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Abstract
The aim of the present analysis is to implement a relatively recent computational
algorithm, reproducing kernel Hilbert space, for obtaining the solutions of systems of
first-order, two-point boundary value problems for ordinary differential equations. The
reproducing kernel Hilbert space is constructed in which the initial–final conditions
of the systems are satisfied. Whilst, three smooth kernel functions are used throughout
the evolution of the algorithm in order to obtain the required grid points. An efficient
construction is given to obtain the numerical solutions for the systems together with an
existence proof of the exact solutions based upon the reproducing kernel theory. In this
approach, computational results of some numerical examples are presented to illustrate
the viability, simplicity, and applicability of the algorithm developed. Finally, the
utilized results show that the present algorithm and simulated annealing provide a good
scheduling methodology to such systems compared with other numerical methods.

Keywords Boundary value problems · Initial–final conditions · Reproducing kernel
algorithm · Gram–Schmidt process

Mathematics Subject Classification 34B15 · 34K28 · 47B32

1 Introduction

Systems of first-order ordinary differential equations (ODEs) subject to given sep-
arated two-point boundary conditions (BCs) are an important branch of applied
mathematics that result directly from the mathematical models, or indirectly from
converting the partial differential equations and the optimal control problems into
ODEs [1–5]. Henceforth and not to conflict unless stated otherwise, we denote the
symbol “BVPs” for such systems. There are a range of physical phenomena for which
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BVPs provide the model examples, can be found in many areas of engineering and
science ranging, from simple beam bending problems in mechanics to the chemical
engineering areas of absorption phenomena, chemical reactions, radiation effects and
problems connected with heat transfer, fluid flow, dissipation of energy, and control
theory. Generally, it is difficult to obtain the closed form solutions for BVPs in terms of
elementary functions, especially, for nonlinear and nonhomogeneous cases. Factually,
in most cases, only approximate solutions or numerical solutions can be expected;
therefore, it has attracted much attention and has been studied by many authors. In
this regards, there are many iterative methods have been proposed to be one of the
suitable and successful classes of numerical techniques for obtaining the solutions of
numerous types of BVPs (see, for instance, [6–15] and the references therein).

The reproducing kernel algorithm is a numerical, as well as, analytical technique
for solving a large variety of ordinary and partial differential equations associated to
different kind of BCs, and usually provides the solutions in term of rapidly conver-
gent series with components that can be elegantly computed. In this study, a general
technique based on the reproducing kernel theory is proposed for solving BVPs in the
appropriate reproducing kernel Hilbert space (RKHS). The main idea is to construct
the direct sum of the RKHSs that satisfying the initial–final conditions of the given
systems in order to determining their exact and their numerical solutions. The exact
and the numerical solutions are represented in the form of series through the functions
value at the right-hand side of the corresponding differential equations.

Anyhow, BVPs have been investigated systematically in this article for the devel-
opment, analysis, and implementation of an accurate algorithm which allows for the
use of some form of concurrent processing technique. More precisely, we consider the
following set of ODEs:

p j (t)u
′
j (t) � f j (t , u1(t), u2(t), . . . , un(t)), j � 1, 2, . . . , n, (1)

subject to the following BCs:

u j (t0) � α j , j � 1, 2, . . . , p,

u j
(
t f
) � β j , j � p + 1, p + 2, . . . , n, (2)

where t ∈ [
t0, t f

]
,
{
u j
}p
j�1 ⊂ W 2

2

[
t0, t f

]
,
{
u j
}n
j�p+1 ⊂ W̃ 2

2

[
t0, t f

]
are

unknown functions to be determined,
{
f j (t , v1, v2, . . . , vn)

}p
j�1 and

{
f j (t , v1, v2, . . . , vn)

}n
j�p+1 are continuous terms in W 1

2

[
t0, t f

]
as
{
v j
}p
j�1 ⊂

W 2
2

[
t0, t f

]
and

{
v j
}n
j�p+1 ⊂ W̃ 2

2

[
t0, t f

]
, −∞ < {v j }nj�1 < ∞, and W 1

2

[
t0, t f

]
,

W 2
2

[
t0, t f

]
, W̃ 2

2

[
t0, t f

]
are three RKHSs. Here, the set of functions

{
p j (t)

}n
j�1 are

continuous real-valued functions on
[
t0, t f

]
and may take the values p j (tλ) � 0 for

some tλ ∈ [
t0, t f

]
and some j ∈ {1, 2, . . . , n} which make Eqs. (1) and (2) to be

singular at t � tλ. Through this paper, we assume that Eqs. (1) and (2) have a unique
analytical solutions on

[
t0, t f

]
.

The theory of reproducing kernel was used for the first time at the beginning of the
20th century as a novel solver for the BVPs of harmonic and biharmonic functions
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types. This theory, which is representative in the RKHSmethod, has been successfully
applied to various important application in numerical analysis, computational math-
ematics, image processing, machine learning, finance, and probability and statistics
[16–19]. The RKHS method is a useful framework for constructing numerical solu-
tions of great interest to applied sciences. In the recent years, based on this theory,
extensive work has been proposed and discussed for the numerical solutions of sev-
eral integral and differential operators side by side with their theories. The reader is
kindly requested to go through [20–44] in order to knowmore details about the RKHS
method, including its modification and scientific applications, its characteristics and
symmetric kernel functions, and others.

In fact, the RKHS method can be applied for different categories of differential
equations subject to different types of BCs such as: Neumann, Robin, Dirichlet, inte-
gral, and periodic with respect to ordinary, partial, fractional, or fuzzy derivatives. To
mention a few, this method have been applied to the solutions of: parabolic partial dif-
ferential equations subject to integral BCs [21], Bagley–Torvik and Painlevé equations
of fractional order subject to Dirichlet BCs [23], mixed-type integrodifferential equa-
tions subject to periodic BCs [26, 27], fuzzy differential equations subject to Dirichlet
BCs [29], differential algebraic systems subject to integral BCs [31], time-fractional
partial differential equations subject to Neumann BCs [32], heat and fluid flows prob-
lems subject to Robin BCs [33], Time-fractional partial integrodifferential equations
subject to Dirichlet BCs [34, 35], Diffusion-Gordon types equations of fractional order
subject to Dirichlet BCs [36], time-fractional Tricomi and Keldysh equations subject
to Dirichlet BCs [37], singularly perturbed differential equations subject to twin layers
BCs [39, 41, 44], and anomalous subdiffusion equation of fractional order subject to
integral BCs [40].

The organization of the article is as follows: for clarity of presentation, in Sect. 2,
two extended RKHSs needed in the analysis are constructed, and two extended repro-
ducing kernel functions are obtained. After that, in Sect. 3, the solutions and the
essential theoretical results are presented based upon the reproducing kernel theory.
In Sect. 4, an efficient iterative technique for the solutions and convergent theorem
are described. In order to capture the behaviour of solutions; in Sect. 5 error estima-
tions and error bounds are presented. Numerical algorithm and numerical analysis are
discussed to demonstrate the accuracy and the applicability of the presented method
as utilized in Sect. 6. In Sect. 7, relative comparative analysis between the classi-
cal numerical method and the RKHS method is presented. Finally, in Sect. 8 some
concluding remarks and brief conclusions are listed.

2 Constructing appropriate inner product spaces

The reproducing kernel approach builds on aHilbert space H and requires that allDirac
evaluation functional in H are bounded and continuous. In this section, two extended
RKHSs H

[
t0, t f

]
and W

[
t0, t f

]
are constructed. Then, we utilize the reproducing

kernel concept to obtain two extended reproducing kernel functions Rt (s) and rt (s)
in order to formulate the solutions in the mentioned spaces.
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Before the construction, it is necessary to present some notations, definitions, and
preliminary facts upon the reproducing kernel theory that will be used further in the
remainder of the article. Throughout this analysis, L2

[
t0, t f

] � {u|∫ t f
t0

u2(t)dt < ∞}
and l2 � {A|∑∞

i�1 A
2
i < ∞}.

Definition 1 [19] Let H be a Hilbert space of function θ : Ω → H on a set Ω . A
function R : Ω × Ω → C is a reproducing kernel of H if the following conditions
are met. Firstly, R(·, t) ∈ H for each t ∈ Ω . Secondly, 〈θ(·), R(·, t)〉 � θ(t) for each
θ ∈ H and each t ∈ Ω .

The condition 〈θ(·), R(·, t)〉 � θ(t) is called the reproducing property, which
means that, the value of θ at the point t is reproducing by the inner product of θ

with R(·, t). Indeed, a Hilbert space which possesses a reproducing kernel is called a
RKHS.

Definition 2 [20] The spaceW 1
2

[
t0, t f

]
is defined asW 1

2

[
t0, t f

] � {z : z is absolutely
continuous function on

[
t0, t f

]
and z′ ∈ L2

[
t0, t f

]}. On the other hand, the inner
product and the norm in W 1

2

[
t0, t f

]
are defined, respectively, by

〈z1(t), z2(t)〉W 1
2

� z1(t0)z2(t0) +
∫ t f

t0
z′1(t)z′2(t)dt , (3)

and ‖z1‖W 1
2
�
√

〈z1(t), z1(t)〉W 1
2
, where z1, z2 ∈ W 1

2

[
t0, t f

]
.

Definition 3 [21] The space W 2
2

[
t0, t f

]
is defined as W 2

2

[
t0, t f

] � {z : z, z′ are
absolutely continuous functions on

[
t0, t f

]
, z′′ ∈ L2

[
t0, t f

]
, and z(t0) � 0}. On the

other hand, the inner product and the norm in W 2
2

[
t0, t f

]
are defined, respectively, by

〈z1(t), z2(t)〉W 2
2

� z1(t0)z2(t0) + z′1(t0)z′2(t0) +
∫ t f

t0
z′′1(t)z′′2(t)dt , (4)

and ‖z1‖W 2
2
�
√

〈z1(t), z1(t)〉W 2
2
, where z1, z2 ∈ W 2

2

[
t0, t f

]
.

Definition 4 The space W̃ 2
2

[
t0, t f

]
is defined as W̃ 2

2

[
t0, t f

] � {z : z, z′ are absolutely
continuous functions on

[
t0, t f

]
, z′′ ∈ L2

[
t0, t f

]
, and z

(
t f
) � 0}. On the other hand,

the inner product and the norm in W̃ 2
2

[
t0, t f

]
are defined, respectively, by

〈z1(t), z2(t)〉W̃ 2
2

� z1
(
t f
)
z2
(
t f
)
+ z′1

(
t f
)
z′2
(
t f
)
+
∫ t f

t0
z′′1(t)z′′2(t)dt , (5)

and ‖z1‖W̃ 2
2
�
√

〈z1(t), z1(t)〉W̃ 2
2
, where z1, z2 ∈ W̃ 2

2

[
t0, t f

]
.

It is easy to see that 〈z1(t), z2(t)〉W̃ 2
2
satisfies all the requirements of the inner

product as follows; firstly, 〈z1(t), z1(t)〉W̃ 2
2

≥ 0; secondly, 〈z1(t), z2(t)〉W̃ 2
2

� 〈z2(t),
z1(t)〉W̃ 2

2
; thirdly, 〈γ z1(t), z2(t)〉W̃ 2

2
� γ 〈z1(t), z2(t)〉W̃ 2

2
; fourthly, 〈z1(t) + z2(t),

z3(t)〉W̃ 2
2

� 〈z1(t), z3(t)W̃ 2
2
+ 〈z2(t), z3(t)〉W̃ 2

2
. Indeed, 〈z1(t), z1(t)〉W̃ 2

2
� 0 if and
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only if z1(t) � 0. To see this, when z1(t) � 0, then 〈z1(t), z1(t)〉W̃ 2
2

� 0, whilst,

if 〈z1(t), z1(t)〉W̃ 2
2

� 0, then
(
z1
(
t f
))2 +

(
z′1
(
t f
))2 +

∫ t f
t0

(
z′′1(t)

)2
dt � 0, therefore

z1
(
t f
) � z′1

(
t f
) � z′′1(t) � 0 or z1(t) � 0.

Theorem 1 [20] The Hilbert space W 1
2

[
t0, t f

]
is a complete reproducing kernel with

the reproducing kernel function

R{1}
t (s) �

⎧
⎨

⎩
R{1}
t ,1 (s) � 1 − t0 + s, s ≤ t ,

R{1}
t ,2 (s) � 1 − t0 + t , s > t .

(6)

Theorem 2 [21] The Hilbert space W 2
2

[
t0, t f

]
is a complete reproducing kernel with

the reproducing kernel function

R{2}
t (s) �

⎧
⎨

⎩
R{2}
t ,1 (s) � 1

6 (t − t0)
(
2t20 − t2 + 3s(2 + t) − t0(6 + t + 3s)

)
, s ≤ t ,

R{2}
t ,2 (s) � 1

6 (s − t0)
(
2t20 − s2 + 3t(2 + s) − t0(6 + s + 3t)

)
, s > t .

(7)

Theorem 3 The Hilbert space W̃ 2
2

[
t0, t f

]
is a complete reproducing kernel with the

reproducing kernel function

R̃{2}
t (s) �

⎧
⎨

⎩

R̃{2}
t ,1 (s) � 1

6

(
t f − t

)(
2t2f − t2 + 3s(2 + t) − t f (6 + t + 3s)

)
, s ≤ t ,

R̃{2}
t ,2 (s) � 1

6

(
t f − s

)(
2t2f − s2 + 3t(2 + s) − t f (6 + s + 3t)

)
, s > t .

(8)

Proof The proof of the completeness and the reproducing property of W̃ 2
2

[
t0, t f

]

is similar to the proof in [22]. Let us find out the expression form of R̃{2}
t (s) in

W̃ 2
2

[
t0, t f

]
. By applying the tabular integration formula on z′′(s)∂3s R̃

{2}
t (s), we get

∫ t f
t0

z′′(s)∂3s R̃
{2}
t (s)ds �

1∑

i�0
(−1)1−i z(i)(s)∂3−i

s R̃{2}
t (s)|s�t f

s�t0 +
∫ t f
t0

z(s)∂4s R̃
{2}
t (s)ds.

According to Eq. (5), one can write

〈
z(s), R̃{2}

t (s)
〉

W̃ 2
2

�
1∑

i�0

(−1)i z(i)(t0)∂
3−i
s R̃{2}

t (t0)

+
1∑

i�0

z(i)
(
t f
)[

∂ is R̃
{2}
t
(
t f
)
+ (−1)1−i∂3−i

s R̃{2}
t
(
t f
)]

+
∫ t f

t0
z(s)∂4s R̃

{2}
t (s)ds. (9)
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Since R̃{2}
t (s) ∈ W̃ 2

2

[
t0, t f

]
, yields that R̃{2}

t
(
t f
) � 0, also since z(t) ∈ W̃ 2

2

[
t0, t f

]
,

yields that z
(
t f
) � 0. Thus, if ∂s R̃

{2}
t
(
t f
) − ∂2s R̃

{2}
t
(
t f
) � 0, ∂3s R

{3}
t (t0) � 0, and

∂2s R̃
{2}
t (t0) � 0, then Eq. (9) implies that 〈z(s), R̃{2}

t (s)〉W̃ 2
2

� ∫ t f
t0

z(s)∂4s R̃
{2}
t (s)ds.

Now, for each t ∈ [t0, t f
]
, if R̃{2}

t (s) satisfies

∂4s R̃
{2}
t (s) � −δ(t − s), where δ is the dirac − delta function, (10)

then 〈z(s), R̃{2}
t (s)〉W̃ 2

2
� z(t). Obviously, R̃{2}

t (s) is the reproducing kernel function

of W̃ 2
2

[
t0, t f

]
. For the conduct of proceedings in the proof, it requires the expression

form of R̃{2}
t (s). The auxiliary formula of Eq. (10) is λ4 � 0 and its auxiliary values

are λ � 0 with multiplicity 4. So, let the expression form of R̃{2}
t (s) be defined as

R̃{2}
t (s) �

⎧
⎨

⎩
R̃{2}
t (s) � p1(t) + p2(t)s + p3(t)s2 + p4(t)s3, s ≤ t ,

R̃{2}
t (s) � q1(t) + q2(t)s + q3(t)s2 + q4(t)s3, s > t .

(11)

But on the other aspect as well, for Eq. (10), let R̃{2}
t (s) satisfy ∂ms R̃{2}

t (t + 0) �
∂ms R̃{2}

t (t − 0), m � 0, 1, 2. Integrating Eq. (10) from t − ε to t + ε with respect to s

and let ε → 0, we have the jump degree of ∂3s R̃
{2}
t (s) at s � t given by ∂3s R̃

{2}
t (t + 0)−

∂3s R̃
{2}
t (t − 0) � −1. Through the last descriptions and by using Maple 13 software

package, the unknown coefficients of R̃{2}
t (s) in Eq. (11) can be obtained as given in

the representation form of Eq. (8). This completes the proof. �
Remark 1 Henceforth and not to conflict unless stated otherwise, we denote

H
[
t0, t f

] � ⊕n
j�1W

1
2

[
t0, t f

]
,

W
[
t0, t f

] �
(
⊕p

j�1W
2
2

[
t0, t f

])(⊕n
j�p+1W̃

2
2

[
t0, t f

])
. (12)

Rt (s) �
(
R{2}
t (s), R{2}

t (s), . . . , R{2}
t (s)pth, R̃

{2}
t (s)(p+1)th, R̃

{2}
t (s), . . . , R̃{2}

t (s)nth
)T

,

rt (s) �
(
R{1}
t (s), R{1}

t (s), . . . , R{1}
t (s)nth

)T
. (13)

Definition 5 The inner product Hilbert space H
[
t0, t f

]
can be defined as H

[
t0, t f

] �{
(z1, z2, . . . , zn)T :

{
z j
}n
j�1 ⊂ W 1

2

[
t0, t f

]}
. The inner product and the norm in

H
[
t0, t f

]
are building as 〈z(t), w(t)〉H � ∑n

j�1〈z j (t), w j (t)〉W 1
2
and ‖z‖H�

√∑n
j�1‖z j‖2W 1

2
, respectively, where z, w ∈ H

[
t0, t f

]
.

Definition 6 The inner product Hilbert space W
[
t0, t f

]
can be defined as

W
[
t0, t f

] �
{(
z1, z2, . . . , z p , z p+1, . . . , zn

)T :
{
z j
}p
j�1 ⊂ W 2

2

[
t0, t f

]
and

{
z j
}n
j�p+1 ⊂ W̃ 2

2

[
t0, t f

]}
.

(14)
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The inner product and the norm in W
[
t0, t f

]
are building as

〈z(t),w(t)〉W �
p∑

j�1

〈z j (t),w j (t)〉W 2
2
+

n∑

j�p+1

〈z j (t),w j (t)〉W̃ 2
2
, (15)

and ‖z‖W�
√∑p

j�1‖z j‖2W 2
2
+
∑n

j�p+1‖z j‖2W̃ 2
2
, respectively, where z, w ∈ W

[
t0, t f

]
.

The spaces H
[
t0, t f

]
and W

[
t0, t f

]
are complete Hilbert with some special prop-

erties. So, all the properties of the Hilbert space will be hold. Further, theses spaces
possesses some special and better properties which could make some systems be
solved easier.

3 Representation of exact and numerical solutions

In this section, we will show how to solve the BVPs by using the RKHS method in
detail and we will see what the influence choice of the continuous linear operators.
Anyhow, the formulation and the implementation method of the solutions are given in
the extended RKHSs W

[
t0, t f

]
and H

[
t0, t f

]
. Meanwhile, we construct an orthogo-

nal function systems of the space W
[
t0, t f

]
based on the use of the Gram–Schmidt

orthogonalization process.
Now, to apply the RKHS method on the extended spaces H

[
t0, t f

]
and W

[
t0, t f

]
,

we will define the following differential linear operators:

L ju j (t) � p j u
′
j (t) such that L j :

⎧
⎨

⎩
W 2

2

[
t0, t f

] → W 1
2

[
t0, t f

]
, j � 1, 2, . . . , p,

W̃ 2
2

[
t0, t f

] → W 1
2

[
t0, t f

]
, j � p + 1, p + 2, . . . , n.

(16)

For the conduct of proceedings in the algorithm construction, put

F �

⎡

⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢
⎣

f1
f2
...
f p
f p+1
f p+2
...
fn

⎤

⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥
⎦

, u �

⎡

⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢
⎣

u1
u2
...
u p

u p+1

u p+2
...
un

⎤

⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥
⎦

, u′ �

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎣

u′
1

u′
2

...
u′
p

u′
p+1

u′
p+2

...
u′
n

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎦

,α �

⎡

⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢
⎣

α1

α2
...
αp

0
0
...
0

⎤

⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥
⎦

n×1

,β �

⎡

⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢
⎣

0
0
...
0
βp+1

βp+2
...
βn

⎤

⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥
⎦

n×1

, e j �

⎡

⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢
⎣

0
0
...
0
1 j th

0
...
0

⎤

⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥
⎦

n×1

,

(17)
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L �

⎡

⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎣

L1 0 · · · 0 0 0 · · · 0
0 L2 · · · 0 0 0 · · · 0
...

...
. . .

...
...

... · · ·
...

0 0 · · · L p 0 0 · · · 0
0 0 · · · 0 L p+1 0 · · · 0
0 0 · · · 0 0 L p+2 · · · 0
...

...
...

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · Ln

⎤

⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎦

. (18)

Thus, based on this, the BVPs to be solved can be converted into the following
equivalent form:

Lu(t) � F(t , u(t)) such that L:W
[
t0, t f

] → H
[
t0, t f

]
, (19)

subject to the following BCs:

eTj u(t0) � eTj α, j � 1, 2, . . . , p and eTj u
(
t f
) � eTj β, j � p + 1, p + 2, . . . , n. (20)

Lemma 1 The operators
{
L j
}p
j�1 : W 2

2

[
t0, t f

] → W 1
2

[
t0, t f

]
and

{
L j
}n
j�p+1 :

W̃ 2
2

[
t0, t f

] → W 1
2

[
t0, t f

]
are bounded and linear.

Proof In this proof, we are focusing on
{
L j
}p
j�1 : W 2

2

[
t0, t f

] → W 1
2

[
t0, t f

]
.

The linearity part is obvious, for the boundedness part, we need to prove that
‖L ju j‖2W 1

2
≤ M‖u j‖2W 2

2
, where M > 0. From the definition of the inner prod-

uct and the norm of W 1
2

[
t0, t f

]
, we have ‖L ju j‖2W 1

2
� 〈L ju j (t), L ju j (t)〉W 1

2
�

[
L ju j (t0)

]2 +
∫ t f
t0

[(
L ju j

)′
(t)
]2
dt . By the reproducing property of R{2}

t (s), we

have u j (t) � 〈u j (s), R{2}
t (s)〉W 2

2
,
(
L ju j

)
(t) � 〈u j (s),

(
L j R

{2}
t

)
(s)〉W 2

2
, and

(
L ju j

)′
(t) � 〈u j (s), (L j R

{2}
t )′(s)〉W 2

2
. Again, by the Schwarz inequality, one can

write

∣
∣(L ju j

)
(t)
∣
∣ �

∣
∣
∣〈u j (t),

(
L j R

{2}
t

)
(t)〉W 2

2

∣
∣
∣ ≤ ‖

(
L j R

{2}
t

)
(t)‖W 1

2
‖u j‖W 2

2
≤ M {1}

j ‖u j‖W 2
2
,

∣
∣
∣
(
L ju j

)′
(t)
∣
∣
∣ �

∣
∣
∣〈u j (t), (L j R

{2}
t )′(t)〉W 2

2

∣
∣
∣ ≤ ‖(L j R

{2}
t )′(t)‖W 1

2
‖u j‖W 2

2
≤ M {2}

j ‖u j‖ jW 2
2
.

(21)

Thus, ‖L ju j‖2W 1
2
≤

((
M {1}

j

)2
+
(
M {2}

j

)2(
t f − t0

))‖u j‖2W 2
2

or ‖L ju j‖W 1
2
≤

M‖u j‖W 2
2
, where M2 �

(
M {1}

j

)2
+
(
M {2}

j

)2(
t f − t0

)
. Similarly, for the remaining

operators
{
L j
}n
j�p+1 : W̃

2
2

[
t0, t f

] → W 1
2

[
t0, t f

]
. �

Theorem 4 The operator L : W
[
t0, t f

] → H
[
t0, t f

]
is bounded and linear.
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Proof Clearly, L is linear operator from W
[
t0, t f

]
into H

[
t0, t f

]
. The boundedness

part is shown as follows: for each u ∈ W
[
t0, t f

]
, we have

‖Lu‖H �
√∑p

j�1
‖L ju j‖2W 1

2
+
∑n

j�p+1
‖L ju j‖2W 1

2

≤
√∑p

j�1
‖L j‖2‖u j‖2W 2

2
+
∑n

j�p+1
‖L j‖2‖u j‖2W̃ 2

2

≤
√
(∑p

j�1
‖L j‖2+

∑n

j�p+1
‖L j‖2

)(∑p

j�1
‖u j‖2W 2

2
+
∑n

j�p+1
‖u j‖2W̃ 2

2

)

≤ LuW . (22)

Considering Lemma 1; the boundedness of
{
L j
}p
j�1 and

{
L j
}n
j�p+1 implies that

L is bounded. So, the proof of the theorem is complete. �
Next, we construct an orthogonal function systems of the space W

[
t0, t f

]
as fol-

lows: put

ϕi j (t) � (
rti (t)

)
j e j �

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
R{1}
ti (t), 0, 0, . . . , 0

)T
, j � 1,

(
0, R{1}

ti (t), 0, . . . , 0
)T

, j � 2,
...

...
(
0, 0, . . . , 0, R{1}

ti (t)
)T

, j � n,

(23)

and ψi j (t) � L∗ϕi j (t), i � 1, 2, . . ., j � 1, 2, . . . , n, where L∗ �
[
L∗
j i

]

n×n
is

the adjoint operator of L � [
Li j
]
n×n , R

{1}
t (s) is the reproducing kernel function of

W 1
2

[
t0, t f

]
, and {ti }∞i�1 is dense on

[
t0, t f

]
.

Algorithm 1 The orthonormal function systems
{
ψ̄i j (t)

}(∞, n)

(i , j)�(1, 1) of the space

W
[
t0, t f

]
can be derived from the Gram–Schmidt orthogonalization process of

{
ψi j (t)

}(∞, n)

(i , j)�(1, 1) as follows.

Step 1: For l � 1, 2, . . . and k � 1, 2, . . . , l do the following:
If l � k � 1, then set μi j

lk � 1
‖ψ11‖W ;

If l � k �� 1, then set μi j
lk � 1√

‖ψlk‖2W−∑l−1
p�1〈ψlk (t), ψ̄lp(t)〉2W

;

If l > k, then set μ
i j
lk � − 1√

‖ψlk‖2W
∑l−1

p�1〈ψlk (t), ψ̄lp(t)〉2W

l−1∑

p�k
〈ψlk (t), ψ̄lp(t)〉Wμ

i j
pk ;

Output: The orthogonalization coefficients μ
i j
lk of the orthonormal systems ψ̄i j (t).

Step 2: For i � 1, 2, . . . and j � 1, 2, . . . , n set
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ψ̄i j (t) �
i∑

l�1

j∑

k�1

μ
i j
lkψlk(t); (24)

Output: The orthonormal function systems
{
ψ̄i j (t)

}(∞, n)

(i , j)�(1, 1).

Here, it is easy to see that, ψi j (t) � L∗ϕi j (t) � 〈L∗ϕi j (s), Rt (s)〉W � 〈ϕi j (s),
Ls Rt (s)〉H � Ls Rt (s)|s�ti ∈ W

[
t0, t f

]
. Thus, ψi j (t) can be expressed in the form

of ψi j (t) � Ls Rt (s)|s�ti .

Theorem 5 For Eqs. (19) and (20), if {ti }∞i�1 is dense on
[
t0, t f

]
, then

{
ψi j (t)

}(∞, n)

(i , j)�(1, 1) is the complete function systems of the space W
[
t0, t f

]
.

Proof For each fixed u ∈ W
[
t0, t f

]
, let 〈u(t), ψi j (t)〉W � 0. Then, 〈u(t),

ψi j (t)〉W � 〈u(t), L∗ϕi j (t)〉W � 〈Lu(t), ϕi j (t)〉H � Lu(ti ) � 0. Whilst u(t) �∑n
j�1 u j (t)e j � ∑n

j�1〈u(·), (Rt (·)) j e j 〉We j , where

(Rt (·)) j e j �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
R{2}
t (s), 0, 0, . . . , 0

)T
, j � 1,

...
...

(
0, 0, . . . , 0, R{2}

t (s)pth, 0, 0, . . . , 0
)T

j � p,
(
0, 0, . . . , 0, R̃{2}

t (s)(p+1)th, 0, 0, . . . , 0
)T

j � p + 1,
...

...
(
0, 0, . . . , 0, R̃{2}

t (t)
)T

, j � n.

(25)

Hence, Lu(ti ) � ∑n
j�1〈Lu(t), ϕi j (t)〉He j � 0. But since {ti }∞i�1 is dense on

[
t0, t f

]
, we must have Lu(t) � 0. It follows that u(t) � 0 from the existence of L−1.

So, the proof of the theorem is complete. �
Theorem 6 If {ti }∞i�1 is dense on

[
t0, t f

]
and the solution of Eqs. (19) and (20) is

unique, then their exact solution satisfies the infinite expansion form

u(t) �
∞∑

i�1

n∑

j�1

i∑

l�1

j∑

k�1

μ
i j
ik fk(tl , u(tl))ψ̄i j (t), (26)

where μ
i j
lk are the orthogonalization coefficients of the orthonormal systems ψ̄i j (t)

obtained from the Gram–Schmidt process.

Proof Applying Theorem 5, it is easy to see that
{
ψ̄i j (t)

}(∞, n)

(i , j)�(1, 1) is the com-

plete orthonormal basis of W
[
t0, t f

]
. Since, 〈u(t), ϕi j (t)〉 � u j (ti ) for each u ∈
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W
[
t0, t f

]
, whilst,

∑∞
i�1

∑n
j�1〈u(t), ψ̄i j (t)〉W ψ̄i j (t) is the Fourier series expansion

about
{
ψ̄i j (t)

}(∞, n)

(i , j)�(1, 1). Then the series
∑∞

i�1
∑n

j�1〈u(t), ψ̄i j (t)〉W ψ̄i j (t) is con-
vergent in the sense of ‖·‖W . Thus, using Eq. (24), we have

u(t) �
∞∑

i�1

n∑

j�1

〈u(t), ψ̄i j (t)〉W ψ̄i j (t)

�
∞∑

i�1

n∑

j�1

〈u(t),
i∑

l�1

j∑

k�1

μ
i j
lkψlk(t)〉W ψ̄i j (t)

�
∞∑

i�1

n∑

j�1

i∑

l�1

j∑

k�1

μ
i j
lk〈u(t), L∗ϕlk(t)〉W ψ̄i j (t)

�
∞∑

i�1

n∑

j�1

i∑

l�1

j∑

k�1

μ
i j
lk〈Lu(t),ϕlk(t)〉H ψ̄i j (t)

�
∞∑

i�1

n∑

j�1

i∑

l�1

j∑

k�1

μ
i j
lk〈 fk(t , u(t)),ϕlk(t)〉H ψ̄i j (t)

�
∞∑

i�1

n∑

j�1

i∑

l�1

j∑

k�1

μ
i j
ik fk(tl , u(tl))ψ̄i j (t). (27)

Therefore, the form of Eq. (26) is the exact solution of Eqs. (19) and (20). The
proof is complete. �

Anyhow, the numerical solution uη(t) of u(t) for Eqs. (19) and (20) can be obtained
directly by taking finitely many terms in the series representation form of u(t) and is
given as

uη(t) �
η∑

i�1

n∑

j�1

i∑

l�1

j∑

k�1

μ
i j
ik fk

(
tl , uη−1(tl)

)
ψ̄i j (t). (28)

4 Construct and implement the iterative technique

In this section, we consider the given BVP and construct an iterative technique to
find its solutions in the space W

[
t0, t f

]
for linear and nonlinear case simultaneously.

Also, numerical solutions of the same system, obtained using proposed method with
existing BCs are proved to converge to the exact solutions with decreasing absolute
difference between the exact values and the values obtained using RKHS method.
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Here, we shall make use of the following facts about the linear and the nonlinear
case depending on the internal structure of the function F . Firstly, if Eq. (19) is linear,
then the exact and the numerical solutions can be obtained directly from Eqs. (26) and
(28), respectively. Secondly, if Eq. (19) is nonlinear, then the exact and the numeri-
cal solutions can be obtained by using the following iterative process: According to
Eq. (26), the representation form of the exact solution of Eqs. (19) and (20) can be
written as

u(t) �
∞∑

i�1

n∑

j�1

Ai j ψ̄i j (t), (29)

where Ai j � ∑i
l�1

∑ j
k�1 μ

i j
ik fk(tl , u(tl)). For the conduct of proceedings in the

solutions, put t1 � t0, it follows that u(t1) is known from the constraints conditions of
Eq. (20). Thus, the exact value of F(t1, u(t1)) is known. For numerical computations,
we put the initial function u0(t1) � u(t1) and define the η-term numerical solution of
u(t) by

uη(t) �
η∑

i�1

n∑

j�1

Bi j ψ̄i j (t), (30)

where the coefficients Bi j and the successive approximations ui (t), i � 1, 2, . . . , η

are given as follows:

Bi j �
i∑

l�1

j∑

k�1

μ
i j
lk fk

(
tl , uη−1(tl)

)
. (31)

In the iterative process of Eqs. (30) and (31), we can guarantee that the numerical
solution uη(t) satisfies the BCs of Eq. (20). Next, we will proof that uη(t) is converge
to the exact solution u(t).

Lemma 2 If u ∈ W
[
t0, t f

]
, then the numerical solution uη(t) and its derivative u′

η(t)
are converging uniformly to the exact solution u(t) and its derivative u′(t) as η → ∞,
respectively.

Proof For each t ∈ [t0, t f
]
, one can write

∣∣∣u(i)
η (t) − u(i)(t)

∣∣∣ �
∣∣∣∣
∣∣

n∑

j�1

〈uη(t) − u(t), ∂ it (Rt (t)) j e j 〉We j

∣∣∣∣
∣∣

≤
n∑

j�1

∣
∣∣〈uη(t) − u(t), ∂ it Rt (t)e j 〉We j

∣
∣∣

≤
n∑

j�1

‖uη − u‖W‖∂ it (Rt (t)) j e j‖W
∣
∣e j
∣
∣
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� ‖uη − u‖
n∑

j�1

‖∂ it (Rt (t)) j e j‖W
∣∣e j
∣∣

≤ Mi‖uη − u‖W ,Mi > 0, i � 0, 1. (32)

Hence, if ‖uη − u‖W→ 0 as η → ∞, then uη(t) and u′
η(t) are converge uniformly

to u(t) and u′(t), respectively. The proof is complete. �
Theorem 7 If ‖uη−1 − u‖W→ 0, tη → s as η → ∞, ‖uη−1‖W is bounded, and
F(t , u(t)) is continuous, then F

(
tη, uη−1

(
tη
)) → F(s, u(s)) as η → ∞.

Proof Firstly, we will prove that uη−1
(
tη
) → u(s). Since,

∣∣uη−1
(
tη
)− u(s)

∣∣ � ∣∣uη−1
(
tη
)− uη−1(s) + uη−1(s) − u(s)

∣∣

≤ ∣∣uη−1(tn) − uη−1(s)
∣∣ +
∣∣uη−1(s) − u(s)

∣∣. (33)

By reproducing property of the kernel function Rt (s), we have uη−1
(
tη
) �∑n

j�1〈uη−1(t),
(
Rtη (t)

)
j
e j 〉We j and uη−1(s) � ∑n

j�1〈uη−1(t), (Rs(t)) j e j 〉We j .
Thus,

∣
∣uη−1

(
tη
)− uη−1(s)

∣
∣ �

∣∣∣
∣∣∣

n∑

j�1

〈uη−1(t),
(
Rtη(t)

)
j e j − (Rs(t)) j e j 〈We j

∣∣∣
∣∣∣

≤
n∑

j�1

∣∣∣〈uη−1(t),
(
Rtη (t) − Rs(t)

)
j
e j 〉W

∣∣∣
∣∣e j
∣∣

≤
n∑

j�1

‖uη−1(t)‖W‖(Rtη (t) − Rs(t)
)
j
e j‖W

∣∣e j
∣∣. (34)

From the symmetry of Rt (s), it follows that ‖(Rtη (t) − Rs(t)
)
j
e j‖W→ 0 as

tη → s and η → ∞. In terms of the boundedness of ‖uη−1‖W , one obtains that∣∣uη−1
(
tη
)− uη−1(s)

∣∣ → 0 as soon as tη → s and η → ∞. Again, by Lemma
2, for each s ∈ [

t0, t f
]
, it holds that

∣∣uη−1(s) − u(s)
∣∣ ≤ M1‖uη−1 − u‖W→ 0.

Therefore, uη−1
(
tη
) → u(s) in the sense of the norm of W

[
t0, t f

]
as tη → s

and η → ∞. As a result, by the means of the continuation of F , it is implies that
F
(
tη, uη−1

(
tη
)) → F(s, u(s)) as η → ∞. So, the proof of the theorem is com-

plete. �
Theorem 8 Suppose that ‖uη‖W is bounded in Eqs. (30) and (31), {ti }∞i�1 is dense
on

[
t0, t f

]
, and Eqs. (19) and (20) have a unique solution on

[
t0, t f

]
. Then the

η-term numerical solution uη(t) converges to the exact solution u(t) with u(t) �
∞∑
l�1

n∑

j�1
Bi j ψ̄i j (t).

Proof Similar to the proof of Theorem 7 in [23]. �
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5 Error estimations and error bounds

In this section, we derive error bounds for the present algorithm and problems. Herein,
we suppose thatM � {

t1, t2, . . . , tη
} ⊂ (

t0, t f
)
such that t0 < t1 ≤ t2 ≤ · · · ≤ tη <

t f � tη+1 be the selected points for generating the basis functions
{
ψ̄i j (t)

}(∞, n)

(i , j)�(1, 1),

h � ti+1 − ti with 0 ≤ i ≤ η is the fill distance for the uniform partition of
[
t0, t f

]
,

and ‖L−1‖� sup0 ��u∈W[t0, t f ]‖u‖−1
H ‖L−1‖W .

Lemma 3 [23] Suppose that u j ∈ Cm
[
t0, t f

]
and u(m+1)

j ∈ L2
[
t0, t f

]
for some

m ≥ 1. If u j vanishes at M with η ≥ m + 1, then u j ∈ W 1
2

[
t0, t f

]
and there is a

constant A j such that

‖u j‖W 1
2
≤ A jh

m max
t∈[t0,t f ]

∣∣∣u(m+1)
j (t)

∣∣∣, j � 1, 2, . . . , n. (35)

We mention here that for the next results the hypotheses of Lemma 3 are hold.

Theorem 9 If u(t) � (u1(t), u2(t), . . . , un(t)), then there is a constant A �
(A1, A2, . . . , An) such that

‖u‖H≤ hm‖A‖2
∥
∥∥∥∥

max
t∈[t0,t f ]

∣∣∣u(m+1)(t)
∣∣∣

∥
∥∥∥∥
2

. (36)

Proof Considering Definition 5, one can write

‖u‖H �
√√
√√

n∑

j�1

‖u j‖2W 1
2

≤

√√√√√
n∑

j�1

(

A jhm max
t∈[t0,t f ]

∣∣∣u(m+1)
j (t)

∣∣∣

)2

� hm

√√√
√√

n∑

j�1

A2
j

(

max
t∈[t0,t f ]

∣
∣∣u(m+1)

j (t)
∣
∣∣

)2

≤ hm

√√√√√
n∑

j�1

A2
j

n∑

j�1

(

max
t∈[t0,t f ]

∣∣∣u(m+1)
j (t)

∣∣∣

)2

� hm‖A‖2
∥∥∥∥∥

max
t∈[t0,t f ]

∣∣∣u(m+1)(t)
∣∣∣

∥∥∥∥∥
2

. (37)

Herein, maxt∈[t0, t f ]
∣∣u(m+1)(t)

∣∣ � maxt∈[t0, t f ]
(
u(m+1)
1 (t), u(m+1)

2 (t), . . . , u(m+1)
n (t)

)
. �
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In the case of multidimensional function, we may use a norm that represents the
maximum value at each function. That means, if u(t) � (u1(t), u2(t), . . . , un(t)),
then

‖u‖∞� max
j

(

sup
t∈[t0,t f ]

∣∣u j (t)
∣∣
)

, j � 1, 2, . . . , n. (38)

Lemma 4 If u ∈ W
[
t0, t f

]
, then there exist a positive number K such that ‖u(i)‖∞≤

K‖u‖W .

Proof For each
{
u j
}p
j�1 ⊂ W 2

2

[
t0, t f

]
, one has

∣
∣∣u(i)

j (t)
∣
∣∣ ≤ ‖∂ it R{2}

t (t)‖W 2
2
‖u j‖W 2

2
≤

Mi‖u j‖W 2
2
. Similarly, for each

{
u j
}n
j�p+1 ⊂ W̃ 2

2

[
t0, t f

]
, one has

∣∣∣u(i)
j (t)

∣∣∣ ≤
‖∂ it R̃{2}

t (t)‖W̃ 2
2
‖u j‖W̃ 2

2
≤ Ni‖u j‖W̃ 2

2
. Whilst, if u ∈ W

[
t0, t f

]
, then u �

(
u1, u2, . . . , u p, u p+1, . . . , un

)T with
{
u j
}p
j�1 ⊂ W 2

2

[
t0, t f

]
and

{
u j
}n
j�p+1 ⊂

W̃ 2
2

[
t0, t f

]
. Thus,

∑p
j�1

∣
∣∣u(i)

j (t)
∣
∣∣
2 ≤ M2

i

∑p
j�1‖u j‖2W 2

2
and

∑n
j�p+1

∣
∣∣u(i)

j (t)
∣
∣∣
2 ≤

N 2
i

∑n
j�p+1‖u j‖2W̃ 2

2
. So as to this, one can write

n∑

j�1

∣∣
∣u(i)

j (t)
∣∣
∣ �

n∑

j�1

(∣∣
∣u(i)

j (t)
∣∣
∣ · 1

)

≤
√√√√

n∑

j�1

12
n∑

j�1

∣∣
∣u(i)

j (t)
∣∣
∣
2

� √
n

√√
√√

n∑

j�1

∣∣∣u(i)
j (t)

∣∣∣
2

� √
n

√√√√
p∑

j�1

∣∣∣u(i)
j (t)

∣∣∣
2
+

n∑

j�p+1

∣∣∣u(i)
j (t)

∣∣∣
2

≤ √
n

√√√√M2
i

p∑

j�1

‖u j‖2W 2
2
+N 2

i

n∑

j�p+1

‖u j‖2W̃ 2
2

≤ √
n

√√
√√√maxi

{
M2

i , N
2
i

}
⎛

⎝
p∑

j�1

‖u j‖2W 2
2
+

n∑

j�p+1

‖u j‖2W̃ 2
2

⎞

⎠

� K

√√√√
p∑

j�1

‖u j‖2W 2
2
+

n∑

j�p+1

‖u j‖2W̃ 2
2

� K‖u‖W , (39)
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where K 2 � nmaxi
{
M2

i , N
2
i

}
. In spite of supt∈[t0, t f ]

∣∣∣u(i)
j (t)

∣∣∣ ≤
supt∈[t0, t f ]

n∑

j�1

∣
∣∣u(i)

j (t)
∣
∣∣ ≤ K‖u‖W , we get max j

(
supt∈[t0, t f ]

∣
∣∣u(i)

j (t)
∣
∣∣
)

≤ K‖u‖W or

‖u(i)‖∞≤ K‖u‖W . �
Theorem 10 Let u(t) and uη(t) are given by Eqs. (26) and (28), respectively, then
there is a constant B such that

‖u(i) − u(i)
η ‖∞≤ Bhm , i � 0, 1. (40)

Proof The proof will be obtained by mathematical induction as follows: from Eq. (30)
for j ≤ η, we see that

Luη(ti ) �
η∑

i�1

n∑

j�1

Ai j Lψ̄i j (t)

�
η∑

i�1

n∑

j�1

Ai j 〈Lψ̄i j (t),ϕi j (t)〉H

�
η∑

i�1

n∑

j�1

Ai j 〈ψ̄i j (t), L
∗ϕi j (t)〉W

�
η∑

i�1

n∑

j�1

Ai j 〈ψ̄i j (t),ψi j (t)〉W . (41)

Using the orthogonality of
{
ψi j (t)

}(∞, n)

(i , j)�(1, 1), yields that

i∑

l�1

j∑

k�1

μ
i j
lk Luη(ti ) �

η∑

i�1

n∑

j�1

Ai j

〈

ψ̄i j (t),
i∑

l�1

j∑

k�1

μ
i j
lkψlk(t)

〉

W

�
η∑

i�1

n∑

j�1

Ai j
〈
ψ̄i j (t),ψlk(t)

〉
W � Alk . (42)

Consequently, if l � 1, then (Lu) j (t1) � f j (t1, u0(t1)) or Lu(t1) � F(t1, u0(t1)).
Again, if l � 2, then (Lu) j (t2) � f j (t2, u1(t2)) or Lu(t2) � F(t2, u1(t2)). In the
same layout, we can discover the pattern form Lu

(
t j
) � F

(
t j , u j−1

(
t j
))
, j � 1, 2,

. . . , η. Clearly Rη j ∈ Cm
[
t0, t f

]
and R(m+1)

η j ∈ L2
[
t0, t f

]
. Thus, from Theorem 9

there is a constant D � (D1, D2, . . . , Dn) such that

‖Rη‖H≤ hm‖D‖2
∥∥∥∥∥

max
t∈[t0,t f ]

∣∣∣R(m+1)
η (t)

∣∣∣

∥∥∥∥∥
2

. (43)
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Recalling that the error function Rη(t) � Luη(t)−F(t , u(t)) � Luη(t)−Lu(t) �
L
(
uη(t) − u(t)

)
. Hence, uη − u � L−1Rη, then there exists a constant E such that

‖u − uη‖W � ‖L−1Rη‖W≤ ‖L−1‖‖Rη‖H
≤ Ehm‖D‖2‖ max

t∈[t0,t f ]

∣∣∣R(m+1)
η (t)

∣∣∣‖2. (44)

Finally, in view of Lemma 4, one can find that

‖u(i) − u(i)
η ‖∞ ≤ K‖u − uη‖W

≤ K Ehm‖D‖2
∥∥∥
∥∥

max
t∈[t0,t f ]

∣∣
∣R(m+1)

η (t)
∣∣
∣

∥∥∥
∥∥
2

� Bhm , (45)

where B � K E‖D‖2‖ max
t∈[t0, t f ]

∣
∣∣R(m+1)

η (t)
∣
∣∣‖2 is a positive real number. �

Corollary 1 Suppose that h � t f −t0
η

is the fill distance for the uniform partition of
[
t0, t f

]
. Let u(t) and uη(t) are given by Eqs. (26) and (28), respectively, then

‖u(i) − u(i)
η ‖∞� O

(
η−m), i � 0, 1. (46)

Proof The proof follows directly from Theorem 10. �
Theorem 11 Let εη � ‖u−uη‖W , where u(t) and uη(t) are the exact and the numer-
ical solution, respectively. Then, the sequence of numbers

{
εη

}
are decreasing in the

sense of the norm of W
[
t0, t f

]
and εη → 0 as η → ∞.

Proof Using the expansions form of u(t) and uη(t) in Eqs. (29), (30), and (31), one

can write ε2η � ‖∑∞
i�η+1

∑n
j�1 Bi j ψ̄i j (t)‖2� ∑∞

i�η+1

(∑n
j�1 Bi j

)2
and ε2η−1 �

‖∑∞
i�η

∑n
j�1 Bi j ψ̄i j (t)‖2� ∑∞

i�η

(∑n
j�1 Bi j

)2
. Clearly, εη−1 ≥ εη, and conse-

quently
{
εη

}∞
η�1 are decreasing in the sense of ‖·‖W . By Theorem 6, we know that

∑∞
i�1

∑n
j�1 Bi j ψ̄i j (t) is convergent. Thus, ε2η → 0 or εη → 0. So, the proof of the

theorem is complete. �

6 Numerical algorithm and numerical analysis

In numerical analysis problems there are some basic unknowns. If they are found,
the behavior of the entire structure can be predicted. The basic unknowns or the field
variables which are encountered are displacements in the applied marhematics and
engineering problems. This section presents the numerical solutions for three different
BVPs of differen types using the RKHS method. Results obtained by the proposed
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method are compared systematically with some other well-known methods and are
found outperforms in terms of accuracy and generality.

By generating the finite direct sum between the spaces W 1
2

[
t0, t f

]
, W 2

2

[
t0, t f

]
,

W̃ 2
2

[
t0, t f

]
and merge the kernel functions R{1}

t (s), R{2}
t (s), R̃{2}

t (s) in one vector
space that satisfying the corresponding BCs, we can directly obtain the exact and the
numerical solutions by applying the following algorithm.

Algorithm 2 To approximate the solution of Eqs. (19) and (20), we do the following
steps:

Input: The interval
[
t0, t f

]
, the integers η, the kernel functions Rt (s), rt (s), the

differential operator L , and the function F .
Output: Numerical solution uη(t) of u(t) at each grid points in the independent

interval
[
t0, t f

]
.

Step1: Fixed t in
[
t0, t f

]
and set s ∈ [t0, t f

]
;

If s ≤ t , set Rt (s) �
(
R{2}
t , 1(s), R

{2}
t , 1(s), . . . , R{2}

t , 1(s)pth, R̃
{2}
t , 1(s)(p+1)th, R̃

{2}
t , 1(s), . . . ,

R̃{2}
t , 1(s)nth

)T
;

Else set Rt (s) �
(
R{2}
t , 2(s), R

{2}
t , 2(s), . . . , R{2}

t , 2(s)pth, R̃
{2}
t , 2(s)(p+1)th, R̃

{2}
t , 2(s), . . . ,

R̃{2}
t , 2(s)nth

)T
.

For i � 1, 2, . . . , η and j � 1, 2, . . . , n, do the following:
Set ti � i−1

η−1 ;

Set ψi , j (ti ) � Ls
[
Rti (s)

]
s�ti

;
Output: The orthogonal function systems ψi , j (ti ).
Step2: For l � 2, 3, . . . , η and k � 1, 2, . . . , l, do Algorithm 1 for l and k;
Output: The orthogonalization coefficients μ

i j
lk .

Step3: For l � 2, 3, . . . , η − 1 and k � 1, 2, . . . , l − 1, do the following:
Set ψ̄i j (ti ) � ∑i

l�1
∑ j

k�1 μ
i j
lkψlk(ti );

Output: The orthonormal function system ψ̄i j (ti ).
Step4: Set u0(t1) � u(t1) � 0;

Set Bi j � ∑i
l�1

∑ j
k�1 μ

i j
lk fk(tl , ui−1(tl));

Set ui (ti ) � ∑i
l�1

∑n
j�1 Bi j ψ̄i j (ti );

Output: The numerical solution uη(ti ) of u(ti ).

Using RKHS algorithm, taking ti � i−1
η−1 , i � 1, 2, . . . , η in uη(ti ) of Eq. (28),

generating the reproducing kernel functions rt (s), Rt (s) on
[
t0, t f

]
, and applying

Algorithms 1 and 2 throughout the numerical computations; some graphical results,
tabulate data, and numerical comparison are presented and discussed quantitatively at
some selected grid points on

[
t0, t f

]
to illustrate the numerical solutions for the follow-

ing BVPs. In the process of computation, all the symbolic and numerical computations
are performed by using MAPLE 13 software package.

Example 1 Consider the following linear BVP of three variables:

u′
1(t) � u2(t) − u3(t) + t ,
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u′
2(t) � 3t2,

u′
3(t) � u2(t) + e−t , (47)

subject to the following BCs:

u1(0) � 1, u2(0) � 1, u3(1) � 1.25 − e−1, (48)

where t ∈ [0, 1]. Here, the exact solutions are u1(t) � −0.05t5 + 0.25t4 + t +2− e−t ,
u2(t) � t3 + 1, and u3(t) � 0.25t4 + t − e−t .

Example 2 Consider the following nonlinear BVP of three variables:

u′
1(t) � cos(2t) + sin(3t),

u′
2(t) � u23(t) + (u3(t) − 1) − (u2(t) − 1)4 − 2tu3(t) + t2,

u′
3(t) � u3(t)u2(t) − (u2(t) − 1)3 − u3(t) − t(u2(t) − 1) + 2e2t + 1, (49)

subject to the following BCs:

u1(0) � 1, u2(0) � 2, u3(1) � e2 + 1, (50)

where t ∈ [0, 1]. Here, the exact solutions are u1(t) � 0.5sin(2t) − 1
3cos(3t) +

4
3 ,

u2(t) � et + 1, and u3(t) � e2t + t .

Example 3 Consider the following nonlinear singular BVP of four variables:

(t − 1)u′
1(t) � u1(t)u2(t)u4(t) − (t − 1)(t + 1)−1 + ln(t + 1)

(
et

2 − 2t
)
2−t ,

t2u′
2(t) � 2t3u2(t) + ln(u4(t)) − 4t4 + 2t2 − ln(2)t ,

sin(t)u′
3(t) � eu1(t) + u2(t) − 2sec(t)u3(t) − t + et

2
+ 0.5sin(3t − 1) − 1,

sinh(t)u′
4(t) � u−1

4 (t) + (t + 1)sinh(u1(t)) + 0.5t(t + 2) + 2t + ln(2)2−t sinh(t),
(51)

subject to the following BCs:

u1(0) � 0, u2(0) � 1, u3(1) � 0, u4(1) � 0.5, (52)

where t ∈ (0, 1). Here, the exact solutions are u1(t) � ln(t + 1), u2(t) � et
2 − 2t ,

u3(t) � sin(1 − t)cos(t), and u4(t) � 2−t .

Our next goal is to illustrate some numerical results of the RKHS solutions of the
aforementioned BVPs in numeric values. In fact, results from numerical analysis are
an approximation, in general, which can be made as accurate as desired. Because
a computer has a finite word length, only a fixed number of digits are stored and
used during computations. Next, the agreement between the exact and the numerical
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Table 1 Numerical values of the dependent variables uη1(t), uη2(t), and uη3(t) in Example 1

t uη1(t) uη2(t) uη3(t)

0 1 1 −1.000000058856484

0.1 1.195187034459571 1.000999994741106 −0.804812432953983

0.2 1.381653182806525 1.007999991648507 −0.618330809446387

0.3 1.561085202248351 1.026999996869802 −0.438793256175786

0.4 1.735567940628746 1.063999975240707 −0.263920053369600

0.5 1.907531767554038 1.124999905906054 −0.090905665883797

0.6 2.079700334229044 1.215999956871109 0.083588361361077

0.7 2.255036172034005 1.342999987102791 0.263439693556910

0.8 2.436686961005423 1.511999965735022 0.453071018709676

0.9 2.627930828481105 1.728999914614827 0.657455325139286

1 2.832120404744574 1.999999980275804 0.882120558828558

Table 2 Numerical values of the dependent variables uη1(t), uη2(t), and uη3(t) in Example 2

t uη1(t) uη2(t) uη3(t)

0 1 2 0.999999944841496

0.1 1.114222471069359 2.105170917013281 1.321402730661712

0.2 1.252930624807718 2.221402757055710 1.691824657688352

0.3 1.408451244404660 2.349858793488723 2.122118794411300

0.4 1.571225449936441 2.491824657555282 2.625540924049823

0.5 1.730489718456073 2.648721262133733 3.218281729139374

0.6 1.875086906443502 2.822118798471025 3.920116914002107

0.7 1.994340230258833 3.013752698988495 4.755199962480947

0.8 2.078918029280232 3.225540851995051 5.753032423067816

0.9 2.121614489886232 3.459603043438501 6.949647462458170

1 2.117979534112560 3.718281792293409 8.389056098930649

solutions is investigated for Examples 1 and 2 at various t in [0,1] by computing
the numerical approximating of their exact solutions for the corresponding equivalent
equations as shown in Tables 1 and 2, respectively.

Numerical comparisons for Examples 1 and 2 at various t in [0,1] are studied next.
The numerical methods that are used for comparison with the RKHS method include
the continuous genetic algorithm (CGA) [15], the finite difference (FD) method [5,
15], the orthogonal collocation (OC) method [5, 15], and the quasilinearization (QL)
method [5, 15]. It is clear from the tables that, for Example 1, the FD method is suited
with great difficulty and the QL method is failed, whilst, when solving Example 2, all
the aforementioned methods except the CGA are failed in approximating the required
solutions. As a result, it was found that the RKHS method in comparison is much
better with a view to accuracy and applicability followed directly by the CGA in the
mean of accuracy and applicability. Anyhow, Tables 3, 4, and 5, show a comparisons
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Table 3 Numerical comparison of absolute errors for u1η(t) in Example 1

t RKHS method CGA FD method OC method QL method

0 0 0 0 0 Failed

0.1 4.75×10−8 4.95×10−7 7.74×10−4 4.98×10−4 Failed

0.2 6.41×10−8 1.00×10−6 2.83×10−3 5.86×10−4 Failed

0.3 7.71×10−8 1.54×10−6 6.59×10−3 5.53×10−4 Failed

0.4 1.33×10−8 2.11×10−6 1.24×10−2 5.29×10−4 Failed

0.5 7.27×10−8 2.68×10−6 2.06×10−2 5.36×10−4 Failed

0.6 2.97×10−8 3.26×10−6 3.13×10−2 5.44×10−4 Failed

0.7 2.42×10−8 3.86×10−6 4.46×10−2 5.20×10−4 Failed

0.8 7.49×10−8 4.48×10−6 6.06×10−2 4.86×10−4 Failed

0.9 1.18×10−8 5.11×10−6 7.92×10−2 5.75×10−4 Failed

1 1.54×10−7 5.74×10−6 1.00×10−2 1.08×10−4 Failed

Table 4 Numerical comparison of absolute errors for u2η(t) in Example 1

t RKHS method CGA FD method OC method QL method

0 0 0 0 0 Failed

0.1 5.26×10−9 5.62×10−8 1.00×10−3 0 Failed

0.2 8.35×10−9 1.13×10−7 5.00×10−3 0 Failed

0.3 3.13×10−9 1.47×10−7 1.20×10−2 0 Failed

0.4 2.48×10−8 1.73×10−7 2.20×10−2 0 Failed

0.5 9.41×10−8 2.14×10−7 3.50×10−2 0 Failed

0.6 4.31×10−8 2.33×10−7 5.10×10−2 0 Failed

0.7 1.29×10−8 2.46×10−7 7.00×10−2 0 Failed

0.8 3.43×10−8 2.64×10−7 9.20×10−2 0 Failed

0.9 8.54×10−8 2.77×10−7 1.17×10−1 0 Failed

1 1.97×10−8 2.96×10−7 1.45×10−1 0 Failed

between the absolute errors of our method together with the other aforementioned
methods for Example 1, while Tables 6, 7, and 8 show a comparisons for Examples
2.

To analyze themost comprehensive and accurate; the average absolute errors across
all grid points and across all dependent variables for Examples 1 and 2 in all the
aforementionedmethods are shown in Table 9. As fast statistical analysis the following
comments and results are clearly observed:

• The best method for the solutions is the RKHS method followed closely by the
CGA.

• The average absolute errors for the RKHS method are the lowest one among all
other aforementioned numerical ones.
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Table 5 Numerical comparison of absolute errors for u3η(t) in Example 1

t RKHS method CGA FD method OC method QL method

0 5.89×10−8 1.17×10−6 5.59×10−2 1.29×10−4 Failed

0.1 1.49×10−8 1.05×10−6 6.07×10−2 6.64×10−5 Failed

0.2 5.64×10−8 9.30×10−7 6.47×10−2 5.49×10−5 Failed

0.3 3.55×10−8 8.15×10−7 6.73×10−2 5.82×10−5 Failed

0.4 7.33×10−9 7.10×10−7 6.80×10−2 6.03×10−5 Failed

0.5 6.17×10−9 5.96×10−7 6.62×10−2 5.88×10−5 Failed

0.6 2.54×10−9 4.78×10−7 6.14×10−2 5.73×10−5 Failed

0.7 2.65×10−9 3.62×10−7 5.29×10−2 5.93×10−5 Failed

0.8 1.72×10−8 2.49×10−7 4.03×10−2 6.23×10−5 Failed

0.9 1.51×10−8 1.21×10−7 2.28×10−2 5.24×10−5 Failed

1 0 0 0 0 Failed

Table 6 Numerical comparison of absolute errors for u1η(t) in Example 2

t RKHS method CGA FD method OC method QL method

0 0 0 Failed Failed Failed

0.1 3.13×10−8 5.84×10−6 Failed Failed Failed

0.2 8.04×10−9 1.41×10−5 Failed Failed Failed

0.3 2.87×10−9 2.41×10−5 Failed Failed Failed

0.4 1.07×10−8 3.51×10−5 Failed Failed Failed

0.5 4.01×10−8 4.61×10−5 Failed Failed Failed

0.6 1.44×10−9 5.72×10−5 Failed Failed Failed

0.7 2.94×10−9 6.80×10−5 Failed Failed Failed

0.8 1.08×10−8 7.76×10−5 Failed Failed Failed

0.9 3.96×10−8 8.52×10−5 Failed Failed Failed

1 1.15×10−8 9.00×10−5 Failed Failed Failed

• The average absolute errors using the RKHSmethod are relatively of the same order
for the linear and the nonlinear cases which is of the order 10−8.

• The RKHS method is three manifolds better than the CGA, six manifolds better
than the FD method, four manifolds better than the OC method for Example 1.

• The FD method, the OC method, and the QL method are failed in finding the
solutions for Example 2, whilst the QL method failed in finding the solutions for
Example 1.

In fact, we can notice that all methods using in comparison are only directly suitable
for some kinds of systems and often require that the system to have special structure
and not good enough to solve the systems of BVPs in general. The results obtained in
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Table 7 Numerical comparison of absolute errors for u2η(t) in Example 2

t RKHS method CGA FD method OC method QL method

0 0 0 Failed Failed Failed

0.1 1.06×10−9 4.33×10−6 Failed Failed Failed

0.2 1.10×10−9 9.17×10−6 Failed Failed Failed

0.3 1.41×10−8 1.43×10−5 Failed Failed Failed

0.4 4.01×10−8 1.90×10−5 Failed Failed Failed

0.5 8.57×10−9 2.26×10−5 Failed Failed Failed

0.6 1.92×10−9 2.53×10−5 Failed Failed Failed

0.7 8.48×10−9 2.75×10−5 Failed Failed Failed

0.8 7.65×10−8 2.92×10−5 Failed Failed Failed

0.9 6.77×10−8 3.06×10−5 Failed Failed Failed

1 3.62×10−8 3.25×10−5 Failed Failed Failed

Table 8 Numerical comparison of absolute errors for u3η(t) in Example 2

t RKHS method CGA FD method OC method QL method

0 5.52×10−8 2.08×10−5 Failed Failed Failed

0.1 2.75×10−8 1.78×10−5 Failed Failed Failed

0.2 4.00×10−8 1.43×10−5 Failed Failed Failed

0.3 5.98×10−9 1.04×10−5 Failed Failed Failed

0.4 4.44×10−9 5.76×10−6 Failed Failed Failed

0.5 9.93×10−8 5.76×10−6 Failed Failed Failed

0.6 8.73×10−9 3.07×10−7 Failed Failed Failed

0.7 4.36×10−9 6.67×10−7 Failed Failed Failed

0.8 1.33×10−9 1.22×10−6 Failed Failed Failed

0.9 1.95×10−9 1.16×10−6 Failed Failed Failed

1 0 0 Failed Failed Failed

Table 9 The average absolute error across all nods and all variables for Examples 1 and 2

Example RKHS method CGA FD method OC method QL method

1 3.72×10−8 1.23×10−6 5.29×10−2 3.29×10−4 Failed

2 2.21×10−8 4.04×10−5 Failed Failed Failed
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Fig. 1 Graphical results for the computational values of Example 3: blue: uη1(t)
(
u′
η1(t)

)
; red: uη2(t)

(
u′
η2(t)

)
; green: uη3(t)

(
u′
η3(t)

)
; black: uη4(t)

(
u′
η4(t)

)
: a the numerical solutions and b the first deriva-

tives of the numerical solutions (colour figure online)

this article make it very clear that the RKHS method out stands the performance of all
other existing methods in terms of accuracy and applicability.

Finally, the computational values of the numerical solutions and their first deriva-
tives for Example 3 have been plotted in Fig. 1a, b for various t in [0,1]. As the plots
show, while the value of t moving a way from the boundary of [0,1], the values of the
numerical solutions various smoothly along the horizontal axis by satisfying the ini-
tial conditions u1(0) � 0, u2(0) � 1 for the first dependent variables and u3(1) � 0,
u4(1) � 0.5 for the second dependent variables of the corresponding BVPs. The sim-
ilar results can be obtained for the first derivative of the numerical solutions. We recall
that the accuracy and duration of a simulation depends directly on the size of the steps
taken by the solver. Generally, decreasing the step size increases the accuracy of the
results, while increasing the time required to simulate the problem.

7 Relative comparative analysis

Comparative analysis is a study that compares and contrasts different things andwidely
used in various of sciences. This section summarizes several key features of the clas-
sical numerical method that usually used for solving such systems in comparison with
the RKHS method.

Five classical numerical techniques are widely used for the solution of BVPs; the
shooting method, the OC method, the FD method, the QL method, and the CGA. The
solution accuracy of some of these methods is poor for linear BVPs, and all of these
methods except the CGA provide either unsatisfactory solutions or diverged solutions
for nonlinear BVPs. In fact, when solving nonlinear BVPs, most of these methods
require some major modifications that include the use of some root-finding technique
or other numerical method such that Runge–Kutta method. Furthermore, the error in
the approximated nodal values obtained using these methods in general increase as
the node of concern is moved away from the given initial–final conditions.
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The shooting method for approximating the solutions to the nonlinear BVPs
involves solving a sequence of initial value problems, it is important to use a root-
finding technique that converges rapidly like Newton–Raphson method. It should be
noted that Newton’s method used with the shooting technique requires the solution of
an additional initial value problem. Anyhow, the nonlinear shooting method is con-
fronted with the following difficulties; first, it is required to solve an initial value
problem over the period

[
t0, t f

]
in each iteration of the used root-finding technique.

Second, it requires good initial guesses that lie in the domain of convergence. Whilst,
the linear shootingmethod suffers from rounding errors, whichmay cause cancellation
of significant digits.

The FD method for numerically approximating the solutions to the BVPs consists
of replacing each derivative in the differential equations by a difference quotient that
approximates that derivative. If N stands for the number of mesh points, then the
analytic problem of solving the BVPs is converted to an algebraic problem of solving
nN equations with nN unknowns. For linear BVPs, this process results in a system of
linear equations, which involves an nN × nN matrix that can be easily solved, while
for nonlinear BVPs, the system of equations that are derived will be nonlinear. The
nN × nN nonlinear system obtained from this method is then solved using Newton’s
method. A sequence of iterates is generated which converges to the solution of the
problem provided that the initial approximation is sufficiently close to the solution
and the Jacobian matrix for the system is nonsingular. The FDmethod for the solution
of the nonlinear BVPs is by no means without drawbacks; first, Newton’s method for
the solution of nonlinear systems requires an nN × nN linear system to be solved
at each iteration. Second, since a good initial approximation is required, an upper
bound for the number of iterations should be specified and, if exceeded, a new initial
approximation should be considered.

TheQLmethod depending on dividing the solutions into two stage; the homogenous
solutions and the particular solutions. In this direction, the homogenous solutions are
generatedbyusing thegiven initial conditions and theparticular solutions are generated
by using the remaining final conditions. In themeantime, other numerical method such
as Runge–Kutta must be used. Note that the divergence in this methodmay result from
poor guess. Also if the column matrix of the homogenous solutions is singular, then
the method cannot solve the problem. Moreover, this method cannot be solved unless
the number of equations is even and the number of equations with initial conditions
equal the number of equations with final conditions.

The OC method is based on the concept of interpolation of N collocation points,
that is, choosing a function, usually orthogonal polynomials, that approximates the
solutions of the given BVPs in the range of integration,

[
t0, t f

]
, and determining the

coefficients of these functions from a set of base points. This method chooses the trial
functions to be the linear combination of series of orthogonal polynomials. Anyhow,
the drawbacks in this method is the need to solve n(N + 1) simultaneous nonlinear
algebraic equations whose solution can be obtained using Newton’s method for non-
linear algebraic equations. Generally, the orthogonal OCmethod is more accurate than
either the FD difference method or the QL method.

The CGAmight be considered as a variation of the FDmethod in the sense that each
of the derivatives is replaced by an appropriate difference-quotient approximation. The
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CGAdepending on generating several random smooth solutions curves throughout the
evolution of the algorithm in order to obtain the required nodal values. In this tech-
nique the BVP is converted into an optimization problem based on the residual of the
nodal values where the optimal solution is obtained when the fitness approaches unity.
This technique results in three main drawbacks: firstly, the complexity in formulating
the optimization problem, especially, for nonhomogeneous initial–final conditions;
secondly, the randomness in the algorithm could made the residual of the nodal values
not reflect the accuracy of the solutions; thirdly, the algorithm normally suffers from
computational burden when applied on sequential machines; this means that the time
required for solving certain problem will be relatively large.

The RKHS method originated as a solver for the boundary value problems of
harmonic and biharmonic function types. It started as an extension of the Green
function theory of structural analysis. In this technique all the complexities of the
problems, like varying shape, BCs, and loads are maintained as they are but the solu-
tions obtained are approximate. Because of its diversity and flexibility as an analysis
tool, it is receiving much attention in applied mathematics, physics, and engineer-
ing. The fast improvements in computer hardware technology and slashing of cost of
computers have boosted this technique, since the computer is the basic need for the
application of this algorithm.

The advantages of the utilized RKHS method lie in the following powerful points;
firstly, it can produce good globally smooth numerical solutions, and with ability
to solve many differential systems with complex constraints conditions, which are
difficult to solve; secondly, the numerical solutions and their derivatives are converge
uniformly to the exact solutions and their derivatives, respectively; thirdly, the method
is mesh-free, easily implemented and capable in treating various differential systems
and various BCs; fourthly, the method does not require discretization of the variables,
and one is not faced with necessity of large computer memory and time; fifthly, in
the proposed method, it is possible to pick any point in the interval of integration and
as well the approximate solutions and their derivatives will be applicable; sixthly, it
is accurate, needless effort to achieve the results, and is developed especially for the
nonlinear case; seventhly, in the RKHS method the error in the approximated nodal
values does not affected by the distance from the given initial–final conditions.

8 Concluding remarks

The reproducing kernel algorithm is a powerful method for solving various linear and
nonlinear differential systems of different types and orders. In this article, we introduce
the reproducing kernel approach to enlarge its application range. It is analyzed that the
proposedmethod is well suited for use in BVPs for ODEs of volatile orders and resides
in its simplicity in dealing with initial–final conditions. However, the RKHS method
does not require discretization of the variables, it provides the best solution in a less
number of iterations and reduces the computational work. Numerical experiments are
carried out to illustrate that the present method is an accurate and reliable analytical
technique for treating BVPs of regular-singular types. It is worth to be pointed out
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that the RKHS method is still suitable and can be employed for solving other strongly
linear and nonlinear systems of differential equations.

Acknowledgements The author would like to express his gratitude to the unknown referees for carefully
reading the paper and their helpful comments.

Compliance with ethical standards

Conflict of interest The author declares that they have no conflict of interest.

References

1. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Wellesley-Cambridge, Cambridge
(2008)

2. Pytlak, R.: Numerical Methods for Optimal Control Problems with State Constraints. Springer, Berlin
(1999)

3. Kubicek, M., Hlavacek, V.: Numerical Solution of Nonlinear Boundary Value Problems with Appli-
cations. Dover Publications, Mineola (2008)

4. Keller, H.B.: NumericalMethods for Two-Point Boundary-Value Problems. Dover Publications,Mine-
ola (1993)

5. Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for
Ordinary Differential Equations (Classics in Applied Mathematics). SIAM, Philadelphia (1995)

6. Trent, A., Venkataraman, R., Doman, D.: Trajectory generation using a modified simple shooting
method. In: Aerospace Conference, Proceedings: 2004 IEEE, vol. 4, pp. 2723–2729 (2004)

7. Holsapple, R.W., Venkataraman, R., Doman, D.: New, fast numerical method for solving two-point
boundary-value problems. J. Guid. Control Dyn. 27, 301–304 (2004)

8. Zhao, J.: Highly accurate compact mixedmethods for two point boundary value problems. Appl. Math.
Comput. 188, 1402–1418 (2007)

9. Cash, J.R., Wright, M.H.: A deferred correction method for nonlinear two-point boundary value prob-
lems: implementation and numerical evaluation. SIAM J. Sci. Stat. Comput. 12, 971–989 (1991)

10. Cash, J.R., Moore, D.R., Sumarti, N., Daele, M.V.: A highly stable deferred correction scheme with
interpolant for systems of nonlinear two-point boundary value problems. J. Comput. Appl. Math. 155,
339–358 (2003)

11. Lentini, M., Pereyra, V.: An adaptive finite difference solver for nonlinear two-point boundary value
problems with mild boundary layers. SIAM J. Numer. Anal. 14, 91–111 (1977)

12. Cash, J.R., Moore, G., Wright, R.W.: An automatic continuation strategy for the solution of singularly
perturbed nonlinear boundary value problems. ACM Trans. Math. Softw. 27, 245–266 (2001)

13. Badakhshan, K.P., Kamyad, A.V.: Numerical solution of nonlinear optimal control problems using
nonlinear programming. Appl. Math. Comput. 187, 1511–1519 (2007)

14. Abo-Hammour, Z.S., Asasfeh, A.G., Al-Smadi, A.M., Alsmadi, O.M.K.: A novel continuous genetic
algorithm for the solution of optimal control problems. Optim. Control Appl. Methods 32, 414–432
(2011)

15. Alsayyed,O.:Numerical Solution of Temporal Two-PointBoundaryValue ProblemsUsingContinuous
Genetic Algorithms, Ph.D. Thesis, University of Jordan, Jordan (2006)

16. Cui, M., Lin, Y.: Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science, New
York (2009)

17. Berlinet, A., Agnan, C.T.: Reproducing Kernel Hilbert Space in Probability and Statistics. Kluwer
Academic Publishers, Boston (2004)

18. Daniel, A.: Reproducing Kernel Spaces and Applications. Springer, Basel (2003)
19. Weinert, H.L.: Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing.

Hutchinson Ross, London (1982)
20. Lin, Y., Cui,M., Yang, L.: Representation of the exact solution for a kind of nonlinear partial differential

equations. Appl. Math. Lett. 19, 808–813 (2006)

123



31 Page 28 of 28 O. Abu Arqub

21. Zhoua, Y., Cui, M., Lin, Y.: Numerical algorithm for parabolic problems with non-classical conditions.
J. Comput. Appl. Math. 230, 770–780 (2009)

22. Yang, L.H., Lin, Y.: Reproducing kernel methods for solving linear initial-boundary-value problems.
Electron. J. Differ. Equ. 2008, 1–11 (2008)

23. Abu Arqub, O., Maayah, B.: Solutions of Bagley–Torvik and Painlevé equations of fractional order
using iterative reproducing kernel algorithm. Neural Comput. Appl. 29, 1465–1479 (2018)

24. Abu Arqub, O.: The reproducing kernel algorithm for handling differential algebraic systems of ordi-
nary differential equations. Math. Methods Appl. Sci. 39, 4549–4562 (2016)

25. Abu Arqub, O., Al-Smadi, M., Shawagfeh, N.: Solving Fredholm integro-differential equations using
reproducing kernel Hilbert space method. Appl. Math. Comput. 219, 8938–8948 (2013)

26. Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving two-point, second-order periodic
boundary value problems for mixed integro-differential equations. Appl. Math. Comput. 243, 911–922
(2014)

27. Momani, S., Abu Arqub, O., Hayat, T., Al-Sulami, H.: A computational method for solving periodic
boundary value problems for integro-differential equations of Fredholm-Voltera type. Appl. Math.
Comput. 240, 229–239 (2014)

28. Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Numerical solutions of fuzzy differential equa-
tions using reproducing kernel Hilbert space method. Soft. Comput. 20, 3283–3302 (2016)

29. Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Application of reproducing kernel algorithm for
solving second-order, two-point fuzzy boundary value problems. Soft. Comput. 21, 7191–7206 (2017)

30. Abu Arqub, O.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra
integrodifferential equations. Neural Comput. Appl. 28, 1591–1610 (2017)

31. Abu Arqub, O.: Approximate solutions of DASs with nonclassical boundary conditions using novel
reproducing kernel algorithm. Fundam. Inf. 146, 231–254 (2016)

32. AbuArqub, O.: Fitted reproducing kernel Hilbert spacemethod for the solutions of some certain classes
of time-fractional partial differential equations subject to initial and Neumann boundary conditions.
Comput. Math Appl. 73, 1243–1261 (2017)

33. Abu Arqub, O.: Numerical solutions for the Robin time-fractional partial differential equations of heat
and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow
28, 828–856 (2018)

34. Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving time-fractional partial integrodiffer-
ential equations subject to initial and Dirichlet boundary conditions. Numer. Methods Partial Differ.
Equ. (2017). https://doi.org/10.1002/num.22209

35. Abu Arqub, O.: Computational algorithm for solving singular Fredholm time-fractional partial inte-
grodifferential equations with error estimates. J. Appl. Math. Comput. (2018). https://doi.org/10.100
7/s12190-018-1176-x

36. Abu Arqub, O., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet
time-fractional diffusion-Gordon types equations in porous media. J. Porous Med. (2017). In Press

37. Abu Arqub, O.: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions
types in Hilbert space. Numer. Methods Partial Differ. Equ. (2017). https://doi.org/10.1002/num.2223
6

38. Abu Arqub, O., Rashaideh, H.: The RKHS method for numerical treatment for integrodifferential
algebraic systems of temporal two-point BVPs. Neural Comput. Appl. (2017). https://doi.org/10.100
7/s00521-017-2845-7

39. Geng, F.Z., Qian, S.P.: Reproducing kernel method for singularly perturbed turning point problems
having twin boundary layers. Appl. Math. Lett. 26, 998–1004 (2013)

40. Jiang, W., Chen, Z.: A collocation method based on reproducing kernel for a modified anomalous
subdiffusion equation. Numer. Methods Partial Differ. Equ. 30, 289–300 (2014)

41. Geng, F.Z., Qian, S.P., Li, S.: A numerical method for singularly perturbed turning point problems
with an interior layer. J. Comput. Appl. Math. 255, 97–105 (2014)

42. Geng, F.Z., Cui, M.: A reproducing kernel method for solving nonlocal fractional boundary value
problems. Appl. Math. Lett. 25, 818–823 (2012)

43. Jiang, W., Chen, Z.: Solving a system of linear Volterra integral equations using the new reproducing
kernel method. Appl. Math. Comput. 219, 10225–10230 (2013)

44. Geng, F.Z., Qian, S.P.: Modified reproducing kernel method for singularly perturbed boundary value
problems with a delay. Appl. Math. Model. 39, 5592–5597 (2015)

123

https://doi.org/10.1002/num.22209
https://doi.org/10.1007/s12190-018-1176-x
https://doi.org/10.1002/num.22236
https://doi.org/10.1007/s00521-017-2845-7

	Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm
	Abstract
	1 Introduction
	2 Constructing appropriate inner product spaces
	3 Representation of exact and numerical solutions
	4 Construct and implement the iterative technique
	5 Error estimations and error bounds
	6 Numerical algorithm and numerical analysis
	7 Relative comparative analysis
	8 Concluding remarks
	Acknowledgements
	References




