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Abstract
In this paper, a new procedure, called generalized shrinkage conjugate gradient
(GSCG), is presented to solve the �1-regularized convex minimization problem. In
GSCG, we present a new descent condition. If such a condition holds, an efficient
descent direction is presented by an attractive combination of a generalized form of
the conjugate gradient direction and the ISTA descent direction. Otherwise, ISTA
is improved by a new step-size of the shrinkage operator. The global convergence of
GSCG is established under some assumptions and its sublinear (R-linear) convergence
rate in the convex (strongly convex) case. In numerical results, the suitability of GSCG
is evaluated for compressed sensing and image debluring problems on the set of ran-
domly generated test problems with dimensions n ∈ {210, . . . , 217} and some images,
respectively, inMatlab. These numerical results show that GSCG is efficient and robust
for these problems in terms of the speed and ability of the sparse reconstruction in
comparison with several state-of-the-art algorithms.
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1 Introduction

Consider the following unconstrained optimization problem for the sparse recovery

min F(x) := f (x) + μ‖x‖1,
s.t. x ∈ R

n (1)

where f : Rn → R is a smooth convex function, ‖ · ‖1 is the �1-norm of a vector
x ∈ R

n , usually called regularizer or regularization function, and μ ∈ R
+ is a

regularization parameter that can be interpreted as a trade-off parameter or relative
weight between the objective terms. The problem (1) generalizes the well known
basis pursuit denoising (BPDN) or �2 − �1 problem, found in the signal and image
processing literature, as

min F(x) := 1
2‖Ax − b‖2 + μ‖x‖1.

s.t. x ∈ R
n (2)

In (2), ‖ · ‖ stands for the standard Euclidean norm, A ∈ R
m×n (m � n) and b ∈ R

m .
As a basic idea, a sparse solution of the underdetermined linear system Ax = b may
be obtained by the �0−norm optimization problem. This nonconvex combinatorial
problem is NP-hard [23] and hence is difficult to solve. Instead of solving it, Candès et
al. [12] and Donoho [15] suggested the �1-norm convex relaxation problem to recover
the sparse solution under some conditions. However, the problem (2) is one of the
most famous models in sparse recovery area which gives the sparsest solution of the
aforementioned underdetermined linear system. This model is a robust version of
reconstruction process when the measurements are contaminated with noise. Some
popular applications for the problem (2) are the areas of compressed sensing (CS)
and image debluring (ID) problems. For more information about these applications,
readers can refer to [17,18,23].

Contribution This paper aims to present an innovative algorithm based on a new
direction which is descendant under a descent condition and a new shrinkage step-size
in order to accelerate ISTA. Such an algorithm generates a new generalized form of
the CG direction and uses it under a mild norm condition. Moreover, it uses the ISTA
descent direction with the improved shrinkage step-size, produced based on a pseudo
CG idea, whenever the generated direction is not descendant or does not satisfy the
norm condition.

Organization The remaining of this article is organized as follows. In Sect. 2,
advantages and shortcomings of some algorithms and software are investigated. We
have a review of ISTA, a gradient based method, in Sect. 3. Section 4 is dedicated to
our method, which has three subsections: presenting the new GSCG approach in detail
in the first subsection, presenting the acceptance criterion of the new method based
on a modified nonmonotone Armijo line search strategy in the second subsection and
finally presenting a flowchart and a pseudo code of the new algorithm in the third
subsection. The global convergence and sublinear/R-linear convergence rate of the
proposed algorithm are analyzed in Sect. 5. In Sect. 6, numerical results on CS and
ID problems are reported. At the end, in Sect. 7, some conclusions are presented.
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Preliminaries We first recall some definitions, which will play a key role in the
convex optimization analysis.

Definition 1 A directional derivative of a function F : Rn → R at point x ∈ R
n along

the direction d ∈ R
n , denoted by F ′(x; d), is given by the following limit if it exists:

F ′(x; d) := lim
λ↓0

F(x + λd) − F(x)

λ
.

The directional derivative may be well defined even when F is not continuously
differentiable. In fact, it is the most useful one in such a situation.

Definition 2 A point x∗ ∈ R
n is called a stationary point of a function F : Rn → R,

if F ′(x∗; d) ≥ 0 for all d ∈ R
n , see [38, page 394].

Definition 3 Suppose that F : Rn → R ∪ {+∞} is a closed proper convex function
and ς is a positive parameter. A proximal operator ProxςF : Rn → R

n of the scaled
function ςF at y ∈ R

n is defined by

ProxςF (y) := argminx
{
F(x) + 1

2ς
‖x − y‖2

}
,

where parameter ς controls the relative weight of the two terms. For more information
about the proximal operator and its algorithms, we refer to [35] which is a monograph
about this class of optimization algorithms.

NotationThroughout this paper, for the convenience of notation, write Fk := F(xk)
and fk := f (xk) and let ∇ fk := ∇ f (xk) be the gradient of f at xk . The subscript k
often represents the iteration number in an algorithm and DS denotes the diameter of
a bounded set S.

2 Related algorithms

There are a lot of solvers for nonsmooth optimization. Here, we review only some of
them, related to our study as tested in numerical results section. The objective func-
tion of problem (1) is convex but nonsmooth since it includes the �1-norm term. This
problem can be transformed to a linear optimization problem and solved via standard
tools such as simplex or interior point methods [7,34]. These methods have a high
computational cost because of using a dense data structure, especially for large-scale
problems. For large problems, there are gradient-based algorithms, as well, which cal-
culate the direction approximately without computing or approximating the Hessian,
using gradients only. Despite requiring little storage, they have so slow convergence
properties; see [11,13,16,19,21,27,28,40]. One popular method of this class is iterative
shrinkage-thresholding algorithm (ISTA) [13,16] with the general step

xk+1 = Sμτk

(
xk − τk∇ fk

)
, (3)
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where τk is the shrinkage step-size and Sν : Rn → R
n is the shrinkage operator,

defined by

Sν (x) := sgn(x) � max
{
|x | − ν, 0

}
,

in which ν > 0, sgn(·) stands for the signum function and � denotes the component-
wise product, i.e., (x � y)i := xi yi . The important characteristic of ISTA is its simple
form. However, ISTA has been characterized as a slow method and its convergence
analysis has been well studied in [8,13,16,20], showing its sublinear convergence rate.
Some methods have been proposed in order to accelerate ISTA in the past years. We
consider some of them as follows:

(i) Fixed-point continuation algorithm (fpc) [27] uses an operator-splitting tech-
nique to solve a sequence of problem (1), defined by a decreasing sequence of
parameter {μ j } with the fixed shrinkage step-size. In fpc, based on the contin-
uation (homotopy) strategy, the solution of the current problem is used as the
initial estimate of the solution to the next problem.

(ii) fpcbb [28] is a fixed-point continuation algorithm for solving (1) which con-
structs its shrinkage step-size by Barzilai–Borwein (BB) technique [6].

(iii) NBBL1 [42] is a nonmonotone Barzilai–Borwein gradient algorithm for solving
(1). At each step, such an algorithm generates the search direction by minimizing
a local approximal quadratic model of (1) which contains an approximated form
of the �1-regularization term, due to its non-differentiability.

(iv) TwIST [11] is a two-step ISTA which relies on computing the next iteration
based on two previously computed steps instead of one previous step.

(v) FISTA [8] is a fast iterative shrinkage-thresholding algorithm, employed on a
special linear combination of the previous two iterations and this is its main
difference from ISTA. This method keeps computational simplicity of ISTA
and improves its global convergence rate to O( 1

k2
), comparable to ISTA with

O( 1k ).
(vi) SpaRSA [41] is a sparse reconstruction by separable approximationwhich solves

(1) with separable structures. Improved practical performance ofSpaRSA results
in the variation of the shrinkage step-size.

3 Review of ISTA

The classical steepest descent method is the simplest approach to solve (1), in the case
μ = 0. This method produces a sequence {xk}k≥0 via

xk+1 := xk − τk∇ fk, (4)

for which τk > 0 is a suitable step-size. The gradient iteration (4) can be converted into
the following iterative scheme, known as the proximal regularization of the linearized
function f at xk ,

xk+1 := argmin
x

{
fk + 〈x − xk,∇ fk〉 + 1

2τk
‖x − xk‖2

}
. (5)
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By applying the structure of (5) for (1) and setting d := x − xk , we get

xk+1 = argmin
d

{
fk + 〈d,∇ fk〉 + 1

2τk
‖d‖2 + μ‖xk + d‖1

}
. (6)

Having ignored the constant terms, we can rewrite (6) as

xk+1 = xk + dsk = argmin
d

{1
2
‖xk + d − (xk − τk∇ fk)‖2 + μτk‖xk + d‖1

}
. (7)

As shown in [35], the favorable structure of (7) adopts the explicit solution (3) which
leads to the ISTA iteration for the problem (1). Both (3) and (7) yield to

dsk := Sμτk

(
xk − τk∇ fk

)
− xk, (8)

called shrinkage direction or ISTA direction. The following lemma shows that the
shrinkage direction, obtained by (8), is a descent direction whenever dsk �= 0.

Lemma 1 Suppose that τk > 0 and dsk is the shrinkage direction (8). Then, we have

F
(
xk + αdsk

) ≤ Fk + α
[ 〈∇ fk, d

s
k

〉 + μ
( ∥∥xk + dsk‖1 − ‖xk

∥∥
1

)]
+ o(α),

for all α ∈ (0, 1] and

Δs
k := 〈∇ fk, d

s
k

〉 + μ
( ∥∥xk + dsk‖1 − ‖xk

∥∥
1

)
≤ − 1

2τk
‖dsk‖2. (9)

Proof The proof can be found in [38]. ��
The next lemma, the proof of which can be found in [38], characterizes the situation
of dsk = 0.

Lemma 2 Suppose that τk > 0 and dsk is the shrinkage direction (8). Then, xk is a
stationary point for the problem (1) if and only if dsk = 0.

It is worth noting that ISTA uses a more conservative choice of the shrinkage
step-size τk , related to the Lipschitz constant of ∇ f . Furthermore, in some fixed point
methods like [27], τk is considered to be fixed so that these methods could not produce
a suitable step-size close to the optimizer or far away from it. Hence, a bad value of
τk leads to a slow convergence rate. To overcome this disadvantage, in [28,40–42],
τk is chosen dynamically by the BB method. BB method is an accelerated form of
the classical steepest descent method using two consecutive iterations to introduce the
step-size of the next step, i.e., xk+1 := xk − τ bbk ∇ fk , where τ bbk , called BB step-size,
is presented as one of the following

τ
bb,1
k := 〈sk−1, sk−1〉

〈sk−1, yk−1〉 or τ
bb,2
k := 〈sk−1, yk−1〉

〈yk−1, yk−1〉 , (10)
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where sk−1 := xk − xk−1, yk−1 := ∇ fk − ∇ fk−1. In (11), 0 < τmin < τmax < ∞,
known as the safeguard parameters, are used to prevent the production of a very small
or large BB step-size. Such an improved BB step-size is presented by

τ
sbb,i
k := max

{
τmin,min

{
τ
bb,i
k , τmax

}}
, (11)

where i = 1, 2. To simplify our notation, we set τ sbbk := τ
sbb,i
k .

4 Ourmethod

In this section, an algorithmic framework of the new approach is presented to solve
large-scale nonsmooth convex optimization problems. This section is followed in
three subsections. In the first subsection, the new method is introduced in details. In
the second subsection, determining the step-size αk ∈ (0, 1], we utilize a modified
nonmonotone Armijo line search strategy for nonsmooth convex optimization prob-
lems and in the third subsection, the flowchart and the detailed pseudo code of the
new method are presented.

4.1 New generalized shrinkage conjugate gradient approach (GSCG)

Accelerating the proximal gradient methods such as ISTA, one can use the idea of
momentum term 	k(xk − xk−1), through which the next step xk+1 depends on the
two previous steps xk and xk−1 with 	k > 0. FISTA and TwIST, accelerated forms
of ISTA, use this idea in order to solve (1), see [8,11]. It is remarkable that CG
methods [22,26,29,36], the improved forms of the descent gradient method, have a
momentum term in their common iterative schemes. In addition, in [33], a generalized
form of the nonlinear CG methods has been presented where the negative gradient
is replaced with a general descent direction. Our goal here is to accelerate ISTA by
either strengthening its descent direction or improving the shrinkage step-size. In some
iterations of the GSCG iterative scheme, a pseudo CG direction is produced where the
negative gradient-based term of the CG direction is replaced with the descent direction
dsk in (8) as follows,

xk+1 := xk + αkdk, (12)

dk := dsk + βkdk−1, (13)

where αk is a suitable step-size and {βk}k≥0, named CG parameter, is a slowly dimin-
ishing constant sequence with limk→∞ βk = 0. This CG parameter is defined by

βk := 1

(k + 1)λ
, (14)
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where λ ∈ (0, 1). Relation (14) is different from the conventional CG parameters and
is similar to the βk presented in [31,32] for a convex optimization problem over a
fixed-point set of a nonexpansive mapping.

The following remark shows the existence of a momentum term in some iterations
of GSCG.

Remark 1 Substituting k with k − 1 in (12) leads to

dk−1 = xk − xk−1

αk−1
. (15)

Then, by replacing (13) and (15) in (12), we obtain

xk+1 = xk + αkd
s
k + αkβk

αk−1
(xk − xk−1)

︸ ︷︷ ︸
:= momentum term

,

Since (13) is not descendant, in general, we impose a mild descent condition on
this direction, leading to its descent property. This condition is defined by

dCon := (〈∇ fk, dk−1〉 + μ‖dk−1‖1 < 0). (16)

The following lemma shows that the direction defined by (13) is descendant when-
ever dk �= 0.

Lemma 3 Suppose that τk > 0, βk ≥ 0 and dk is generated by (13). If the condition
(16) holds, then we have

F(xk + αdk) ≤ Fk + αΔ
cg
k + o(α), ∀α ∈ (0, 1], (17)

and
Δ

cg
k := 〈∇ fk, dk〉 + μ

(
‖xk + dk‖1 − ‖xk‖1

)
≤ 0. (18)

Proof The proof of (17) is similar to the first part of Lemma 1, presented in [38]. To
prove (18), we consider three cases:

(i) If βk = 0, then (18) is satisfied based on Lemma 1.
(ii) If βk > 0 and dk �= 0, then from the definition of dk , Lemma 1 and (16), we get

Δ
cg
k = 〈∇ fk, dk〉 + μ

(
‖xk + dk‖1 − ‖xk‖1

)

≤ 〈∇ fk, d
s
k 〉 + μ

(
‖xk + dsk‖1 − ‖xk‖1

)
+ βk(〈∇ fk, dk−1〉

+ μ‖dk−1‖1) < 0,

which shows that dk �= 0 is a descent direction for F(x) at xk .
(iii) If βk > 0 and dk = 0, then the proof is trivial. ��
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Whenever the descent condition (16) is not satisfied, GSCG takes advantages of the
descent direction dsk with a new form of τk , called CG step-size and introduced by

τk := τ sbbk + ωγkτk−1, (19)

In (19), τ sbbk is computed using (11), ω ∈ (0, 1) is an impact factor for controlling the
effect of γkτk−1 and diminishing constant sequence {γk}k≥0 is defined by

γk := 1

(k + 1)υ
, (20)

where υ ∈ (0, 1). Note that τk , generated by (19), is a special linear combination of
τ sbbk and τk−1, and its structure is similar to that of the CG direction (13). It is clear
that τ sbbk + ωγkτk−1 ≥ τ sbbk . In addition, ‖dsk‖ is nondecreasing in τk for each xk ; see
[40]. Thus, Lemma 1 guarantees the descent property of dsk , produced by (19).

In GSCG, in order to investigate the convergence rate, we impose a mild norm
condition on using (13) whenever (16) is satisfied as follows,

nCon := (‖dsk‖ ≥ ‖dk‖). (21)

When (21) is not satisfied, the descent direction dsk is utilized, using (19). Let us define
the event

cGrad := (dCon & nCon).

Iteration k is said to be a CG iteration with the BB step-size (11) if the event cGrad
occurs; i.e., cGrad := 1. Otherwise, the iteration will be ISTA with the CG step-
size (19) (cGrad := 0). In other words, cGrad, dCon and nCon are the integral
parameters. According to the mentioned information, for the iterative scheme (12),
we now represent

dk :=
{
dsk + βkdk−1 if cGrad,

dsk otherwise.
(22)

with

τk :=
{

τ sbbk if cGrad,

τ sbbk + ωγkτk−1 otherwise.
(23)

Based on Lemmas 1–3, whether the event cGrad happens or not, we have the fol-
lowing inequality for dk �= 0 in (22) which confirms its descent property,

Δk ≤ − 1

2τk
‖dk‖2 < 0, (24)

where Δk is defined by

Δk :=
{

Δ
cg
k if cGrad,

Δs
k otherwise.

(25)
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4.2 Acceptance criterion

Monotone methods (descent methods) generate a sequence of iterations such that
the corresponding sequence of function values is monotonically decreasing in (1).
Their strategies may trap the iterations to the bottom of a curved narrow valley of the
objective function which makes the iterative algorithms lose their efficiency.

In contrast, in nonmonotone line search techniques, somegrowth in function value is
permitted which overcomes the difficulty mentioned above and improves convergence
speed, see [3–5,24,43]. Let us define l(k) as an integer satisfying k−m(k) ≤ l(k) ≤ k,
inwhichm(0) = 0 and 0 ≤ m(k) ≤ min{m(k−1)+1, N−1}, with N > 0. To increase
the efficiency of the new algorithm and to guarantee its global convergence, we use a
modified form of the nonmonotone Armijo scheme suggested in [4] as follows,

F(xk + αkdk) ≤ Rk + σαkΔk, (26)

where
Rk := ηk Fl(k) + (1 − ηk)Fk, (27)

ηk ∈ [ηmin, ηmax], ηmin ∈ [0, 1], ηmax ∈ [ηmin, 1], and σ ∈ (0, 1) is a constant, usually
chosen to be close to zero. The step-size αk is the largest member of {s, �s, . . .}, with
s > 0, � ∈ (0, 1), and

Fl(k) := max
0≤ j≤m(k)

{Fk− j }. (28)

This nonmonotone line search method, modified for the nonsmooth convex optimiza-
tion problem (1), uses a stronger nonmonotone technique whenever iterations are far
away from the optimizer and a weaker nonmonotone strategy whenever iterations are
close to the optimizer by using an adaptive value for ηk , which can improve conver-
gence results.

The procedure ofmodified nonmonotoneArmijo strategy (NMA) is described below.

Procedure Nonmonotone Armijo(NMA)
Input: xk , dk , σ , �, Δk , ηk , m(k), s and N .

1 begin
2 αk := s;
3 compute F(xk + αkdk), Fl(k) by (28) and Rk by (27);
4 while F(xk + αkdk) > Rk + σ αkΔk do
5 αk := �αk ;
6 compute F(xk + αkdk);
7 end
8 xk+1 := xk + αkdk , Fk+1 := F(xk+1), ∇ fk+1 := ∇ f (xk+1);
9 update ηk+1 using an adaptive formula;

10 choose m(k + 1) ∈ [0,min{m(k) + 1, N }];
11 end

Output: xk+1, Fk+1, ∇ fk+1, ηk+1 and m(k + 1).
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In NMA, the while loop is usually called backtracking loop. Note that, based on
Lemmas 1 and 3, NMA is well defined for the proposed approach.

It is worth mentioning that the combination of a nonmonotone line search strat-
egy and the BB step-size with safeguards was originally introduced by Rayden [37]
for unconstrained optimization problems, and by Birgin et al. [9,10] for convex con-
strained optimization problems. In the new algorithm, we also somehow utilize this
idea according to the above NMA technique.

4.3 New algorithm

Flow chart for GSCG in Fig. 1 is presented and then the GSCG algorithm is described.

noisy signal

k == 0 dCon < 0

compute:
• τ sbb

k by (11)
• dsk by (8)
• βk by (14)
• dk by (13)

compute ISTA
direction with
step-size τ0

compute:

• γk by (20)
• τk by (23)
• dk by (22)
• Δk by (25)

nCon

recovered signal
compute

Δk by (25)

converged run NMA

Yes

No Yes

No

No

YesNo

Yes

Fig. 1 Flow chart for GSCG
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Algorithm 1: GSCG (generalized shrinkage conjugate gradient algorithm)

Input: An initial point x0 ∈ R
n , τ0 > 0, N > 0, s > 0, �, λ, ω, σ, υ ∈ (0, 1),

μ > 0, η0 ∈ [ηmin, ηmax], m(0) := 0, 0 < ηmin < ηmax < 1 and
0 < τmin < τmax < ∞.

1 begin
2 for k = 0, 1, 2, . . . do
3 if k > 0 then
4 compute dCon by (16);
5 if dCon then
6 set τk := τ sbbk , compute dsk by (8), βk by (14) and dk by (13);
7 if nCon then
8 compute Δk by (25);
9 else

10 compute γk by (20), τk by (23), dk by (22) and Δk by (25);
11 end
12 else
13 compute γk by (20), τk by (23), dk by (22) and Δk by (25);
14 end
15 else
16 set τk := τ0 and compute dk by (22) and Δk by (25);
17 end
18 run [xk+1, Fk+1,∇ fk+1, ηk+1,m(k + 1)] =

NMA(xk, dk, σ, �,Δk, ηk,m(k), N );
19 if converged, break; end
20 sk := xk+1 − xk ; yk := ∇ fk+1 − ∇ fk ;
21 compute τ sbbk+1 by (11);
22 k ← k + 1;
23 end
24 end

Output: x∗ := xk ; F∗ := Fk .

In Algorithm 1, if (16) or (21) is not satisfied (cGrad = 0) then to compute dk ,
GSCG uses the CG step-size (Lines 10 and 13). Otherwise (cGrad = 1), it uses the
BB step-size (Line 6). In addition, Lines 7–11 help us to establish the convergence
rate.

5 Convergence analysis

This section is devoted to analyzing the convergence of GSCG. To do so, we use
some tools for nonsmooth and smooth optimization which have been presented in
[4,24,25,30,38], but have been extensively modified to allow for GSCG. In order to
investigate convergence analysis, we utilize the following two assumptions:

(H1) The level set L(x0) := {x | F(x) ≤ F0} is bounded, for any x0 ∈ R
n .

(H2) The ∇ f (x) is Lipschitz continuous with constant L .
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The following lemma characterizes a stationary point. Our approach in it follows that
of Lemma 2 in [38].

Lemma 4 Suppose that τk > 0, βk ≥ 0 and dk is a direction generated by GSCG.
Then, xk is a stationary point for the problem (1) if and only if dk = 0.

Proof If (16) or (21) is not satisfied, then dk = dsk . Thus, Lemma 2 gives the desired
result. Otherwise, dk = dsk + βkdk−1. In the case dk �= 0, Lemma 3 implies that
F ′(xk; dk) < 0, thus xk is not a stationary point. Now, take dk = 0. Since dsk =
−βkdk−1 is the solution of (7), the descent condition (16) results in

α〈∇ fk, d〉 + α2

2τk
‖d‖2 + μ‖xk + αd‖1

≥ −βk〈∇ fk, dk−1〉 + β2
k

2τk
‖dk−1‖2 + μ‖xk − βkdk−1‖1

≥ −βk

(
〈∇ fk, dk−1〉 + μ‖dk−1‖1

)
+ μ‖xk‖1

≥ μ‖xk‖1,

for any αd ∈ R
n with α > 0. Hence, proceeding the same argument as Lemma 2

in [38], we get F ′(xk; d) ≥ 0, leading to this fact that xk is a stationary point of
F(x). ��

In the sequel, let us define the following index sets:

I1 :=
{
k | dk = dsk + βkdk−1 (or τk = τ sbbk )

}
and

I2 :=
{
k | dk = dsk (or τk = τ sbbk + ωγkτk−1)

}
;

I1 is the set of all iterations where cGrad=1 and I2 includes all iterations where
cGrad = 0.

Lemma 5 Let {τk}k≥0 be the sequence generated by GSCG. Then, {τk}k≥0 is bounded.

Proof The proof is done in two cases:

(i) k ∈ I1. Then, relation (11) gives the result.
(ii) k ∈ I2. In this case, the proof is by induction. Since limk→∞ γk = 0, there exists

m ∈ N such that γk ≤ 1

2
, for all k ≥ m. Let T := max{τmax, τm}; it is clear

that τm ≤ 2T . Suppose that τk ≤ 2T for some k ≥ m. Then, by (19) and the
induction hypothesis, for all k ≥ m, we have

τk+1 ≤ τmax + ωγk+1τk ≤ T + 1

2
τk ≤ 2T ,

which results in the proof. ��
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Lemma 6 Suppose that the sequence {xk}k≥0 is generated by GSCG and Assumptions
(H1) and (H2) hold. Then, there exists a constant α ∈ (0, 1] such that the acceptance
criterion (26) is satisfied for any α ∈ (0, α]. In addition, for all αk that satisfies (26),
we can find a lower bound α such that αk ≥ α.

Proof Lipcshitz continuity of ∇ f , convexity of ‖ · ‖1 and the definition of Δk in (25)
result in

F(xk + αdk) − Rk ≤ F(xk + αdk) − Fk

≤ 〈∇ fk, αdk〉 + α2

2
L‖dk‖2 + αμ

(
‖xk + dk‖1 − ‖xk‖1

)

= αΔk + α2

2
L‖dk‖2.

From (24), it follows that

F(xk + αdk) − Rk ≤ α(1 − αLτk)Δk . (29)

Therefore, the acceptance criterion (26) is satisfied whenever

α
(
1 − αLτk

)
Δk ≤ σαΔk . (30)

Since xk is not stationary, based on Lemma 4 and (24), Δk < 0. Thus, (30) yields to

α ≤ α,

where α := 1 − σ

τmaxL
with

τmax := max

{
max
k∈I1

τk,max
k∈I2

τk

}
= max

{
τmax,max

k∈I2
τk

}
.

Proving the lower bound for αk , we know that either αk = 1 or the acceptance criterion
(26) will fail at least once; hence

F

(
xk + αk

�
dk

)
> Rk + σ

αk

�
Δk .

This fact along with (29) leads to

αk −
�
(
1 − σ

)

τk L
> 0,
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1 Page 14 of 38 H. Esmaeili et al.

so that

αk > α :=
�
(
1 − σ

)

τmaxL
,

since τmax ≥ τk for all k. Thus, the proof is completed. ��
The proof of the next lemma has been inspired by the works of [4,24] who analyzed

a nonmonotone line search for smooth optimization problems, but it has been broadly
modified to allow for the problem (1) with the acceptance criterion (26) which is
analogous to that of ibid.

Lemma 7 Suppose that the sequence {xk}k≥0 is generated by GSCG with acceptance
criterion (26) and Assumptions (H1) and (H2) hold. Then,

(a) the sequence {Fl(k)}k≥0 is convergent.
(b) limk→∞ dk = 0.
(c) limk→∞ Fk = limk→∞ Fl(k).
(d) limk→∞ Rk = limk→∞ Fk.

Proof (a) We show that the sequence {Fl(k)}k≥0 is non-increasing. The inequality
Rk ≤ Fl(k) implies that

Fk+1 ≤ Rk ≤ Fl(k). (31)

For the case k + 1 ≥ N , from (31) and m(k + 1) := N − 1, we have

Fl(k+1) = max
0≤ j≤N−1

{Fk− j+1}≤ max
0≤ j≤m(k)+1

{Fk− j+1}=max{Fl(k), Fk+1}=Fl(k).

Furthermore, for the case k + 1 < N , we have m(k + 1) := k + 1 and Fl(k+1) :=
F0. These cases give the non-increasing property of the sequence {Fl(k)}k≥0. In
addition,

Fk+1 ≤ Rk≤Fl(k) ≤ Fl(k−1) ≤ · · · ≤ Fl(0) = F0, (32)

so that {xk}k≥0 remains in L(x0) for all k. Also, based on the Assumption (H1)
and the definition of F(x), L(x0) is compact. Thus, {Fl(k)}k≥0 assumes a limit,
named F̃ , for k → ∞.

(b) Replacing k with l(k) − 1 in (26) and using (31), we get

Fl(k) ≤ Fl(l(k)−1) + σαl(k)−1Δl(k)−1, (33)

which, along with part (a), implies that

lim
k→∞ αl(k)−1Δl(k)−1 = 0.

Hence, (24) gives
lim
k→∞ αl(k)−1‖dl(k)−1‖ = 0. (34)
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Based on Lemma 6, αr ≥ α for all r . Thus, (34) implies that

lim
k→∞ dl(k)−1 = 0. (35)

Now, by induction, for any j ≥ 1, we show that

lim
k→∞ dl(k)− j = 0, (36)

and
lim
k→∞ Fl(k)− j = F̃ . (37)

It has been already shown in (35) that (36) holds for j = 1; hence

lim
k→∞ ‖xl(k) − xl(k)−1‖ = 0. (38)

From (38) and the uniform continuity of F(x) on L(x0), we get (37) for j = 1.
Now, we assume that (36) and (37) hold for a given j . Setting l(k) := l(k) − j in
(33), we get

Fl(k)− j ≤ Fl(l(k)−( j+1)) + σαl(k)−( j+1)Δl(k)−( j+1),

where k is assumed to be large enough such that l(k) − ( j + 1) ≥ 0. By letting
k → ∞, using the inductive hypothesis along with part (a) and following the same
arguments employed for driving (35), we deduce

lim
k→∞ dl(k)−( j+1) = 0,

so that
lim
k→∞ ‖xl(k)− j − xl(k)−( j+1)‖ = 0.

This fact and the uniform continuity of F(x) on L(x0) result in

lim
k→∞ Fl(k)−( j+1) = lim

k→∞ Fl(k)− j = F̃,

proving the inductive step. Based on (28), let l(k) := argmax
{
Fj | max(0, k −

N+1) ≤ j ≤ k
}
. Thus, l(k) is one of themembers of the index set {k−N+1, k−

N+2, . . . , k}. Hence, we can denote k−N = l(k)− j , for some j = 1, 2, . . . , N .
Therefore, from (36) we deduce,

lim
k→∞ αk‖dk‖ = lim

k→∞ αk−N‖dk−N‖ = 0, (39)
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leading to

lim
k→∞ dk = 0,

by Lemma 6.
(c) For any k ∈ N, we have

xk−N := xl(k) −
l(k)−(k−N )∑

j=1

αl(k)− j dl(k)− j . (40)

Thus, (36) and (40) result in

lim
k→∞ ‖xk−N − xl(k)‖ = 0. (41)

Part (a), along with (41) and the uniform continuity of F(x) on L(x0), implies
that

lim
k→∞ Fk = F̃ .

(d) From Fk ≤ Rk ≤ Fl(k) and the previous part, we obtain the desired result. ��
We now prove the main global convergence theorems of the new approach in two
sections.

5.1 Convergence rate for convex case

In this part a sublinear convergence estimate for the error in the objective function
value F(x) is presented. The first theorem implies that GSCG converges to a global
solution of the problem (1).

Theorem 1 Suppose that the Assumptions (H1) and (H2) hold and let {xk}k≥0 be the
sequence generated by GSCG. Then, any accumulation point of {xk}k≥0 is a stationary
point of the problem (1). In addition,

lim
k→∞ Fk = F∗,

where F∗ is the optimal value for the problem (1).

Proof By (32), the sequence {xk}k≥0 remains in L(x0). In addition, since L(x0) is com-
pact, there exists an accumulation point. Furthermore, we get from (11) and Lemma 5

0 < τmin ≤ lim
k∈I1
k→∞

τk = lim
k∈I2
k→∞

τk ≤ τmax < +∞. (42)

On the other hand, the sequence {∇ fk}k≥0 is bounded since Assumption (H2) holds
and L(x0) is compact. Lemma 7(b), (42), boundedness of {∇ fk}k≥0 and continuity of
the shrinkage operator in (3) (see [27, Theorem 4.5]), result in
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lim
k∈I1
k→∞

dk = lim
k∈I2
k→∞

dk = lim
k→∞ dsk (τ

sbb
k ),

where

dsk (τ
sbb
k ) =: Sμτ sbbk

(
xk − τ sbbk ∇ fk

)
− xk .

We consider the proof by contradiction. Let x∗ be the accumulation point of the
sequence {xk}k≥0 that is not stationary. Hence, by Lemma 4, for all sufficiently large
k, there is an ε > 0 such that ‖dk‖ ≥ ε > 0. Thus, (39) results in

lim
k→∞ αk = 0,

which contradicts Lemma 6. By Lemma 7, {Fk}k≥0 approaches a limit denoted by F̃ .
Furthermore, from convexity of F(x), a stationary point is a global minimizer; hence
F̃ = F∗ which completes the proof. ��

In the sequel, we show the sublinear convergence of GSCG in a similar way as
Theorem 3.2 in [25] and Theorem 2 in [30].

Theorem 2 Suppose that {xk}k≥0 is a sequence generated by GSCG, and Assumptions
(H1) and (H2) hold. Then, there exists a constant c such that for all sufficiently large
k,

Fk − F∗ ≤ c

k
.

Proof Convexity of F(x) and αk ∈ (0, 1] result in

Fk+1 ≤ (1 − αk)Fk + αk F(xk + dk).

If (16) and (21) are satisfied, then dk = dsk + βkdk−1. Taking

Qτk (xk, d
s
k ) := fk + 〈∇ fk, d

s
k 〉 + 1

2τk
‖dsk‖2 + μ‖xk + dsk‖1

and using Lipschitz continuity of ∇ f , we get

F(xk + dk) ≤ fk + 〈∇ fk, d
s
k 〉 + 1

2τk
‖dsk‖2 + μ‖xk + dsk‖1

+ βk
(〈∇ fk, dk−1〉 + μ‖dk−1‖1

) + L

2
‖dk‖2

≤ Qτk (xk, d
s
k ) + L

2
‖dk‖2.

(43)
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Otherwise, dk = dsk . Again Lipschitz continuity of ∇ f results in

F(xk + dk) ≤ fk + 〈∇ fk, d
s
k 〉 + 1

2τk
‖dsk‖2 + μ‖xk + dsk‖1 + L

2
‖dk‖2

≤ Qτk (xk, d
s
k ) + L

2
‖dk‖2.

(44)

Since dsk is the minimizer of (7) and f (x) is convex, for τk > 0, it follows that

Qτk (xk, d
s
k ) ≤ min

d

{
fk + 〈∇ fk, d〉 + μ‖xk + d‖1 + 1

2τk
‖d‖2

}

≤ min
d

{
F(xk + d) + 1

2τmin
‖d‖2

}
.

(45)

Let us now denote xk + d := (1−ϑ)xk +ϑx∗, where ϑ ∈ [0, 1] and x∗ is an optimal
solution of the problem (1). Convexity of F(x) yields to

min
d

{
F(xk + d) + 1

2τmin
‖d‖2

}
≤ F

(
(1 − ϑ)xk + ϑx∗)

+ 1

2τmin
‖(1 − ϑ)xk + ϑx∗ − xk‖2

≤ (1 − ϑ)Fk + ϑF∗ + ϑ2�k,

(46)

where�k := 1

2τmin
‖xk − x∗‖2. By (32) and Assumption (H1), xk and x∗ lie in L(x0),

so that �k ≤ c1 < ∞, where c1 := 1

2τmin
D2

L(x0). We now get from (43) to (46)

Fk+1 ≤ (1 − αkϑ)Fk + αk(ϑF∗ + c1ϑ
2) + αk

L

2
‖dk‖2. (47)

Acceptance criterion (26) along with (24) results in

Lαk

2
‖dk‖2 ≤ Lτk

σ

(
Rk − Fk+1

) ≤ c2
(
Rk − Fk+1

)
, (48)

where c2 := Lτmax

σ
. Combining (47), (48) and Fk ≤ Rk , it follows that

Fk+1 ≤ Rk + αk(ϑF∗ − ϑRk + c1ϑ
2) + c2

(
Rk − Fk+1

)
. (49)

The right hand side of (49) reaches its minimum value when ϑmin :=
min

{
1,

Rk − F∗

2c1

}
. As a consequence of Theorem 1 and Lemma 7, the sequence
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{Rk}k≥0 converges to F∗. Hence, ϑmin also approaches zero as k → ∞; hence there
is an integer k0 with ϑmin < 1 for all k > k0. Therefore

Fk+1 ≤ Rk − αk

4c1
(Rk − F∗)2 + c2

(
Rk − Fk+1

)

≤ Rk − c3(Rk − F∗)2 + c2
(
Rk − Fk+1

)
,

(50)

for all k > k0, where c3 := 1

4c1
α, with α given by Lemma 6. Let us define Ek :=

Fk − F∗ and Er(k) := Rk − F∗. By subtracting F∗ from the both side of (50), we
have

Ek+1 ≤ Er(k) − c3E
2
r(k) + c2

(
Er(k) − Ek+1

)
,

so that

Ek+1 ≤ Er(k) − c4E
2
r(k),

where c4 := c3
1 + c2

. We find after division by Er(k) �= 0 that

Ek+1

Er(k)
≤ 1 − c4Er(k),

yielding to
1

Ek+1
≥ 1

Er(k)
+ c4 ≥ 1

El(k)
+ c4, (51)

since Ek+1 ≤ Er(k), Rk ≤ Fl(k) and El(k) := Fl(k) − F∗. An integer i0 can be found

such that k0 ∈
(
(i0 − 1)N , i0N − 1

]
. For all k ∈

(
(i − 1)N , i N − 1

]
with i > i0,

the definition of l(k) in (28) results in k − N + 1 ≤ l(k) ≤ k. By applying (51)
recursively, for all i > i0, we have

1

Ek
≥ 1

El(k)
≥ 1

El(k−N )

+ c4 ≥ 1

El(k−(i−i0)N )

+ (i − i0)c4,

so that

Ek ≤ El(k−(i−i0)N )

1 + (i − i0)c4El(k−(i−i0)N )

≤ 1

(i − i0)c4
≤ 2

ic4
≤ 2N

kc4
,

for all k ∈
(
(i − 1)N , i N − 1

]
with i > 2i0. Since there exists a finite number of

integers k ∈ [1, 2i0N ], one finds c5 satisfying c5 > 2
c4

and
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Ek ≤ c5N

k
, ∀k ∈ [1, 2i0N ].

By taking c := c5N , the proof is completed. ��

5.2 Convergence rate for strongly convex case

This part is dedicated to the R-linear convergence rate of GSCG, when F(x) satisfies

F(y) ≥ F(x∗) + ξ‖y − x∗‖2 (52)

for all y ∈ R
n , with ξ > 0. The relation (52) holds, when f (x) is a strongly convex

function and therefore x∗ is a unique minimizer of F(x). The proof of the following
theorem is similar to those of theorem 4.1 in [25] and Theorem 3 in [30].

Theorem 3 Suppose that {xk}k≥0 is a sequence generated by GSCG, and Assumptions
(H1) and (H2) and (52) hold. Given c2 and α satisfying Theorem 2 and Lemma 7,
there are constants ψ and ϕ ∈ (0, 1) such that for all sufficiently large k,

Fk − F∗ ≤ ψϕk(F0 − F∗).

Proof We first show that there exists χ ∈ (0, 1) such that

Fk+1 − F∗ ≤ χ(Fl(k) − F∗). (53)

Assume that � satisfies

0 < � < min

{
2c2
α

,
1

L
,
ξτmin

L

}
. (54)

We consider two cases:

(i) If ‖dk‖2 ≥ �(Fl(k) − F∗), then we get from (48)

�α

2
(Fl(k) − F∗) ≤ 1

2
α‖dk‖2 ≤ c2(Fl(k) − Fk+1),

so that

Fk+1 − F∗ ≤ χ(Fl(k) − F∗),

where χ := (1 − �α

2c2
) ∈ (0, 1); it can be obtained by (54).

(ii) If ‖dk‖2 < �(Fl(k) − F∗), then (52) results in

�k = 1

2τmin
‖xk − x∗‖2 ≤ 1

2τminξ
(Fk − F∗) ≤ c6(Fl(k) − F∗),
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where c6 = 1

2τminξ
. We now get from (43) to (46),

Fk+1 ≤ (1 − αkϑ)Fk + αk(ϑF∗ + �kϑ
2) + Lαk

2
‖dk‖2

≤ Fl(k) + αk

(
c6ϑ

2 − ϑ + L�

2

)
(Fl(k) − F∗),

so that

Fk+1 − F∗ ≤
[
1 + αk

(
c6ϑ

2 − ϑ + L�

2

)]
(Fl(k) − F∗), ∀ ϑ ∈ [0, 1].

Let χ := 1 + αk(c6ϑ2 − ϑ + L�
2 ); its minimum value is at

ϑ̂ =
{
1,

1

2c6

}
∈ [0, 1]. (55)

If ϑ̂ = 1, then (55) gives c6 < 1
2 . Thus, � ≤ 1

L , obtained from (54), leads to

χ = 1 + αk

(
c6 − 1 + � L

2

)
≤ 1 − 1 − � L

2
αk < 1.

Otherwise, the inequality � <
ξτmin

L
, obtained from (54), gives

χ = 1 + αk

(
1

4c6
− 1

2c6
+ � L

2

)
= 1 − αk

(
1

4c6
− � L

2

)
< 1.

Therefore, (53) holds for all k ≥ 0.

By replacing k with l(k)−1 in (53), setting k ≥ N and utilizing monotonicity of Fl(k),
we have

Fl(k) − F∗ ≤ χ(Fl(l(k)−1) − F∗) ≤ χ(Fl(k−N ) − F∗). (56)

There exists i ≥ 1 such that k ∈ (
(i − 1)N , i N − 1] for any k ≥ N . Applying (56)

recursively gives

Fk − F∗ ≤ Fl(k) − F∗ ≤ χ i−1(Fl(k−(i−1)N ) − F∗).

Since Fk+1 ≤ Fl(k) and l
(
k − (i − 1)N

) ∈ (0, N ], we get

F
l
(
k−(i−1)N

) ≤ max{Fl(0), Fl(1), Fl(2), . . . , Fl(N−1)} = F0,
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so that

Fk − F∗ ≤ χ i−1(F1 − F∗) ≤ 1

χ

N
√

χk(F0 − F∗),

which completes the proof with ψ = 1

χ
and ϕ = N

√
χ . ��

6 Numerical results

We give some details of the implemented algorithms on CS problems in Sect. 6.1 and
ID problems in Sect. 6.2.

Table 1 Amounts of parameters
ρ and δ

ρ δ ρ δ ρ δ

0.1 0.1 0.1 0.2 0.2 0.1

0.2 0.2 0.1 0.3 0.3 0.1

0.3 0.3 0.2 0.3 0.3 0.2

(a) (b) (c)

Fig. 2 A comparison among TwIST, SpaRSA, fpcbb, NBBL1, FISTA and GSCG with the performance
measures ni, nf and sec, respectively

Table 2 Average of ni, nf and
sec for all compared algorithms

Solver ni nf sec

FISTA 2033 2034 114

fpcbb 3989 8674 315

NBBL1 1191 1375 88

SpaRSA 1164 1164 75

TwIST 735 825 41

GSCG 232 289 13
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Fig. 3 A comparison among fpcbb, SpaRSA, TwIST and GSCG for matrix A in item (1) with σ1 =
σ2 = 10−7 and ρ = δ = 0.1. a Diagram of function values versus iterations. b Diagram of real errors
versus iterations. c Diagram of the original signal. d Diagram of the observation (noisy measurement).
e–h Diagrams of recovered signals by fpcbb, SpaRSA, TwIST and GSCG (red circle) versus the original
signal (blue peaks) (color figure online), respectively
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Fig. 3 continued

6.1 Quality of CS reconstruction

Here, the ability of GSCG for the sparse recovery in CS problems, a well-known
application for (2), is evaluated. The field of CS, presented by Candès et al. [12] and
Donoho [15], has grown considerably for the past few years. This fact that many real-
world signals may be sparse or compressible in nature, well approximated by a sparse
signal in a suitable basis or dictionary, is the motivation to create CS. Simply put it,
CS refers to the idea of encoding a large sparse signal x through a relatively small
number of linear measurements A and storing b = Ax , instead. The main aspect is
decoding the observation vector b to recover the original signal x .

We report the results obtained by running our algorithm (GSCG) in comparison
with fixed point continuation method with Barzilai–Borwein (fpcbb) [28], two-step
ISTA (TwIST) [11], sparse reconstruction by separable approximation (SpaRSA)
[41], nonmonotone BB gradient algorithm (NBBL1) [42] and fast iterative shrinkage-
thresholding algorithm (FISTA) [8] on some CS problems. The codes of compared
algorithms are available in

• (GSCG) https://github.com/GS1400/GSCGcode.git
• (fpcbb) http://www.caam.rice.edu/~optimization/L1/fpc/soft
• (TwIST) http://www.lx.it.pt/~bioucas/TwIST/TwIST.htm
• (SpaRSA) http://www.lx.it.pt/~mtf/SpaRSA
• (FISTA) http://iew3.technion.ac.il/~becka/papers/wavelet_FISTA.zip

Given the dimension of the signal n, according to the values of δ and ρ presenting
in Table 1, we produce the dimension of the observationm and the number of nonzero
elements k in an exact solution, by m := �δn� and k := �ρm�. Now we present six
types of matrix A, see [27,28,39], used to produce our test problems as follows:

(1) Gaussian matrix (randn(m,n)) whose elements are pseudo random values drawn
form the standard normal distribution N (0, 1);

(2) Scaled Gaussian matrix whose columns are scaled to unit norm;

123

https://github.com/GS1400/GSCGcode.git
http://www.caam.rice.edu/~optimization/L1/fpc/soft
http://www.lx.it.pt/~bioucas/TwIST/TwIST.htm
http://www.lx.it.pt/~mtf/SpaRSA
http://iew3.technion.ac.il/~becka/papers/wavelet_FISTA.zip


A new generalized shrinkage conjugate gradient method for… Page 25 of 38 1

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

iterations

fu
nc

tio
n 

va
lu

es
fpcbb
SpaRSA
TwIST
GSCG

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

iterations

||x
 −

 x
s||/

||x
s||

fpcbb
SpaRSA
TwIST
GSCG

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−6

−4

−2

0

2

4

6
Orginal Signal (n=8192, k=82)

A
m

pl
itu

de

Index [1 n]
0 100 200 300 400 500 600 700 800 900

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Observation (m=819)

A
m

pl
itu

de

Index [1 m]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−6

−4

−2

0

2

4

6
fpcbb (RelErr=1.9345)

A
m
pl

it
ud

e

Index [1 n]
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

−6

−4

−2

0

2

4

6
SpaRSA (RelErr=1.9343)

A
m
pl

it
ud

e

Index [1 n]

(a) (b)

(c) (d)

(e) (f)

Fig. 4 A comparison among fpcbb, SpaRSA, TwIST and GSCG for matrix A in item (2) with σ1 =
σ2 = 10−7 and ρ = δ = 0.1. a Diagram of function values versus iterations. b Diagram of real errors
versus iterations. c Diagram of the original signal. d Diagram of the observation (noisy measurement).
e–h Diagrams of recovered signals by fpcbb, SpaRSA, TwIST and GSCG (red circle) versus the original
signal (blue peaks) (color figure online), respectively
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Fig. 4 continued

(3) Orthogonalized Gaussian matrix whose rows are orthogonalized by QR decom-
position;

(4) Bernoullimatrixwhose elements are+/−1 independentlywith equal probability;
(5) Partial Hadamard matrix, a matrix of +/ − 1 whose columns are orthogonal and

whose m rows are chosen randomly from the n × n Hadamard matrix;
(6) Partial discrete cosine transform (PDCT) matrix whose m rows are chosen ran-

domly from the n × n DCT matrix.

The matrices in items (1)–(5) are stored explicitly whose signals with dimensions
n ∈ {210, . . . , 215} are tested. The matrices in item (6) are stored implicitly whose
signals with dimensions n ∈ {210, . . . , 217} are tested. Since real problems are usually
ruined by noise, according to the Gaussian noise in [27,28,39], we explain how to
contaminate x̃ and b by impulse noise in the following procedure:

Procedure(for producing x̃ and b)
Input: n, k, σ1, σ2 and A

1 begin
2 xs := zeros(n, 1);
3 p := randperm(n);
4 xs (p(1 : k)) := 2randn(k, 1);
5 x̃ := xs + σ1randn(n, 1);
6 sI := randn(m, 1);
7 b := Ax̃ + σ2sI ;
8 end

Output: x̃ and b

In this procedure, the noise scenarios (σ1, σ2), which are input arguments, belong
to

{
(10−1, 10−1), (10−3, 10−3), (10−5, 10−5), (10−7, 10−7)

}
.
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Fig. 5 A comparison among fpcbb, SpaRSA, TwIST and GSCG for matrix A in item (3) with σ1 =
σ2 = 10−7 and ρ = δ = 0.1. a Diagram of function values versus iterations. b Diagram of real errors
versus iterations. c Diagram of the original signal. d Diagram of the observation (noisy measurement).
e–h Diagrams of recovered signals by fpcbb, SpaRSA, TwIST and GSCG (red circle) versus the original
signal (blue peaks) (color figure online), respectively
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Fig. 5 continued

The n-by-1 matrix containing zeros is returned in Line 2 and a random permutation of
the integers from 1 to n is returned in Line 3. Line 4 returns the original signal of the
test problems which is an n-by-1 matrix containing k nonzero pseudo random values
drawn from the standard normal distribution and n − k zero elements. Both x̃ and b,
respectively, contaminated by impulsive noise are returned in Line 5 and 7.

Now, we explain how to choose the other parameters of all algorithms as follows:

• For fpcbb and GSCG, like that of [27,28,40], the parameter τ0 is chosen by

τ0 := min{2.665 − 1.665m/n, 1.999}.

• For all algorithms, the initial point is selected by x0 := zeros(n, 1) and we set
μ = 2−8 and σ = 10−3.

• For fpcbb and GSCG, according to [4], the parameter ηk is updated by

ηk :=
{ 2

3ηk−1 + 0.01, if ‖∇ fk‖ ≤ 10−2,

max{0.99ηk−1, 0.5}, else,

for which η0 = 0.85.
• GSCG employs α0 = s = 1, λ = 0.25, υ = 0.999 and ω = 0.001 and uses

τ sbbk = τ
sbb,1
k .

• For GSCG, fpcbb, NBBL1 and SpaRSA, τmin = 10−4 and τmax = 104 are
selected.

• For GSCG, fpcbb and NBBL1, we set α0 = s = 1.

Note that each algorithm is run five times. This fact and different choices of the
above listed parameters lead to generate more than 1620 random test problems. In our
numerical experiments, the algorithms are stopped whenever

‖ fk+1 − fk‖ < ftol‖ fk‖,
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Fig. 6 A comparison among fpcbb, SpaRSA, TwIST and GSCG for matrix A in item (4) with σ1 =
σ2 = 10−7 and ρ = δ = 0.1. a Diagram of function values versus iterations. b Diagram of real errors
versus iterations. c Diagram of the original signal. d Diagram of the observation (noisy measurement).
e–h Diagrams of recovered signals by fpcbb, SpaRSA, TwIST and GSCG (red circle) versus the original
signal (blue peaks) (color figure online), respectively
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Fig. 6 continued

where ftol := 10−10 or the total number of iterations exceeds 10000.
Having a more reliable comparison, demonstrating the total behavior of the new

presented procedure and better understanding of the performance of the all compared
algorithms, we evaluated the performance profiles of all codes based on a set ofmetrics
such as the number of total iterations (ni), the number of function evaluations (nf)
and time in seconds (sec), from left to right in Fig. 2, by applying performance
profiles MATLAB code proposed by Dolan and Morè in [14]. In subfigures a–c of
Fig. 2, P(ζ ) designates the percentage of problems which are solved within a factor
ζ of the best solver.

In view of graphs depicted in the subfigures of Fig. 2, GSCG is clearly the winner
of all performance metrics and attains most wins in terms of ni for around 99%, nf
around 98% and sec around 92%. Furthermore, Fig. 2 verifies the ability of GSCG to
solve the set of all test problems for ζ ≥ 1 in ni and nf and for ζ ≥ 2 in sec.

Table 2 contains the average of ni, nf and sec of the reconstructions with respect
to the original signal xs over 5 runs for the algorithms tested; these values are rounded
(towards zero) to integers. These results show that, in solving problem (1), GSCG is
faster than TwIST, SpaRSA and fpcbb and much faster than FISTA with the clear
lowest values of ni and nf.

Let us first measure the quality of restoration x∗ through the relative error to the
original signal xs by

RelErr := 100
‖x∗ − xs‖

‖xs‖ .

Figures 3, 4, 5, 6, 7 and 8 are dedicated to the different six types of matrix A, respec-
tively. These figures give some comparisons among GSCG, SpaRSA, TwIST and
fpcbb in terms of function values versus iterations (subfigures a), relative error ver-
sus iterations (subfigures b) and the ability of reconstructions [subfigures c–h with
recovered signal (red circles) versus original signal (blue peaks)]. These subfigures
verify that GSCG is competitive with fpcbb, TwIST and SpaRSA in terms of com-
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Fig. 7 A comparison among fpcbb, SpaRSA, TwIST and GSCG for matrix A in item (5) with σ1 =
σ2 = 10−7 and ρ = δ = 0.1. a Diagram of function values versus iterations. b Diagram of real errors
versus iterations. c Diagram of the original signal. d Diagram of the observation (noisy measurement).
e–h Diagrams of recovered signals by fpcbb, SpaRSA, TwIST and GSCG (red circle) versus the original
signal (blue peaks) (color figure online), respectively
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Fig. 7 continued

pared values. In addition, comparing graphs and noticing to the real errors of the
reconstructions, one get the efficiency and robustness of the GSCG process in recov-
ering large sparse signals in comparisons with the other solvers.

6.2 ID problem

Here, we present an application of theGSCGmethod to ID problems in order to demon-
strate another applicative side of it. An image is a signal that conveys information about
the behavior or attributes of a physical object. Often the image is more or less blurry
which may arise due to environmental effects, sensor imperfection, communication
errors or poor illumination. In ID, the main goal is to recover the original, sharp image.
There are many directions and tools explored in studying ID. One of them is the class
of algorithms which uses sparse and redundant representation modeling. In many sit-
uations, the blur is indeed linear or at least well approximated by a linear model which
leads us to study the following linear system:

b : = Ax + κ,

s.t. x ∈ X
(57)

where X is a finite-dimensional vector space, x is a clean image, A is a blurring
operator, b is the observed image and κ is an impulsive noise. Since (57) is mostly
underdetermined and κ is not commonly available, an approximate solution of it can
be found by solving (2). For a quantitative evaluation of the results, we use the peak
signal-to-noise ratio PSNR defined as

PSNR = 20 log10

( √
mn

‖x − xt‖F
)

[dB],

where ‖ · ‖F is the Frobenius norm, xt denotes m × n true image and pixel values are
in [0, 1]. In general, a higher PSNR points out that the reconstruction is of higher qual-
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Fig. 8 A comparison among fpcbb, SpaRSA, TwIST and GSCG for matrix A in item (6) with σ1 =
σ2 = 10−7 and ρ = δ = 0.1. a Diagram of function values versus iterations. b Diagram of real errors
versus iterations. c Diagram of the original signal. d Diagram of the observation (noisy measurement).
e–h Diagrams of recovered signals by fpcbb, SpaRSA, TwIST and GSCG (red circle) versus the original
signal (blue peaks) (color figure online), respectively
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Fig. 8 continued

Original image Blurred/noisy image

fpcbb (f = 176668.68, PSNR = 26.96) TwIST (f = 195109.19, PSNR = 26.90)

FISTA (f = 183862.54, PSNR = 27.10) GSCG (f = 183911.91, PSNR = 27.19)

Fig. 9 Debluring the 512×512 HeadCT image with the 4 × 4 uniform blur and the Gaussian noise with
SNR = 40 dB by fpcbb, FISTA, TwIST and GSCG with the regularization parameter μ := 5 × 10−3.
The algorithms were stopped after 50 iterations
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Original image Blurred/noisy image

fpcbb (f = 196594.05, PSNR = 31.74) TwIST (f = 199418.60, PSNR = 31.63)

FISTA (f = 196501.82, PSNR = 31.73) GSCG (f = 195768.73, PSNR = 31.75)

Fig. 10 Debluring the 512×512 Elaine image with the 4 × 4 uniform blur and the Gaussian noise with
SNR = 40 dB by fpcbb, FISTA, TwIST and GSCG with the regularization parameter μ := 5 × 10−3.
The algorithms were stopped after 50 iterations

ity, see [1,2]. The true images are available in http://homepage.univie.ac.at/masoud.
ahookhosh/uploads/OSGA_v1.1.tar.gz.

Here, the parameter values are taken the same as those in the CS experiment. In
our numerical experiments, all algorithms are stopped whenever the total number of
iterations exceeds 50. Figures 9, 10 and 11 show that GSCG achieves the best PSNR
among fpcbb, FISTA and TwIST.

7 Conclusion

In this study, we have introduced and tested GSCG to solve the convex �1-regularized
optimization problem. The main goal here is to improve and accelerate ISTA by
introducing a new descent condition, a new search direction and a new shrinkage step-
size. GSCG takes advantages of the new generated direction when it satisfies descent
property under the new descent condition and also meets a mild norm condition.
Otherwise, it utilizes the ISTA descent direction which uses the new shrinkage step-
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Original image Blurred/noisy image

fpcbb (f = 185581.41, PSNR = 30.86) TwIST (f = 195711.81, PSNR = 30.51)

FISTA (f = 187462.82, PSNR = 30.87) GSCG (f = 188768.62, PSNR = 30.95)

Fig. 11 Debluring the 512×512 Cameraman image with the 4 × 4 uniform blur and the Gaussian noise
with SNR = 40 dB by fpcbb, FISTA, TwIST and GSCGwith the regularization parameterμ := 5×10−3.
The algorithms were stopped after 50 iterations

size. Based on the CG idea, the new presented direction is a special linear combination
of the ISTA descent direction and the previous direction. The new shrinkage step-
size is a specific linear combination of the BB step-size and the previous step-size.
The global convergence along with sublinear (R-linear) convergence rate of GSCG for
the convex (strongly convex) �1-regularized optimization problem is established. In
a series of numerical experiments, we give the experimental evidences that show the
efficiency and robustness of GSCG in comparison with some state-of-the-art solvers
when applied to the CS and ID problems.

Acknowledgements We would like to thank the high performance computing (HPC) center, a branch of
institute for research in fundamental Physics and Mathematics (IPM), to help us to use HPC’s cluster for
computing numerical results. The third author acknowledges the financial support of the Doctoral Program
“Vienna Graduate School on Computational Optimization” funded by Austrian Science Foundation under
Project No. W1260-N35.

123



A new generalized shrinkage conjugate gradient method for… Page 37 of 38 1

References

1. Ahookhosh, M.: High-dimensional nonsmooth convex optimization via optimal subgradient methods.
Ph.D. Thesis, Faculty of Mathematics, University of Vienna (2015)

2. Ahookhosh, M.: User’s manual for OSGA (Optimal SubGradient Algorithm). http://homepage.univie.
ac.at/masoud.ahookhosh/uploads/User’s_manual_for_OSGA.pdf (2014)

3. Ahokhosh, M., Amini, K.: An efficient nonmonotone trust-region method for unconstrained optimiza-
tion. Numer. Algorithms 59(4), 523–540 (2012)

4. Amini, K., Ahookhosh, M., Nosratpour, H.: An inexact line search approach using modified nonmono-
tone strategy for unconstrained optimization. Numer. Algorithm 66, 49–78 (2014)

5. Amini, K., Shiker, M.A.K., Kimiaei, M.: A line search trust-region algorithm with nonmonotone
adaptive radius for a system of nonlinear equations. 4OR-Q. J. Oper. Res. 14(2), 133–152 (2016)

6. Barzilai, J., Borwein, J.M.: Two point step size gradient method. IMA J. Numer. Anal. 8, 141–148
(1988)

7. Bazaraa, M.S., Sherali, S.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 3rd edn.
Wiley, New York (2006)

8. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2(1), 183–202 (2009)

9. Birgin, E.G., Mart̀inez, J.M., Raydan, M.: Inexact spectral projected gradient methods on convex sets.
IMA J. Numer. Anal. 23(4), 539–559 (2003)

10. Birgin, E.G.,Mart̀inez, J.M., Raydan,M.:Nonmonotone spectral projected gradientmethods on convex
sets. SIAM J. Optim. 10(4), 1196–1211 (2000)

11. Bioucas-Dias, J., Figueiredo, M.: A new TwIST: two-step iterative shrinkage/thresholding algorithms
for image restoration. IEEE Trans. Image Process. 16, 2992–3004 (2007)

12. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles, exact signal reconstruction from highly
incomplete frequency information. IEEE Trans. Inf. Theory. 52(2), 489–509 (2006)

13. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale
Model. Simul. 4(4), 1168–1200 (2005)

14. Dolan, E., Morè, J.J.: Benchmarking optimization software with performance profiles. Math. Program.
91, 201–213 (2002)

15. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory. 52(4), 1289–1306 (2006)
16. Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems

with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)
17. Elad, M.: Sparse and Redundant Representation from Theory to Application in Signal and Image

Processing. Springer, Berlin (2010). ISBN 978-1-4419-7011-4
18. Eldar, C.Y., Kutyniok, G.: Compressed Sensing: Theory and Application. Cambridge University Press,

New York (2012). ISBN 978-1-107-00558-7
19. Esmaeili, H., Rostami, M., Kimiaei, M.: Combining line search and trust-region methods for �1-

minimization. Int. J. Comput. Math. 95(10), 1950–1972 (2018)
20. Figueiredo, M.A., Nowak, R.D.: An EM algorithm for wavelet-based image restoration. IEEE Trans.

Image Process. 12(8), 906–916 (2003)
21. Figueiredo,M.A., Nowak, R.D.,Wright, S.J.: Gradient projection for sparse reconstruction: application

to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597
(2007)

22. Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)
23. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Springer, New York

(2013)
24. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method.

SIAM J. Numer. Anal. 23, 707–716 (1986)
25. Hager, W.W., Phan, D.T., Zhang, H.: Gradient based methods for sparse recovery. SIAM J. Imaging

Sci. 41, 146–165 (2011)
26. Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2(1), 35–58

(2006)
27. Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for �1-minimization: methodology and con-

vergence. SIAM J. Optim. 19(3), 1107–1130 (2008)
28. Hale, E.T.,Yin,W., Zhang,Y.: Fixed-point continuation applied to compressed sensing: implementation

and numerical experiment. J. Comput. Math. 28(2), 170–194 (2010)

123

http://homepage.univie.ac.at/masoud.ahookhosh/uploads/User's_manual_for_OSGA.pdf
http://homepage.univie.ac.at/masoud.ahookhosh/uploads/User's_manual_for_OSGA.pdf


1 Page 38 of 38 H. Esmaeili et al.

29. Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Nat.
Bur. Stand. 49, 409–436 (1952)

30. Huang, Y., Liu, H.: A Barzilai–Borwein type method for minimizing composite functions. Numer.
Algorithm 69, 819–838 (2015)

31. Iiduka, H.: Hybrid conjugate gradient method for a convex optimization problem over the fixed-point
set of a nonexpansive mapping. J. Optim. Theory Appl. 140, 463–475 (2009)

32. Iiduka, H., Yamada, I.: A use of conjugate gradient direction for the convex optimization problem over
the fixed point set of a nonexpansive mapping. SIAM J. Optim. 19(4), 1881–1893 (2009)

33. Kowalski, R.M.: Proximal algorithm meets a conjugate descent. Pac. J. Optim. 12(3), 549–667 (2011)
34. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (1999)
35. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trend. Optim. 1(3), 123–231 (2013)
36. Polak, E., Ribière, G.: Note sur la convergence de directions conjugées. Rev. Fr. Inform. Rech. Opèr-

tionnelle 3e Année 16, 35–43 (1969)
37. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization

problem. SIAM J. Optim. 7(1), 26–33 (1997)
38. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separableminimization.Math.

Program. 117(1), 387–423 (2009)
39. Wen, Z., Yin,W., Goldfarb, D., Zhang,Y.: A fast algorithm for sparse reconstruction based on shrinkage

subspace optimization and continuation. SIAM J. Sci. Comput. 32(4), 1832–1857 (2010)
40. Wen, Z., Yin, W., Zhang, H., Goldfarb, D.: On the convergence of an active set method for �1-

minimization. Optim. Methods Softw. 27(6), 1127–1146 (2012)
41. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation.

IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)
42. Xiao, Y., Wu, S.-Y., Qi, L.: Nonmonotone Barzilai–Borwein gradient algorithm for �1-regularized

nonsmooth minimization in compressive sensing. J. Sci. Comput. 61, 17–41 (2014)
43. Zhang, H.C., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained

optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A new generalized shrinkage conjugate gradient method for sparse recovery
	Abstract
	1 Introduction
	2 Related algorithms
	3 Review of ISTA
	4 Our method
	4.1 New generalized shrinkage conjugate gradient approach (GSCG)
	4.2 Acceptance criterion
	4.3 New algorithm

	5 Convergence analysis
	5.1 Convergence rate for convex case
	5.2 Convergence rate for strongly convex case

	6 Numerical results
	6.1 Quality of CS reconstruction
	6.2 ID problem

	7 Conclusion
	Acknowledgements
	References




