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Abstract Motivated by stochastic convection–diffusion problems we derive a pos-
teriori error estimates for non-stationary non-linear convection–diffusion equations
acting as a deterministic paradigm. The problem considered here neither fits into the
standard linear framework due to its non-linearity nor into the standard non-linear
framework due to the lacking differentiability of the non-linearity. Particular atten-
tion is paid to the interplay of the various parameters controlling the relative sizes of
diffusion, convection, reaction and non-linearity (noise).
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1 Introduction

Recently stochastic convection–diffusion problems have attracted considerable inter-
est [2,6–8,17,19,26]. To obtain efficient numerical discretizations adaptivity is
mandatory. Yet, for these problems, adaptivity in general and a posteriori error esti-
mates in particular are still in their infancy. As a first step to close this gap we consider
in this article deterministic non-stationary convection–diffusion equations with a non-
linearity of the form νϕ(u)g modelling the noise (cf. Eq. (2.1) below). They neither
fit into the framework of [21, §3] and [25, §6.2] due to the non-linearity, nor into the
framework of [1,12], [23,24] and [25, §6.6] due to the lacking differentiability of the
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non-linearity or its lacking strong monotonicity. Therefore, in what follows, we will
carefully adapt the arguments of [21, §3] and [25, §6.2] to catch the interplay of the
various parameters controlling the relative size of diffusion, convection, reaction and
non-linearity.

The article is organized as follows. In Sect. 2 we present the differential equation
and its variational formulation. Section 3 gives the discretization which is a stabilized
θ -scheme with a possibly explicit treatment of the non-linearity. In Sect. 4 we then
derive the a posteriori error estimates (cf. Theorem 4.14).

2 Variational problem

As a deterministic paradigm for stochastic convection–diffusion problems, we con-
sider the following non-stationary non-linear convection–diffusion equations:

∂t u − ε�u + a · ∇u + bu = νϕ(u)g in � × (0, T ],
u = 0 on 	 × (0, T ],

u(·, 0) = u0 in �.

(2.1)

Here, � ⊂ R
d , d ∈ {2, 3}, is a bounded polyhedral domain with Lipschitz boundary

	. The final time T is arbitrary, but kept fixed in what follows. We assume that the
data satisfy the following conditions (compare [21, §3] and [25, §6.2]):

(A1) ε > 0, ν ≥ 0,
(A2) g ∈ L∞(� × (0, T ]), a ∈ C(0, T ;W 1,∞(�)d), b ∈ L∞(� × (0, T ]), u0 ∈

L2(�),
(A3) there are two constants β ≥ 0 and cb ≥ 0, which do not depend on ε, such that

− 1
2 div a + b ≥ β in � × (0, T ] and ‖b‖L∞(�×(0,T ]) ≤ cb β,

(A4) the function ϕ, modelling the noise, is Lipschitz continuous, i.e.
|ϕ(s1) − ϕ(s2)| ≤ L |s1 − s2| for all s1, s2 ∈ R.

Examples of functions satisfying assumption (A4) with L = 1 are ϕ(s) = 1 + |s| and
ϕ(s) = √

1 + s2.
We will be particularly interested in the convection-dominated regime ε 
 1. At
the expense of more technical arguments and additional data oscillations, the second
assumption can be replaced by slightly weaker conditions concerning the temporal
regularity. The third assumption allows us to simultaneously handle the case of a non-
vanishing reaction term and the one of absent reaction. If b �= 0 we may assume
without loss of generality that cb ≥ 1; if b = 0 we set β = 0 and cb = 1.

We denote by L p(�) and Wk,p(�), 1 ≤ p ≤ ∞, k ≥ 1, the standard Lebesgue and
Sobolev spaces equipped with their standard norms ‖·‖L p(�) and ‖·‖Wk,p(�) respec-
tively, by H1

0 (�) the space of all functions in W 1,2(�) with vanishing trace and by
H−1(�) the dual space of H1

0 (�). The norms of H1
0 (�) and H−1(�) depend on the

parameters ε and β and are specified in (4.1) and (4.2) below. Further, we define a bilin-
ear form B : H1

0 (�) × H1
0 (�) → R and a non-linear map N : H1

0 (�) → H−1(�)

by setting for all u, v ∈ H1
0 (�)
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B(u, v) =
∫

�

(ε∇u · ∇v + a · ∇uv + buv) ,

〈N (u) , v〉 =
∫

�

νϕ(u)gv. (2.2)

Remind that B and N depend on time t due to the functions a, b and g.
The variational formulation of problem (2.1) then is to find a function u in

L2(0, T ; H1
0 (�)) with its weak temporal derivative ∂t u in L2(0, T ; H−1(�)) such

that u(·, 0) = u0 almost everywhere and

〈∂t u , v〉 + B(u, v) = 〈N (u) , v〉 (2.3)

for all v ∈ H1
0 (�) and almost all t ∈ (0, T ).

In what follows we assume that problem (2.3) admits at least one solution.

3 Discrete problem

For the space–time discretization of problem (2.1), we consider partitions I =
{[tn−1, tn] : 1 ≤ n ≤ NI} of the time-interval [0, T ] into sub-intervals satisfying
0 = t0 < · · · < tNI = T . For every n with 1 ≤ n ≤ NI , we denote by In = [tn−1, tn]
the n-th sub-interval and by τn = tn − tn−1 its length. With every intermediate time
tn , 0 ≤ n ≤ NI , we associate a partition Tn of � and a corresponding finite element
space V (Tn). The partitions I and Tn and the spaces V (Tn) must satisfy the following
assumptions (compare [21, §3] and [25, §6.2]):

• The closure of � is the union of all elements in Tn .
• Every element has at least one vertex in �.
• Every element in Tn is either a simplex or a parallelepiped, i.e. it is the image

of the d-dimensional reference simplex K̂d = {
x ∈ R

d : x1 ≥ 0, . . . , xd ≥ 0,

x1 + · · · + xd ≤ 1} or of the d-dimensional reference cube K̂d = [0, 1]d under
an affine mapping (affine-equivalence).

• Any two elements in Tn are either disjoint or share a complete lower dimensional
face of their boundaries (admissibility).

• Denoting by hK the diameter of any element K and by ρK the diameter of the
largest ball inscribed into K , the shape parameter

CT = max
1≤n≤NI

max
K∈Tn

hK
ρK

is of moderate size independently of ε, β and ν (shape-regularity).
• For every n with 1 ≤ n ≤ NI there is an affine-equivalent, admissible and shape-

regular partition T̃n such that it is a refinement of both Tn and Tn−1 and such
that

CT̃ ,T = max
1≤n≤NI

max
K∈T̃n

max
K ′∈Tn;K⊂K ′

hK ′

hK

is of moderate size independently of ε, β and ν (transition condition).
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• Each V (Tn) consists of continuous functions which are piecewise polynomials,
the degrees being at least one and being bounded uniformly with respect to all
partitions Tn and I (degree condition).

The transition condition is due to the simultaneous presence of finite element func-
tions defined on different grids. Usually the partition Tn is obtained from Tn−1 by a
combination of refinement and of coarsening. In this case the transition condition only
restricts the coarsening: it should not be too abrupt nor too strong.
The lower bound on the polynomial degrees is needed for the construction of suitable
quasi-interpolation operators. The upper bound ensures that the constants in inverse
estimates are uniformly bounded.
Notice that we do not impose any shape-condition of the form maxn τn ≤ cminn τn .

For any parameter 
 ∈ [0, 1] we set for abbreviation

gn
 = 
g(·, tn) + (1 − 
)g(·, tn−1),

an
 = 
a(·, tn) + (1 − 
)a(·, tn−1),

bn
 = 
b(·, tn) + (1 − 
)b(·, tn−1) (3.1)

and

Bn
(u, v) =
∫

�

{
ε∇u · ∇v + an
 · ∇uv + bn
uv

}
,

〈
Nn
(u) , v

〉 =
∫

�

νϕ(u)gn
v.

For the finite element discretization of problem (2.1) we consider a stabilized θ -
scheme with a possibly explicit treatment of the non-linearity. More precisely we
choose two parameters θ, ϑ ∈ [0, 1] and look for a sequence unTn ∈ V (Tn), 0 ≤
n ≤ NI , such that u0

T0
is the L2-projection of u0 onto V (T0) and such that, for

n = 1, . . . , NI and Un
 = 
unTn + (1 − 
)un−1
Tn−1

, 
 ∈ {θ, ϑ},
∫

�

1

τn
(unTn − un−1

Tn−1
)vTn + Bnθ (Unθ , vTn ) + Sn(Unθ , vTn ) = 〈Nnϑ(Unϑ) , vTn

〉
(3.2)

holds for all vTn ∈ V (Tn).
Note that by choosing ϑ �= θ we may handle the non-linear and linear terms in

(2.1) differently. In particular we may choose ϑ = 0 and θ ∈ { 1
2 , 1} thus using

an explicit discretization for the non-linear term and an implicit one for the linear
terms.

The term Sn specifies the particular stabilization. It is supposed to be linear in its
second argument and affine in its first argument. Note that Sn may contain contributions
of the data g. Of course, the choice Sn = 0 is also possible and corresponds to a
standard finite element method without stabilization. Some popular choices of Sn are
as follows (cf. [21] for more details and references):
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• Streamline diffusion method: Here, the stabilizing term has the form

Sn(u, v) =
∑
K∈Tn

ϑK

∫
K

{−ε�u + anθ · ∇u + bnθu − νϕ(u)gnθ
}

anθ · ∇v

with ϑK ‖a‖L∞(K ) ≤ cShK for all K ∈ Tn (cf. e.g. [16,20]).
• Local projection scheme: Denoting by Mn a macro-partition such that every ele-

ment in Mn is the union of elements in Tn and by I −κMn the L2-projection onto
an appropriate discontinuous projection space D(Mn) living on the partition Mn

and by āMn a piecewise constant approximation of anθ on Mn , we either have

Sn(u, v) =
∑

M∈Mn

ϑM

∫
M

κMn

(
āMn · ∇u

)
κMn

(
āMn · ∇v

)

with ϑM ‖a‖L∞(M) ≤ cShM for all M ∈ Mn or

Sn(u, v) =
∑

M∈Mn

ϑM

∫
M

κMn (∇u) κMn (∇v)

with ϑM ≤ cS ‖a‖L∞(M) hM for all M ∈ Mn (cf. e.g. [15,18,22]).
• Subgrid scale approach: Decomposing the solution space V (Tn) into a space

of resolvable scales X (Tn) and a space of unresolvable scales Y (Tn) such that
V (Tn) = X (Tn) ⊕ Y (Tn) and denoting by �n : V (Tn) → Y (Tn) a projection
operator with X (Tn) = ker(�n), we either have

Sn(u, v) =
∑
K∈Tn

ϑK

∫
K

(
āTn · ∇�n(u)

) (
āTn · ∇�n(v)

)

with ϑK ‖a‖L∞(K ) ≤ cShK for all K ∈ Tn or

Sn(u, v) =
∑
K∈Tn

ϑK

∫
K

∇�n (u)∇�n (vT )

with ϑK ≤ cS ‖a‖L∞(K ) hK for all K ∈ Tn (cf. e.g. [10,13,14,20]).
• Continuous interior penaltymethod:Denoting by En,� the collection of all element

faces of Tn inside � and by JE (·) the jump across such a face, we have

Sn(u, v) =
∑

E∈En,�

ϑE

∫
E

JE (anθ · ∇u)JE (anθ · ∇v)

with ϑE ≤ cSh2
E for all E ∈ En,� (cf. e.g. [3–5,9,11]).

In what follows we assume that problem (3.2) admits at least one solution.
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4 A posteriori error estimates

In what follows we consider a solution u of the variational problem (2.3) and a solution(
unTn

)
0≤n≤NI

of the discrete problem (3.2). With the latter we associate the function

uI which is continuous and piecewise affine with respect to time and which equals
unTn at time tn , 0 ≤ n ≤ NI . We want to derive explicitly computable a posteriori error
estimates which yield upper and lower bounds for the error u − uI . In doing so we
pay particular attention to the dependence of the bounds on the parameters ε, β and
ν. To this end we proceed as in [21] and [25, §6.2]:

• We introduce the residual associated with the error and prove that a suitable norm
of the error is bounded from below and above by a suitable dual norm of the
residual.

• We additively split the residual into three contributions called data residual, tem-
poral residual and spatial residual.

• We separately bound the dual norms of the data, temporal and spatial residuals.

In following this path, we must pay particular attention to the non-linearity. Its
Lipschitz-continuity will be crucial.

4.1 Norms

We equip H1
0 (�) with the energy norm

‖|v‖| =
{
ε ‖∇v‖2 + β ‖v‖2

} 1
2

(4.1)

and H−1(�) by the corresponding dual norm

‖|�‖|∗ = sup
v∈H1

0 (�)\{0}

〈� , v〉
‖|v‖| , (4.2)

where ‖·‖ω is the standard L2-norm on any measurable subset ω of � and ‖·‖ = ‖·‖�.
For abbreviation we set for 0 ≤ t− < t+ ≤ T

X (t−, t+) = L2(t−, t+; H1
0 (�)) ∩ L∞(t−, t+; L2(�)) ∩ H1(t−, t+; H−1(�)),

equip it with the norm

‖u‖X (t−,t+) =
{

sup
t−<t<t+

‖u(·, t)‖2 +
∫ t+

t−
‖|u(·, t)‖|2

+
∫ t+

t−
‖|∂t u(·, t) + a · ∇u(·, t)‖|2∗

} 1
2
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and set
X = X (0, T ), ‖·‖X = ‖·‖X (0,T ) .

Recall that for 0 ≤ t− < t+ ≤ T and � : (t−, t+) → H−1(�)

‖�‖L2(t−,t+;H−1(�)) =
{∫ t+

t−
‖|�(t)‖|2∗

} 1
2

.

Denote by

cF = sup
v∈H1

0 (�)\{0}

‖v‖
‖∇v‖ (4.3)

the best constant in Friedrich’s inequality. Note that cF � diam(�). Setting

λ = min
{

cF ε− 1
2 , β− 1

2

}

Equations (4.1) and (4.3) imply for every v ∈ H1
0 (�)

‖v‖ ≤ λ ‖|v‖| . (4.4)

For abbreviation we finally set

γ (t) = ‖g(·, t)‖L∞(�) , γ = ‖g‖L∞(�×(0,T )) .

4.2 Lipschitz-continuity of the non-linearity

The non-linearity N is not differentiable, but Lipschitz-continuous.

Lemma 4.1 (Lipschitz-continuity of N ).For every t ∈ (0, T ) and u1, u2, v ∈ H1
0 (�)

we have
〈N (u1) − N (u2) , v〉 ≤ νLγ (t) ‖u1 − u2‖ ‖v‖

and

‖|N (u1) − N (u2)‖|∗ ≤ νLλγ (t) ‖u1 − u2‖
≤ νLλ2γ (t) ‖|u1 − u2‖| .

Proof For every v ∈ H1
0 (�) and t ∈ (0, T ) we have thanks to assumption (A4)

〈N (u1) − N (u2) , v〉 ≤ νL
∫

�

|g(·, t)| |u1 − u2| |v| .

Together with Hölder’s inequality this proves the first inequality. The second and third
one, follow from the first one and (4.4). ��
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Remark 4.2 Using the continuous embedding of H1
0 (�) into L p(�) with p <

∞ if d = 2 and p = 6 if d = 3, the terms νLλγ (t) and νLλ2γ (t) in

Lemma 4.1 can be replaced by min
{
νLβ− 1

2 γ (t), νL cp ε− 1
2 ‖g(·, t)‖Lq (�)

}
and

min
{
νLβ−1γ (t), νL c2

p ε−1 ‖g(·, t)‖Lr (�)

}
, resp. where q = 2p

p−2 , r = p
p−2 and

cp = supv

‖v‖L p (�)

‖∇v‖ .

4.3 Equivalence of residual and error

With the discrete solution uI we associate the residual R(uI) ∈ L2(0, T ; H−1) by
setting for all v ∈ H1

0 (�)

〈R(uI) , v〉 = 〈N (uI) , v〉 − 〈∂t uI , v〉 − B(uI , v).

Notice, that B and N are given by (2.2) and that ∂t uI = 1
τn

(
unTn − un−1

Tn−1

)
on [tn−1, tn].

With this notation, we have the following equivalence of error and residual.

Lemma 4.3 (Equivalence of error and residual). For all 1 ≤ n ≤ NI the
L2(tn−1, tn; H−1(�))-norm of the residual is bounded from above by the X (tn−1, tn)-
norm of the error

‖R(uI)‖L2(tn−1,tn;H−1(�))

≤ ‖u − uI‖X (tn−1,tn)

√
2 cb

{
1 + νLλ min

{
λ,

√
τn
}

max
tn−1≤t≤tn

γ (t)

}
.

Conversely, the X (0, T )-norm of the error is bounded from above by the L2(0, T ; H−1

(�))-norm of the residual

‖u − uI‖X ≤
{∥∥∥u0 − u0

T0

∥∥∥2 + ‖R(uI)‖2
L2(0,T ;H−1(�))

} 1
2 ·

{
3 +

[
1 + 3 max

{
c2
b, ν

2L2λ2γ 2 min{T, λ2}}]e2νLγ T
} 1

2

.

If in addition κ = 2νL min{T, λ2}γ < 1, the upper bound for the norm of the error
can be improved to

‖u − uI‖X ≤
{∥∥∥u0 − u0

T0

∥∥∥2 + ‖R(uI)‖2
L2(0,T ;H−1(�))

} 1
2 ·

{
3 +

[
1 + 3 max

{
c2
b,

1

2
νLλ2γ

}]
1

1 − κ

} 1
2

.
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Proof The variational formulation (2.3) and the definition of the residual yield

〈∂t (u − uI) , v〉 + B(u − uI , v) = 〈N (u) − N (uI) , v〉 + 〈R(uI) , v〉 (4.5)

for all v ∈ H1
0 (�) and almost all t ∈ (0, T ). Therefore, [25, Proposition 6.14] and the

assumption cb ≥ 1 imply for all 1 ≤ n ≤ NI

‖R(uI)‖L2(tn−1,tn;H−1(�))

≤ √
2 cb

{
‖u − uI‖X (tn−1,tn) + ‖N (u) − N (uI)‖L2(tn−1,tn;H−1(�))

}
.

Together with Lemma 4.1 this proves the upper bound for the dual norm of the residual.
To prove the upper bounds for the error, we go back to the proof of [25, Proposition
6.14] and first observe that

〈∂t (u − uI) + a · ∇(u − uI) , v〉
=
∫

�

[
ε∇(uI − u) · ∇v + b(uI − u)v

]+ 〈N (u) − N (uI) , v〉 + 〈R(uI) , v〉 ,

Together with Lemma 4.1 this implies

‖|∂t (u − uI) + a · ∇(u − uI)‖|∗ ≤ ‖|R(uI)‖|∗+cb ‖|u − uI‖|+νLλγ (t) ‖u − uI‖

and

∫ T

0
‖|∂t (u − uI) + a · ∇(u − uI)‖|2∗

≤ 3

{∫ T

0
‖|R(uI)‖|2∗ + c2

b

∫ T

0
‖|u − uI‖|2

+ν2L2λ2γ 2 min

{
T sup

0<t<T
‖u − uI‖2 , λ2

∫ T

0
‖|u − uI‖|2

}}
.

In order to bound sup0<t<T ‖u − uI‖2 and
∫ T

0 ‖|u − uI‖|2, we now use a standard
parabolic energy argument and insert u − uI as test-function v in (4.5). Thanks to the
coercivity of the bilinear form B and Lemma 4.1 this yields

1

2

d

dt
‖u − uI‖2 + ‖|u − uI‖|2

≤ 1

2

d

dt
‖u − uI‖2 + B(u − uI , u − uI)

= 〈N (u) − N (uI) , u − uI〉 + 〈R(uI) , u − uI〉
≤ νLγ (t) ‖u − uI‖2 + ‖|R(uI)‖|∗ ‖|u − uI‖|
≤ νLγ (t) ‖u − uI‖2 + 1

2
‖|R(uI)‖|2∗ + 1

2
‖|u − uI‖|2
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and thus

‖(u − uI)(·, t)‖2 +
∫ t

0
‖|u − uI‖|2

≤ 2νLγ

∫ t

0
‖u − uI‖2 +

∫ t

0
‖|R(uI)‖|2∗ +

∥∥∥u0 − u0
T0

∥∥∥2
.

If κ < 1 we may absorb the first term on the right-hand side of this estimate by the
left-hand side and obtain

sup
0<t<T

‖u − uI‖2 +
∫ T

0
‖|u − uI‖|2

≤ 1

1 − κ

{∥∥∥u0 − u0
T0

∥∥∥2 + ‖R(uI)‖2
L2(0,T ;H−1(�))

}
.

Otherwise, Gronwall’s Lemma yields

sup
0<t<T

‖u − uI‖2 +
∫ T

0
‖|u − uI‖|2

≤ e2νLγ T
{∥∥∥u0 − u0

T0

∥∥∥2 + ‖R(uI)‖2
L2(0,T ;H−1(�))

}
.

Combining these estimates with the bound for
∫ T

0 ‖|∂t (u − uI) + a · ∇(u − uI)‖|2∗
establishes the upper bound for the error. ��

4.4 Decomposition of the residual

We additively split the residual

R(uI) = Rτ (uI) + Rh(uI) + RD(uI)

into a temporal residual, a spatial residual and a data residual which, for all v ∈ H1
0 (�),

are defined by

〈Rτ (uI) , v〉 = 〈Nnϑ(uI) , v
〉− 〈Nnϑ(Unϑ) , v

〉+ Bnθ (Unθ − uI , v),

〈Rh(uI) , v〉 = 〈Nnϑ(Unϑ) , v
〉− 〈∂t uI , v〉 − Bnθ (Unθ , v),

〈RD(uI) , v〉 = 〈N (uI) , v〉 − 〈Nnϑ(uI) , v
〉− B(uI , v) + Bnθ (uI , v). (4.6)

In addition, we additively split the temporal residual

Rτ (uI) = Rτ,lin(uI) + Rτ,nonlin(uI)
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into a linear and a non-linear part which, for all v ∈ H1
0 (�), are defined by

〈
Rτ,lin(uI) , v

〉 = Bnθ (Unθ − uI , v)〈
Rτ,nonlin(uI) , v

〉 = 〈Nnϑ(uI) , v
〉− 〈Nnϑ(Unϑ) , v

〉
.

In the following subsections we will estimate the three residuals separately. The fol-
lowing Lemma shows that this is permissible. Lemma 4.12 below in addition shows
that the temporal residual is governed by its linear part if νLλ2γ is sufficiently small.

Lemma 4.4 (Decomposition of the residual). For every n ∈ {1, . . . , NI} we have

‖Rτ (uI) + Rh(uI)‖L2(tn−1,tn;H−1(�)) ≤ ∥∥Rτ,lin(uI)
∥∥
L2(tn−1,tn;H−1(�))

+ ∥∥Rτ,nonlin(uI)
∥∥
L2(tn−1,tn;H−1(�))

+ ‖Rh(uI)‖L2(tn−1,tn;H−1(�))

and

2

25

{∥∥Rτ,lin(uI)
∥∥2
L2(tn−1,tn;H−1(�))

+ ‖Rh(uI)‖2
L2(tn−1,tn;H−1(�))

} 1
2

≤ ‖Rτ (uI) + Rh(uI)‖L2(tn−1,tn;H−1(�)) + ∥∥Rτ,nonlin(uI)
∥∥
L2(tn−1,tn;H−1(�))

.

Proof Since
√

5
14

(
1 −

√
3

2

)
> 2

25 and Rτ,lin is affine inUnθ−uI and thus proportional

to t−tn−1
τn

− θ , the estimates follow from the triangle inequality and [25, Lemma 6.16].
��

4.5 Bounding the data residual

Hölder’s inequality and (4.4) yield the following upper bound for the data residual.

Lemma 4.5 (Upper bound for the data residual). For every n ∈ {1, . . . , NI} we have

‖RD(uI)‖L2(tn−1,tn;H−1(�))

≤ νLλ
{∥∥g − gnϑ

∥∥
L2(tn−1,tn;L2(�))

+ ∥∥g − gnϑ
∥∥
L∞(tn−1,tn;L∞(�))

(∫ tn

tn−1

‖|uI‖|2
) 1

2
}

+ ε− 1
2 λ
∥∥a − anθ

∥∥
L∞(tn−1,tn;L∞(�))

(∫ tn

tn−1

‖|uI‖|2
) 1

2

+ λ2
∥∥b − bnθ

∥∥
L∞(tn−1,tn;L∞(�))

(∫ tn

tn−1

‖|uI‖|2
) 1

2

.

123



20 Page 12 of 18 R. Verfürth

Remark 4.6 Since uI = t−tn−1
τn

unTn + tn−t
τn

un−1
Tn−1

for tn−1 ≤ t ≤ tn , the convexity of

‖|·‖|2 and Simpson’s rule yield

∫ tn

tn−1

‖|uI‖|2 ≤ τn

2

(∥∥∥
∣∣∣unTn

∥∥∥
∣∣∣2 +

∥∥∥
∣∣∣un−1

Tn−1

∥∥∥
∣∣∣2
)

.

4.6 Bounding the temporal residual

We first bound the linear part of the temporal residual.
For every time-interval [tn−1, tn] we have

Rτ,lin(uI) =
(

θ − t − tn−1

τn

)
rn

where rn ∈ H−1(�) is defined by

〈
rn , v

〉 = Bnθ (unTn − un−1
Tn−1

, v)

for v ∈ H1
0 (�). The assumption cb ≥ 1 and [25, Lemma 6.17] therefore yield the

following upper and lower bounds for the linear part of the temporal residual.

Lemma 4.7 (Bounds for the linear part of the temporal residual). For every n ∈
{1, . . . , NI}, the linear part of the temporal residual can be bounded from above and
from below by

√
τn√

12(2 + cb)

{∥∥∥
∣∣∣unTn − un−1

Tn−1

∥∥∥
∣∣∣ +

∥∥∥
∣∣∣anθ · ∇(unTn − un−1

Tn−1
)

∥∥∥
∣∣∣∗
}

≤ ∥∥Rτ,lin(uI)
∥∥
L2(tn−1,tn;H−1(�))

≤
√

τn√
3 cb

{∥∥∥
∣∣∣unTn − un−1

Tn−1

∥∥∥
∣∣∣ +

∥∥∥
∣∣∣anθ · ∇(unTn − un−1

Tn−1
)

∥∥∥
∣∣∣∗
}

.

The term
∥∥∥
∣∣∣anθ · ∇(unTn − un−1

Tn−1
)

∥∥∥
∣∣∣∗ is not suited for a posteriori error estimates

since it involves the dual norm ‖|·‖|∗. The next two Lemmas bound this term for
the case of dominant diffusion, i.e. ε � 1, and of dominant convection, i.e. ε 
 1,
respectively. The first one follows from Hölder’s inequality and (4.3), the second one
from [25, Lemma 6.18].

Lemma 4.8 (Bounding the convective derivative for dominant diffusion). For every
n ∈ {1, . . . , NI} we have

∥∥∥
∣∣∣anθ · ∇(unTn − un−1

Tn−1
)

∥∥∥
∣∣∣∗ ≤ ε− 1

2 λ
∥∥anθ

∥∥
L∞(�)

∥∥∥
∣∣∣unTn − un−1

Tn−1

∥∥∥
∣∣∣ .
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Lemma 4.9 (Bounding the convective derivative for dominant convection). For every
n ∈ {1, . . . , NI} denote by S1,0

0 (T̃n) the space of continuous, piecewise affine functions
vanishing on 	 corresponding to the partition T̃n and by ũnTn ∈ S1,0

0 (T̃n) the unique
solution of the discrete reaction-diffusion problem

ε

∫
�

∇ũnTn · ∇vTn + β

∫
�

ũnTnvTn =
∫

�

anθ · ∇(unTn − un−1
Tn−1

)vTn

for all vTn ∈ S1,0
0 (T̃n). Define the error indicator η̃nTn by

η̃nTn =
⎧⎨
⎩
∑
K∈T̃n

�
2
K

∥∥∥anθ · ∇(unTn − un−1
Tn−1

) + ε�ũnTn − βũnTn

∥∥∥2

K

+
∑

E∈Ẽn,�

ε− 1
2 �E

∥∥∥JE (nE · ∇ũnTn )
∥∥∥2

E

⎫⎬
⎭

1
2

and the data error θ̃nTn by

θ̃nTn =
⎧⎨
⎩
∑
K∈T̃n

�
2
K

∥∥∥(anθ − anθ

T̃n
) · ∇(unTn − un−1

Tn−1
)

∥∥∥2

K

⎫⎬
⎭

1
2

where �ω = min
{
ε− 1

2 diam(ω), β− 1
2

}
and anθ

T̃n
is an approximation of anθ on T̃n.

Then there are two constants c† and c† which only depend on the shape-parameters
CT and CT̃ ,T such that the following estimates are valid

c†

{∥∥∥
∣∣∣̃unTn

∥∥∥
∣∣∣ + η̃nTn − θ̃nTn

}
≤
∥∥∥
∣∣∣anθ · ∇(unTn − un−1

Tn−1
)

∥∥∥
∣∣∣∗

≤ c†
{∥∥∥
∣∣∣̃unTn

∥∥∥
∣∣∣ + η̃nTn + θ̃nTn

}
.

Next we bound the non-linear part of the temporal residual.

Lemma 4.10 (Upper bounds for the non-linear temporal residual). For every n ∈
{1, . . . , NI}, the non-linear part of the temporal residual can be bounded from above
by

∥∥Rτ,nonlin(uI)
∥∥
L2(tn−1,tn;H−1(�))

≤
√

τn

3
νLλγ

∥∥∥unTn − un−1
Tn−1

∥∥∥

≤
√

τn

3
νLλ2γ

∥∥∥
∣∣∣unTn − un−1

Tn−1

∥∥∥
∣∣∣ .
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Proof The assertion follows from (4.4), Lemma 4.1,

∫ tn

tn−1

∥∥uI −Unϑ
∥∥2 ≤

∥∥∥unTn − un−1
Tn−1

∥∥∥2
∫ tn

tn−1

(
ϑ − t − tn−1

τn

)2

and ∫ tn

tn−1

(
ϑ − t − tn−1

τn

)2

= τn

6
[2 − 6ϑ(1 − ϑ)] ≤ τn

3
.

��
Lemma 4.10 and the estimate

∥∥∥unTn − un−1
Tn−1

∥∥∥ ≤ 2 sup
tn−1≤t≤tn

‖(u − uI)(·, t)‖ + √
τn ‖∂t u‖�×(tn−1,tn)

yield the following upper bound for the non-linear part of the temporal residual for all
parameters ε, β, ν and γ .

Lemma 4.11 (Non-linear temporal residual and error). For all parameters ε, β, ν and
γ the non-linear part of the temporal residual is bounded from above by the error and
the L2-norm of ∂t u, i.e. for every n ∈ {1, . . . , NI} we have

∥∥Rτ,nonlin(uI)
∥∥
L2(tn−1,tn;H−1(�))

≤ 2
√

τn√
3

νLλγ sup
tn−1≤t≤tn

‖(u − uI)(·, t)‖

+ τn√
3
νLλγ ‖∂t u‖�×(tn−1,tn) .

If, on the other hand, νLλ2γ is sufficiently small, Lemmas 4.4, 4.7 and 4.10 imply
that the temporal residual is governed by its linear part.

Lemma 4.12 (Non-linear and linear temporal residual). If κ̃ = 25 (2 + cb) νLλ2γ <

1, the temporal residual is governed by its linear part, i.e. for every n ∈ {1, . . . , NI}
we have

2

25
(1 − κ̃)

{∥∥Rτ,lin(uI)
∥∥2
L2(tn−1,tn;H−1(�))

+ ‖Rh(uI)‖2
L2(tn−1,tn;H−1(�))

} 1
2

≤ ‖Rτ (uI) + Rh(uI)‖L2(tn−1,tn;H−1(�))

≤
(

1 + 2

25
κ̃

){∥∥Rτ,lin(uI)
∥∥
L2(tn−1,tn;H−1(�))

+ ‖Rh(uI)‖L2(tn−1,tn;H−1(�))

}
.

4.7 Bounding the spatial residual

Comparing (4.6) and [21, Equation (3.5)] reveals that [21, Lemma 3.5] yields an upper
bound for the spatial residual Rh(uI) if we replace the right-hand side f nθ there by
νϕ(Unθ )gnθ . This in particular requires suitable finite element approximations of gnθ
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and ϕ(Unθ ). For the latter there are two natural choices: ϕ(UnθTn ) and ϕ(Unθ )Tn where
ψTn denotes a piecewise constant approximation on Tn of a given function ψ . In view
of the Lipschitz continuity of ϕ, the first option is preferable. These observations yield
the following bounds for the spatial residual.

Lemma 4.13 (Bounds for the spatial residual). For every n ∈ {1, . . . , NI} define a
spatial error indicator by

ηnTn =
⎧⎨
⎩
∑
K∈T̃n

�
2
K

∥∥∥∥νϕ(UnθTn )g
nθ
Tn − 1

τn

(
unTn − un−1

Tn−1

)
+ ε�Unθ

−anθ
Tn · ∇Unθ − bnθ

TnU
nθ
∥∥∥2

K

+1

2

∑
E∈Ẽn,�

ε− 1
2 �E

∥∥JE (εnE · ∇Unθ )
∥∥2
E

⎫⎬
⎭

1
2

and spatial data errors by

θnTn =
⎧⎨
⎩
∑
K∈Tn

�
2
K

∥∥∥νϕ(Unθ )
(
gnθ
Tn − gnθ

)
+ ν(ϕ(Unθ ) − ϕ(UnθTn ))g

nθ
Tn

+(anθ
Tn − anθ ) · ∇Unθ + (bnθ

Tn − bnθ )Unθ
∥∥∥2

K

} 1
2

,


n
cip,Tn =

⎧⎨
⎩
∑
K∈Tn

�
2
K

∥∥∥
(

anθ − anθ
Tn

)
· ∇Unθ

∥∥∥2

K
+ �

2
K h

2
K

∥∥∇anθ
∥∥
L∞(K )

∥∥∇Unθ
∥∥2
K

⎫⎬
⎭

1
2

.

Here, Unθ = θunTn + (1 − θ)un−1
Tn−1

is as in (3.2), UnθTn is a piecewise constant

approximation of Unθ on Tn, gnθ , anθ and bnθ are as in (3.1) and gnθ
Tn , anθ

Tn and bnθ
Tn

are approximations of gnθ , anθ and bnθ on Tn. Then, on every interval (tn−1, tn], the
dual norm of the spatial residual can be bounded from above by

‖|Rh(uI)‖|∗ ≤ c�

{(
ηnTn

)2 +
(
θnTn

)2 + σcip

(

n

cip,Tn

)2
} 1

2

and from below by

ηnTn ≤ c�

[
‖|Rh(uI)‖|∗ + θnTn

]
.

Here, the parameter σcip equals 1 for the continuous interior penalty method and
vanishes for the other stabilizations. The above error estimates are robust in the sense
that the constants c� and c� are independent of the parameters ε, β and ν.
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4.8 A posteriori error estimates

Combining the previous lemmas yields the following a posteriori error estimates.

Theorem 4.14 (A posteriori error estimates). The error between the solution u of
problem (2.3) and the solution uI of problem (3.2) is bounded from above by

{
sup

0<t<T
‖u − uI‖2

L∞(�)+
∫ T

0
‖|u − uI‖|2+

∫ T

0
‖|∂t (u − uI)+a · ∇(u − uI)‖|2∗

} 1
2

≤ c∗
{∥∥∥u0 − u0

T0

∥∥∥2

+
NI∑
n=1

τn

[(
ηnTn

)2 +
∥∥∥
∣∣∣unTn − un−1

Tn−1

∥∥∥
∣∣∣2 +

(
η̃nTn

)2 +
∥∥∥
∣∣∣̃unTn

∥∥∥
∣∣∣2 +

(
θ̃nTn

)2
]

+
NI∑
n=1

τn

[(
θnTn

)2 + σcip

(

n

cip,Tn

)2
]

+ ∥∥g − gnϑ
∥∥2
L∞(0,T ;L∞(�))

(
1 +

∫ T

0
‖|uI‖|2

)

+
(∥∥a − anθ

∥∥2
L∞(0,T ;L∞(�))

+ ∥∥b − bnθ
∥∥2
L∞(0,T ;L∞(�))

) ∫ T

0
‖|uI‖|2

} 1
2

and on each interval (tn−1, tn], 1 ≤ n ≤ NI , from below by

τ
1
2
n

{(
ηnTn

)2 +
∥∥∥
∣∣∣unTn − un−1

Tn−1

∥∥∥
∣∣∣2 +

(
η̃nTn

)2 +
∥∥∥
∣∣∣̃unTn

∥∥∥
∣∣∣2
} 1

2

≤ c∗

{
sup

tn−1≤t≤tn
‖u − uI‖2 +

∫ tn

tn−1

‖|u − uI‖|2

+
∫ tn

tn−1

‖|∂t (u − uI) + a · ∇(u − uI)‖|2∗

+ τn

(
θnTn

)2 + τn

(
θ̃nTn

)2

+ ∥∥g − gnϑ
∥∥2
L∞(tn−1,tn;L∞(�))

(
1 +

∫ tn

tn−1

‖|uI‖|2
)

+
(∥∥a − anθ

∥∥2
L∞(tn−1,tn;L∞(�))

+ ∥∥b − bnθ
∥∥2
L∞(tn−1,tn;L∞(�))

) ∫ tn

tn−1

‖|uI‖|2
} 1

2

+ c∗∗

{
τ

1
2
n sup

tn−1≤t≤tn
‖u − uI‖ + τn ‖∂t u‖�×(tn−1,tn)

}
.
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Here, the functions ũnTn and the indicators η̃nTn and θ̃nTn are defined in Lemma 4.9 and
the quantities ηnTn , θ

n
Tn and 
n

cip,Tn are as in Lemma 4.13. The functions ũnTn and the

indicators η̃nTn and θ̃nTn may be dropped if ε � 1. The parameter σcip equals 1 for
the continuous interior penalty scheme and vanishes for the other stabilizations. For
arbitrary parameters ε, β, ν and γ , the constant c∗ is proportional to νLλ2γ and
eνLγ T with factors depending on the shape parameters CT and CT̃ ,T , the constant

c∗ is proportional to νLλ2γ with factors depending on the shape parameters CT and
CT̃ ,T and the polynomial degrees of the finite element functions and the constant c∗∗ is
proportional to νLλγ . If κ = 2νL min{T, λ2}γ < 1, the constant c∗only depends on κ

and the shape parameters CT and CT̃ ,T . If in addition κ̃ = 25 (2 + cb) νLλ2γ < 1,
the constant c∗ only depends on κ̃ , the shape parameters CT and CT̃ ,T and the
polynomial degrees of the finite element functions and the c∗∗-term can be dropped.

Proof For the proof of the first estimate, we observe that the second part of Lemma 4.3

yields an upper bound for this estimate’s left-hand side in terms of
∥∥∥u0 − u0

T0

∥∥∥ and the

dual norm of the residual. The upper bound for the data residual, Lemma 4.5, gives
rise to the terms involving g − gnθ , a − anθ and b − bnθ . Lemmas 4.4 and 4.7–4.12
yield bounds for the temporal residual involving the unTn − un−1

Tn−1
, η̃nTn , ũnTn and θ̃nTn

terms. Lemma 4.13 finally bounds the spatial residual and gives rise to the remaining
terms on the right-hand side of the theorem’s first estimate.
To prove the theorem’s second estimate, first observe that Lemma 4.13 provides an
upper bound for ηnTn in terms of the spatial residual and θnTn . Next, Lemmas 4.7, 4.8
and 4.9 give upper bounds for the remaining terms on the left-hand side of the theorem’s
second estimate in terms of the linear temporal residual and θ̃nTn . Lemmas 4.4, 4.11
and 4.12 allow to bound the sum of the norms of the spatial and linear temporal
residual by the norm of the sum of the spatial and full temporal residual plus the c∗∗-
term on the right-hand side. Finally, Lemma 4.5 for the data residual and the first part
of Lemma 4.3 give rise to the remaining terms on the right-hand side of the theorem’s
second estimate. ��
Acknowledgements Our sincere thanks are due to A. Prohl for drawing our attention to the subject and
for fruitful discussions.
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2. Baňas, Ľ., Brzeźniak, Z., Neklyudov, M., Prohl, A.: Stochastic Ferromagnetism, De Gruyter Studies
in Mathematics, Analysis and Numerics, vol. 58. De Gruyter, Berlin (2014)

3. Burman, E.: A unified analysis for conforming and nonconforming stabilized finite element methods
using interior penalty. SIAM J. Numer. Anal. 43(5), 2012–2033 (2005)

4. Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and
advection–diffusion equations. Math. Comput. 76(259), 1119–1140 (2007)

5. Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection–diffusion–
reaction problems. Comput. Methods Appl. Mech. Eng. 193(15–16), 1437–1453 (2004)

6. Carelli, E., Müller, A., Prohl, A.: Domain decomposition strategies for the stochastic heat equation.
Int. J. Comput. Math. 89(18), 2517–2542 (2012)

123



20 Page 18 of 18 R. Verfürth

7. Dunst, T., Hausenblas, E., Prohl, A.: Approximate Euler method for parabolic stochastic partial dif-
ferential equations driven by space–time Lévy noise. SIAM J. Numer. Anal. 50(6), 2873–2896 (2012)

8. Dunst, T., Prohl, A.: The forward–backward stochastic heat equation: numerical analysis and simula-
tion. SIAM J. Sci. Comput. 38(5), A2725–A2755 (2016)

9. El Alaoui, L., Ern, A., Burman, E.: A priori and a posteriori analysis of non-conforming finite elements
with face penalty for advection–diffusion equations. IMA J. Numer. Anal. 27(1), 151–171 (2007)

10. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, Applied Mathematical Sciences,
vol. 159. Springer, New York (2004)

11. Ern, A., Guermond, J.-L.: Weighting the edge stabilization. SIAM J. Numer. Anal. 51(3), 1655–1677
(2013)

12. Georgoulis, E.H., Lakkis, O., Virtanen, J.M.: A posteriori error control for discontinuous Galerkin
methods for parabolic problems. SIAM J. Numer. Anal. 49(2), 427–458 (2011)

13. Guermond, J.-L.: Stabilization of Galerkin approximations of transport equations by subgrid modeling.
M2AN Math. Model. Numer. Anal. 33(6), 1293–1316 (1999)

14. Guermond, J.-L.: Subgrid stabilization of Galerkin approximations of linear monotone operators. IMA
J. Numer. Anal. 21(1), 165–197 (2001)

15. He, L., Tobiska, L.: The two-level local projection stabilization as an enriched one-level approach.
Adv. Comput. Math. 36(4), 503–523 (2012)

16. Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion, finite
element methods for convection dominated flows. Papers, Winter Annual Meeting American Society
of Mechanical Engineers, AMD, vol. 34, American Society of Mechanical Engineers (ASME), New
York, pp. 19–35 (1979)

17. Hutzenthaler, M., Jentzen, A.: Numerical approximations of stochastic differential equations with
non-globally Lipschitz continuous coefficients. Mem. Am. Math. Soc. 236(1112), v+99 (2015)

18. Knobloch, P., Tobiska, L.: On the stability of finite-element discretizations of convection–diffusion–
reaction equations. IMA J. Numer. Anal. 31(1), 147–164 (2011)

19. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Springer, Cham
(2015)

20. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential
Equations: Convection–Diffusion–Reaction and Flow Problems. Springer Series in Computational
Mathematics, vol. 24. Springer, Berlin (2008)

21. Tobiska, L., Verfürth, R.: Robust a posteriori error estimates for stabilized finite element methods. IMA
J. Numer. Anal. 35(4), 1652–1671 (2015)

22. Tobiska, L., Winkel, C.: The two-level local projection stabilization as an enriched one-level approach.
A one-dimensional study. Int. J. Numer. Anal. Model. 7(3), 520–534 (2010)

23. Verfürth, R.: A posteriori error estimates for nonlinear problems. Lr (0, T ; Lρ(�))-error estimates for
finite element discretizations of parabolic equations. Math. Comput. 67(224), 1335–1360 (1998)

24. Verfürth, R.: A posteriori error estimates for nonlinear problems: Lr (0, T ; W 1,ρ (�))-error estimates
for finite element discretizations of parabolic equations. Numer. Methods Partial Differ. Eq. 14(4),
487–518 (1998)

25. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University
Press, Oxford (2013)

26. Weinan, E., Hutzenthaler, M., Jentzen, A., Kruse, T.: On multilevel picard numerical approximations
for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear
backward stochastic differential equations (2017) arXiv:1708.03223

123

http://arxiv.org/abs/1708.03223

	A posteriori error estimates for non-stationary non-linear convection–diffusion equations
	Abstract
	1 Introduction
	2 Variational problem
	3 Discrete problem
	4 A posteriori error estimates
	4.1 Norms
	4.2 Lipschitz-continuity of the non-linearity
	4.3 Equivalence of residual and error
	4.4 Decomposition of the residual
	4.5 Bounding the data residual
	4.6 Bounding the temporal residual
	4.7 Bounding the spatial residual
	4.8 A posteriori error estimates

	Acknowledgements
	References




