
Calcolo (2018) 55:13
https://doi.org/10.1007/s10092-018-0248-5

An extended nonsymmetric block Lanczos method
for model reduction in large scale dynamical systems

H. Barkouki1 · A. H. Bentbib1,2 · M. Heyouni3 ·
K. Jbilou2

Received: 23 March 2017 / Accepted: 1 December 2017 / Published online: 21 February 2018
© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Abstract In this paper, we propose an extended block Krylov process to construct two
biorthogonal bases for the extended Krylov subspaces K

e
m(A, V ) and K

e
m(AT ,W ),

where A ∈ R
n×n and V, W ∈ R

n×p. After deriving some new theoretical results and
algebraic properties, we apply the proposed algorithm with moment matching tech-
niques for model reduction in large scale dynamical systems. Numerical experiments
for large and sparse problems are given to show the efficiency of the proposed method.
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1 Introduction

This paper presents a new projection method for reducing the order of large scale
dynamical Multiple-Input Multiple-Output (MIMO) linear time invariant (LTI) sys-
tems expressed in state-space form as{

ẋ(t) = A x(t) + B u(t); x(t0) = x0
y(t) = C x(t)

(1)

where x(t) ∈ R
n is the state vector, u(t), y(t) ∈ R

p are the input and the output
vectors of the system (1), respectively. The matrix A ∈ R

n×n is assumed to be large,
sparse and nonsingular, and B, CT ∈ R

n×p.
This method consists of projecting the original problem (1) onto an extended block
Krylov subspace to obtain a low order model. We recall that an extended Krylov
subspace was first proposed by Druskin and Knizhnerman in [11] to numerically
approximate the action of a matrix function f (A) on a vector v where A ∈ R

n×n is a
symmetric matrix and v ∈ R

n and where the extended Krylov subspace was generated
by means of the extended Arnoldi process. The method was then generalized to the
non-symmetric case by Simoncini in [28] and applied for solving large-scale Lyapunov
matrix equations [25,28] with low rank right-hand sides. In [22], the authors used the
extended block Arnoldi process for computing approximate solutions to large scale
continuous-time algebraic Riccati equations. They also showed that this procedure still
satisfies the well known Arnoldi recursions. Nowadays, the extended block Arnoldi
algorithm becomes an efficient method for reducing the order of large scale MIMO
dynamical systems; see [1] and references therein.
Let V ∈ R

n×p, the extended block Krylov subspace K
e
m(A, V ) can be considered as

the subspace ofRn spanned by the columns of the matrices AkV, k = −m, . . . ,m−1,
i.e.,

K
e
m(A, V ) = Range

{
A−m V, . . . , A−2 V, A−1 V, V, A V, A2 V, . . . , Am−1 V

}
.

It is clear that the subspace Ke
m(A, V ) is a sum of two block Krylov subspaces. More

precisely,

K
e
m(A, V ) = Km(A, V ) + Km(A−1, A−1 V ),

where Km(A, V ) = Range{V, A V, A2 V, . . . , Am−1 V } is the classical block
Krylov subspace related to A and Km(A−1, A−1V ) is related to the inverse of A. The
use of the extended subspace K

e
m(A, V ) is justified by the fact that it contains more

information than the classical subspace Km(A, V ) since it is enriched by A−1.
In this paper, we show how to derive a new algorithm called the extended block
Lanczos algorithm. This process allows us to compute two biorthogonal matrices
V2m,W2m ∈ R

n×2mp for the extended Krylov subspaces Ke
m(A, V ) and K

e
m(AT ,W ),

where V, W ∈ R
n×p. We also show that this algorithm satisfies a three-term recur-

rence, which is an advantage as compared to the extended Arnoldi algorithm. This
is very important for storage requirements when the problem is large. However, the
drawbacks of any Lanczos-based method is the use of AT and the possibility of a
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break-down. These could be overcome by using some techniques called look-ahead or
transposee-free methods as described in [8,10,13]. Notice also that as for the extended
Arnoldi process, we assume that the matrix A is nonsingular and when it is sparse
and structured, the terms of the form A−1V are computed by the LU decomposi-
tion and when it is not the case, then one can use a preconditioned solver such as
the GMRES method. Another aim of this paper is to show that the extended block
Lanczos algorithm can be applied to model order reduction problems by combining it
with moment matching techniques. More precisely, we show that the moments and the
Markov parameters of the original transfer function are both approximated by those
of the reduced transfer function.
The paper is organized as follows. In Sect. 2, we describe the extended block Lanczos
algorithm and derive some new algebraic properties. The application of this process
to model order reduction is considered in Sect. 3 where we show how to apply the
extended block Lanczos process to Multiple-Input Multiple-Output (MIMO) dynam-
ical systems in order to produce low-order dimensional systems. The last section is
devoted to some numerical experiments.

2 The extended block Lanczos algorithm

Before describing the extended block Lanczos process, we have to describe the fol-
lowing procedure which, if applied to V̂ = [v̂1, . . . , v̂k], Ŵ = [ŵ1, . . . , ŵk] ∈ R

n×k ,
allows to obtain biorthogonal blocksṼ , W̃ ∈ R

n×k .

Algorithm 1 The biorthogonalization procedure (biorth)

Set α = ŵT
1 v̂1, r1,1 = √|α|, z1,1 = α/r1,1, ṽ1 = v̂1/r1,1 and w̃1 = ŵ1/z1,1.

For i = 2, . . . , k

1. v̂ = v̂i and ŵ = ŵi ,
2. for j = 1, . . . , i − 1

– r j,i = w̃T
j v̂, z j,i = ṽTj ŵ,

– v̂ = v̂ − r j,i ṽ j , ŵ = ŵ − z j,i w̃ j ,
endfor

3. β = ŵT v̂, ri,i = √|β| and zi,i = β/ri,i ,
4. ṽi = v̂/ri,i and w̃i = ŵ/zi,i .

endFor

The above biorthogonalization procedure can be seen as a two-sided Gram–Schmidt
process applied to the two sequences {v̂1, . . . , v̂k} and {ŵ1, . . . , ŵk}. A premature
termination is possible at step i (i < k) if β = 0 and this can occur in two ways:

– case (I) either v̂ = 0 or ŵ = 0 or both,
– case (II) β = ŵT v̂ = 0, even though v̂ �= 0 and ŵ �= 0.

Generally, the biorthogonalization procedure is applied within the Lanczos process

with v̂i = Ai−1 v̂0 and ŵi = (AT )
i−1

ŵ0 (v̂0 and ŵ0 are given starting vectors).
In this case, (I) is considered as a happy breakdown since it is related to the invari-
ance of the Krylov subspace Ki (A, v̂0) if v̂ = 0 or to the invariance of the Krylov
subspace Ki (AT , ŵ0) if ŵ = 0. The real trouble is (II), Wilkinson in [29] calls this
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a serious breakdown. For more details about the breakdown in the biorthogonaliza-
tion procedure and its connection with the Lanczos process, we refer to [26,29] and
the references therein. If k iterations are performed, the above algorithm produces
Ṽ = [̃v1, . . . , ṽk], W̃ = [w̃1, . . . , w̃k] ∈ R

n×k and R = (r j,i ), Z = (z j,i ) ∈ R
k×k

upper triangular matrices such that V̂ = Ṽ R, Ŵ = W̃ Z , W̃ T Ṽ = Ik and Ik is the
k × k identity matrix.

2.1 Description of the process

Let A ∈ R
n×n and let V,W be two given initial blocks ofRn×p. In this section, we first

introduce the extended block Lanczos process for constructing two biorthogonal bases
V2m and W2m of the extended block Krylov subspaces Ke

m(A, V ) and K
e
m(AT ,W ),

respectively.
Let V2m = {V1,V2, . . . ,Vm} and W2m = {W1,W2, . . . ,Wm} where Vi ,Wi , for i =
1, . . . ,m be n × 2p matrices. Then V2m and W2m are biorthogonal if and only if the
n × 2p matrices Vi and W j satisfy the following biorthogonality condition{

W T
j Vi = 02p, if i �= j,

W T
j Vi = I2p, if i = j.

Now, we describe the procedure that allows to compute the biorthogonal bases of the
extended block Lanczos algorithm.

Initialization. Let us partition the two first matrices V1 and W1 of the extended block
Lanczos process as V1 = [V1, V2] and W1 = [W1,W2] where each Vi ,Wi ∈ R

n×p for
i = 1, 2. To obtain V1 and W1, we apply the biorthogonalization procedure (biorth)
described by Algorithm 1 to the matrices [V, A−1 V ] and [W, A−T W ] of Rn×2p.
We then get {

[V, A−1 V ] = V1 ΛV ,

[W, A−T W ] = W1 ΛW ,
(2)

where ΛV and ΛW are 2p × 2p upper triangular matrices and V1,W1 are n × 2p
biorthogonal matrices, i.e., W T

1 V1 = I2p.

Iteration k. We assume that V1, . . . ,Vk and W1, . . . ,Wk have been computed. Next,
we seek for Vk+1,Wk+1 ∈ R

n×2p under the form Vk+1 = [V2k+1, V2k+2] and
Wk+1 = [W2k+1, W2k+2] where the block vectors V2k+1, W2k+1 ∈ R

n×p are com-
puted by orthogonalizing the matrix-vector products AV2k−1 and ATW2k−1 against
V1, V2, . . . , V2k and W1,W2, . . . ,W2k respectively, i.e., the matrices V2k+1,W2k+1
are computed via

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V2k+1 H2k+1,2k−1 = A V2k−1 −
2k∑
i=1

Vi Hi,2k−1,

W2k+1 G2k+1,2k−1 = AT W2k−1 −
2k∑
i=1

Wi Gi,2k−1,

(3)
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where the coefficients H1,2k−1, . . . , H2k,2k−1 and G1,2k−1, . . . , G2k,2k−1 are p × p
matrices obtained respectively by imposing orthogonality conditions

V2k+1 ⊥ [W1, W2, . . . , W2k] and W2k+1 ⊥ [V1, V2, . . . , V2k].

In this case, we have

Hi,2k−1 = WT
i A V2k−1 and Gi,2k−1 = V T

i AT W2k−1, for i = 1, 2, . . . , 2k.

Similarly, the matrices V2k+2, W2k+2 ∈ R
n×p are computed by orthogonalizing

the matrix-vector products A−1 V2k and A−T W2k against V1, V2, . . . , V2k+1 and
W1, W2, . . . , W2k+1 respectively, i.e., we generate the vectors V2k+2, W2k+2 satis-
fying : ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V2k+2 H2k+2,2k = A−1 V2k −
2k+1∑
i=1

Vi Hi,2k,

W2k+2 G2k+2,2k = (AT )−1 W2k −
2k+1∑
i=1

Wi Gi,2k,

(4)

where again imposing the orthogonality conditions

V2k+2 ⊥ W1, . . . , W2k+1 and W2k+2 ⊥ V1, . . . , V2k+1,

we easily verify that the p × p coefficient matrices H1,2k, . . . , H2k+1,2k and
G1,2k, . . . , G2k+1,2k , are respectively given by :

Hi,2k = WT
i A−1 V2k and Gi,2k = V T

i (AT )−1 W2k, for i = 1, 2, . . . , 2k + 1.

The coefficients H2k+1,2k−1 and G2k+1,2k−1 are p × p matrices that normalize the
matrices V2k+1 and W2k+1 while H2k+2,2k and G2k+2,2k are p × p matrices that nor-
malize the matrices V2k+2 and W2k+2. The extended block Lanczos process described
above allows to compute two biorthogonal matrices V2m+2 = [V1, . . . , Vm+1] and
W2m+2 = [W1, . . . , Wm+1], such that Vk = [V2k−1, V2k] and Wk = [W2k−1, W2k]
for k = 1, . . . ,m + 1.

This algorithm constructs also two 2(m + 1)p × 2mp upper block Hessenberg
matrices H̃2m = [Hi, j ] and G̃2m = [Gi, j ], where Hi, j , Gi, j ∈ R

p×p for i =
1, . . . , 2m + 2, j = 1, . . . , 2m.

Next, we give some properties for the biorthogonal matrices V2m+2, W2m+2, and
the upper block Hessenberg matrices H̃2m, G̃2m . We consider the following notation:

– V
o
m and W

o
m are matrices of Rn×mp formed by the block columns of odd indices

of the matrices V2m and W2m , respectively.
– V

e
m and W

e
m are the matrices formed by the block columns of even indices of the

bases V2m and W2m , respectively.
– H

o
m and G

o
m are the matrices of R(2m+1)p×mp formed by the block columns of odd

indices of the matrices H̃2m and G̃2m , respectively.
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– H
e
m andGe

m are the matrices of R2(m+1)p×mp formed by the block columns of even
indices of the matrices H̃2m and G̃2m , respectively.

– Ĥ
o
m and Ĝ

o
m correspond to the block columns and the block rows of odd indices

of the matrices H2m = [Hi, j ] j=1,...,2m
i=1,...,2m and G2m = [Gi, j ] j=1,...,2m

i=1,...,2m , respectively.

– H̆
e
m and Ğ

e
m are formed by the block columns and the block row of even indices

of H2m and G2m , respectively.

We have the following result.

Proposition 1 Using the above notation, and letting V2m+1 = [V2m, V2m+1] and
W2m+1 = [W2m, W2m+1], then, we have

AV
o
m = V2m+1 H

o
m, (5)

AT
W

o
m = W2m+1 G

o
m, (6)

A−1
V
e
m = V2m+2 H

e
m, (7)

A−T
W

e
m = W2m+2 G

e
m . (8)

Furthermore, the matrices H2m and G2m are 2p × 2p tridiagonal matrices.

Proof Equations (5)–(8) can be easily proven by considering the relations (3) and (4),
for k = 1, . . . ,m, and the biorthogonality condition.

Now, using Eqs. (5) and (6), and the biorthogonality condition, we get

(Wo
m)T AVo

m = (Wo
m)T V2m+1 H

o
m = Ĥ

o
m,

and

(Vo
m)T AT

W
o
m = (Vo

m)T W2m+1 G
o
m = Ĝ

o
m,

which gives
Ĥ

o
m = (Ĝo

m)T . (9)

In the same manner, we can use Eqs. (7) and (8) to show that

H̆
e
m = (Ğe

m)T . (10)

Comparing the members of equalities (9) and (10), we note that the first member
in both equalities is an upper block Hessenberg matrix while the second is a lower
block Hessenberg matrix . Then, Ĥo

m, Ĝo
m, H̆e

m and Ğ
e
m are p× p tridiagonal matrices.

Therefore, H2m and G2m are 2p × 2p tridiagonal matrices. ��

Using the fact that H2m and G2m are 2p × 2p tridiagonal matrices and that the sub-
diagonal blocks are 2p × 2p upper triangular matrices, the relations given in (3) and
(4) can be simplified as
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V2k+1 H2k+1,2k−1 = A V2k−1 − V2k−3 H2k−3,2k−1 − V2k−2 H2k−2,2k−1

−V2k−1 H2k−1,2k−1 − V2k H2k,2k−1 (11)

W2k+1 G2k+1,2k−1 = AT W2k−1 − W2k−3 G2k−3,2k−1 − W2k−2 G2k−2,2k−1

−W2k−1 G2k−1,2k−1 − W2k G2k,2k−1, (12)

and

V2k+2 H2k+2,2k = A−1 V2k − V2k−2 H2k−2,2k − V2k−1 H2k−1,2k

−V2k H2k,2k − V2k+1 H2k+1,2k (13)

W2k+2G2k+2,2k = (AT )−1 W2k − W2k−2G2k−2,2k − W2k−1G2k−1,2k

−W2kG2k,2k − W2k+1G2k+1,2k . (14)

Now, we write Eqs. (11)–(14) in the following form

[V2k+1 V2k+2]
(
H2k+1,2k−1 H2k+1,2k

0 H2k+2,2k

)
= [AV2k−1 A−1V2k]

− [V2k−1 V2k]
(
H2k−1,2k−1 H2k−1,2k
H2k,2k−1 H2k,2k

)

− [V2k−3 V2k−2]
(
H2k−3,2k−1 0
H2k−2,2k−1 H2k−2,2k

)
,

(15)

and

[W2k+1 W2k+2]
(
G2k+1,2k−1 G2k+1,2k

0 G2k+2,2k

)
=

[
ATW2k−1 A−T W2k

]

− [W2k−1 W2k ]
(
G2k−1,2k−1 G2k−1,2k

G2k,2k−1 G2k,2k

)

− [W2k−3 W2k−2]
(
G2k−3,2k−1 0
G2k−2,2k−1 G2k−2,2k

)
.

(16)

Let

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Vk−1 = [V2k−3 V2k−2], Vk = [V2k−1 V2k], Vk+1 = [V2k+1 V2k+2]

Wk−1 = [W2k−3 W2k−2], Wk = [W2k−1 W2k], Wk+1 = [W2k+1 W2k+2]

Uk+1 = [AV2k−1 A−1V2k], Sk+1 = [ATW2k−1 A−T W2k]
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and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nk =
(
H2k−3,2k−1 0
H2k−2,2k−1 H2k−2,2k

)
, Ñk =

(
G2k−3,2k−1 0
G2k−2,2k−1 G2k−2,2k

)

Ck =
(
H2k−1,2k−1 H2k−1,2k
H2k,2k−1 H2k,2k

)
, C̃k =

(
G2k−1,2k−1 G2k−1,2k
G2k,2k−1 G2k,2k

)

Ak+1 =
(
H2k+1,2k−1 H2k+1,2k

0 H2k+2,2k

)
, Ãk+1 =

(
G2k+1,2k−1 G2k+1,2k

0 G2k+2,2k

)

Therefore, Eqs. (15) and (16) can be written as

⎧⎨
⎩
Vk+1 Ak+1 = Uk+1 − Vk Ck − Vk−1 Nk,

Wk+1 Ãk+1 = Sk+1 − Wk C̃k − Wk−1 Ñk .

Finally, the extended block Lanczos algorithm is summarized as follows.

Algorithm 2 The extended block Lanczos algorithm (EBLA)
– Inputs: A ∈ R

n×n , V and W ∈ R
n×p .

– Initialize: V0 = W0 = 02p and N0 = Ñ0 = 02p .

– SetU1 = [V, A−1 V ] S1 = [W, A−T W ] and apply Algorithm 1 toU1 and S1 to getV1,W1 ∈ R
n×2p

such that W T
1 V1 = I2p .

– Initialize: V2 = [V1] and W2 = [W1].
For k = 1, . . . ,m

1. Uk+1 = [A V2k−1, A−1 V2k ] and Sk+1 = [AT W2k−1, A−T W2k ],
2. Nk = W T

k−1 Uk+1, Ck = W T
k Uk+1 and Ñk = V T

k−1 Sk+1, C̃k = V T
k Sk+1,

3. Uk+1 = Uk+1 − Vk Ck − Vk−1 Nk and Sk+1 = Sk+1 − Wk C̃k − Wk−1 Ñk .
4. Apply Algorithm 1 to Uk+1 and Sk+1 to compute Vk+1, Wk+1, Ak+1, and Ãk+1 such that

Uk+1 = Vk+1 Ak+1 and Sk+1 = Wk+1 Ãk+1,
5. V2k+2 = [V2k ,Vk+1] and W2k+2 = [W2k ,Wk+1].

endFor.

At each step of Algorithm 2, we need to compute A−1 V2k and A−T W2k . For
large and structured matrices, we use the LU factorization while for non-structured
problems, we can use solvers such as GMRES with a preconditioner.
We notice that there may be a breakdown during the kth iteration of the extended block
Lanczos process as described by Algorithm 2 when either one of the matrices Ak+1 or
Ãk+1 is singular. The matrix Ak+1 -or Ãk+1- being triangular, is itself singular if one
of the two diagonal coefficients H2k+1,2k−1 or H2k+2,2k -G2k+1,2k−1 or G2k+2,2k- is
singular. Such breakdown can be treated via look-ahead or deflation techniques similar
to what has been applied for the classical block Lanczos process, see [2,4,8,10,13]
and the references therein. Deflation techniques and look-ahead strategies are not easy
to implement and require a detailed study and this not done in the present paper.
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In the sequel, we assume that there is no breakdown. In this case, after m steps,
Algorithm 2 builds two biorthogonal bases V2m+2 and W2m+2 and two 2(m + 1)p ×
2mp upper block Hessenberg matrices H̃2m and G̃2m defined as follows

H̃2m =
⎡
⎣ H2m

Am+1 ET
m

⎤
⎦ and G̃2m =

⎡
⎣ G2m

Ãm+1 ET
m

⎤
⎦ ,

where

H2m =

⎛
⎜⎜⎜⎜⎝

C1 N1

A2 C2
. . .

. . .
. . . Nm−1
Am Cm

⎞
⎟⎟⎟⎟⎠ and G2m =

⎛
⎜⎜⎜⎜⎝

C̃1 Ñ1

Ã2 C̃2
. . .

. . .
. . . Ñm−1

Ãm C̃m

⎞
⎟⎟⎟⎟⎠ . (17)

2.2 Theoretical results

In this subsection, we derive some theoretical results about the extended block Lanczos
Algorithm. Let T2m = W

T
2m AV2m ∈ R

2mp×2mp. Using the same technique as in [28]
(for the extended block Arnoldi process), we can easily verified that T2m is block
upper Hessenberg with 2p × 2p blocks. In the following, we will also consider the
2mp × 2mp matrix defined as

L2m = W
T
2m A−1

V2m .

Notice that we can check that L2m is also a 2p × 2p block upper Hessenberg matrix.

Proposition 2 Suppose that m steps of Algorithm 2 have been carried out and let
T̃2m = W

T
2m+2 AV2m and L̃2m = W

T
2m+2 A−1

V2m. Then, the following relations
hold

AV2m = V2m T2m + Vm+1 Tm+1,m ET
m (18)

A−1
V2m = V2m L2m + Vm+1 Lm+1,m ET

m (19)

AT
W2m = W2m T

T
2m + Wm+1 T̃m+1,m ET

m (20)

A−T
W2m = W2m L

T
2m + Wm+1 L̃m+1,m ET

m , (21)

where T̃m+1,m = V T
m+1 AT

W2m, L̃m+1,m = V T
m+1 A−T

W2m and Em is the last
2mp × 2p block of the identity matrix I2mp.

Proof To prove the first relation, we start by using the fact that AK
e
m(A, V ) ⊆

K
e
m+1(A, V ), and the biorthogonality condition. Then, there exists a matrix T such

that AV2m = V2m+2 T . Hence T = W
T
2m+2 AV2m which gives T = T̃2m . Therefore

AV2m = V2m+2 T̃2m .
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Now, since we haveV2m+2 = [V2m,Vm+1],W2m+2 = [W2m,Wm+1] and asT2m+2 =
W

T
2m+2 AV2m+2 is block upper Hessenberg matrix, then

Tm+1,m ET
m = W T

m+1 AV2m .

Hence

T̃2m = W
T
2m+2 AV2m =

[
T2m

W T
m+1 AV2m

]
=

[
T2m

Tm+1,m ET
m

]

which completes the proof of (18).
For the second relation, we follow the same procedure. As L2m+2 = W

T
2m+2 A−1

V2m+2 is block upper Hessenberg matrix, we have

W T
m+1 A−1

V2m = Lm+1,m ET
m ,

and then the upper block Hessenberg matrix L̃2m can be written as

L̃2m = W
T
2m+2 A−1

V2m =
[

L2m

W T
m+1 A−1

V2m

]
=

[
L2m

Lm+1,m ET
m

]
.

Using the biorthogonality condition and the fact that A−1
K

e
m(A, V ) ⊆ K

e
m+1(A, V ),

then there exists a matrix L such that

A−1
V2m = V2m+2 L .

Hence

L = W
T
2m+2 A−1

V2m,

which gives

L = L̃2m .

Therefore

A−1
V2m = V2m+2 L̃2m = V2m L2m + Vm+1 Lm+1,m ET

m .

In a similar way, we can use the following relations AT
K

e
m(AT ,W ) ⊆ K

e
m+1(A

T ,W )

and A−T
K

e
m(AT ,W ) ⊆ K

e
m+1(A

T ,W ) to prove the assertion (20) and (21), respec-
tively. ��
Let T̃2m and H̃2m be the block upper Hessenberg matrices defined earlier. The com-
putation of T̃2m seems to require additional matrix-vector products with A and extra
inner products of n-length vectors. To completely avoids this expensive step, we next
derive recursions to compute the block columns of the matrices T̃2m directly from
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the block columns of the upper block Hessenberg matrix H̃2m without requiring the
computation of matrix-vector products with A. We start by defining the following
notation which will be used later.

1. For k = 1, . . . ,m, we partition Vk and Wk as

Vk = [V (1)
k ,V (2)

k ] and Wk = [W (1)
k ,W (2)

k ],

where V (1)
k and W (1)

k correspond to the first p columns of Vk and Wk respectively

and V (2)
k , W (2)

k correspond to the last p columns of Vk , Wk respectively.
2. For k = 1, . . . ,m, we partition the upper triangular matrix Ak+1 ∈ R

2p×2p,
computed from Algorithm 2, as

Ak+1 =
[
A(1,1)
k+1 A(1,2)

k+1

0 A(2,2)
k+1

]
, where A(i, j)

k+1 ∈ R
p×p.

3. Let H2m be the 2mp × 2mp block upper Hessenberg matrix defined in (17) and
ẽi = ei ⊗ Ip where ei is the i-th vector of the canonical basis. From Algorithm 2,
we have

Um+1 = [U (1)
m+1,U

(2)
m+1] = [AV (1)

m , A−1 V (2)
m ] − V2m H2m [̃e2k−1, ẽ2k] (22)

and
Um+1 = Vm+1 Am+1, (23)

which gives
Vm+1 = Um+1 A−1

m+1, (24)

where A−1
m+1 is also a 2p × 2p upper triangular matrix.

Proposition 3 Let H̃2m = [Hi, j ] be the 2(m + 1)p × 2mp upper block Hessen-
berg matrix constructed by the extended block Lanczos algorithm and let T̃2m =
W

T
2m+2 AV2m. Then, for k = 1

T̃2mẽ1 = H̃2mẽ1

T̃2mẽ2 = [̃e1Λ
(1,1)
V − H̃2mẽ1Λ

(1,2)
V ](Λ(2,2)

V )−1. (25)

While for k = 2, . . . ,m

T̃2mẽ2k−1 = H̃2mẽ2k−1,

T̃2mẽ2k = T̃2mẽ2k−1χ
(k) +

(
ẽ2k−2 −

[
T̃2k−2

02(m−k+1)p×(2k−2)p

]
H2k−2ẽ2k−2

)
(A−1

k )(2,2),

where

χ(k) = A(1,1)
k (A−1

k )(1,2).
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Proof To prove the equalities for odd block columns, we start by considering relations
(22) and (23) to get

AV (1)
k = Uk+1 ẽ1 + V2k H2k ẽ2k−1

= Vk+1 Ak+1 ẽ1 + V2k H2k ẽ2k−1

= V2k+2 H̃2k ẽ2k−1.

Pre-multiplying the above equality by W
T
2m+2, then

W
T
2m+2 AV (1)

k =
[

I2(k+1)p

02(m−k)p×2(k+1)p

]
H̃2k ẽ2k−1,

hence

T̃2m ẽ2k−1 =
[

H̃2k
02(m−k)p×2kp

]
ẽ2k−1 = H̃2m ẽ2k−1.

To prove (25), we use the first equality in (2)

[V, A−1 V ] = V1ΛV = [V (1)
1 ,V (2)

1 ]
[

Λ
(1,1)
V Λ

(1,2)
V

0 Λ
(2,2)
V

]

= [V (1)
1 Λ

(1,1)
V ,V (1)

1 Λ
(1,2)
V + V (2)

1 Λ
(2,2)
V ]. (26)

If Λ
(1,1)
V and Λ

(2,2)
V are nonsingular, we obtain

A−1 V (1)
1 = A−1V (Λ

(1,1)
V )−1 = [V (1)

1 Λ
(1,2)
V + V (2)

1 Λ
(2,2)
V ] (Λ

(1,1)
V )−1,

then

AV (2)
1 = [V (1)

1 Λ
(1,1)
V − AV (1)

1 Λ
(1,2)
V ] (Λ

(2,2)
V )−1.

Pre-multiplying by W2m+2 to get equation (25).
For the other even block columns, we proceed as follows. From (22), we have

AU (2)
k+1 = V (2)

k − AV2k H2k ẽ2k,

hence

W
T
2m+2 AU (2)

k+1 = W
T
2m+2 V

(2)
k − W

T
2m+2 AV2kH2k ẽ2k

= ẽ2k −
[

T̃2k
02(m−k)p×2kp

]
H2k ẽ2k . (27)
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On the other hand, we use (24) to get

V (2)
k+1 = U (1)

k+1 (A−1
k+1)

(1,2) +U (2)
k+1 (A−1

k+1)
(2,2).

We multiply the last equation on the left by A, and then we use (23) to obtain

AV (2)
k+1 = AU (1)

k+1 (A−1
k+1)

(1,2) + AU (2)
k+1 (A−1

k+1)
(2,2)

= AV (1)
k+1 A(1,1)

k+1 (A−1
k+1)

(1,2) + AU (2)
k+1 (A−1

k+1)
(2,2).

We pre-multiply by W
T
2m+2 and we use (27) to get

W
T
2m+2 AV (2)

k+1 = W
T
2m+2 AV (1)

k+1 A(1,1)
k+1 (A−1

k+1)
(1,2)

+
(
ẽ2k −

[
T̃2k

02(m−k)p×2kp

]
H2k ẽ2k

)
(A−1

k+1)
(2,2)

= T̃2m ẽ2k+1 A(1,1)
k+1 (A−1

k+1)
(1,2)

+
(
ẽ2k −

[
T̃2k

02(m−k)p×2kp

]
H2k ẽ2k

)
(A−1

k+1)
(2,2).

Then the proof is completed since we have W
T
2m+2 AV (2)

k+1 = T̃2m ẽ2k+2. ��
Now we show the same result for the matrix L̃2m , and we derive recursions to

compute the block columns of this matrix directly from the block columns of H̃2m
without using extra matrix-vector products with A−T .

Proposition 4 Let L̃2m be the upper Hessenberg matrix L̃2m = W
T
2m+2 A−1

V2m.
Then, the following relations hold

L̃2m ẽ1 =
[̃
e1 Λ

(1,2)
V + ẽ2 Λ

(2,2)
V

]
(Λ

(1,1)
V )−1, (28)

and for k = 1, . . . ,m, we have

L̃2m ẽ2k = H̃2m ẽ2k, (29)

L̃2m ẽ2k+1 =
(
ẽ2k−1 −

[
L̃2k

02(m−k)p×2kp

]
H2k ẽ2k−1

)
(A(1,1)

k+1 )−1. (30)

Proof To prove (28), we suppose that Λ
(1,1)
V is nonsingular and use (26), then we

obtain

A−1 V (1)
1 = A−1 V (Λ

(1,1)
V )−1 = [V (1)

1 Λ
(1,2)
V + V (2)

1 Λ
(2,2)
V ] (Λ

(1,1)
V )−1.

We pre-multiply the above equality by W
T
2m+2 and we use the biorthogonality condi-

tion to get

W
T
2m+2A

−1 V (1)
1 =

[̃
e1 Λ

(1,2)
V + ẽ2 Λ

(2,2)
V

]
(Λ

(1,1)
V )−1.
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Then, equation (28) is obtained by using the fact that V2m+2A−1 V (1)
1 = L̃2m ẽ1.

For the other even matrices, we proceed as follows. We start by using (22) and (23) to
have

A−1 V (2)
k = Uk+1 ẽ2 + V2k H2k ẽ2k,

= Vk+1 Ak+1 ẽ2 + V2k H2k ẽ2k

= V2k+2 H̃2k ẽ2k .

Now, we multiply on the left by W
T
2m+2 to get

W
T
2m+2 A−1 V (2)

k = W
T
2m+2 V2k+2 H̃2k ẽ2k,

hence

W
T
2m+2 A−1 V (2)

k =
[

I2(k+1)p

02(m−k)p×2(k+1)p

]
H̃2k ẽ2k

therefore

L̃2m ẽ2k =
[

H̃2k
02(m−k)p×2kp

]
= H̃2m ẽ2k,

which gives relation (29).
For the odd matrices, we multiply (22) on the left by A−1 and we consider only the
first p columns of each block to obtain

A−1 Uk+1ẽ1 = V (1)
k − A−1

V2k H2k ẽ2k−1.

Since Uk+1 = Vk+1 Ak+1, we have

Uk+1ẽ1 = V (1)
k+1A

(1,1)
k+1 ,

and if A(1,1)
k+1 is nonsingular, we obtain

A−1 V (1)
k+1 = A−1 Uk+1ẽ1 (A(1,1)

k+1 )−1 = (V (1)
k − A−1

V2k H2k ẽ2k−1) (A(1,1)
k+1 )−1.

Multiplying from the left by W
T
2m+2, we get

W
T
2m+2 A−1 V (1)

k+1 = (WT
2m+2 V

(1)
k − W

T
2m+2 A−1

V2k H2k ẽ2k−1) (A(1,1)
k+1 )−1,

and then

L̃2m ẽ2k+1 =
(
W

T
2m+2 V2m+2 ẽ2k−1 − W

T
2m+2 A−1

V2m[
I2kp

02(m−k)p×2kp

]
H2k ẽ2k−1

)
(A(1,1)

k+1 )−1
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=
(
ẽ2k−1 − L̃2m

[
I2kp

02(m−k)p×2kp

]
H2k ẽ2k−1

)
(A(1,1)

k+1 )−1

=
(
ẽ2k−1 −

[
L̃2k

02(m−k)p×2kp

]
H2k ẽ2k−1

)
(A(1,1)

k+1 )−1,

which gives the relation (30). ��

The results of the next two propositions will be used to prove other properties in the
next section which is devoted to the application of the extended block Lanczos method
to obtain reduced order models in large scale dynamical systems. As we will see, the
method allows one to approximate low and high frequencies of the corresponding
transfer function at the same time.

Proposition 5 Let V2m and W2m be the matrices generated by Algorithm 2, and let
L2m = W

T
2m A−1

V2m. Then we have

A− j
V2m E1 = V2m L

j
2m E1, for j = 0, . . . ,m − 1, (31)

(A−T ) j W2m E1 = W2m (LT
2m) j E1, for j = 0, . . . ,m − 1. (32)

Moreover, we have

T
−1
2m E j = L2m E j , for j = 1, . . . ,m − 1, (33)

where E j is an 2mp × 2p tall and skinny matrix with an identity matrix of dimension
p at the j th block and zero elsewhere.

Proof Using equation (19) of Proposition 2, we have

A−1
V2m = V2mL2m + Vm+1Lm+1,mE

T
m, (34)

we pre-multiply j times by A−1, we re-arrange the result and then we multiply from
the right by E1 to get

A− j
V2m E1 = V2m L

j
2m E1 +

j∑
i=1

A−(i−1) Vm+1 Lm+1,m E
T
mL

j−i
2m E1.

As L2m is an upper block Hessenberg matrix, it follows that ET
m L

j−i
2m E1 = 0, for

j = 1, . . . ,m − 1, and then Eq. (31) is verified. In a similar way, we can use equation
(21) of Proposition 2 to show (32).
Now to prove (33), we multiply (34) from the right by E j to get

A−1
V2m E j = V2m L2m E j , for j = 1, . . . ,m − 1.
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We multiply the above equality byWT
2m A from the left and we use the biorthogonality

condition to have

E j = T2m L2m E j , for j = 1, . . . ,m − 1.

Finally, Eq. (33) can be obtained if we assume that T2m is nonsingular. ��
The following result is proven in [1], it gives a general property for two upper Hes-
senberg matrices.

Proposition 6 Let T = (Ti, j ) and L = (Li, j ) be two upper Hessenberg matrices
with blocks Ti, j , Li, j ∈ R

p×p for i, j = 1, . . . ,m, and suppose that

T E j = L E j , for j = 1, . . . ,m − 1.

Then

T k
E1 = Lk

E1, for k = 1, . . . ,m − 1,

where E j is an 2mp × 2p tall and skinny matrix with an identity matrix of dimension
p at the j th block and zero elsewhere.

3 Application to model reduction problems

The aim of this section is to show how to use the extended block Lanczos algorithm
described in last section to reduce the order of the original dynamical system described
by (1).
A classical way for relating the input to the output is to use the transfer function of
the original system (1). If we apply the Laplace transform to (1), we obtain

{
s X (s) = A X (s) + B U (s)
Y (s) = C X (s),

where X (s), Y (s) andU (s) are the Laplace transforms of x(t), y(t) and u(t), respec-
tively. If we eliminate X (s) in the previous two equations we obtainY (s) = F(s)U (s),
where F(s) is called the transfer function of the system (1) and defined as

F(s) = C (s In − A)−1 B.

When p = 1, the dynamical system is called Single-Input Single-Output (SISO) sys-
tem. When the dimension n is very large, the simulation and control of the dynamical
system can lead to a huge computational burden. Then, the model reduction tech-
nique is to replace (1) by a lower-order r -dimensional dynamical system having the
following form {

ẋr (t) = Ar xr (t) + Br u(t)
yr (t) = Cr xr (t),

(35)
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where Ar ∈ R
r×r , Br , CT

r ∈ R
r×p and r 
 n. We require the approximate model

(35) to preserve properties of the original system (1) like regularity, stability and
passivity [30]. The output yr should be close to the output y of the original system
which means that the error should be small for an appropriate norm. The associated
low-order transfer function is denoted by

Fr (s) = Cr (s Ir − Ar )
−1 Br .

Various model reduction methods for MIMO systems have been explored during the
last years. Some of them are based on Krylov subspace methods (moment matching)
while others use balanced truncation; see [3,15,18] and the references therein. A
popular model reduction technique for large scale systems is the moment matching
method considered first in [14]. The aim of this approach is to project the original
system onto Krylov subspaces computed by Arnoldi or Lanczos processes for SISO
and MIMO systems; see [9,12,20,21,23] and the references therein. Unfortunately,
the standard version of these methods tend to create reduced order models that poorly
approximate low frequency dynamics.

To overcome this problem, we present a new projection method that allows us
to compute a low order reduced model (35) by using the extended block Lanczos
process. The application of this algorithm to the pairs (A, B) and (AT ,CT ) gives two
biorthogonal bases V2m and W2m . Then the reduced order model (35) will be defined
by setting r = 2m and

A2m = T2m = W
T
2m AV2m, B2m = W

T
2m B and C2m = CV2m .

The approach used here is the moment matching approximations, see [5,6,16,17] and
the references therein. The aim of this technique is to produce a reduced order model
such that k moments are to be matched, where k is appropriately chosen.
Now, we use the Laurent series of the transfer function F around σ = ∞ to get

F(s) =
∞∑
i=0

fi s
−i ,

where fi = C Ai B for i ≥ 0, are called the Markov parameters. Similarly, expanding
the reduced transfer function F2m around infinity gives the matrix coefficients f̃i =
C2m T

i
2m B2m , for i ≥ 0. If σ = 0, the Laurent series of F around σ can be written

as

F(s) =
∞∑
i=0

mi+1 s
i ,

where the matrix coefficients are m j = −C A− j B, f or j ≥ 1.
The development of the reduced transfer function F2m around zero gives the matrix
coefficient m̃i = −C2m T

−i
2m B2m, f or i ≥ 1.
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Then, the aim of the moment matching problem using the extended block Lanczos
algorithm is to produce a reduced order model such that the first 2m − 1 Markov
parameters and moments are to be matched, i.e.,

f̃ j = f j , for j = 0, . . . , 2m − 2, (36)

and
m̃ j = m j , for j = 0, . . . , 2m − 2. (37)

For the Markov parameters, the equality (36) is already proven in the literature, see [20]
and the references therein. The following result shows that the first 2m − 1 moments
resulting from the Laurent expansion of the transfer function F around σ = 0 are also
matched.

Proposition 7 Let m̃ j and m j be the matrix moments given by the Laurent expansions
of the transfer functions F2m and F, respectively, around σ = 0. Then, the first 2m−1
moments of the original and the reduced models are the same, that is,

m̃ j = m j , for j = 0, . . . , 2(m − 1).

Proof Let j ∈ {0, 1, . . . , 2(m−1)} and j1, j2 ∈ {0, 1, . . . ,m−1} such that j1 + j2 =
j . Then, we have

m j = C A− j B = C A−( j1+ j2) B = C A− j1 A− j2 B. (38)

Applying Algorithm 1 to B and C gives

B = V1

[
Λ

(1,1)
V
0

]
and C =

[
Λ

(1,1)
W
0

]T
W T

1 .

Substituting this result in Eq. (38) yields

m j =
[

Λ
(1,1)
W
0

]T
W T

1 A− j1 A− j2 V1

[
Λ

(1,1)
V
0

]

=
[

Λ
(1,1)
W
0

]T
E
T
1 W

T
2m A− j1 A− j2 V2m E1

[
Λ

(1,1)
V
0

]
.

Therefore, using the result of Proposition 5, we get

m j =
[

Λ
(1,1)
W
0

]T
E
T
1 L

j1
2m W

T
2m V2m L

j2
2m E1

[
Λ

(1,1)
V
0

]

=
[

Λ
(1,1)
W
0

]T
E
T
1 L

j
2m E1

[
Λ

(1,1)
V
0

]
.
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Table 1 The test models Matrices Sizes

Modified FOM n = 1006, p = 5

ISS n = 270, p = 3

fdm n = 10.000, p = 6

Flow-Meter n = 9669, p = 5

On the other hand, since L2m and T
−1
2m are both Hessenberg matrices that verify

T
−1
2m E j = L2mE j , then the application of Proposition 6 gives

L
j
2m E1 = T

− j
2m E1, for j = 0, . . . ,m − 1,

and so

m j =
[

Λ
(1,1)
W
0

]T
E
T
1 T

− j
2m E1

[
Λ

(1,1)
V
0

]
=

[
Λ

(1,1)
W
0

]T
W T

1 V2m T
− j
2m W

T
2mV1

[
Λ

(1,1)
V
0

]

= C V2m T
− j
2m W

T
2m B

= C2m T
− j
2m B2m

= m̃ j ,

which completes the proof of Proposition 7. ��

4 Numerical experiments

In this section, we give some experimental results to show the effectiveness of the
extended block Lanczos algorithm (EBLA) when applied to model reduction in large
scale dynamical systems. All the experiments were performed on a computer with an
Intel Core i5 processor at 1.3GHz and 8GB of RAM. The algorithms were coded in
Matlab 8.0.

To compute the H∞-norm ‖F − F2m‖∞ = supω∈R ‖F( jω) − F2m( jω)‖2, where
ω ∈ [10−6, 106] and j = √−1, the following functions from LYAPACK [27] were
used :

– lp_lgfrq: Generates the set of logarithmically distributed frequency sampling
points.

– lp_gnorm: Computes ‖F( jω) − F2m( jω)‖2.

In our experiments, we used some matrices from LYAPACK and different known
benchmark models listed in Table 1.

Example 1. The first test model is the International Space Station (ISS) model from
[24]. Its dimension is n = 270 with 3 inputs and 3 outputs. This is a small dimension
model but it is generally difficult and always considered as a benchmark test. For the
second experiment, we considered the Flow Meter model. This system is obtained
from the discretization of a 2D convective thermal flow problem (flow meter model
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Fig. 1 Left: ‖F( jω)‖2 (circles) and its approximations ‖F2m ( jω)‖2 (solid). Right: the error norm
‖F( jω) − F2m ( jω)‖2 for the ISS model
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Fig. 2 Results for theflow-metermodel. Left: ‖F( j ω)‖2(circles) and its approximations ‖F2m ( j ω)‖2
(solid). Right: the error norm ‖F( j ω) − F2m ( j ω)‖2

v0.5) from the Oberwolfach model reduction benchmark collection1, with 5 inputs
and 5 outputs.

The left curves of Fig. 1 (ISS) and Fig. 2 (Flow Meter) show the frequency
responses of the original system (circles) compared with the frequency responses of
its approximations (solid line) for m = 5 . The right curves of these figures represent
the exact error norm ‖F( j ω)−F2m( j ω)‖2 for different frequencies ω ∈ [10−6, 106].
From Figs. 1 and 2, it is clear that the extended block Lanczos algorithm gives good
results for low and hight frequencies, i.e., the moments and Markov parameters of
the original transfer function are well approximated by those of the reduced transfer
function at the same time.

Example 2. In this example, we plotted the H∞ error norm ‖F − F2m‖∞ versus the
number m of iterations for two different models. The first one is the modified FOM

1 Oberwolfach model reduction benchmark collection, 2003. http://www.imtek.de/simulation/benchmark.
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Fig. 3 The H∞ error ‖F − F2m‖∞ versus the number of iterations for the fdm model (left curve) and
the modified fom model (right curve)

model from [24]. We notice that originally, the FOM model is a SISO system and we
modified the inputs and outputs to get a MIMO system. The matrices B and C are
then given by

B = [b1, . . . , b6], CT = [c1, . . . , c6],

where bT1 = c1 = (10, . . . , 10︸ ︷︷ ︸
6

, 1, . . . , 1︸ ︷︷ ︸
1000

) and b2, . . . , b6; c2, . . . , c6 are random

column vectors.
For the second experiment, we used the fdm model [27]. For this model, the cor-

responding matrix A is obtained from the centered finite difference discretization of
the operator

LA(u) = Δu − f (x, y)
∂u

∂x
− g(x, y)

∂u

∂y
− h(x, y)u,

on the unit square [0, 1] × [0, 1] with homogeneous Dirichlet boundary conditions
with

f (x, y) = exy, g(x, y) = sin(xy) and h(x, y) = y2 − x2.

The matrices B and C were random matrices with entries uniformly distributed in
[0, 1]. The number of inner grid points in each direction was n0 = 100 and the
dimension of A is n = n2

0 = 104. For this experiment, we used p = 6. As can be
shown from Fig. 3, the extended block Lanczos algorithm (EBLA) gives good results
with small values of m.
Example 3. In the last example we compared the extended block Lanczos algorithm
(EBLA) with the Iterative Rational Krylov Algorithm IRKA proposed in [7,19] . We
used four models: the ISS, the add32, the Modified fom and the fdm model
(with n = 104, p = 6). In Table 2, we listed the obtained H∞ norm of the error
‖F − F2m‖∞, the required cpu-time and the dimension of the projected subspace. A
maximum number of mmax = 100 iterations was allowed to the IRKA method. As
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Table 2 Comparison between IRKA and EBLA for ISS, Modified fom and fdm models

EBLA IRKA

H∞ error # dim(2mp) Time (s) H∞ error # dim(mp) Time (s)

ISS 8.41e−04 60 0.25 1.61e−04 75 12.71

Modified fom 3.89e−11 216 1.61 3.60e−10 150 78.66

fdm 6.07e−11 180 20.93 3.75e−11 150 100.60

observed from Table 2, IRKA and EBLA return similar results for the H∞ norm, with
an important advantage in cpu-time for the EBLA.

5 Conclusion

In the present paper, we proposed a new process called extended block Lanczos,
allowing us to build biorthogonal bases of two extended block Krylov subspaces
associated to the matrices A, AT and their inverses. We derived some theoretical
results such as algebraic relations satisfied by the matrices obtained by this process.
We showed how the extended block Lanczos algorithm could be applied to model order
reductions for Multiple-Input Multiple-Output first-order linear dynamical systems.
The proposed procedure is tested on some benchmark problems of medium and large
dimensions, and the numerical results show that the extended block Lanczos algorithm
allows one to obtain reduced order models of small dimensions that approximate well
the initial large models.
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