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Abstract
In this paper, we show that the normwise condition number of the scaled total least
squares problem can be transformed into a new and compact form. Considering the
relationship between the scaled total least squares problem and the total least squares
problem,we obtain something new on the normwise condition number of the total least
squares problem. The new forms of the normwise condition number are of particular
interest in the following two aspects. Firstly, it is easy to use for the practitioners from
applied disciplines. Secondly, the new forms enjoy great computational efficiency and
require very little storage space compared with its original forms. Numerical examples
are given to illustrate the results.
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1 Introduction

The scaled total least squares (STLS) problem (or technique) was first proposed in [20]
to give a unified treatment of the ordinary least squares (OLS) problem, the total least
squares (TLS) problem and the data least squares (DLS) problem. Paige and Strakoš
[19] reformulated the STLS problem and presented a detailed analysis of conditions
that guarantee the STLS problem has a unique solution. With their formulation, the
STLS problem is given as follows

min
∥
∥
[

E, f
]∥
∥
F , subject to λb − f ∈ R(A + E), (1)

where A ∈ R
m×n , b ∈ R

m , λ is a positive real number, ‖ · ‖F denotes the Frobenius
norm andR(·) is the range space. Let [ES, fS] be the solution to (1), then the solution
to the linear system (A + ES)λx = λb − fS is called the STLS solution and denoted
by xS . As shown in [19], when λ = 1, λ → 0 and λ → ∞, xS becomes the TLS
solution xT , the OLS solution xO and the DLS solution xD , respectively.

The condition number gives a quantitative measurement of the maximum amplifi-
cation of the resulting change in solution with respect to a perturbation in the data, and
has been extensively studied. The interested reader is referred to the comprehensive
survey [5]. For the STLS problem, Zhou et al. [28] considered its perturbation analysis
and presented the normwise, mixed and componentwise condition numbers. With the
perturbation theory of singular value decomposition (SVD) given in [24], Li and Jia
[16] gave a different approach to derive the normwise and componentwise condition
numbers of the STLS problem, and the corresponding structured condition numbers
were also discussed. It should be noted that the normwise condition number in [28]
contains Kronecker products which make it impractical to compute for large-scale
problems. Based on the fact that ‖A‖2 = ‖AT A‖1/22 , where ‖ · ‖2 denotes the spectral
norm of matrix or Euclidean norm of vector, some closed formulas and upper (or
lower) bounds of the normwise condition number for the TLS problem were given in
[1,14], and these results are easy to compute and do not contain Kronecker product any
more. Xie et al. [27] showed that the expressions of the condition numbers given in
[1,14] aremathematically equivalent.However, computing exact value of the condition
number with the formula given in [1,27] needs to calculate the matrix cross product,
which is a source of rounding error and potentially numerical unstable [11, p. 386].
By designing iterative procedure or exploiting the SVDs in solving the TLS problem,
some progress to avoid computing matrix cross product was made in [1,14,27]. In this
paper, we present a new explicit expression of the normwise condition number of the
STLS problem. The new expression is easy to compute and does not need to compute
Kronecker product or matrix cross product. Meanwhile, the new expression should be
of particular interest to the practitioners from applied disciplines, who are more likely
to directly compute the normwise condition number of the STLS problem.

The rest of the paper is organized as follows: Sect. 2 contains the main results of the
paper. Numerical experiments are presented in Sect. 3. Concluding remarks are given
in Sect. 4. Before proceeding to the following sections, we introduce some notation
first. For any matrix B, A ⊗ B = [ai j B] denotes the Kronecker product of A and B.
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A ◦ B = [ai j bi j ] denotes the Hadamard product of A and B. vec(·) is a linear map
defined by vec(A) = [a1,1, . . . , am,1, . . . , a1,n, . . . , am,n]T .

2 Main results

As stated in the Introduction, the TLS problem can be treated as a special case of
the STLS problem. An interesting result is that we can solve the STLS problem by
finding the solution to a special TLS problem. When λ = 1, we get the following TLS
problem

min
∥
∥
[

E, f
]∥
∥
F , subject to b − f ∈ R(A + E). (2)

It is easy to check that when xS is the solution of (1), λxS is the TLS solution to the
following TLS problem

min
∥
∥
[

E, f
]∥
∥
F , subject to λb − f ∈ R(A + E). (3)

Let the SVDs of the matrices [A, λb] and A be

UT [

A, λb
]

V = Σ, Û T AV̂ = Σ̂,

where U = [u1, . . . , un+1] ∈ R
m×(n+1), V = [v1, . . . , vn+1] ∈ R

(n+1)×(n+1),
Σ = diag(σ1, . . . , σn+1) with σ1 ≥, . . . ,≥ σn+1 ≥ 0, Û = [û1, . . . , ûn] ∈ R

m×n ,
V̂ = [v̂1, . . . , v̂n] ∈ R

n×n , and Σ̂ = diag(σ̂1, . . . , σ̂n) with σ̂1 ≥, . . . , σ̂n ≥ 0. Anal-
ogous to the Golub and Van Loan condition [9] for the TLS problem to guarantee
the existence and uniqueness of a solution, Zhou et al. [28] presented the following
sufficient condition to ensure the STLS problem has a unique solution

σ̂n > σn+1 > 0, (4)

which implies that both A and [A, b] are of full column rank. Therefore, by (4) the
TLS solution to (3) is

λxS = (AT A − σn+1 In)
−1AT (λb),

which gives

xS = (AT A − σn+1 In)
−1AT b. (5)

From (5), we get the normal equation of the STLS problem

(AT A − σn+1 In)xS = AT b. (6)

When λ = 1, the Rayleigh quotient iteration (RQI) and preconditioned conjugate
gradient method (PCG) were combined to solve the TLS problem with the normal
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equation (6) in [4]. For a given λ, by substituting the block matrix [A, b] with [A, λb],
the RQIPCG method can be directly applied to solve the STLS problem.

Let ΔA and Δb be the corresponding perturbations to A and b, then we have the
following perturbed STLS problem

min
∥
∥
[

E, f
]∥
∥
F , subject to λ(b + Δb) − f ∈ R ((A + ΔA) + E) . (7)

For the perturbed STLS problem, Zhou et al. [28] and Li and Jia [16] presented two
different approaches to show that when the perturbation [ΔA, Δb] is sufficiently
small, the perturbed STLS problem admits a unique solution. We adapt the result
given in [16] as the following theorem.

Theorem 1 Under the assumption (4), if ‖[ΔA, Δb]‖F is small enough, then the
perturbed STLS problem (7) has unique solution. Moreover, if we denote the solution
by xPS, then

Δx = xPS − xS = K

[

vec(ΔA)

Δb

]

+ O
(

‖[ΔA,Δb]‖2F
)

, (8)

where

K = M−1

((

2

‖r‖22
AT rrT − AT

)

([

xTS , −1
] ⊗ Im

) − [

In ⊗ rT , 0n×m
]

)

(9)

with M = AT A − σ 2
n+1 In and r = AxS − b.

Li and Jia [16] also presented a very detailed comparison of the above results with
those given in [28], and showed that their perturbation estimate is the same as that
given in [28]. According to Theorem 1, it can be easily deduced that if we set

F : Rm×n × R
m → R

n,
[

A, λb
] → xS = M−1AT b,

then the map F is Fréchet differentiable at [A, λb] under the Assumption (4) and the
Fréchet derivative of F at [A, λb] is given by

DF(A, λb) := K .

According to the definition of condition number given in [8,21], the relative norm-
wise condition number of the STLS problem is given by

κr F (A, λb) = lim
δ→0

sup
‖[ΔA, λΔb]‖F<δ

‖F(A+ΔA,λ(b+Δb))−F(A,λb)‖2‖F(A,λb)‖2
‖[ΔA, λΔb]‖F‖[A, λb]‖F

. (10)
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When F is Fréchet differentiable, κr F (A, λb) reduces to

κr F (A, λb) = ‖DF (A, λb)‖2 ‖[A, λb]‖F
‖F(A, λb)‖2 ,

and κF (A, λb) = ‖DF (A, λb)‖2 is the absolute condition number. For the conve-
nience of presentation, we summarize the above discussion as the following theorem.

Theorem 2 Under the assumption (4), the relative normwise condition number of the
STLS problem defined by (10) is

κr F (A, λb) = ‖K‖2 ‖[A, λb]‖F
‖F(A, λb)‖2 ,

and its absolute condition number is

κF (A, λb) = ‖K‖2 , (11)

where K is given by (9).

It should be noted that the Kronecker product enlarges the size of matrix and may
make it impractical to explicitly form K when m and n are large. To eliminate the
influence of the Kronecker product, we present a new compact form of the norm-
wise condition number for the STLS problem in the following theorem. Considering
the relationship between relative and absolute condition numbers, we only focus on
κF (A, λb) in the following parts.

Theorem 3 The absolute condition number κF (A, λb) for the STLS problem has the
following two equivalent forms

κF1(A, λb)

=
∥
∥
∥M−1

(

(1 + ‖xS‖22)AT A − AT rxTS − xSr
T A + ‖r‖22 In

)

M−1
∥
∥
∥

1
2

2
, (12)

and

κF2(A, λb) =
∥
∥
∥
∥
M−1

[

AT , ‖xS‖2AT
(

Im − 1
‖r‖22

rrT
)

, ‖r‖2
(

In − 1
‖r‖22

AT rxTS

)]∥
∥
∥
∥
2
, (13)

where M and r are given in (9).

Proof For a real matrix X , ‖X‖2 = ‖XT X‖1/22 = ‖XXT ‖1/22 holds. Thus with (9)
and (11) we have

κF (A, λb) = ‖K‖2 =
∥
∥
∥KKT

∥
∥
∥

1
2

2
.
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Since M is symmetric, by the equality vec(AXB) = (BT ⊗ A)vec(X) [13, Ch. 4] we
can get

KKT = M−1

((

2

‖r‖22
AT rrT − AT

)

([

xTS , −1
] ⊗ Im

) − [

In ⊗ rT , 0n×m
]

)

×
(([

xS
−1

]

⊗ Im

) (

2

‖r‖22
rrT A − A

)

−
[

In ⊗ r
0m×n

])

M−1

= M−1
((

1 + ‖xS‖22
)

AT A − AT rxTS − xSr
T A + ‖r‖22 In

)

M−1 (14)

= M−1
(

[

AT , In
]
[(

1 + ‖xS‖22
)

Im, −r xTS−xSrT , ‖r‖22 In
] [

A
In

])

M−1. (15)

Since

[(

1 + ‖xS‖22
)

Im , −r xTS
−xSrT , ‖r‖22 In

]

=
⎡

⎣

Im , − 1
‖r‖22

r xTS

0n×m , In

⎤

⎦

⎡

⎢
⎣

Im + ‖xS‖22
(

Im − 1
‖r‖22

rrT
)

, 0m×n

0n×m , ‖r‖22 In

⎤

⎥
⎦

×
⎡

⎣

Im , 0m×n

− 1
‖r‖22

xSrT , In

⎤

⎦ (16)

and

Im + ‖xS‖22
(

Im − 1

‖r‖22
rrT

)

=
[

Im, ‖xS‖2
(

Im − 1
‖r‖22

rrT
)]

⎡

⎣

Im

‖xS‖2
(

Im − 1
‖r‖22

rrT
)

⎤

⎦ , (17)

we substitute (16) and (17) into (15) and get

KKT = M−1WWT M−1, (18)

where

W =
[

AT , ‖xS‖2AT
(

Im − 1
‖r‖22

rrT
)

, ‖r‖2
(

In − 1
‖r‖22

AT rxTS

)]

.

Using the formula ‖X‖2 = ‖XXT ‖1/22 again, (12) and (13), the two equivalent forms
of κF (A, λb), follow from (14) and (18), respectively. 	

Remark 1 Theorem 3 shows that the two equivalent forms do not contain Kronecker
product any more, and the sizes of the matrices in (11), (12) and (13) are n×m(n+1),
n × n and n × (2m + n), respectively. When m and n are comparable and large, if
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we compute the normwise condition number of the STLS problem with its explicit
expressions,which is always preferred by the practitioners fromapplied disciplines,we
note that the computation of (12) and (13) requires much less storage space compared
with (11). However, as pointed out in [1,11], computing the matrix cross product
may lead to large rounding errors. The explicit formulation of (12) and (13) needs to
calculate AT A and M−1, which is not desired. But, it should be claimed that M−1

is often an intermediate result when the STLS problem is solved with its normal
equation (6). For example, in the RQIPCG method, finding M−1 can be transformed
into solving triangular linear systems which can be efficiently computed and preserves
better numerical stability [11, Ch. 8].

The TLS problem is a special case of the STLS problem, with Theorems 2 and 3
we get something new on the normwise condition number of the TLS problem.

Corollary 1 When λ = 1, the STLS problem degenerates into the TLS problem. From
Theorems 2 and 3, the absolute condition number of the TLS problem has the following
equivalent expressions

κT LSF (A, b) =
∥
∥
∥
∥
∥
M−1

((

2

‖r‖22
AT rrT − AT

)

([

xTT , −1
] ⊗ Im

) − [

In ⊗ rT , 0n×m
]

)∥
∥
∥
∥
∥
2

,

κT LSF1(A, b) =
∥
∥
∥M−1

(

(1 + ‖xT ‖22)AT A − AT rxTT − xT r
T A + ‖r‖22 In

)

M−1
∥
∥
∥

1
2

2
, (19)

and

κT LSF2(A, b) =
∥
∥
∥
∥
M−1

[

AT , ‖xT ‖2AT
(

Im − 1
‖r‖22

rrT
)

, ‖r‖2
(

In − 1
‖r‖22

AT rxTT

)]∥
∥
∥
∥
2
, (20)

where M = AT A − σ 2
n+1 In, σn+1 is the smallest singular value of [A, b], and r =

AxT − b.

Remark 2 We note that κT LSF1(A, b) was an intermediate result in the proof of Theo-
rem 1 in [1, Equation 3.8], and κT LSF (A, b) was given by Jia and Li [14, Theorem 2].
Based on the normal equation MxT = AT b and its variants, Baboulin and Gratton [1]
showed that

κT LSF1(A, b) =
∥
∥
∥
∥
(1 + ‖xT ‖22)M−1

(

AT A + σn+1

(

In − 2
1+‖xT ‖22

xT xTT

))

M−1

∥
∥
∥
∥

1
2

2
. (21)

To avoid computing the matrix cross product in (21), a power method [10, Ch. 7]
based iterative procedure was proposed to compute the normwise condition number.
Baboulin and Gratton [1] also suggested that when the TLS problem is solved by the
SVD method, the computation of (21) can be further simplified. But their simplified
expression needs the SVDs of both A and [A, b], which may be expensive. Jia and Li
[14] further showed that only the SVD of [A, b] will be enough. Based on the SVDs
of A and/or [A, b], some computable upper and lower bounds of the condition number
were also presented in [1,14]. In addition, it can be easily checked that
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46 Page 8 of 13 S. Wang et al.

AT A + σn+1

(

In − 2

1 + ‖xT ‖22
xT x

T
T

)

is positive definite. Xie et al. [27, Remark 2] suggested to use Cholesky decom-
position to further simplify the expression of normwise condition number, but no
explicit expression was given there. According to Remark 1, our new compact form
κT LSF2(A, b) requires less storage space, and does not need to calculate Cholesky
decomposition and the SVD. So we may say that the κT LSF2(A, b) is a new and more
efficient result on the explicit computation of the normwise condition number of the
TLS problem.

As in [16,28], when λ → 0, we get σn+1 → 0. Therefore, M−1 = (AT A −
σn+1 In)−1 → (AT A)−1 and xS converges to xO. By the equality AT r = 0 with
r = AxO−b, fromTheorems 2 and 3we get the following three equivalent expressions
of the normwise condition number for the OLS problem

κOLSF (A, b) =
∥
∥
∥(AT A)−1

(

−AT ([

xTO , −1
] ⊗ Im

) − [

In ⊗ rT , 0n×m
])

∥
∥
∥
2
,

κOLSF1(A, λb) =
∥
∥
∥(AT A)−1

(

(1 + ‖xO‖22)AT A + ‖r‖22 In
)

(AT A)−1
∥
∥
∥

1
2

2
, (22)

and

κOLSF2(A, λb) =
∥
∥
∥(AT A)−1 [

AT , ‖xO‖2AT , ‖r‖2 In
]
∥
∥
∥
2
. (23)

With a little algebra, we can check that κOLSF (A, b) can be rewritten as follows

κOLSF (A, b) = ∥
∥
[−(xTO ⊗ A†) − (AT A)−1 ⊗ rT , A†

]∥
∥
2 , (24)

where A† = (AT A)−1AT is the Moore-Penrose inverse of matrix A (see [2,26]). It
should be noted that (24), (22) and (23) have been given by Li and Wang [18] in
investigating the condition numbers for the indefinite least squares problem.

3 Numerical experiment

The computation and/or estimation of the condition numbers for the TLS problem
has been extensively studied [1,6,14,27], which can be easily adapted to compute the
normwise condition number of the STLS problem. From computational aspect, direct
calculation of the condition number is not desired due to the heavy computation burden.
When we solve the STLS problem, some intermediate results will be produced. Using
these intermediate results to compute the condition number will largely reduce the
computational burden. For example, in the implementation of RQIPCG method for
solving the TLS problem, the approximate singular value of σn+1 and the Cholesky
factor R of AT A are available. So with these intermediate results the formulation
of the condition number becomes much easier. Diao and Sun [6] proposed a power
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method based on theRQIPCGprocedure to estimate the upper bounds of themixed and
componentwise condition numbers of the TLS problem, which can also be modified
to estimate the normwise condition number of the STLS problem. Here, we will not
focus on devising algorithms to compute or estimate the normwise condition numbers.
But, for completeness and to show the condition number estimation should be solver
based, we present a RQIPCGprocedure based powermethod to compute the normwise
condition number of the STLS problem in the Appendix part.

Aswe have shown, our new compact forms require less storage space and are easy to
calculate. This should be convenient for the practitioners to directly compute the norm-
wise condition number of the STLS problem via software, like Matlab. Here, we only
focus on the “naive” method to compute the normwise condition number of the STLS
problem, which means that we first formulate the explicit expression of the matrix and
then compute its spectral norm as the value of condition number. We use two built-in
commands norm(·,2) and normest(·,tol) in Matlab R2010b. All the compu-
tations are performed on a PCwith Intel i5-6600MCPU 3.30 GHz and 4.00 GBRAM.

Example 1 Investigating the influence of different forms on the computation of the
normwise condition number for the STLS problem is our main purpose. Similar to
[1], we construct the following random STLS problem. Let [A, λb] be defined by

[

A, λb
] = Y

[

D
0

]

ZT ∈ R
m×(n+1), Y = Im − 2yyT , Z = In+1 − 2zzT ,

where y ∈ R
m , z ∈ R

n+1 are random unit vectors, and D = diag(n, n−1, . . . , 1, 1−
ep) for given parameter ep. Due to the interlacing property [3, p. 178], we get

σ̂n − σn+1 ≤ σn − σn+1 = ep.

Thus ep gives a measure of the distance of the problem to nongenericity, and the
solution xS is given by (5). By varying λ, ep and the size of the matrix, we report the
CPU time in seconds of computing the condition number of the STLS problem with
its different forms.

We repeat the computation 200 times for one group of settings. Since these two
commands give same values of the condition numbers, we only report the mean values
of CPU time in Table 1. From Table 1, we can see that when m = 500, n = 300,
computing (11) becomes very time consuming due to the large size of the matrix, but
(13) still works well. When we increase (m, n) to (1000, 700), the computation of
κF (A, λb) with norm(·,2) breaks down due to the lack of memory. The numerical
results also show that the normest(·,tol) can largely reduce the CPU time in
computing the spectral norm of large and sparse matrix. Of course, the matrix K
in (11) is sparse due to the Kronecker product. Moreover, we can also find that the
CPU time for computing (13) is always the smallest in our numerical experiment.
Therefore, we may say that the new compact form can greatly improve the efficiency
of computing the exact value of the normwise condition number for the STLS problem
with its explicit expression, and should be ofmuch interest to the practical applications
especially from applied disciplines.
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46 Page 10 of 13 S. Wang et al.

Table 1 Average CPU time in seconds of two “naive” methods

Method λ ep m = 100, n = 70 m = 200, n = 150 m = 500, n = 300
κF (A, λb)|κF2(A, λb) κF (A, λb)|κF2(A, λb) κF (A, λb)|κF2(A, λb)

norm(·, 2) 0.05 0.1 0.0424|0.0022 0.6898|0.0072 9.0942|0.0380
0.001 0.0414|0.0032 0.9154|0.0156 9.3054|0.0495

5 0.1 0.0378|0.0019 0.7182|0.0075 9.6923|0.0531
0.001 0.0365|0.0019 0.6982|0.0071 9.4639|0.0520

normest(·, 10−4) 0.05 0.1 0.0248|0.0001 0.2263|0.0021 2.4444|0.0189
0.001 0.0260|0.0001 0.2768|0.0038 2.4759|0.0190

5 0.1 0.0239|0.0001 0.2362|0.0055 2.6477|0.0227
0.001 0.0226|0.0001 0.2269|0.0020 2.4926|0.0214

Example 2 From the definition of condition number (10), the relative forward error is
bounded by the relative condition number multiplied by the relative backward error.
We consider the following example adopted from [15] and arising from the application
in signal restoration. Let α = 1.25, n = 500 and ω = 80. The convolution matrix Ā
is an n × (n − 2ω) Toeplitz matrix, and its first column is given by

ai,1 = 1√
2πα2

exp

[−(ω − i + 1)2

2α2

]

, i = 1, 2, . . . , 2ω + 1

and ti,1 = 0 otherwise. The elements in the first row are all zeros except a11 = 1.
A Toeplitz matrix A and a right-hand side vector b are constructed as A = Ā + E
and b = ḡ + e, where ḡ = [1, . . . , 1]T , E is a random Toeplitz matrix with the same
structure as Ā and e is a random vector. The entries of E and e are generated from the
standard normal distributionN (0, 1), and scaled such that

‖E‖F = γ ‖ Ā‖F , ‖e‖2 = γ ‖ḡ‖2, γ = 10−3.

The elements of the perturbations ΔA and Δb to A and b are randomly generated
from the open interval (−1, 1), and scaled so that

‖ΔA‖F = ε‖A‖F , ‖Δb‖2 = ε‖b‖2, ε = 10−8.

Under the above settings, the perturbations to the coefficientmatrices are not structured
perturbation and can be interpreted as the additive white noise to the model [25].

Let x + Δx be the solution to the perturbed STLS problem. The relative forward
error is defined as ‖Δx‖2/‖x‖2, and its approximate upper bounds with respect to
different expressions of the normwise condition number are given by εκr F (A, λb)
and εκr F2(A, λb). To compare the running time for computing the approximate upper
forward error bound, we use CPUiκ∗ with i = 1, 2 to denote the CPU time of com-
puting the corresponding approximate upper forward error bounds with respect to
norm(·,2) and normest(·, 10−4), respectively.
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Table 2 Comparison of performances of different expressions in estimating the forward error

‖Δx‖2‖x‖2 εκr F (A, λb) CPU1κr F CPU2κr F εκr F2(A, λb) CPU1κr F2 CPU2κr F2

λ = 10 1.5247e−07 3.5895e−04 12.4836 3.1906 3.5895e−04 0.0445 0.0238

λ = 0.1 2.3560e−07 3.6260e−05 12.5292 5.3745 3.6260e−05 0.0450 0.0301

λ = 0.0001 2.0759e−08 7.4255e−07 12.6668 7.7938 7.4255e−07 0.0469 0.0333

The numerical results are reported in Table 2, fromwhich we can find that although
εκr F (A, λb) and εκr F2(A, λb) give same upper bounds, εκr F2(A, λb) requires much
less CPU time compared with εκr F (A, λb). This shows the great efficiency of the new
compact form of the normwise condition number in estimating the forward error of
the STLS problem.

4 Concluding remark

In this paper, new and compact forms of the normwise condition number for the STLS
problem are presented. Compared with the original expression, the new forms enjoy
great computational efficiency in calculating the exact value of the normwise condition
number, which may extend the applications of the condition number theory of the
STLS problem to other areas. Since the estimation of the condition numbers for the
TLS problemhas been extensively studied and thesemethods can be directly applied to
estimate the normwise condition number of the STLSproblem, to avoid repetitivework
we only outline a RQIPCG procedure based power method to estimate the normwise
condition number of the STLS problem in the Appendix part. This is mainly to show
that using the intermediate results produced in solving the STLS problem can largely
reduce the computational burden in the condition number estimation.

In addition, Li and Jia [16] also considered the linear structured condition number
for the STLS problem. Here, we need to point out that the structured normwise con-
dition number of the STLS problem can also be transformed into some compact form
with the same method given in [17, Remark 3.3]. But as Li and Wang [17] claimed,
the compact form becomes very complicated due to the structure matrices. Thus, in
this paper we will not consider the simplification of the structured normwise condition
number of the STLS problem, andmore researches on the structured condition number
theory should be referred to [12,22,23].

Acknowledgements The authors are grateful to the anonymous referees and the Editor for their detailed
and helpful comments that led to a substantial improvement to the paper.

Appendix

When the large and sparse STLS problem is solved by the RQIPCG method [4], the
Cholesky factor R of AT A, the approximate singular value of σn+1 and the residual
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vector r1 will be produced. With these intermediate results, we give the following
algorithm to compute the normwise condition number of the STLS problem.

Algorithm 1 RQIPCG based Power method
Input: A, termination criterion ε, and intermediate results −r , Cholesky factor R, approximate singular
value σ̄n+1.
Output: The normwise condition number κF (A, λb).

1. Given the initial vector y0, and set v0 = 0. y0 is chosen as in [10, p. 366].
2. for i = 1, 2, · · · , imax do

(a) With R and σ̄n+1, if we set (AT A− σ̄ 2
n+1 In)−1yi−1 = z, then we get z by solving the following

equivalent linear system
[

R, −σ̄n+1 In
]
[

RT

σ̄n+1 In

]

z = y.

The triangular linear system is much more easier to solve [11, Ch. 8]. Then

KT y = vec
([

wxT − r zT , −w
])

with w =
(

2
‖r‖22

rrT A − A

)

z.

(b)
[

Ai , bi
] ← [

wxT − r zT , −w
]

(c) vi ← ∥
∥
[

Ai , bi
]∥
∥
F

if |vi − vi−1| < ε then
v = vi
break

end if
(d)

[

Ai , bi
] ← 1

v

[

Ai , bi
]

(e) yi ← M−1
((

2
‖r‖22

AT rrT − AT
)

(Ai x − bi ) − ATi r

)

end for
3. The normwise condition number κF (A, λb) is given by

κF (A, λb) = √
v.

Algorithm 1 computes the maximum eigenvalue of KKT , so we use its square root
as the condition number. Similar treatment of the normwise condition number of the
TLS problem has been proposed in [1, Algorithm 1]. The main difference is that the
power method in [1] gave direct manipulation to the original matrix and did not use
the intermediate results in solving the TLS problem.
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