) ≤ 0, ∀x, y ∈ C;

It follows from the definitions that the following implications hold,

(a) 	⇒ (b) 	⇒ (d) and (a) 	⇒ (c) 	⇒ (d).

A bifunction f : C × C → � satisfies a Lipschitz-type condition [23] if there exist
two constants c1, c2 > 0 such that

f (x, y) + f (y, z) ≥ f (x, z) − c1||x − y||2 − c2||y − z||2, ∀x, y ∈ C .

Recall that the proximal mapping of a proper, convex and lower semicontinuous func-
tion g : C → � with a parameter λ > 0 is defined by

proxλg(x) = argmin

{
λg(y) + 1

2
||x − y||2 : y ∈ C

}
, x ∈ H .

The following is a property of the proximalmapping proxλg (see, [5] formore details).
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Lemma 1 For all x ∈ H , y ∈ C and λ > 0, the following inequality holds,

λ
{
g(y) − g(proxλg(x))

} ≥ 〈
x − proxλg(x), y − proxλg(x)

〉
.

Remark 1 From Lemma 1, it is easy to show that if x = proxλg(x) then

x ∈ Argmin {g(y) : y ∈ C} :=
{
x ∈ C : g(x) = min

y∈C g(y)

}
.

We also need the following lemma (see, [5, Theorem 5.5]).

Lemma 2 Let {xn} be a sequence in H and C be a nonempty subset of H. Suppose
that {xn} is Fejér monotone with respect to C, i.e., ||xn+1 − x || ≤ ||xn − x || for all
n ≥ 0 and for all x ∈ C, and that every weak sequential cluster point of {xn} belongs
to C. Then, the sequence {xn} converges weakly to a point in C.

3 Explicit extragradient algorithms

In this section, we introduce two extragradient algorithms for solving pseudomontone
(EP) with a Lipschitz-type condition. The algorithms are explicit in the sense that
they are done without previously knowing the Lipschitz-type constants of bifunction.
This is particularly interesting in the case where these constants are unknown or even
difficult to approximate. For the sake of simplicity in the presentation, we will use
the notation [t]+ = max {0, t} and adopt the conventions 0

0 = +∞ and a
0 = +∞

(a �= 0). The following is the first algorithm.

Algorithm 1 Initialization Choose x0 ∈ C and λ0 > 0, μ ∈ (0, 1).
Iterative steps Assume that xn ∈ C and λn (n ≥ 0) are known. Compute xn+1, λn+1
as follows:

{
yn = proxλn f (xn ,.)(xn),

xn+1 = proxλn f (yn ,.)(xn),

and set

λn+1 = min

{
λn,

μ(||xn − yn||2 + ||xn+1 − yn||2)
2

[
f (xn, xn+1) − f (xn, yn) − f (yn, xn+1)

]
+

}
.

Stopping criterion If yn = xn then stop and xn is a solution of EP.

It is seen that the stepsize λn generated by the algorithm, and updated during the
iteration is based on the previous iterate xn and the two current ones yn and xn+1. This
is different from the strategy to choose of diminishing and non-summable stepsizes
in [11]. Comparing with linesearch algorithms, for example [27, Algorithm 2a], the
stepsize inAlgorithm1 is computedmore simply. Indeed, a linesearch procedure needs

123



Explicit iterative algorithms for EPs Page 5 of 21 11

many computations by iteration with some finite stopping criterion, and is of course
more time-consuming. As seen below, the sequence {λn} generated by Algorithm 1 is
separated from 0. This is more useful than algorithms with diminishing stepsizes.
In order to obtain the convergence of Algorithm 1, we consider the following blanket
assumptions imposed on the bifunction f .

(A1) f is pseudomontone on C and f (x, x) = 0 for all x ∈ C .
(A2) f satisfies the Lipschitz-type condition.
(A3) lim sup

n→∞
f (xn, y) ≤ f (x, y) for each y ∈ C and each {xn} ⊂ C with xn⇀x ;

(A4) f (x, .) is convex and subdifferentiable on C for every fixed x ∈ C .
Remark that under the hypothesis (A2), there exist some contants c1 > 0, c2 > 0 such
that

f (xn, xn+1) − f (xn, yn) − f (yn, xn+1) ≤ c1||xn − yn ||2 + c2||xn+1 − yn ||2
≤ max {c1, c2} (||xn − yn ||2 + ||xn+1 − yn ||2).

Thus, from the definition of {λn}, we see that this sequence is bounded from below

by
{
λ0,

μ
2max{c1,c2}

}
. Moreover, the sequence {λn} is non-increasing monotone. Thus,

there exists a real number λ > 0 such that lim
n→∞ λn = λ. In fact, from the definition of

λn+1, if f (xn, xn+1) − f (xn, yn) − f (yn, xn+1) ≤ 0 then λn+1 := λn .
We have the following first result.

Theorem 1 Under the hypotheses (A1)–(A4), the sequence {xn} generated by Algo-
rithm 1 converges weakly to some solution of problem (EP).

Proof It follows from Lemma 1 and the definition of xn+1 that

〈xn − xn+1, xn+1 − y〉 ≥ λn f (yn, xn+1) − λn f (yn, y), ∀y ∈ C . (1)

From the definition of λn+1, we get

f (xn, xn+1) − f (xn, yn) − f (yn, xn+1) ≤ μ(||xn − yn||2 + ||xn+1 − yn||2)
2λn+1

,

which, after multiplying both sides by λn > 0, implies that

λn f (yn, xn+1) ≥ λn ( f (xn, xn+1) − f (xn, yn))

−μλn(||xn − yn||2 + ||xn+1 − yn||2)
2λn+1

. (2)

Combining the relations (1) and (2), we obtain

〈xn − xn+1, xn+1 − y〉 ≥ λn { f (xn, xn+1) − f (xn, yn)} − μλn

2λn+1
||xn − yn||2

− μλn

2λn+1
||xn+1 − yn||2 − λn f (yn, y). (3)
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Similarly, from Lemma 1 and the definition of yn , we also obtain

λn( f (xn, xn+1) − f (xn, yn)) ≥ 〈yn − xn, yn − xn+1〉 . (4)

From the relations (3) and (4), we obtain

〈xn − xn+1, xn+1 − y〉 ≥ 〈yn − xn, yn − xn+1〉 − μλn

2λn+1
||xn − yn||2

− μλn

2λn+1
||xn+1 − yn||2 − λn f (yn, y).

Thus, multiplying both sides of the last inequality by 2, we come to the following
estimate

2 〈xn − xn+1, xn+1 − y〉 ≥ 2 〈yn − xn, yn − xn+1〉 − μλn

λn+1
||xn − yn||2

− μλn

λn+1
||xn+1 − yn||2 − 2λn f (yn, y). (5)

We have the following facts:

2 〈xn − xn+1, xn+1 − y〉 = ||xn − y||2 − ||xn+1 − xn||2 − ||xn+1 − y||2. (6)

2 〈yn − xn, yn − xn+1〉 = ||xn − yn||2 + ||xn+1 − yn||2 − ||xn − xn+1||2. (7)

Combining the relations (5)–(7), we get

||xn+1 − y||2 ≤ ||xn − y||2 −
(
1 − μλn

λn+1

)
||xn − yn||2

−
(
1 − μλn

λn+1

)
||xn+1 − yn||2 + 2λn f (yn, y), ∀y ∈ C, ∀n ≥ 0.

(8)

For each x∗ ∈ EP( f ,C), we have that f (x∗, yn) ≥ 0 and by (A1) that f (yn, x∗) ≤ 0.
Then, using y = x∗ ∈ C in relation (8), we obtain

||xn+1 − x∗||2 ≤ ||xn − x∗||2 −
(
1 − μλn

λn+1

)
||xn − yn||2

−
(
1 − μλn

λn+1

)
||xn+1 − yn||2. (9)

Let ε ∈ (0, 1 − μ) be some fixed number. Since λn → λ > 0,

lim
n→∞

(
1 − μλn

λn+1

)
= 1 − μ > ε > 0.
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Thus, there exists n0 ≥ 1 such that

1 − μλn

λn+1
> ε > 0, ∀n ≥ n0. (10)

From the relations (9) and (10), we obtain

||xn+1 − x∗||2 ≤ ||xn − x∗||2 − ε
(
||xn − yn||2 + ||xn+1 − yn||2

)
,

or

an+1 ≤ an − bn, (11)

where an = ||xn − x∗||2 and bn = ε
(||xn − yn||2 + ||xn+1 − yn||2

)
. Thus, the limit

of {an} exists and lim
n→∞ bn = 0 which imply that {xn} is bounded and

lim
n→∞ ||xn − yn||2 = lim

n→∞ ||xn+1 − yn||2 = 0. (12)

Hence, since ||xn+1 − xn|| ≤ ||xn+1 − yn|| + ||xn − yn||, we also get

lim
n→∞ ||xn+1 − xn||2 = 0. (13)

Now, we prove that each weak cluster point of {xn} is in EP( f ,C). Indeed, suppose
that x̄ is a weak cluster point of {xn}, i.e., there exists a subsequence, denoted by {xm},
of {xn} converging weakly to x̄ . Since ||xn − yn|| → ∞, we also have that ym⇀x̄ .
Passing to the limit in (8) as n = m → ∞ and using hypothesis (A3), the relation
(12), and the fact λm → λ > 0, we obtain

f (x̄, y) ≥ lim sup
m→∞

f (ym, y) ≥ 1

2λ
lim sup
m→∞

(
||xn+1 − y||2 − ||xn − y||2

)
, ∀y ∈ C .

(14)

On the other hand, from the triangle inequality, we have

∣∣∣||xn+1 − y||2 − ||xn − y||2
∣∣∣ ≤ ||xn+1 − xn|| (||xn+1 − y|| + ||xn − y||) .

Thus, from the boundedness of {xn} and the relation (13), we get for each y ∈ C

lim
n→∞

∣∣∣||xn+1 − y||2 − ||xn − y||2
∣∣∣ = 0. (15)

Combining the relations (14) and (15), we get f (x̄, y) ≥ 0 for all y ∈ C or x̄ ∈
EP( f ,C). From the relations (9) and (10), we see that the sequence {xn}n≥n0 is
Fejér-monotone. Thus, Lemma 2 ensures that the whole sequence {xn} converges
weakly to x̄ as n → ∞. This completes the proof. ��
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Algorithm 1 requires to compute at each iteration the values of the bifunction f at
xn and yn . Next, we present an algorithm, namely the explicit modified extragradient
algorithm, which only needs to compute one value of f at the current approximation.

Algorithm 2 Initialization Choose y−1, y0, x0 ∈ C and λ0 > 0, μ ∈ (0, 1
3 ).

Iterative steps Assume that yn−1, yn, xn ∈ C and λn ≥ 0 (n ≥ 1) are known,
calculate xn+1, yn+1 and λn+1 as follows:

Step 1 Compute xn+1 = proxλn f (yn ,.)(xn) and set

λn+1 = min

{
λn,

μ(||yn−1 − yn||2 + ||yn − xn+1||2)
2

[
f (yn−1, xn+1) − f (yn−1, yn) − f (yn, xn+1)

]
+

}
.

Step 2 Compute yn+1 = proxλn+1 f (yn ,.)(xn+1).

Stopping criterion If xn+1 = yn = xn then stop and xn is a solution of EP.

As for Algorithm 1, the sequence {λn} generated by Algorithm 2 is non-increasing
monotone and lim λn = λ > 0. Another point of comparison with Algorithm 1 is that
Algorithm 2 uses two different stepsizes λn and λn+1 per iteration. Algorithm 2 is also
weakly convergent as shown in the next theorem.

Theorem 2 Under the hypotheses (A1)–(A4), the sequence {xn} generated by Algo-
rithm 2 converges weakly to some solution of problem (EP).

Proof For all y ∈ C , we have the following equality,

||xn+1 − y||2 = ||xn − y||2 − ||xn − yn||2 − ||yn − xn+1||2
+2 〈xn − yn, xn+1 − yn〉 + 2 〈xn − xn+1, y − xn+1〉 . (16)

Lemma 1 and the definition of xn+1 ensure that

〈xn − xn+1, y − xn+1〉 ≤ λn { f (yn, y) − f (yn, xn+1)} , ∀y ∈ C . (17)

Similarly, from the definition of yn and Lemma 1, we get

〈xn − yn, xn+1 − yn〉 ≤ λn { f (yn−1, xn+1) − f (yn−1, yn)} . (18)

Combining the relations (16)–(18), we come to the following estimate,

||xn+1 − y||2 ≤ ||xn − y||2 − ||xn − yn||2 − ||yn − xn+1||2 + 2λn f (yn, y)

+2λn { f (yn−1, xn+1) − f (yn−1, yn) − f (yn, xn+1)} . (19)

From the definition of λn+1, we see that

f (yn−1, xn+1) − f (yn−1, yn) − f (yn, xn+1) ≤ μ(||yn−1 − yn||2 + ||yn − xn+1||2)
2λn+1

,
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which together with relation (19), can be written

||xn+1 − y||2 ≤ ||xn − y||2 − ||xn − yn||2 − ||yn − xn+1||2 + 2λn f (yn, y)

+ λnμ

λn+1

(
||yn−1 − yn||2 + ||yn − xn+1||2

)
. (20)

Using the triangle inequality and the fact (a + b)2 ≤ 2a2 + 2b2, we obtain

||yn−1 − yn||2 ≤ (||yn−1 − xn|| + ||xn − yn||)2 ≤ 2||yn−1 − xn||2 + 2||xn − yn||2.
(21)

From relations (20) and (21), we have

||xn+1 − y||2 ≤ ||xn − y||2 − ||xn − yn ||2 − ||yn − xn+1||2 + 2λn f (yn, y)

+2λnμ

λn+1
||yn−1 − xn ||2 + 2λnμ

λn+1
||yn − xn ||2 + λnμ

λn+1
||yn − xn+1||2

= ||xn − y||2 −
(
1 − 2λnμ

λn+1

)
||xn − yn ||2

−
(
1 − λnμ

λn+1

)
||yn − xn+1||2 + 2λn f (yn, y) + 2λnμ

λn+1
||yn−1 − xn ||2.

(22)

Adding the term 2λn+1μ
λn+2

||yn − xn+1||2 to both sides of the inequality (22), we get

||xn+1 − y||2 + 2λn+1μ

λn+2
||yn − xn+1||2 ≤ ||xn − y||2 + 2λnμ

λn+1
||yn−1 − xn||2

−
(
1 − 2λnμ

λn+1

)
||xn − yn||2 −

(
1 − λnμ

λn+1
− 2λn+1μ

λn+2

)
||yn − xn+1||2

+2λn f (yn, y), ∀y ∈ C, n ≥ 0. (23)

For each x∗ ∈ EP( f ,C), we have f (x∗, yn) ≥ 0. Thus, f (yn, x∗) ≤ 0 because of
the pseudomonotonicity of f . Now, using the relation (23) for y = x∗, we come to
the following inequality,

||xn+1 − x∗||2 + 2λn+1μ

λn+2
||yn − xn+1||2 ≤ ||xn − x∗||2 + 2λnμ

λn+1
||yn−1 − xn||2

−
(
1 − 2λnμ

λn+1

)
||xn − yn||2 −

(
1 − λnμ

λn+1
− 2λn+1μ

λn+2

)
||yn − xn+1||2.

(24)
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Let ε ∈ (0, 1 − 3μ) be some fixed number. Since λn → λ > 0, we obtain

lim
n→∞

(
1 − 2λnμ

λn+1

)
= 1 − 2μ > 1 − 3μ > ε > 0,

lim
n→∞

(
1 − λnμ

λn+1
− 2λn+1μ

λn+2

)
= 1 − 3μ > ε > 0.

Thus, there exists n0 ≥ 1 such that

1 − 2λnμ

λn+1
> ε > 0, ∀n ≥ n0, (25)

1 − λnμ

λn+1
− 2λn+1μ

λn+2
> ε > 0, ∀n ≥ n0. (26)

Thus, from the relations (24)–(26), we obtain

||xn+1 − x∗||2 + 2λn+1μ

λn+2
||yn − xn+1||2 ≤ ||xn − x∗||2 + 2λnμ

λn+1
||yn−1 − xn||2

−ε
(
||xn − yn||2 + ||yn − xn+1||2

)
,∀n ≥ n0, (27)

or

an+1 ≤ an − bn, ∀n ≥ n0, (28)

where

an = ||xn − x∗||2 + 2λnμ

λn+1
||yn−1 − xn||2,

bn = ε
(
||xn − yn||2 + ||yn − xn+1||2

)
.

From the relation (28), we obtain that the limit of {an} exists, and limn→∞ bn = 0.
Thus, from the definition of an and bn , we obtain that {xn} is bounded and

lim
n→∞ ||xn − yn||2 = lim

n→∞ ||yn − xn+1||2 = 0. (29)

This together with the triangle inequality implies that

lim
n→∞ ||xn − xn+1||2 = 0. (30)

Since limn→∞ an ∈ �, from the definition of an and (29), we also obtain

lim
n→∞ ||xn − x∗||2 ∈ �, ∀x∗ ∈ EP( f ,C). (31)
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Next, we prove that every weak cluster point of {xn} is in EP( f ,C). Indeed, suppose
that x̄ is a weak cluster point of {xn}, i.e., there exists a subsequence, denoted by {xm},
of {xn} converging weakly to x̄ . From the relation (29), we also get that ym⇀x̄ . Now,
passing to the limit in the relation (23) as n = m → ∞, and using the hypothesis
(A3), the relation (29), and the fact λn → λ > 0 we obtain

f (x̄, y) ≥ lim sup
m→∞

f (ym, y) ≥ 1

2λ
lim sup
m→∞

(
||xn+1 − y||2 − ||xn − y||2

)
, ∀y ∈ C .

(32)

Arguing as in the proof of Theorem 1, we also obtain for each y ∈ C

lim
n→∞

∣∣∣||xn+1 − y||2 − ||xn − y||2
∣∣∣ = 0. (33)

Combining the relations (32) and (33), we get f (x̄, y) ≥ 0 for all y ∈ C or x̄ ∈
EP( f ,C). To finish the proof, we show that the whole sequence {xn} converges
weakly to x̄ as n → ∞. Indeed, assume that {xl} is another subsequence of {xn}
converging weakly to x̃ �= x̄ . As aforementioned, we see that x̃ ∈ EP( f ,C). The
relation (31) ensures that lim

n→∞ ||xn − x̄ ||2 ∈ � and lim
n→∞ ||xn − x̃ ||2 ∈ � . Using the

following identity,

2 〈xn, x̄ − x̃〉 = ||xn − x̃ ||2 − ||xn − x̄ ||2 + ||x̄ ||2 − ||̃x ||2,

we have immediately that

lim
n→∞ 〈xn, x̄ − x̃〉 = K ∈ �. (34)

Passing to the limit in (34) as n = m, l → ∞, we obtain

〈x̄, x̄ − x̃〉 = lim
m→∞ 〈xm, x̄ − x̃〉 = K = lim

l→∞ 〈xl , x̄ − x̃〉 = 〈̃x, x̄ − x̃〉 .

Thus, ||x̄ − x̃ ||2 = 0 and x̄ = x̃ . This completes the proof. ��

4 R-linear rate of convergence

Algorithms in [11,12] have some special advantages that they are donewithout the prior
knowledge of the Lipschitz-type constants of bifunction. However, in the case where
the bifunction f is strongly pseudomonotone (SP) and satisfies the Lipschitz-type
condition (LC), the linear rate of convergence cannot be obtained for these algorithms.
In this section, wewill establish the R-linear rate of convergence of Algorithms 1 and 2
under the hypotheses (SP) and (LC). In addition, as in [11,12], we assume additionally
that the function f (x, ·) is convex, lower semicontinuous and the function f (·, y) is
hemicontinuous onC . Under these assumptions, problem (EP) has the unique solution,
denoted by x†. The rate of convergence of the two proposed algorithms is ensured by
the following theorem.
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Theorem 3 Under the hypotheses (SP) and (LC), the sequence {xn} generated by
Algorithm 1 (or Algorithm 2) converges R-linearly to the unique solution x† of problem
(EP).

Proof The proof is divided into two cases following that Algorithms 1 or 2 is consid-
ered.

Case 1 The sequence {xn} is generated by Algorithm 1. In this case, using the relation
(8) with y = x†, we obtain

||xn+1 − x†||2 ≤ ||xn − x†||2 −
(
1 − μλn

λn+1

)
||xn − yn||2

−
(
1 − μλn

λn+1

)
||xn+1 − yn||2 + 2λn f (yn, x

†), ∀n ≥ 0.

(35)

Since f (x†, yn) ≥ 0, we get that f (yn, x†) ≤ −γ ||yn − x†||2 by assumption (SP),
where γ is some positive real number. Thus, from relation (35), we obtain

||xn+1 − x†||2 ≤ ||xn − x†||2 −
(
1 − μλn

λn+1

)
||xn − yn||2

−
(
1 − μλn

λn+1

)
||xn+1 − yn||2 − 2γ λn||yn − x†||2. (36)

Since {λn} is non-increasing monotone and λn → λ, we have that λn ≥ λ∞ = λ for
all n ≥ 0. Thus, from (36), we get

||xn+1 − x†||2 ≤ ||xn − x†||2 −
(
1 − μλn

λn+1

)
||xn − yn||2 −

(
1 − μλn

λn+1

)
||xn+1

−yn||2 − 2γ λ||yn − x†||2. (37)

Let ε be some fixed number in the interval
(
0, 1−μ

2

)
. We find that

lim
n→∞

(
1 − μλn

λn+1

)
= 1 − μ > 2ε > 0.

Thus, there exists n0 ≥ 1 such that

1 − μλn

λn+1
> 2ε > 0, ∀n ≥ n0. (38)
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It follows from the relations (37) and (38) that, for all n ≥ n0

||xn+1 − x†||2 ≤ ||xn − x†||2 −
(
1 − μλn

λn+1

)
||xn − yn||2 − 2γ λ||yn − x†||2

≤ ||xn − x†||2 − 2ε||xn − yn||2 − 2γ λ||yn − x†||2
≤ ||xn − x†||2 − min {ε, γ λ}

{
2||xn − yn||2 + 2||yn − x†||2

}

≤ ||xn − x†||2 − min {ε, γ λ} ||xn − x†||2
= r ||xn − x†||2, (39)

where r = 1 − min {ε, γ λ} ∈ (0, 1). From the relation (39), we obtain by induction
that

||xn+1 − x†||2 ≤ rn−n0+1||xn0 − x†||2, ∀n ≥ n0,

or ||xn+1 − x†||2 ≤ Mrn for all n ≥ n0, where M = r1−n0 ||xn0 − x†||2. This implies
the desired conclusion.

Case 2 The sequence {xn} is generated by Algorithm 2. Now, using the relation (22)
with y = x† and noting that f (yn, x†) ≤ −γ ||yn − x†||2, we obtain

||xn+1 − x†||2 ≤ ||xn − x†||2 −
(
1 − 2λnμ

λn+1

)
||xn − yn||2

−
(
1 − λnμ

λn+1

)
||yn − xn+1||2

−2λnγ ||yn − x†||2 + 2λnμ

λn+1
||yn−1 − xn||2. (40)

Let θ and ρ be two real numbers such that

θ ∈
(
0,

1 − 2μ

2

)
and 1 < ρ <

1

2

(
1

μ
− 1

)
. (41)

Adding the term 2λn+1μρ
λn+2

||yn − xn+1||2 to both sides of (40), we get

||xn+1 − x†||2 + 2λn+1μρ

λn+2
||yn − xn+1||2 ≤ ||xn − x†||2 + 2λnμ

λn+1
||yn−1 − xn||2

−
(
1 − 2λnμ

λn+1

)
||xn − yn||2 −

(
1 − λnμ

λn+1
− 2λn+1μρ

λn+2

)
||yn − xn+1||2

−2λnγ ||yn − x†||2, ∀y ∈ C, n ≥ 0. (42)
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Since λn → λ > 0, we obtain

lim
n→∞

(
1 − 2λnμ

λn+1

)
= 1 − 2μ > 2θ > 0,

lim
n→∞

(
1 − λnμ

λn+1
− 2λn+1μρ

λn+2

)
= 1 − (1 + 2ρ)μ > 0.

Thus, there exists n0 ≥ 1 such that

1 − 2λnμ

λn+1
> 2θ > 0, ∀n ≥ n0, (43)

1 − λnμ

λn+1
− 2λn+1μρ

λn+2
> 0, ∀n ≥ n0. (44)

From the relations (42)–(43) and the fact 2λnγ ≥ 2λγ , we have

||xn+1 − x†||2 + 2λn+1μρ

λn+2
||yn − xn+1||2 ≤ ||xn − x†||2 + 2λnμ

λn+1
||yn−1 − xn||2

−
(
2θ ||xn − yn||2 + 2λγ ||yn − x†||2

)
, n ≥ n0. (45)

We also have

2θ ||xn − yn||2 + 2λγ ||yn − x†||2 ≥ min {θ, λγ }
(
2||xn − yn||2 + 2||yn − x†||2

)

≥ min {θ, λγ } ||xn − x†||2. (46)

Combining the relations (45) and (46), we obtain

||xn+1 − x†||2 + 2λn+1μρ

λn+2
||yn − xn+1||2 ≤ (1 − min {θ, λγ }) ||xn − x†||2

+2λnμ

λn+1
||yn−1 − xn||2, n ≥ n0.

(47)

Set an = ||xn − x†||2 and bn = 2λnμρ
λn+1

||yn−1 − xn||2. From the relation (47), we get

an+1 + bn+1 ≤ (1 − min {θ, λγ }) an + bn
ρ

≤ r(an + bn), n ≥ n0, (48)

where r = max
{
1 − min {θ, λγ } , 1

ρ

}
∈ (0, 1). Thus, by induction, we obtain that

an+1 + bn+1 ≤ rn−n0+1(an0 + bn0) for all n ≥ n0, which can be reduced to an+1 =
||xn+1 − x†||2 ≤ Mrn with M = r1−n0(an0 + bn0). This finishes the proof. ��
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5 Computational experiments

This section presents some fundamental experiments on amodel which generalizes the
Nash-Cournot oligopolistic equilibriummodel [10]. For a readable purpose,wepresent
briefly this model as follows: Suppose that there are m firms producing a common
homogeneous commodity. Let p j be the price of goods produced by firm j depending
on the commodities of all firms j , j = 1, 2, . . . ,m, i.e., p j = p j (x1, x2, . . . , xm).
Denote c j (x j ) the cost of firm j which only depends on its produced level x j . Then the
profit made by company j is given by f j (x1, x2, . . . , xm) = x j p j (x1, x2, . . . , xm) −
c j (x j ). LetC j be the strategy set of firm j . ThenC = C1×C2×. . .×Cm is the strategy
of the model. Actually, each firm j seeks to maximize its own profit by choosing the
corresponding production level x j under the presumption that the production of the
other firms is a input parameter. A commonly used approach to the model is based on
the famous Nash equilibrium concept.

Let x = (x1, x2, . . . , xm) ∈ C and recall that a point x∗ = (x∗
1 , x

∗
2 , . . . , x

∗
m) ∈ C

is called an equilibrium point of the model if

f j (x
∗
1 , x

∗
2 , . . . , x

∗
m) ≥ f j (x

∗
1 , . . . , x

∗
j−1, y j , x

∗
j+1 . . . , x∗

m) ∀y j ∈ C j , ∀ j = 1, 2, . . . ,m,

By setting ψ(x, y) := −∑m
j=1 f j (x∗

1 , . . . , x
∗
j−1, y j , x

∗
j+1 . . . , x∗

m) and f (x, y) :=
ψ(x, y) − ψ(x, x), the problem of finding a Nash equilibrium point of the model can
be shortly formulated as:

Find x∗ ∈ C : f (x∗, x) ≥ 0 ∀x ∈ C . (EP)

For the purpose of experiment, we assume that the price p j (s) is a decreasing
affine function of s with s = ∑m

j=1 x j , i.e., p j (s) = a j − b j s, where a j > 0, b j > 0,
and that the function c j (x j ) is increasing and affine for every j . This assumption
means that the cost for producing a unit is increasing as the quantity of the production
gets larger. In that case, the bifunction f can be formulated in the form f (x, y) =
〈Px + Qy + q, y − x〉, whereq ∈ �m and P, Q are twomatrices of orderm such that
Q is symmetric positive semidefinite and Q − P is symmetric negative semidefinite.
The bifunction f satisfies the Lipschitz-type condition and is pseudomonotone. The
feasible set C has the form C = {x ∈ �m : Ax ≤ b} where A is a random matrix of
size l × m (l = 10 and m = 200 or m = 300) and b ∈ �l such that x0 = y−1 =
y0 = (1, 1, . . . , 1) ∈ C . The two matrices P, Q are generated randomly1. All the
optimization problems can be solved effectively by the function quadprog in Matlab
Optimization Toolbox. All the programs are written in Matlab 7.0 and computed on a
PC Desktop Intel(R) Core(TM) i5-3210M CPU @ 2.50 GHz, RAM 2.00 GB.

Experiment 1 In this experiment, we study the numerical behavior of Algo-
rithm 1 (shortly, EEGA) and Algorithm 2 (EMEGA). We take μ = 0.33 and

1 We randomly chooseλ1k ∈ [−2, 0], λ2k ∈ [0, 2], k = 1, . . . ,m.We set Q̂1, Q̂2 as twodiagonalmatrixes
with eigenvalues {λ1k }mk=1 and {λ2k }mk=1, respectively. Then, we construct a positive semidefinite matrix
Q and a negative definite matrix T by using random orthogonal matrixes with Q̂2 and Q̂1, respectively.
Finally, we set P = Q − T
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Fig. 1 Algorithm 1 (EEGA) in �200. The execution time is 5.97, 5.57, 5.71, 5.82, 5.25, respectively

λ0 ∈ {0.2, 0.4, 0.6, 0.8, 1.0} and perform the experiments in�200 or�300. Observe
the characteristic of the solutions of problem (EP) that x ∈ EP( f ,C) if and only if
x = proxλ f (x,.)(x) for someλ > 0,we use the function D(x) = ||x−proxλ f (x,.)(x)||2
to show the numerical behavior of algorithms EEGA and EMEGA. It is of course that
D(x) = 0 iff x ∈ EP( f ,C). The convergence of {D(xn)} generated by each algo-
rithm to 0 can be considered as the sequence {xn} converges to the solution of the
problem. The numerical results are shown in Figs. 1, 2, 3 and 4.

In view of these figures, we see that the proposed algorithms work better when λ0 is
larger. Moreover, Algorithm 2 (EMEGA) is better than Algorithm 1 (EEGA) in both
the execution time and the obtained error after the same number of iterations.

Experiment 2 The purpose of this experiment is to present a comparison between
the proposed algorithms (EEGA and EMEGA) and two other algorithms, namely the
linesearch extragradient algorithm (LEGA) presented in [27, Algorithm 2a] and the
ergodic algorithm (ErgA) proposed in [3]. We choose these algorithms to compare
because they have a common feature that the Lipschitz-type constants are not the
input parameters of the algorithms. The control parameters are μ = 0.33 and λ0 = 1
(for EEGA and EMEGA); α = 0.5, θ = 0.5, ρ = γ = 1 (for LEGA); and λn = 1

n
(for the ErgA). The results are shown in Figs. 5, 6, 7 and 8. In each figure, the x-axis
represents either the number of iterations or the execution time elapsed in secondwhile
the y-axis gives the value of D(xn) generated by each algorithm.

The numerical results here have illustrated that the proposed algorithms work better
than other ones in both the number of iterations and the execution time. Besides,
Algorithm 2 (EMEGA) is also better than Algorithm 1 (EEGA). The advantage of
Algorithm2 overAlgorithm1 is only to compute a value of bifunction at each iteration.

123



Explicit iterative algorithms for EPs Page 17 of 21 11

0 10 20 30 40 50
10−12

10−10

10−8

10−6

10−4

10−2

100

102

# Iterations

D
(x

n)

EEGA (λ0=1)

EEGA (λ0=0.8)

EEGA (λ0=0.6)

EEGA (λ0=0.4)

EEGA (λ0=0.2)

Fig. 2 Algorithm 1 (EEGA) in �300. The execution time is 23.84, 23.17, 23.66, 23.63, 23.34, respectively
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Fig. 3 Algorithm 2 (EMEGA) in �200. The execution time is 5.19, 5.16, 5.22, 5.12, 5.04, respectively
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Fig. 4 Algorithm 2 (EMEGA) in�300. The execution time is 22.05, 21.87, 22.69, 22.92, 21.93, respectively
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Fig. 5 Dn and # iterations (in �200)
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Fig. 6 Dn and time (in �200)
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Fig. 7 Dn and # iterations (in �300)

123



11 Page 20 of 21 D. Van Hieu et al.

0 5 10 15 20
10−8

10−6

10−4

10−2

100

102

Elapsed Time [sec]

D
(x

n)

EEGA
EMEGA
LEGA
ErgA

Fig. 8 Dn and time (in �300)

6 Conclusions

The paper has proposed the two explicit extragradient-like algorithms for solving an
equilibrium problem involving a pseudomonotone and Lipschitz-type bifunction in a
real Hilbert space. A new stepsize rule has been introduced which is not based on the
information of the Lipschitz-type constants. The convergence as well as the R-linear
rate of convergence of the algorithms have been established. Several experiments are
reported to illustrate the numerical behavior of our two algorithms, and to compare
them with other ones well known in the literature.
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