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Abstract In this work we introduce and analyze a mixed virtual element method
for the two-dimensional nonlinear Brinkman model of porous media flow with non-
homogeneous Dirichlet boundary conditions. For the continuous formulation we
consider a dual-mixed approach in which the main unknowns are given by the gradi-
ent of the velocity and the pseudostress, whereas the velocity itself and the pressure
are computed via simple postprocessing formulae. In addition, because of analysis
reasons we add a redundant term arising from the constitutive equation relating the
pseudostress and the velocity, so that the well-posedness of the resulting augmented
formulation is established by using known results from nonlinear functional analysis.
Then, we introduce the main features of the mixed virtual element method, which
employs an explicit piecewise polynomial subspace and a virtual element subspace
for approximating the aforementioned main unknowns, respectively. In turn, the asso-
ciated computable discrete nonlinear operator is defined in terms of the L2-orthogonal
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projector onto a suitable space of polynomials, which allows the explicit integration
of the terms involving deviatoric tensors that appear in the original setting. Next, we
show the well-posedness of the discrete scheme and derive the associated a priori error
estimates for the virtual element solution as well as for the fully computable projection
of it. Furthermore, we also introduce a second element-by-element postprocessing for-
mula for the pseudostress, which yields an optimally convergent approximation of this
unknown with respect to the broken H(div)-norm. Finally, several numerical results
illustrating the good performance of the method and confirming the theoretical rates
of convergence are presented.

Keywords Nonlinear Brinkman model · Augmented formulation · Virtual ele-
ment method · A priori error analysis · Postprocessing techniques · High-order
approximations

Mathematics Subject Classification 65N30 · 65N12 · 65N15

1 Introduction

The numerical solution of diverse linear and nonlinear boundary value problems in
fluid mechanics by means of the VEM technique has become a very promising research
subject during recent years. In fact, we first refer to [2,6,17], where several virtual ele-
ment methods, including stream function-based, divergence free, and non-conforming
schemes, have been proposed for the classical velocity-pressure formulation of the
Stokes equation. In turn, the method from [6] has been recently extended in [7] to
the two-dimensional Navier–Stokes equations, thus yielding, up to our knowledge,
the first VEM approach for this nonlinear model. On the other hand, and concerning
the use of dual-mixed formulations, that is those in which the main unknown usually
lives in either a vectorial H(div) or a tensorial H(div) space, we remark that several
contributions have concentrated on the combination of VEM and pseudostress-based
approaches, being the latter motivated by the need of circumventing the symmetry
requirement of the usual stress-based methods. In particular, a mixed-VEM for the
pseudostress-velocity formulation of the Stokes problem, in which the pressure is
computed via a postprocessing formula, was introduced in [11]. The analysis in [11]
is then extended in [12] to derive two mixed virtual element methods for the two-
dimensional Brinkman problem. An interesting feature of both schemes in [12] refers
to their robustness as the Stokes limit of the Brinkman model is approached. The cor-
responding pseudostress-based dual-mixed finite element methods for this model and
its nonlinear version had been previously developed in [22,23], respectively. More
recently, another virtual element method for the Brinkman equations, though not
employing the same dual-mixed approach from the aforementioned references, has
been proposed in [30]. In addition, the approach from [11,12] was extended in [13] to
the case of quasi-Newtonian Stokes flows. More precisely, a virtual element method
for an augmented mixed variational formulation of the class of nonlinear Stokes mod-
els studied in [21] (see also [18,19]) is introduced and analyzed in [13]. Furthermore,
in the recent work [26] we considered the same variational formulation from [16] (see
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also [14,15]) and proposed, up to our knowledge, the first dual-mixed virtual element
method for the Navier–Stokes equations. Indeed, the approach employed in [26] is
based on the introduction of a nonlinear pseudostress linking the convective term with
the usual pseudostress for the Stokes equations. We end this paragraph by highlight-
ing that, besides the basic principles of the VEM philosophy (cf. [3,10]), most of the
aforedescribed works on mixed VEM for pseudostress-based variational formulations
have made extensive use of the key contributions provided in [1,4,5]. In particular,
the exact computations of the L2-projections onto suitable spaces of polynomials have
certainly enriched the potential applications of the H1 and H(div) conforming cases.

According to the foregoing discussion, and in order to continue developing
pseudostrees-based mixed virtual element methods for nonlinear models in fluid
mechanics, we now aim to extend the analysis and results from [13,26] to the case
of the problem studied in [23]. In other words, the purpose of the present paper is
to extend the analysis and results from [12] to a class of Brinkman models whose
viscosity depends nonlinearly on the gradient of the velocity, which is a characteristic
feature of quasi-Newtonian Stokes flows (see, e.g. [19–21,27]). In order to deal with
the aforedescribed nonlinearity, we follow [23] and introduce the gradient of the veloc-
ity as a new unknown. Moreover, we modify the resulting variational formulation by
augmenting it with a redundant equation arising from the constitutive law relating the
pseudostress and the velocity gradient, which allows us to apply known results from
nonlinear functional analysis.

The rest of this work is organized as follows. In Sect. 2 we define the boundary value
problem of interest, introduce its pseudostress-based mixed formulation, and provide
the associated well-posedness result. Next, in Sect. 3 we follow [4,5] to introduce the
virtual element subspace that will be employed. This includes the basic assumptions on
the polygonal mesh, the definition of the local virtual element space, and the projections
and interpolants to be utilized together with their respective approximation properties.
Further, we introduce a fully calculable local discrete nonlinear operator. Then, we
set the corresponding mixed virtual element method, and apply the classical theory
of nonlinear operators to conclude its well-posedness. In turn, in Sect. 4 we employ
suitable bounds and identities satisfied by the nonlinear operator and the projectors
and interpolators involved, to derive the a priori error estimates and corresponding
rates of convergence for the virtual solution as well as for the computable projection
of it. In addition, we follow the ideas from [24,25] to construct a second approximation
for the pseudostress variable σ , which yields an optimal rate of convergence in the
broken H(div)-norm. We remark that this new postprocessing formula can be used in
general for any H(div)-conforming VEM scheme. Finally, several numerical examples
showing the good performance of the method, confirming the rates of convergence
for regular and singular solutions, and illustrating the accurateness obtained with the
approximate solutions, are reported in Sect. 5.

We end this section with several notations to be used throughout the paper. Firstly,
we let I be the identity matrix in R2×2, and for any τ := (τi j ), ζ := (ζi j ) ∈ R2×2, we
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set

τ t := (τ j i ), tr(τ ) :=
2∑

i=1

τi i , τ d := τ − 1

2
tr(τ ) I, and τ :ζ :=

2∑

i, j=1

τi jζi j ,

which denote, respectively, the transpose, the trace, and the deviator of the tensor τ , and
the tensorial product between τ and ζ . Next, given a bounded domain O ⊆ R2, with
polygonal boundary ∂O, we utilize standard notations for Lebesgue spaces Lp(O),
p > 1, and Sobolev spaces Hs(O), s ∈ R, with norm ‖ · ‖s,O and seminorm | · |s,O.
In particular, H1/2(∂O) is the space of traces of functions of H1(O) and H−1/2(∂O)

denotes its dual. Moreover, by M and M we will refer to the corresponding vector
and tensorial counterparts of the generic scalar functional space M, and ‖ · ‖, with no
subscripts, will stand for the natural norm of either an element or an operator in any
product functional space. Furthermore, we recall that

H(div;O) := {τ ∈ L
2(O) : div(τ ) ∈ L2(O)

}
,

equipped with the usual norm

‖τ‖2
div;O := ‖τ‖2

0,O + ‖div(τ )‖2
0,O ∀τ ∈ H(div;O),

is a Hilbert space. Finally, we employ 0 to denote a generic null vector, null tensor
or null operator, and use C and c, with or without subscripts to denote generic con-
stants independent of the discretization parameters, which may take different values
at different places.

2 The continuous problem

2.1 The model problem

Let � be a bounded domain in R2 with polygonal boundary �. Given a volume force
f ∈ L2(�) and a Dirichlet datum g ∈ H1/2(�), we seek a tensor σ (pseudostress), a
vector field u (velocity), and a scalar field p (pressure), such that

σ = μ(|∇u|)∇u − p I in �, αu − div(σ ) = f in �,

div(u) = 0 in �, u = g on �, and
∫

�

p = 0, (2.1)

where μ : R+ → R is the nonlinear kinematic viscosity function of the fluid, and
α > 0 is a constant approximation of the viscosity divided by the permeability. In
addition, note according to the incompressibility of the fluid, that g must satisfy the
compatibility condition

∫
�
g · ν = 0, where ν is the unit outward normal on �, and

that the uniqueness of a pressure solution is ensured by the last equation of (2.1).
In what follows, we let μi j : R2×2 → R be the mapping given by μi j := μ(|r|)ri j

for each r := (ri j ) ∈ R2×2 and for each i, j ∈ {1, 2}. Then, throughout this paper
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we assume that μ is of class C1 and that there exist γ0, α0 > 0 such that for each
r := (ri j ), s := (si j ) ∈ R2×2, there hold

|μi j (r)| ≤ γ0|r|, and

∣∣∣∣
∂

∂rkl
μi j (r)

∣∣∣∣ ≤ γ0 ∀i, j, k, l ∈ {1, 2}, (2.2)

and
2∑

i, j,k,l=1

∂

∂rkl
μi j (r)si j skl ≥ α0|s|2. (2.3)

A classical example of nonlinear functions μ is given by the well-known Carreau law
in fluid mechanics (see e.g. [28,29])

μ(s) := ρ0 + ρ1(1 + s2)(β−2)/2 ∀s ≥ 0, (2.4)

where ρ0, ρ1 > 0 and β > 1. In particular, note that with β = 2 we recover the usual
linear Brinkman model. It is easy to check that (2.4) satisfies the assumptions (2.2)
and (2.3) for all ρ0, ρ1 > 0 and for all β ∈ [1, 2], with

γ0 = ρ0 + ρ1

{ |β − 2|
2

+ 1

}
and α0 = ρ0. (2.5)

2.2 The continuous formulation

Here we proceed as in [23] to derive a weak formulation for (2.1). In fact, we begin by
observing that the first equation of (2.1) together with the incompressibility condition
are equivalent to the pair of equations given by

σ d = μ(|∇u|)∇u in � and p = −1

2
tr(σ ) in �, (2.6)

whence introducing the auxiliary unknown t := ∇u in �, we can rewrite (2.1) as
follows:

t = ∇u in �, σ d = μ(|t|)t in �, αu − div(σ ) = f in �,

tr(t) = 0 in �, u = g on �, and
∫

�

tr(σ ) = 0. (2.7)

In this way, we notice from the fourth and last equation of (2.7) that the unknowns
t and σ live in the spaces

L
2
tr(�) :=

{
s ∈ L

2(�) : tr(s) = 0
}

,

and

H0(div;�) :=
{
ζ ∈ H(div;�) :

∫

�

tr(ζ ) = 0

}
,
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respectively. Then, testing the first and second equation of (2.7) with τ ∈ H0(div;�)

and s ∈ L
2
tr(�), respectively, integrating by parts, using the Dirichlet condition for u,

and denoting by 〈·, ·〉 the duality pairing between H−1/2(�) and H1/2(�), we arrive
at ∫

�

μ(|t|)t : s −
∫

�

s : σ d = 0 ∀ s ∈ L
2
tr(�), (2.8)

and ∫

�

t : τ d +
∫

�

u · div(τ ) = 〈τν, g〉 ∀ τ ∈ H0(div;�), (2.9)

where we used the fact that t = td, which implies the equality
∫
�
t : τ = ∫

�
t : τ d.

In turn, the velocity is replaced from the third equation of (2.7), that is

u = 1

α

{
f + div(σ )

}
in �, (2.10)

whence (2.9) becomes

∫

�

t : τ d + 1

α

∫

�

div(σ ) · div(τ ) = − 1

α

∫

�

f · div(τ ) + 〈τν, g〉 ∀τ ∈ H0(div;�).

The foregoing equation together with (2.8) yield at first instance the following varia-
tional formulation of (2.7): Find t ∈ X := L

2
tr(�) and σ ∈ H := H0(div;�) such

that
∫

�

μ(|t|)t : s −
∫

�

s : σ d = 0 ∀s ∈ X,

∫

�

t : τ d+ 1

α

∫

�

div(σ ) · div(τ )=−1

α

∫

�

f · div(τ )+〈τν, g〉 ∀τ ∈H. (2.11)

However, in order to analyse the solvability of (2.11), we need to perform a suitable
modification of it. More precisely, given a stabilization parameter κ > 0 to be suitably
chosen later on, we incorporate into (2.11) the following redundant Galerkin term:

κ

∫

�

{
σ d − μ(|t|)t

}
: τ d = 0 ∀τ ∈ H0(div;�),

which leads to the augmented formulation: Find (t, σ ) ∈ X × H such that

[A(t, σ ), (s, τ )] = [F, (s, τ )] ∀(s, τ ) ∈ X × H, (2.12)

where [·, ·] stands for the duality pairing between (X ×H)′ and X ×H , A : X ×H →
(X × H)′ is the nonlinear operator

[A(r, ζ ), (s, τ )] :=
∫

�

μ(|r|)r : s −
∫

�

s : ζ d +
∫

�

r : τ d

+κ

∫

�

{
ζ d − μ(|r|)r

}
: τ d + 1

α

∫

�

div(ζ ) · div(τ ), (2.13)
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and F : X × H → R is the bounded linear functional

[F, (s, τ )] := − 1

α

∫

�

f · div(τ ) + 〈τν, g〉, (2.14)

for all (r, ζ ), (s, τ ) ∈ X × H . In addition, we also observe that we can write

[A(r, ζ ), (s, τ )] := [A(r), s − κτ d] −
∫

�

s : ζ d +
∫

�

r : τ d

+κ

∫

�

ζ d : τ d + 1

α

∫

�

div(ζ ) · div(τ ), (2.15)

for each (r, ζ ), (s, τ ) ∈ X×H , where A : X → X ′ is the auxiliary nonlinear operator
defined by

[A(r), s] :=
∫

�

μ(|r|)r : s ∀r, s ∈ X.

At this point we recall from [21, Lemma 2.1] that A is Lipschitz-continuous and
strongly monotone, that is, with the constants γ0 and α0 specified in (2.2) and (2.3),
respectively, there hold

‖A(r) − A(s)‖X ′ ≤ γ0‖r − s‖0,�, (2.16)

and
[A(r) − A(s), r − s] ≥ α0‖r − s‖2

0,�, (2.17)

for each r, s ∈ X . In addition, employing the Cauchy–Schwarz inequality and the
estimate (2.16), we deduce from (2.15) that A is Lipschitz-continuous with constant
LA := max{1, κ, γ0,

1
α
}, that is

‖A(t, σ ) − A(r, ζ )‖(X×H)′ ≤ LA‖(t, σ ) − (r, ζ )‖X×H ∀(t, σ ), (r, ζ ) ∈ X × H.

(2.18)
Moreover, in what follows we show that A is strongly monotone as well. For this
purpose, we need the following technical result.

Lemma 2.1 There exists c(�) > 0, depending only on �, such that

c(�) ‖τ‖2
0,� ≤ ‖τ d‖2

0,� + ‖div(τ )‖2
0,� ∀τ ∈ H.

Proof See [9, Chapter IV, Proposition 3.1]. �
Then, the announced result on A is established as follows.

Lemma 2.2 Let A be the nonlinear operator defined in (2.13). Assume that, given

δ ∈
(

0,
2

γ0

)
, the parameter κ lies in

(
0,

2δα0

γ0

)
. Then, there exists a positive constant

CSM, independent of h, such that for all (r, ζ ), (s, τ ) ∈ X × H there holds

[A(r, ζ ) − A(s, τ ), (r, ζ ) − (s, τ )] ≥ CSM‖(r, ζ ) − (s, τ )‖2
X×H .
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Proof Given (r, ζ ), (s, τ ) ∈ X × H , we obtain from (2.15) that

[A(r, ζ ) − A(s, τ ), (r, ζ ) − (s, τ )] = [A(r) − A(s), r − s]
− κ [A(r) − A(s), (ζ − τ )d] + κ‖(ζ − τ )d‖2

0,� + 1

α
‖div(ζ − τ )‖2

0,�,

from which, using the Cauchy–Schwarz and Young inequalities, the Lipschitz-
continuity and strong monotonicity properties of the operator A, and Lemma 2.1,
we find that

[A(r, ζ ) − A(s, τ ), (r, ζ ) − (s, τ )] ≥
(
α0 − κγ0

2δ

)
‖r − s‖2

0,�

+ κ

(
1 − γ0δ

2

)
‖(ζ − τ )d‖2

0,� + 1

α
‖div(ζ − τ )‖2

0,�

≥
(
α0 − κγ0

2δ

)
‖r − s‖2

0,� + c(�) min

{
κ

(
1 − γ0δ

2

)
,

1

2α

}
‖ζ − τ‖2

0,�

+ 1

2α
‖div(ζ − τ )‖2

0,�.

Finally, it suffices to choose

CSM := min

{(
α0 − κγ0

2δ

)
, c(�) min

{
κ

(
1 − γ0δ

2

)
,

1

2α

}
,

1

2α

}
. �

Hence, the well-posedness of the variational formulation (2.12) is provided by the
following theorem.

Theorem 2.1 Assume that f ∈ L2(�), g ∈ H1/2(�), and that the parameter κ satisfy
the conditions required by Lemma 2.2. Then, there exists a unique (t, σ ) ∈ X × H
solution of (2.12). Moreover, there exists a positive constant C, depending only on
�,α0, γ0, κ and α, such that

‖(t, σ )‖X×H ≤ C
{‖f‖0,� + ‖g‖1/2,�

}
.

Proof Thanks to the Lipschitz-continuity and the strong monotonicity of the operator
A, the proof is a straightforward application of [31, Theorem 25.B]. �

3 The mixed virtual element method

In this section we introduce and analyze a mixed virtual element scheme for the con-
tinuous formulation (2.12). An explicit piecewise polynomial subspace and a suitable
virtual element subspace are employed for approximating t ∈ X and σ ∈ H , respec-
tively. While all the definitions and results concerning the latter subspace, including its
associated interpolation operator and main approximation properties, are available in
[5,13], most of the corresponding details are recalled in what follows for convenience
of the reader. We begin with some preliminaries.
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3.1 Preliminaries

Let {Th}h>0 be a family of decompositions of � in polygonal elements. Then, for each
K ∈ Th we denote its diameter by hK , and define, as usual, h := max{hK : K ∈ Th}.
Furthermore, in what follows we assume that there exists a constant CT > 0 such that
for each decomposition Th and for each K ∈ Th there hold:

(a) the ratio between the shortest edge and the diameter hK of K is bigger than CT ,
and

(b) K is star-shaped with respect to a ball B of radius CT hK and center xB ∈ K .

We recall here that, as consequence of the above hypotheses, one can show that each
K ∈ Th is simply connected, and that there exists an integer NT (depending only on
CT ), such that the number of edges of each K ∈ Th is bounded above by NT .

Now, given an integer  ≥ 0 andO ⊆ R2, we let P(O) be the space of polynomials
on O of degree up to , and according to Sect. 1, we set P(O) := [P(O)]2 and
P(O) := [P(O)]2×2. Furthermore, given an edge e of Th with barycentric xe and
diameter he, we introduce the following set of ( + 1) normalized monomials on e

B(e) :=
{(

x − xe
he

) j
}

0≤ j≤

,

which certainly constitutes a basis on P(e). Similarly, given K ∈ Th with barycenter
xK , we define the following set of 1

2 ( + 1)( + 2) normalized monomials

B(K ) :=
{(

x − xK
hK

)α}

0≤|α|≤

,

which is a basis of P(K ). Notice that in the definition of B(K ) above, we have
made use of the multi-index notation, that is, given x := (x1, x2)

t ∈ R2 and α :=
(α1, α2)

t , with non-negative integers α1, α2, we set xα := xα1
1 xα2

2 and |α| := α1 +α2.
Furthermore, for e and K as indicated, we define

B(e) :=
{
(q, 0)t : q ∈ B(e)

}
∪
{
(0, q)t : q ∈ B(e)

}
,

and

B(K ) :=
{
(q, 0)t : q ∈ B(K )

}
∪
{
(0, q)t : q ∈ B(K )

}
.

On the other hand, for each integer  ≥ 0, we letG(K ) be a basis of
(∇P+1(K )

)⊥∩
P(K ), which is theL2(K )-orthogonal of ∇P+1(K ) inP(K ), and denote its tensorial
counterpart as follows:
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G(K ) :=
{(

q
0

)
: q ∈ G(K )

}
∪
{(

0
q

)
: q ∈ G(K )

}
.

While in what follows we use the aforedescribed decomposition of P(K ) (and
hence of its tensorial version P(K )), we remark that, alternatively, one could also
consider more modern choices, not necessarily orthogonal, that have been proposed
recently, such as Pk(K ) = ∇Pk+1 ⊕ x⊥ Pk−1(K ), where, given x := (x1, x2) ∈ R2,
x⊥ denotes the rotated vector (−x2, x1). Actually, it is not difficult to see that it suffices
to choose any space G(K ) such that P(K ) = ∇P+1 ⊕ G(K ).

3.2 The virtual element spaces and its approximation properties

Given an integer k ≥ 0, we define the finite dimensional subspaces of X and H ,
respectively, as

Xh
k :=

{
s ∈ X : s

∣∣
K ∈ XK

k ∀ K ∈ Th
}

(3.1)

and
Hh
k :=

{
τ ∈ H : τ

∣∣
K ∈ HK

k ∀ K ∈ Th
}

, (3.2)

where, given K ∈ Th , XK
k := Pk(K ) and HK

k is the space introduced in [5, Sec-
tion 3.1], namely

HK
k :=

{
τ ∈ H(div; K ) ∩ H(rot; K ) : τν|e ∈ Pk(e) ∀ edge e ∈ ∂K ,

div(τ ) ∈ Pk(K ) and rot(τ ) ∈ Pk−1(K )
}
. (3.3)

The degrees of freedom guaranteeing unisolvency for each τ ∈ HK
k are defined by

(see e.g. [4, Section 3.6], [5,12])

∫

e
τν · q ∀ q ∈ Bk(e), ∀ edge e ∈ ∂K ,

∫

K
τ : ∇p ∀p ∈ Bk(K )\{(1, 0)t, (0, 1)t},
∫

K
τ : ρ ∀ ρ ∈ Gk(K ). (3.4)

In turn, we let PK
k : L2(K ) → Pk(K ) and PK

k : L2(K ) → Pk(K ) be the orthogonal
projectors. Then, for each integer m ∈ {0, 1, . . . , k + 1} there hold the following
approximation properties:

‖v − PK
k (v)‖0,K ≤ ChmK |v|m,K ∀ v ∈ Hm(K ), (3.5)

and
‖τ − PK

k (τ )‖0,K ≤ ChmK |τ |m,K ∀ τ ∈ H
m(K ). (3.6)
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We now introduce the interpolation operator �K
k : H1(K ) → HK

k , which is defined
for each τ ∈ H

1(K ) as the unique �K
k (τ ) in HK

k such that

0 =
∫

e

(
τ − �K

k (τ )
)

ν · q ∀ q ∈ Bk(e), ∀ edge e ∈ ∂K ,

0 =
∫

K

(
τ − �K

k (τ )
)

: ∇p ∀ p ∈ Bk(K )\{(1, 0)t, (0, 1)t},

0 =
∫

K

(
τ − �K

k (τ )
)

: ρ ∀ρ ∈ Gk(K ). (3.7)

Concerning the approximation properties of �K
k , we first recall from [5, eq. (3.19)]

(see also [8, Lemma 6] for a closely related estimate) that for each τ ∈ H
s(K ), with

1 ≤ s ≤ k + 1, there holds

∥∥∥τ − �K
k (τ )

∥∥∥
0,K

≤ C hsK |τ |s,K . (3.8)

In addition, for each p ∈ Bk(K ) we readily find that

∫

K
div
(
τ − �K

k (τ )
)
·p = −

∫

K

(
τ − �K

k (τ )
)

: ∇p+
∫

∂K

(
τ − �K

k (τ )
)

ν ·p = 0,

which, thanks to the fact div(�K
k (τ )) ∈ Pk(K ), implies that

div
(
�K

k (τ )
)

= PK
k (div(τ )) ∀τ ∈ H

1(K ). (3.9)

In this way, applying (3.9) and (3.5), we deduce that for each τ ∈ H
1(K ), such that

div(τ ) ∈ Hs(K ), with 0 ≤ s ≤ k + 1, there holds

∥∥∥div(τ ) − div
(
�K

k (τ )
)∥∥∥

0,K
≤ C hsK |div(τ )|s,K , (3.10)

which, together with (3.8), allows us to prove the following lemma.

Lemma 3.1 Let K ∈ Th, and let s be an integer such that 1 ≤ s ≤ k + 1. Then, there
exists a constant C > 0, independent of K , such that for each τ ∈ H

s(K ) such that
div(τ ) ∈ Hs(K ), there holds

∥∥∥τ − �K
k (τ )

∥∥∥
div;K ≤ C hsK

{
|τ |s,K + |div(τ )|s,K

}
. (3.11)

Proof It follows straightforwardly from (3.8) and (3.10). �
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3.3 The discrete scheme

In what follows we define the mixed virtual element scheme itself for our nonlinear
problem (2.12). In this regard, we first notice, thanks to (3.3), that the functional F (cf.
(2.14)) is explicitly computable for all (s, τ ) ∈ Xh

k × Hh
k , whereas for each K ∈ Th

the local version AK : (XK
k × HK

k

) → (
XK
k × HK

k

)′
of the nonlinear operator A,

which is defined for all (r, ζ ), (s, τ ) ∈ XK
k × HK

k by

[AK (r, ζ ), (s, τ )] :=
∫

K
μ(|r|)r : s −

∫

K
s : ζ d +

∫

K
r : τ d

+ κ

∫

K

{
ζ d − μ(|r|)r

}
: τ d

+ 1

α

∫

K
div(ζ ) · div(τ ), (3.12)

is not computable since ζ and τ are not known on the whole K ∈ Th . In order
to deal with this difficulty, we now recall, as it was remarked in [5, Section 3.2],
that the degrees of freedom introduced in (3.4) do allow the explicit calculation of
PK

k (τ ) for each τ ∈ HK
k . Indeed, given p ∈ Pk(K ), we utilize the decomposition

Pk(K ) = G⊥
k (K )⊕Gk(K ) to write p = ∇q+ρ, with q ∈ Pk+1(K ) and ρ ∈ Gk(K ),

whence we find that
∫

K
τ : p =

∫

K
τ : ∇q +

∫

K
τ : ρ = −

∫

K
q · div(τ ) +

∫

∂K
τν · q +

∫

K
τ : ρ.

In this way, it readily follows from (3.3) and (3.4) that the foregoing expression,
and hence PK

k (τ ), are both computable. Then, we now let AK
h : (XK

k × HK
k

) →(
XK
k × HK

k

)′
be the computable local discrete nonlinear operator approximating

(3.12), which is defined by

[
AK
h (r, ζ ), (s, τ )

]
:=
∫

K
μ(|r|) r :

(
s − κ(PK

k (τ ))d
)

−
∫

K

(
PK

k (ζ )
)d : s

+
∫

K

(
PK

k (τ )
)d : r + κ

∫

K

(
PK

k (ζ )
)d :

(
PK

k (τ )
)d

+ 1

α

∫

K
div(ζ ) · div(τ ) + SK

(
ζ − PK

k (ζ ), τ − PK
k (τ )

)
,

(3.13)

for all (r, ζ ), (s, τ ) ∈ XK
k × HK

k , where SK : HK
k × HK

k → R is any symmetric and
positive bilinear form verifying (see [3, Section 4.6] or [5, Section 3.3])

ĉ0‖ζ‖2
0,K ≤ SK (ζ , ζ ) ≤ ĉ1‖ζ‖2

0,K ∀ ζ ∈ HK
k , (3.14)

with constants ĉ0, ĉ1 > 0 depending only onCT . In particular, for the numerical results
reported below in Sect. 5 we take SK as the bilinear form whose associated matrix
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with respect to the canonical basis of HK
k determined by the degrees of freedom (3.4),

is the identity matrix. Equivalently, letting nKk be the dimension of HK
k and denoting

by m j,K , j ∈ {1, 2, . . . , nKk
}
, the degrees of freedom given by (3.4), we set

SK (ζ , τ ) :=
nKk∑

j=1

m j,K (ζ )m j,K (τ ) ∀ (ζ , τ ) ∈ HK
k × HK

k .

According to (3.13), we now introduce the global discrete nonlinear operator Ah :
(Xh

k × Hh
k ) → (Xh

k × Hh
k )′ as

[
Ah(r, ζ ), (s, τ )

] :=
∑

K∈Th

[
AK
h (r, ζ ), (s, τ )

]
∀ (r, ζ ), (s, τ ) ∈ Xh

k × Hh
k . (3.15)

Therefore, the mixed virtual element scheme associated with the augmented for-
mulation (2.12) reads: Find (th, σ h) ∈ Xh

k × Hh
k such that

[Ah(th, σ h), (sh, τ h)] = [F, (sh, τ h)] ∀ (sh, τ h) ∈ Xh
k × Hh

k . (3.16)

3.4 Analysis of the discrete scheme

In this section we develop the solvability analysis of our mixed virtual element scheme
(3.16). First, recalling that the local orthogonal projectors PK

k : L2(K ) → Pk(K ) and
PK

k : L2(K ) → Pk(K ) were introduced in Sect. 3.2, we now denote by Ph
k and Ph

k ,
respectively, its global counterparts, that is, given v ∈ L2(�) and ζ ∈ L

2(�), we let

Ph
k (v)

∣∣
K := PK

k (v
∣∣
K ) and Ph

k (ζ )
∣∣
K := PK

k (ζ
∣∣
K ) ∀ K ∈ Th .

Further, given the local bilinear form SK : HK
k × HK

k → R, we now define the
symmetric and positive definite global bilinear form Sh : Hh

k × Hh
k → R as

Sh(ζ , τ ) :=
∑

K∈Th
SK (ζ |K , τ |K ) ∀ (ζ , τ ) ∈ Hh

k ,

which according to (3.14), satisfies

ĉ0‖ζ‖2
0,� ≤ Sh(ζ , ζ ) ≤ ĉ1‖ζ‖2

0,� ∀ ζ ∈ Hh
k . (3.17)

Now, the Lipschitz-continuity of the discrete nonlinear operator Ah on Xh
k × Hh

k
(cf. (3.15)) is established in the following lemma.

Lemma 3.2 There exists a constant γ > 0, independent of h, such that

‖Ah(t, σ )−Ah(r, ζ )‖(X×H)′ ≤ γ ‖(t, σ )−(r, ζ )‖X×H ∀ (t, σ ), (r, ζ ) ∈ Xh
k×Hh

k .

(3.18)
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Proof Given (t, σ ), (r, ζ ), (s, τ ) ∈ Xh
k × Hh

k , we first observe that

[
Ah(t, σ ) − Ah(r, ζ ), (s, τ )

] =
[
A(t) − A(r), s − κ

(
Ph

k (τ )
)d
]

−
∫

�

s :
(
Ph

k (σ −ζ )
)d+

∫

�

(t − r) :
(
Ph

k (τ )
)d+κ

∫

�

(
Ph

k (σ −ζ )
)d :

(
Ph

k (τ )
)d

+Sh((σ − ζ ) − Ph
k (σ − ζ ), τ − Ph

k (τ )) + 1

α

∫

�

div(σ − ζ ) · div(τ ).

Then, applying the Cauchy–Schwarz inequality, the Lipschitz-continuity of the oper-
ator A (cf. (2.16)), and the upper bound in (3.17), we find that

[Ah(t, σ ) − Ah(r, ζ ), (s, τ )] ≤ γ ‖(t, σ ) − (r, ζ )‖X×H‖(s, τ )‖X×H ,

with γ depending only on γ0 (cf. (2.2), (2.16)), κ , 1
α

, and ĉ1. In this way, the foregoing
equation leads to (3.18), which ends the proof of the lemma. �

The following result provides the discrete analogue of Lemma 2.2.

Lemma 3.3 Let Ah be the nonlinear operator defined in (3.15). Assume that the
parameter κ satisfy the conditions required by Lemma 2.2. Then, there exists a positive
constant C̃SM , independent of h, such that for all (rh, ζ h), (sh, τ h) ∈ Xh

k × Hh
k there

holds

[Ah(rh, ζ h) − Ah(sh, τ h), (rh, ζ h) − (sh, τ h)] ≥ C̃SM‖(rh, ζ h) − (sh, τ h)‖2
X×H .

Proof Given (rh, ζ h), (sh, τ h) ∈ Xh
k × Hh

k , we have from (3.13) and (3.15) that

[Ah(rh, ζ h) − Ah(sh, τ h), (rh, ζ h) − (sh, τ h)] = [A(rh) − A(sh), rh − sh]
+ κ

∥∥∥∥
(
Ph

k (ζ h − τ h)
)d
∥∥∥∥

2

0,�

− κ

[
A(rh) − A(sh),

(
Ph

k (ζ h − τ h)
)d
]

+ 1

α
‖div(ζ h − τ h)‖2

0,� + Sh

(
(ζ h − τ h) − Ph

k (ζ h − τ h), (ζ h − τ h)

−Ph
k (ζ h − τ h)

)
.

Then, using the Cauchy–Schwarz and Young inequalities, the Lipschitz-continuity
and strong monotonicity properties of the operator A (cf. (2.16), (2.17)), and the lower
bound in (3.17), we get
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[Ah(rh, ζ h) − Ah(sh, τ h), (rh, ζ h) − (sh, τ h)] ≥
(
α0 − κγ0

2δ

)
‖rh − sh‖2

0,�

+ κ

(
1 − γ0δ

2

) ∥∥∥Ph
k

(
(ζ h − τ h)

d
)∥∥∥

2

0,�
+ 1

α
‖div(ζ h − τ h)‖2

0,�

+ ĉ0 ‖(ζ h − τ h)
d −

(
Ph

k (ζ h − τ h)
)d ‖2

0,�

≥
(
α0 − κγ0

2δ

)
‖rh − sh‖2

0,� + 1

α
‖div(ζ h − τ h)‖2

0,�

+ η

{
2

∥∥∥∥
(
Ph

k (ζ h − τ h)
)d
∥∥∥∥

2

0,�

+ 2

∥∥∥∥(ζ h − τ h)
d −

(
Ph

k (ζ h − τ h)
)d
∥∥∥∥

2

0,�

}
,

(3.19)

where η := 1

2
min

{
κ

(
1 − γ0δ

2

)
, ĉ0

}
. Next, applying the parallelogram law in the

last term of the foregoing inequality, we arrive at

2

∥∥∥∥
(
Ph

k (ζ h − τ h)
)d
∥∥∥∥

2

0,�

+ 2

∥∥∥∥(ζ h − τ h)
d −

(
Ph

k (ζ h − τ h)
)d
∥∥∥∥

2

0,�

≥ ‖(ζ h − τ h)
d‖2

0,�,

which replaced back into (3.19), and using Lemma 2.1, finishes the proof with the
constant

C̃SM := min

{(
α0 − κγ0

2δ

)
, c(�) min

{
η,

1

2α

}
,

1

2α

}
. (3.20)

�
Now, looking again the definition (3.13), one could infer that the bilinear form SK ,

which is stabilizing the term κ

∫

K

(
PK

k (ζ )
)d :

(
PK

k (τ )
)d

, needs to be multiplied

by κ as well. Nevertheless, as shown by (3.20), the constant that really matters is not
the one resulting from these two terms only, but the final one providing the strong
monotonicity of the nonlinear operator Ah , namely C̃SM , which also depends on α

and the unknown constant c(�) (cf. Lemma 2.1). Perhaps, an alternative procedure to
be considered is the multiplication of SK by an arbitrary parameter ξ to be chosen so
as to maximize either C̃SM or some of the three expressions defining it.

The unique solvability and stability of the actual Galerkin scheme (3.16) is estab-
lished now

Theorem 3.1 Assume that given δ ∈
(

0,
2

γ0

)
, the parameter κ lies in

(
0,

2δα0

γ0

)
.

Then, there exists a unique (th, σ h) ∈ Xh
k × Hh

k solution of (3.16), and there exists a
positive constant C, independent of h, such that

‖(th, σ h)‖X×H ≤ C
{
‖f‖0,� + ‖g‖1/2,�

}
.
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Proof Thanks to Lemmas 3.2 and 3.3, the proof is a direct application of [31, Theo-
rem 25.B]. �

4 The a priori error estimates

We now aim to derive the priori error estimates for the continuous and discrete for-
mulations (2.12) and (3.16). For this, given the local interpolation �K

k introduced in
the Sect. 3.2, we denote by �h

k its global counterpart, that is, for all ζ ∈ H(div;�)

such that ζ
∣∣
K ∈ H

1(K ) for all K ∈ Th , we let

�h
k (ζ )

∣∣
K := �K

k (ζ
∣∣
K ) ∀ K ∈ Th .

We begin our analysis with the following lemma.

Lemma 4.1 There exists a constant c1 > 0, depending only on κ and ĉ1 (cf. (3.14)),
such that

[Ah(rh, ζ h) − A(rh, ζ h), (sh, τ h)]
≤ c1

{
‖ζ h − Ph

k (ζ h)‖0,� + ‖μ(|rh |) rh − Ph
k

(
μ(|rh |) rh

)‖0,�

}
‖(sh, τ h)‖X×H

for all (rh, ζ h), (sh, τ h) ∈ Xh
k × Hh

k .

Proof We first observe, according to the definitions of Ah (cf. (3.13), (3.15)) and A
(cf. (2.13)), that

[Ah(rh, ζ h) − A(rh, ζ h), (sh, τ h)] =
∫

�

{
ζ d
h −

(
Ph

k (ζ h)
)d
}

: sh

+
∫

�

{(
Ph

k (τ h)
)d − τ d

h

}
: rh + κ

∫

�

{
τ d
h −

(
Ph

k (τ h)
)d
}

: μ(|rh |) rh

+ κ

∫

�

(
Ph

k (ζ h)
)d :

(
Ph

k (τ h)
)d − κ

∫

�

ζ d
h : τ d

h

+ Sh

(
ζ h − Ph

k (ζ h), τ h − Ph
k (τ h)

)
,

for all (rh, ζ h), (sh, τ h) ∈ Xh
k × Hh

k . Then, using that sh
∣∣
K and rh

∣∣
K belong to Pk(K )

for each K ∈ Th , we deduce that the first two terms on the right hand side of the
foregoing equation vanish. In turn, since it is clear that

∫

�

{
τ d
h −

(
Ph

k (τ h)
)d
}

: Ph
k

(
μ(|rh |) rh

) = 0,

the third term can be rewritten as

κ

∫

�

{
τ d
h −

(
Ph

k (τ h)
)d
}

:
{
μ(|rh |) rh − Ph

k (μ(|rh |) rh)
}

,
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whereas the fourth one reduces to κ

∫

�

(
Ph

k (ζ h)
)d : τ d

h , and hence Ah becomes

[Ah(rh, ζ h) − A(rh, ζ h), (sh, τ h)] = κ

∫

�

(
Ph

k (ζ h) − ζ h

)d : τ d
h

+Sh

(
ζ h − Ph

k (ζ h), τ h − Ph
k (τ h)

)

+ κ

∫

�

{
τ d
h −

(
Ph

k (τ h)
)d
}

:
{
μ(|rh |) rh − Ph

k (μ(|rh |) rh)
}

.

In this way, using the Cauchy–Schwarz inequality, the symmetry of Sh , and the upper
bound in (3.17), we find that

[Ah(rh, ζ h) − A(rh, ζ h), (sh, τ h)]
≤ κ

{∥∥∥ζ h − Ph
k (ζ h)

∥∥∥
0,�

+ ‖μ(|rh |) rh − Ph
k (μ(|rh |) rh)‖0,�

}
‖τ h‖0,�

+
{
Sh(ζ h − Ph

k (ζ h), ζ h − Ph
k (ζ h))

}1/2 {
Sh(τ h − Ph

k (τ h), τ h − Ph
k (τ h))

}1/2

≤ c1

{∥∥∥ζ h − Ph
k (ζ h)

∥∥∥
0,�

+
∥∥∥μ(|rh |) rh − Ph

k (μ(|rh |) rh)
∥∥∥

0,�

}
‖(sh, τ h)‖X×H ,

with c1 := 2 max {κ, ĉ1}, which completes the proof. �

Then, we have the following main result.

Theorem 4.1 Let (t, σ ) ∈ X × H and (th, σ h) ∈ Xh
k × Hh

k be the unique solutions
of the continuous and discrete schemes (2.12) and (3.16), respectively, and assume
that σ

∣∣
K ∈ H

1(K ) for all K ∈ Th. Then, there exists a positive constant C > 0,
independent of h, such that

‖t − th‖0,� + ‖σ − σ h‖div;�
≤ C

{
‖t − Ph

k (t)‖0,� + ‖σ − �h
k (σ )‖div;� + ‖σ − Ph

k (σ )‖0,�

}
. (4.1)

Proof We begin by observing, due to the triangle inequality, that

‖t − th‖0,� + ‖σ − σ h‖div;�
≤
∥∥∥t − Ph

k (t)
∥∥∥

0,�
+
∥∥∥σ − �h

k (σ )

∥∥∥
div;� + ∥∥δth

∥∥
0,�

+ ∥∥δσ
h

∥∥
div;� , (4.2)

where
(
δth, δ

σ
h

) := (Ph
k (t) − th,�h

k (σ ) − σ h
) ∈ Xh

k × Hh
k . Then, applying the strong

monotonicity ofAh (cf. Lemma 3.3) with (rh, ζ h) := (Ph
k (t),�

h
k (σ )

)
and (sh, τ h) :=
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(th, σ h), and the Eqs. (3.16) and (2.12), we obtain that

C̃SM
∥∥(δth, δσ

h

)∥∥2
X×H ≤

[
Ah

(
Ph

k (t),�
h
k (σ )

)
− Ah(th, σ h),

(
δth, δ

σ
h

)]

=
[
Ah

(
Ph

k (t),�
h
k (σ )

)
,
(
δth, δ

σ
h

)]− [Ah(th, σ h),
(
δth, δ

σ
h

)]

=
[
Ah

(
Ph

k (t),�
h
k (σ )

)
,
(
δth, δ

σ
h

)]− [A(t, σ ),
(
δth, δ

σ
h

)]
,

from which, adding and subtracting
[
A
(Ph

k (t),�
h
k (σ )

)
,
(
δth, δ

σ
h

)]
, we obtain

C̃SM‖(δth, δσ
h )‖2

X×H ≤
[
Ah

(
Ph

k (t),�
h
k (σ )

)
− A

(
Ph

k (t),�
h
k (σ )), (δth, δ

σ
h

)]

+
[
A
(
Ph

k (t),�
h
k (σ )

)
− A(t, σ ),

(
δth, δ

σ
h

)]
. (4.3)

The two expressions on the right-hand side of (4.3) are bounded in what follows.
Indeed, we first apply Lemma 4.1 to obtain

[
Ah

(
Ph

k (t),�
h
k (σ )

)
− A

(
Ph

k (t),�
h
k (σ )

)
,
(
δth, δ

σ
h

)] ≤ c1

{∥∥∥�h
k (σ ) − Ph

k

(
�h

k (σ )
)∥∥∥

0,�

+
∥∥∥μ
(
|Ph

k (t)|
)
Ph

k (t) − Ph
k

(
μ
(
|Ph

k (t)|
)
Ph

k (t)
)∥∥∥

0,�

} ∥∥(δth, δσ
h

)∥∥
X×H . (4.4)

Then, adding and subtracting σ − Ph
k (σ ), we find that

‖�h
k (σ ) − Ph

k

(
�h

k (σ )
)‖0,�

≤
{
‖σ − �h

k (σ )‖0,� + ‖σ − Ph
k (σ )‖0,� + ‖Ph

k

(
σ − �h

k (σ )
)‖0,�

}

≤ 2
{
‖σ − �h

k (σ )‖0,� + ‖σ − Ph
k (σ )‖0,�

}
. (4.5)

In turn, adding and subtracting μ(|t|) t − Ph
k

(
μ(|t|) t), we deduce that

‖μ(|Ph
k (t)|)Ph

k (t) − Ph
k

(
μ(|Ph

k (t)|)Ph
k (t)

)‖0,� ≤ ‖μ(|Ph
k (t)|)Ph

k (t) − μ(|t|) t‖0,�

+ ‖μ(|t|) t − Ph
k

(
μ(|t|) t)‖0,� +

∥∥∥Ph
k

(
μ(|t|) t − μ(|Ph

k (t)|)Ph
k (t)

)∥∥∥
0,�

, (4.6)

from which, applying the boundedness ofPh
k , the Lipschitz-continuity estimate (2.16),

and the fact that μ(|t|) t = σd (cf. (2.7)), we conclude the existence of a constant
c > 0, depending on γ0 (cf. (2.16)), such that

‖μ(|Ph
k (t)|)Ph

k (t) − Ph
k

(
μ(|Ph

k (t)|)Ph
k (t)
)‖0,�

≤ c
{
‖t − Ph

k (t)‖0,� + ‖σ − Ph
k (σ )‖0,�

}
. (4.7)
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Finally, the Lipschitz-continuity of A (cf. (2.18)) yields

[A(Ph
k (t),�h

k (σ )) − A(t, σ ), (δth, δ
σ
h )]

≤ √
2 LA

{
‖t − Ph

k (t)‖0,� + ‖σ − �h
k (σ )‖div;�

}
‖(δth, δσ

h )‖X×H . (4.8)

In this way, (4.3), (4.4), (4.5), (4.7) and (4.8) yield the existence of C :=
C(C̃SM , c1, γ0, LA) > 0, such that

‖δth‖0,� + ‖δσ
h ‖div;� ≤ C

{
‖t − Ph

k (t)‖0,� + ‖σ − �h
k (σ )‖div;�

+‖σ − Ph
k (σ )‖0,�

}
,

which, together with (4.2), gives (4.1) and ends the proof of the theorem. �
Having established the a priori error estimates for our unknowns, we now provide

the corresponding rate of convergence.

Theorem 4.2 Let (t, σ ) ∈ X × H and (th, σ h) ∈ Xh
k × Hh

k be the unique solutions of
the continuous and discrete schemes (2.12) and (3.16), respectively. Assume that for
some s ∈ [1, k + 1] there hold t

∣∣
K , σ

∣∣
K ∈ H

s(K ), and div(σ )
∣∣
K ∈ Hs(K ) for each

K ∈ Th. Then, there exists C > 0, independent of h, such that

‖t − th‖0,� + ‖σ − σ h‖div;� ≤ C hs
∑

K∈Th

{
|t|s,K + |σ |s,K + |div(σ )|s,K

}
.

(4.9)

Proof It follows from (4.1) and a straightforward application of the approximation
properties provided by (3.6) and (3.11). �

4.1 Computable approximations of σ, p and u

We now introduce the fully computable approximation of σ h given by

σ̂ h := Ph
k (σ h), (4.10)

and establishes next the corresponding a priori error estimate in the L
2(�)-norm,

which yields exactly the same rate of convergence given by Theorem 4.2.

Lemma 4.2 There exists a positive constant C, independent of h, such that

‖σ − σ̂ h‖0,� ≤ C
{
‖t − Ph

k (t)‖0,� + ‖σ − �h
k (σ )‖div;� + ‖σ − Ph

k (σ )‖0,�

}
.

(4.11)

Proof The proof is similar to [12, Lemma 5.2]. �
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Next, as suggested by (2.6) and (2.10), and proceeding as in [12, Section 5.2], we
define

ph := −1

2
tr(σ̂ h) and uh := 1

α

{
Ph
k (f) + div(σ h)

}
, (4.12)

which constitute fully computable approximations of the pressure and velocity, respec-
tively. Then, we notice from (2.6) and the first equation of (4.12) that there holds

‖p − ph‖0,� = 1

2
‖tr(σ − σ̂ h)‖0,� ≤ 1√

2
‖σ − σ̂ h‖0,�,

which, together with (4.11), gives the a priori error estimate for the pressure, that is

‖p − ph‖0,� ≤ C
{
‖t − Ph

k (t)‖0,� + ‖σ − �h
k (σ )‖div;� + ‖σ − Ph

k (σ )‖0,�

}
.

(4.13)
In turn, starting from (2.10) and the second equation of (4.12), and then using again
from (2.10) that f = αu − div(σ ), we arrive at

‖u − uh‖0,� ≤ C
{
‖u − Ph

k (u)‖0,� + ‖div(σ ) − Ph
k (div(σ ))‖0,� + ‖div(σ − σ h)‖0,�

}
,

from which, bounding ‖div(σ − σ h)‖0,� by ‖(t, σ ) − (th, σ h)‖X×H , and employing
the a priori error estimate (4.1) (cf. Theorem 4.1), we conclude that

‖u − uh‖0,� ≤ C
{
‖u − Ph

k (u)‖0,� + ‖div(σ ) − Ph
k (div(σ ))‖0,�

+ ‖t − Ph
k (t)‖0,� + ‖σ − �h

k (σ )‖div;� + ‖σ − Ph
k (σ )‖0,�

}
. (4.14)

In this way, we are now able to provide the theoretical rates of convergence for σ̂ h ,
ph , and uh .

Theorem 4.3 Let (t, σ ) ∈ X × H and (th, σ h) ∈ Xh
k × Hh

k be the unique solutions
of the continuous and discrete schemes (2.12) and (3.16), respectively. In addition,
let σ̂ h and (ph,uh) be the discrete approximations introduced in (4.10) and (4.12),
respectively. Assume that for some s ∈ [1, k + 1] there hold t

∣∣
K , σ

∣∣
K ∈ H

s(K ),
div(σ )

∣∣
K ∈ Hs(K ), and u

∣∣
K ∈ Hs(K ) for each K ∈ Th. Then, there exist positive

constants C1 and C2, independent of h, such that

‖σ −σ̂ h‖0,�+‖p − ph‖0,� ≤ C1 h
s
∑

K∈Th

{
|t|s,K +|σ |s,K +|div(σ )|s,K

}
, (4.15)

and

‖u − uh‖0,� ≤ C2 h
s
∑

K∈Th

{
|u|s,K + |t|s,K + |σ |s,K + |div(σ )|s,K

}
. (4.16)

Proof It follows from (4.11), (4.13), (4.14), and a straightforward application of the
approximation properties provided by (3.5), (3.6) and (3.11). �
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4.2 A convergent approximation of σ in the broken H(div)-norm

In this section we proceed as in [12, Section 5.3] and construct a second approxi-
mation, denoted by σ �

h , for the pseudostress variable σ , which has an optimal rate
of convergence in the broken H(div)-norm. To this end, for each K ∈ Th we let
(·, ·)div;K be the usual H(div; K )-inner product with induced norm ‖ · ‖div;K , and let
σ �
h

∣∣
K := σ �

h,K ∈ Pk+1(K ) be the unique solution of the local problem

(σ �
h,K , τ h)div;K =

∫

K
σ̂ h : τ h +

∫

K
div(σ h) ·div(τ h) ∀ τ h ∈ Pk+1(K ). (4.17)

We stress that σ �
h,K can be explicitly computed for each K ∈ Th , independently. Then,

the rate of convergence for the broken H(div;�)-norm of σ − σ �
h is established as

follows.

Theorem 4.4 Assume that the hypotheses of Theorem 4.2 are satisfied. Then, there
exists a positive constant C, independent of h, such that

⎧
⎨

⎩
∑

K∈Th
‖σ −σ �

h,K ‖2
div;K

⎫
⎬

⎭

1/2

≤ C hs
∑

K∈Th

{
|t|s,K +|σ |s,K + |div(σ )|s,K

}
. (4.18)

Proof From [12, Lemma 5.3] and the first part in the proof of [12, Theorem 5.5], we
find that there exists C > 0, independent of h, such that for each K ∈ Th there holds

‖σ − σ �
h,K ‖div;K ≤ C

{
‖σ − σ̂ h‖0,K + ‖div(σ − σ h)‖0,K

+‖σ − PK
k+1(σ )‖0,K + |σ − PK

k+1(σ )|1,K

}
,

which, after bounding ‖div(σ − σ h)‖0,K by ‖σ − σ h)‖div,K , becomes

‖σ − σ �
h,K ‖div;K ≤ C

{
‖σ − σ̂ h‖0,K + ‖σ − σ h‖div,K

+‖σ − PK
k+1(σ )‖0,K + |σ − PK

k+1(σ )|1,K

}
.

Next, summing up the squares of the foregoing equation over all K ∈ Th , and employ-
ing the estimates (4.9) and (4.15), and the approximation properties of PK

k+1 (cf. [11,
Lemma 3.4]), we conclude (4.18), thus ending the proof. �

At this point we remark that, while the use of Raviart–Thomas of order k ≥ 0 instead
ofPk+1(K ) in (4.17) could seem more natural, it is not clear whether the approximation
properties of the corresponding orthogonal projector with respect to the H(div; K )-
inner product, which up to the authors’ knowledge are unknown, would yield at least
the same rates of convergence already guaranteed by Theorem 4.4. The advantage of
employing Pk+1(K ) is precisely that the respective approximation properties are well
established in the literature.
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5 Numerical results

In this section we present three numerical experiments illustrating the performance
of the augmented mixed virtual element scheme (3.16) introduced and analized in
Sects. 3.3 and 3.4, respectively. More precisely, in all the computations we consider the
specific virtual element subspaces Xh

k and Hh
k (cf. (3.1)–(3.2)) and associated discrete

nonlinear operator Ah (cf. (3.15)) determined by the definitions of the local subspaces
XK
k and HK

k , and the L
2-orthogonal projector PK

k , respectively, with k ∈ {0, 1, 2}.
Here we recall, as already remarked in [13, Section 4.1], that the projector introduced in
[11, Section 4] is applicable only when the viscosity μ is constant. In fact, this approach
was utilized in [12] for the linear Brinkman problem. Now, as in [12, Section 6], the zero
mean condition for tensors in the space Hh

k is imposed via a real Lagrange multiplier,
which means that, instead of (3.16), we solve the following modified discrete scheme:
Find ((th, σ h), λh) ∈ (Xh

k × Hh
k ) × R such that

[Ah(th, σ h), (sh, τ h)] + λh

∫

�

tr(τ h) = [F, (sh, τ h)] ∀ (sh, τ h) ∈ Xh
k × Hh

k ,

βh

∫

�

tr(σ h) = 0 ∀ βh ∈ R, (5.1)

where λh is an artificial unknown introduced just to keep the symmetry of (3.16).
Concerning the decompositions of � employed in our computations, we consider
quasi-uniform triangles, distorted squares, and distorted hexagons, where the term
“distorted” refers here to perturbations of quadrilateral and hexagonal meshes, respec-
tively.

We begin by introducing additional notations. In what follows, N stands for the
total number of degrees of freedom (unknowns) of (5.1), that is

N := 2(k + 1) × {number of edges e ∈ Th}
+ (k + 2)(7k + 3)

2
× {number of elements K ∈ Th} + 1.

Also, the individual errors are defined by

e(t) := ‖t − th‖0,�, e0(σ ) := ‖σ − σ̂ h‖0,�,

e(u) := ‖u − uh‖0,�, e(p) := ‖p − p̂h‖0,�,

ediv(σ ) :=
⎧
⎨

⎩
∑

K∈Th
‖σ − σ̂ h‖2

div;K

⎫
⎬

⎭

1/2

and

e(σ �) :=
⎧
⎨

⎩
∑

K∈Th
‖σ − σ �

h‖2
div;K

⎫
⎬

⎭

1/2

,
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where σ̂ h, σ
�
h and ( p̂h,uh) are computed according to (4.10), (4.17), and (4.12),

respectively, whereas the associated experimental rates of convergence are given by

r(·) := log(e(·)/e′(·))
log(h/h′)

,

where e and e′ denote the corresponding errors for two consecutive meshes with sizes
h and h′, respectively. In turn, the nonlinear algebraic systems arising from (5.1) are
solved by the Newton method with a tolerance of 10−6 and taking as initial iteration the
solution of the linear Brinkman problem with μ = 1 (three iterations were required to
achieve the given tolerance in each example). The numerical results presented below
were obtained using a MATLAB code, in which all the resulting linear systems are
solved by the usual instruction “\”.

In Example 1 we take the unit square � := (0, 1)2, set α = 1, and consider the
nonlinear viscosity μ given by the Carreau law (2.4) with ρ0 = 2, ρ1 = 1, and
β = 5/3, that is

μ(s) := 2 + (1 + s2)−1/6 ∀ s ≥ 0.

In addition, we choose the data f and g so that the exact solution is given by

u(x) :=
(− cos(πx1) sin(πx2)

sin(πx1) cos(πx2)

)
and p(x) := x2

1 − x2
2

for all x := (x1, x2)
t ∈ �.

In Example 2 we consider again � := (0, 1)2, α = 1, and the nonlinear viscosity
given by (2.4), but now with ρ0 = ρ1 = 1/2, and β = 3/2, that is

μ(s) := 1

2
+ 1

2
(1 + s2)−1/4 ∀ s ≥ 0.

In this case, the data f and g are chosen so that the exact solution is given by

u(x) :=
(
x2

1 (x2 + 1) exp(−x1) ((x2 + 1) cos(x2 + 1) + 2 sin(x2 + 1))

x1(x1 − 2)(x2 + 1)2 exp(−x1) sin(x2 + 1)

)
,

and
p(x) := sin(2πx1) sin(2πx2)

for all x := (x1, x2)
t ∈ �.

In Example 3 we take the L-shaped domain � := (−1, 1)2 \ [0, 1]2, set again
α = 1, and consider the same nonlinearity μ from Example 2. Then, we choose the
data f and g so that the exact solution is given by

u(x) :=
(

(1 + x1 − exp(x1))(1 − cos(x2))

(1 − exp(x1))(sin(x2) − x2)

)
and p(x) := (x2

1 + x2
2 )1/3 − p0

for all x := (x1, x2)
t ∈ �, where p0 ∈ R is such that

∫
�
p = 0. Note in this example

that the partial derivatives of p, and hence, in particular div(σ ), are singular at the
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Fig. 1 Example 1, σh,11 (top), ph (middle) and uh,1 (bottom)

origin. More precisely, because of the power 1/3, there holds σ ∈ H
5/3−ε(�) and

div(σ ) ∈ H2/3−ε(�) for each ε > 0.
Finally, we remark that for all three examples the explicit constants γ0 and α0 are

defined according to (2.5), and that the stabilization parameter κ is taken as suggested

by the midpoints of the intervals specified in Lemma 2.2, that is δ = 1

γ 0
and κ =

δ α0

γ0
= α0

γ 2
0

.
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Fig. 2 Example 3, σh,22 (top) and ph (bottom)

In Tables 1, 2, 3, 4, 5 and 6 we summarize the convergence history of the augmented
mixed virtual element scheme (5.1) as applied to Examples 1 and 2. We notice there that
the rate of convergence O(hk+1) predicted by Theorems 4.3 and 4.4 (when s = k+1)
is achieved by all the unknowns for these smooth examples, for triangular as well as
for quadrilateral and hexagonal meshes. In particular, these results confirm that our
postprocessed stress σ �

h improves in one power the non-satisfactory order provided by
the first approximation σ̂ h with respect to the brokenH(div)-norm. Next, in Tables 7, 8
and 9 we display the corresponding convergence history of Example 3. As predicted by
the theory, and due to the limited regularity of p and σ in this case, we observe that the
orders O(hmin{k+1,5/3}) and O(h2/3) are attained by (σ h, ph) and σ �

h , respectively.
However, the rates of convergence in Tables 8 and 9 oscillate more than expected,
which, besides the singularity of this example, might be caused by the strong irregular
character of the meshes. In addition, we observe that uh shows a convergence rate of
O(hmin{k,5/3}+1). This behaviour of the error ‖u−uh‖0,� is explained by the fact that,
as shown by (4.14), it depends on the regularity of u, t, σ and div(σ ). A very common
way to overcome this drawback is the use of adaptive algorithms based on suitable a
posteriori error estimators. This issue will be addressed in a forthcoming work.

Finally, in order to graphically illustrate the accurateness of our discrete scheme, in
Figs. 1 and 2 we display some components of the approximate solutions for Examples
1 and 3, respectively. They all correspond to those obtained with the first mesh of each
kind (triangles, quadrilaterals and hexagons, respectively) and for the polynomial
degree k = 2.
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