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Abstract In this paper, we propose an extended block Krylov process to construct two
biorthogonal bases for the extended Krylov subspaces K¢ (A, V) and K¢, AT, w,
where A € R"*" and V, W € R"*P. After deriving some new theoretical results and
algebraic properties, we apply the proposed algorithm with moment matching tech-
niques for model reduction in large scale dynamical systems. Numerical experiments
for large and sparse problems are given to show the efficiency of the proposed method.
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1 Introduction

This paper presents a new projection method for reducing the order of large scale
dynamical Multiple-Input Multiple-Output (MIMO) linear time invariant (LTT) sys-
tems expressed in state-space form as

{)'c(t) =Ax(t)+ Bu(t); x(t) =xo )
y() =Cx(1)

where x(t) € R” is the state vector, u(t), y(t) € R? are the input and the output
vectors of the system (1), respectively. The matrix A € R"*" is assumed to be large,
sparse and nonsingular, and B, CT € R"*7.

This method consists of projecting the original problem (1) onto an extended block
Krylov subspace to obtain a low order model. We recall that an extended Krylov
subspace was first proposed by Druskin and Knizhnerman in [11] to numerically
approximate the action of a matrix function f(A) on a vector v where A € R"*" is a
symmetric matrix and v € R” and where the extended Krylov subspace was generated
by means of the extended Arnoldi process. The method was then generalized to the
non-symmetric case by Simoncini in [28] and applied for solving large-scale Lyapunov
matrix equations [25,28] with low rank right-hand sides. In [22], the authors used the
extended block Arnoldi process for computing approximate solutions to large scale
continuous-time algebraic Riccati equations. They also showed that this procedure still
satisfies the well known Arnoldi recursions. Nowadays, the extended block Arnoldi
algorithm becomes an efficient method for reducing the order of large scale MIMO
dynamical systems; see [1] and references therein.

Let V e R"*?, the extended block Krylov subspace K, (A, V) can be considered as
the subspace of R” spanned by the columns of the matrices A, k=—-m,...,m—1,
ie.,

K¢ (A, V) = Range{A—’" V. A2V AT VLV AV, A2, A v}.

It is clear that the subspace K¢ (A, V) is a sum of two block Krylov subspaces. More
precisely,

K¢ (A, V) =Ku(A, V) + K, (A7, A7),

where K, (A, V) = Range{V, AV, A2y, ..., Am-l V'} is the classical block
Krylov subspace related to A and K, (A’1 , A~1V) is related to the inverse of A. The
use of the extended subspace K¢ (A, V) is justified by the fact that it contains more
information than the classical subspace K, (A, V) since it is enriched by AL

In this paper, we show how to derive a new algorithm called the extended block
Lanczos algorithm. This process allows us to compute two biorthogonal matrices
Vom, Wo,, € R"X2mP for the extended Krylov subspaces K7, (A, V) and K¢, (AT, W),
where V, W € R"*P, We also show that this algorithm satisfies a three-term recur-
rence, which is an advantage as compared to the extended Arnoldi algorithm. This
is very important for storage requirements when the problem is large. However, the
drawbacks of any Lanczos-based method is the use of A7 and the possibility of a
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break-down. These could be overcome by using some techniques called look-ahead or
transposee-free methods as described in [8, 10, 13]. Notice also that as for the extended
Arnoldi process, we assume that the matrix A is nonsingular and when it is sparse
and structured, the terms of the form A~V are computed by the LU decomposi-
tion and when it is not the case, then one can use a preconditioned solver such as
the GMRES method. Another aim of this paper is to show that the extended block
Lanczos algorithm can be applied to model order reduction problems by combining it
with moment matching techniques. More precisely, we show that the moments and the
Markov parameters of the original transfer function are both approximated by those
of the reduced transfer function.

The paper is organized as follows. In Sect. 2, we describe the extended block Lanczos
algorithm and derive some new algebraic properties. The application of this process
to model order reduction is considered in Sect. 3 where we show how to apply the
extended block Lanczos process to Multiple-Input Multiple-Output (MIMO) dynam-
ical systems in order to produce low-order dimensional systems. The last section is
devoted to some numerical experiments.

2 The extended block Lanczos algorithm

Before describing the extended block}anczos process, we have to describe the fol-
lowing procedure which, if applied to V =~[ﬁ1, o Okl W= [, ..., W] € RYXK
allows to obtain biorthogonal blocksV, W e R™*k,

Algorithm 1 The biorthogonalization procedure (biorth)

~T ~ ~ ~ ~ ~
Seta =wy vy, ri;1 =+lel, zi1=a/r11, v =vi/r1and Wy = wy/z1,1-

Fori=2,..., k
1. v=7; and w = w;,
2. forj=1,...,i—1
=TT s =0T D
IR R LR A
—v:v—rjlvj, w:w—Zj,,-wj,

3.B=w!7%, r;=+IBland z; = B/ri,

4.V =7V/rj; and W; = W/z; ;.

endFor

The above biorthogonalization procedure can be seen as a two-sided Gram—Schmidt
process applied to the two sequences {0y, ..., U} and {Wy, ..., Wr}. A premature
termination is possible at step i (i < k) if § = 0 and this can occur in two ways:

— case (I) either v = 0 or w = 0 or both,

— case (I B = w! d = 0, even though ¥ # 0 and ¥ # 0.
Generally, the biorthogonalization procedure is applied within the Lanczos process
with & = A"~ 5 and & = (AT) "4y (6o and 1 are given starting vectors).
In this case, (I) is considered as a happy breakdown since it is related to the invari-

ance of the Krylov subspace K;(A, 0g) if © = 0 or to the invariance of the Krylov
subspace K;(AT, ) if @ = 0. The real trouble is (II), Wilkinson in [29] calls this
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a serious breakdown. For more details about the breakdown in the biorthogonaliza-
tion procedure and its connection with the Lanczos process, we refer to [26,29] and
the references therein. If k iterations are performed, the above algorithm produces
V=[0,....,%, W=[,.. Wil € R and R = (rj;), Z = (zj) € RF*
upper triangular matrices such that V=VR W=WZ WI'V = I and I is the
k x k identity matrix.

2.1 Description of the process

Let A € R""andlet V, W be two given initial blocks of R”*?. In this section, we first
introduce the extended block Lanczos process for constructing two biorthogonal bases
V2, and Wy, of the extended block Krylov subspaces K¢, (A, V) and K¢, AT, w,

respectively.
Let VZm = {%7 4//2’ LR} A/m} and WZm = {Wl’ %s R Wm} Where 4//1'7 Wi; fOr l =
1,...,mben x 2p matrices. Then V5, and W»,, are biorthogonal if and only if the

n x 2p matrices #; and #/; satisfy the following biorthogonality condition

W Vi =0gp, ifi # J,
W Vi = by, ifi=].

Now, we describe the procedure that allows to compute the biorthogonal bases of the
extended block Lanczos algorithm.

Initialization. Let us partition the two first matrices #] and # of the extended block
Lanczos process as 7| = [V1, V] and #| = [W, W»] where each V;, W; € R"*? for
i = 1,2. To obtain ¥] and #), we apply the biorthogonalization procedure (biorth)
described by Algorithm 1 to the matrices [V, A1 V]and [W, A~T W] of R"*2P,
We then get

2

[V, A7Vl =7 Ay,
(W, AT W] =7 Aw,

where Ay and Ay are 2p x 2p upper triangular matrices and ¥, #] are n X 2p
biorthogonal matrices, i.e., V/IT N = lyp.

Iteration k. We assume that 71, ..., % and 71, ..., #} have been computed. Next,
we seek for Yii1, #ky1 € R"2P under the form Yir1 = [Vokg1, Vorsa] and
Wir1 = [Waks1, Wars2] where the block vectors Vorq1, Wory1 € R™*P are com-
puted by orthogonalizing the matrix-vector products AV;_; and AT Wy, against
Vi, Va, ..., Vo and Wy, Wa, ..., Wy, respectively, i.e., the matrices Vor41, Wokt1
are computed via

2k

Varyt Hop106-1 = A Vo1 — Z Vi Hi2k-1,
e 3)

Waks1 Gokt1.2k—1 = AT Wopq — Z Wi Gi k-1,
i=1
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where the coefficients Hy 2x—1, ..., Hoak2k—1 and G 2k—1, ..., Gok2k—1 are p X p
matrices obtained respectively by imposing orthogonality conditions

Vokg1r L [Wi, Wo, ..., Wyl and Worqq L [Vi, Va,..., Vil
In this case, we have
Hio—1 = Wl-T A Va1 and Gjok—1 = ViT AT Wor—1, fori=1,2,...,2k.

Similarly, the matrices Voky2, Wakyo € R P are computed by orthogonalizing

the matrix-vector products A1 Vo and A™T Wy against Vq, Vo, ..., Vary1 and
Wi, Wa, ..., Way respectively, i.e., we generate the vectors Vorio, War4o satis-
fying :
2k+1
Vakta Hogpok = A7 Vo — Z Vi H; 2,
i=1
2U+1 )

Waks2 Goksa.k = (AT) 1 Woy — Z Wi G 2k,
i=1

where again imposing the orthogonality conditions

Vokro L Wi, oo, Woppr and Worgo L Vi, o0, Vogg,
we easily verify that the p x p coefficient matrices Hj ok, ..., Hky1,2c and
G1,2ks - --» Gok+1,2k, are respectively given by :

Higp =Wl A7 vy and Giop = VI (AT Wy, fori=1,2,...,2k+ 1.

The coefficients Hoky12k—1 and Gog41,.2¢k—1 are p X p matrices that normalize the
matrices Vogy1 and Wor41 while Hog 2 2k and Gogy2 2k are p x p matrices that nor-
malize the matrices Vor42 and Wo42. The extended block Lanczos process described
above allows to compute two biorthogonal matrices Vo, 42 = [#1, ..., ¥n+1] and
Womya = [, ..., #yy1], such that ¥ = [Vr—y, Vxland % = [Wor—1, W]
fork=1,...,m+1.

This algorithm constructs also two 2(m + 1)p x 2mp upper block Hessenberg
matrices Hy,, = [H; ;] and G, = [G; ], where H; j, G;; € RP*P fori =
,....2m+2,j=1,...,2m.

Next, we give some properties for the biorthogonal matrices Vou42, Wapy2, and
the upper block Hessenberg matrices Hy,,, G2,,. We consider the following notation:

— V¢ and W are matrices of R"*"*” formed by the block columns of odd indices
of the matrices Vy,, and W5, respectively.

— V¢, and W¢ are the matrices formed by the block columns of even indices of the
bases Vj,,, and Wy,,, respectively.

— Hj, and Gy, are the matrices of R(z’""‘l)” *mP formed by the block columns of odd
indices of the matrices Hgm and sz, respectively.
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H¢, and G, are the matrices of R2" D P>XmP formed by the block columns of even
indices of the matrices Hy,, and G»,,, respectively.

]T-\]IZ1 and @fn correspond to the block columns and the block rows of odd indices
j=1,...

. = 2 i=1,...,2 .
of the matrices Ha,, = [H; j1/Z, "7, and Goy = [G; j1!Z, 775", respectively.

]ﬁlfn and G¢, are formed by the block columns and the block row of even indices
of Hy,,, and Gy,,, respectively.

We have the following result.

Proposition 1 Using the above notation, and letting Vo411 = [Vou, Vam+1] and
Womi1 = [(Wom, #mail then, we have

AV) =V, HY, (5)
AT WO = Wy, G, (©6)
ATV = Voo HE, (7

ATTWe = Wy,0 G, ®)

Furthermore, the matrices Hy,, and Gy, are 2p x 2 p tridiagonal matrices.
Proof Equations (5)—(8) can be easily proven by considering the relations (3) and (4),

fork =1, ..., m, and the biorthogonality condition.
Now, using Eqgs. (5) and (6), and the biorthogonality condition, we get

(Wo)T AV, = (W3 Vapyy HY, = HY,
and
Vo)l ATWS, = (Vo)T Wam11 G, = Gy,

which gives R R
Hy, = Gy ©)

In the same manner, we can use Egs. (7) and (8) to show that
He = (G (10)

Comparing the members of equalities (9) and (10), we note that the first member
in both equalities is an upper block Hessenberg matrix while the second is a lower
block Hessenberg matrix . Then, ﬁ"m @,"n ]I:]Ifn and @fn are p x p tridiagonal matrices.
Therefore, Hy,, and G,,, are 2p x 2p tridiagonal matrices. O

Using the fact that Hy,, and G, are 2p x 2p tridiagonal matrices and that the sub-

diagonal blocks are 2p x 2p upper triangular matrices, the relations given in (3) and
(4) can be simplified as
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Vo1 Hoga1,2k—1 = A Vok—1 — Vg3 Hog—32k—1 — Vok—2 Hop—22k—1

—Vor—1 Hok—1,26—1 — Var Hop 2k—1 (11)
T
Wors1 Gokt1,0k—1 = A" Wor—1 — Wor3 Gor—3.0k—1 — Waik—2 Gok—2,2k—1
—Wai—1 Gok—1,2k-1 — War Gk, 21, (12)

and

—1
Vokyo Hopi20k = A7 Voi — Vor—o Hok 2.2k — Vak—1 Hop—1,2k

—Vai Hok ok — Vars1 Hoiy1,2k (13)
War12Ganra.k = (AT Wop — War—2Gor—a.ok — Wak—1Gok—1.k
—Wak Gk, 2k — Wok1G2k+1,2k- (14)

Now, we write Eqs. (11)—(14) in the following form

H 1 H _
[Vak+1 V2k+2]< 2k 1.2kl 2k+1’2k> = [AVay—1 A7yl

0 Hyjq 2,2k
Hop 1,261 Hok—1,2k
— [Vak—1 V] ' '
Hopok—1 Hokok
Hy 3061 0
Hox20k—1 Hyk—221 )’

5)

— [Vak—3 Var—2] (

and

G 4G _
[Waks1 W2k+2]( 2k+(1)'2k ! G2k+1'2k) = [ATW2/<71 A TWZk]
2%+2,2k

Gok—1,2k—1 Gok—1,2k
— W _ W B B
[Wak—1 Wael ( Gokpk—1 Gokok

Gok_3.0%— 0
— [Wak—3 W2k—2]< 2h=3.2k=1 )

Gok—22k—1 Gok—2,2k
(16)

Let

Yi—1 = [Vak—3 Vak—21, Y = [Vox—1 Varl, Y1 = [Varg1 Vaigad
Wi—1 = [War—3 Wa2l, Wi = [Wak—1 Warl, Wit1 = [Waks1 Warg2l

Uk1 = [AVar—1 A7 VWVorl, Skt = [AT Warmy A=T W]
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and

_ Hok—3,2k-1 0 ~  (Go—32k—1 0
Ne=\n H cNe=1 g G
2—2,2k—1 Hok—2,2% 2%—2,2k—1 G2u—2,2%

_( Hok—1,26—1 Hok—1,2k ~ [ Goa—1,26-1 Gok—1,2k
Cr = , Cr =
Hop o1 Hoppk Gorok—1 Gogk

Apot = Hoji 1,261 Hogy1,0k Kot = Gort1,2k—1 Gorg1,2k
+ 0 Hooor ) 5 0 G422k

Therefore, Egs. (15) and (16) can be written as
Vet Akt = U1 — Vi C — V-1 Ni,
W1 Ars1 = Sks1 — Wi Ck — Wier Nie.

Finally, the extended block Lanczos algorithm is summarized as follows.

Algorithm 2 The extended block Lanczos algorithm (EBLA)

— Inputs: A e R™", Vand W € R"*P.

— Initialize: 7y = # = 03 and No = Ng = 02.

— SetU; =[V, A" v] 8y = [W, A~T W]andapply Algorithm 1 to U} and S; toget #], #; € RM%2p
such that “/VIT N = byp.

— Initialize: V, = [¥7] and W, = [#]].

Fork=1,...,m
L Upgr = [A Va1, A7 Vol and Spy = [AT Wo—y, A7T Wyl
2. Ne =L Ukyr. Co =8 Upgy and Ny = 7L | i, 5~k =T Sk+15
3. Ugt1 = U1 = ¥ Ck — Vj—1 Ng and Sgqq = Skt — Wi Cp — Wh—1 N
4. Apply Algorithm 1 to Uy and Sy to compute Y41, #j+1, Ak+1, and Ag4 such that
Uk+1 = Vkt1 Ak1 and Sg1 = Pt 1 Akt
5. Vorgo = [Vor, Y1l and Woggp = [Woy, #jy1].

endFor.

At each step of Algorithm 2, we need to compute A1 Vo and A~T Wy. For

large and structured matrices, we use the LU factorization while for non-structured
problems, we can use solvers such as GMRES with a preconditioner.
We notice that there may be a breakdown during the kth iteration of the extended block
Lanczos process as described by Algorithm 2 when either one of the matrices Ay4 or
Zk+ 1 is singular. The matrix Ay -or Zk+1- being triangular, is itself singular if one
of the two diagonal coefficients Hog+1,2k—1 OF Hog42.2k -G2k+1,2k—1 OF G2k42,2k- 18
singular. Such breakdown can be treated via look-ahead or deflation techniques similar
to what has been applied for the classical block Lanczos process, see [2,4,8,10,13]
and the references therein. Deflation techniques and look-ahead strategies are not easy
to implement and require a detailed study and this not done in the present paper.
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In the sequel, we assume that there is no breakdown. In this case, after m steps,
Algorithm 2 builds two biorthogonal bases V2,2 and Wy, 42 and two 2(m + 1) p x
2mp upper block Hessenberg matrices Hy,, and G,,, defined as follows

- HZm - G2m
H2m = and sz = - )
Am+1 ErYr; Am+1 E,,Y;
where
Ci M Ci Ny
H,, = | 42 € and G, = | 42 €2 ~ (17)
Np—1 R NL’.’_I
An Cp An Cy

2.2 Theoretical results

In this subsection, we derive some theoretical results about the extended block Lanczos
Algorithm. Let Ty, = Wsz AV,, € R2mpx2mp Using the same technique as in [28]
(for the extended block Arnoldi process), we can easily verified that T»,, is block
upper Hessenberg with 2p x 2p blocks. In the following, we will also consider the
2mp x 2mp matrix defined as

Lom =W A71V,,.

Notice that we can check that Ly, is also a 2p x 2p block upper Hessenberg matrix.

PrOpOSItlon 2 Suppose that m steps of Algortthm 2 have been carried out and let

sz = WZm 412 AV and LZm = W2 AT Y'Vy,.. Then, the following relations
hold

AV = Vou Tom + Vst Tngim Efy (18)

AT Vo = Vou Lo + Vst Lmngim Eny (19)

AT W2m = WZm Tsz + Wm+1 Tm+l,m E;Z; (20)

AT Wow = Wou LL, + Wit Lnstm EL 1)

m>

where me,m = 7/T A Wou, L m+1 m = "I/mT+1 AT W, and E,, is the last
2mp x 2p block ofthe ldenttty matrix Dyp.

Proof To prove the first relation, we start by using the fact that AKY, (A, V) C
K7, 1(A, V), and the biorthogonality condition. Then, there exists a matrix 7" such
that AVy,, = Vo420 T.Hence T = W2m 12 AV, which gives T = ']sz. Therefore

AVa = Voo Tom.
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13 Page 10 of 23 H. Barkouki et al.

Now, since we have Vo420 = [Vou, Pig1], Womgo = [Wop, #yr1landas Topyo =
Wsz 42 A Va4 is block upper Hessenberg matrix, then

Tm+],m Eny; = WmT+l AVZm'

Hence

~ T2 T
F Wl AV, — m _ m
2m 2m+2 2m |:WmT+l AV, i| [ Tnt1,m Er]r;

which completes the proof of (18).
For the second relation, we follow the same procedure. As Lo,,42 = Wsz 9 Al
Vam+2 is block upper Hessenberg matrix, we have
WmTJrl A_l V2m = Lm+l,m Ei,

and then the upper block Hessenberg matrix Ly, can be written as

~ L L
e 1 _ 2m _ 2m
Lom = W2m+2 AT Vo = |:7/mT+1 A1 Vzm] h |:Lm+l,m E1£:| .

Using the biorthogonality condition and the fact that Al K¢ (A, V) C Kfn 41 (A, V),
then there exists a matrix L such that

A Vo, = Vo L.
Hence

L=Wj, ., A" Vy,,
which gives

L = Ezm.
Therefore
A_l V2m = V2m+2 H'\;2m = V2m I[~’2m + 7/m+1 Lm+l,m Ey],;

In a similar way, we can use the following relations AT K¢, (AT, W) € K¢, H (AT, W)
and A~T K¢, (AT, W) c Kfn_H (AT, W) to prove the assertion (20) and (21), respec-
tively. O
Let Tz,n ancl ﬁzm be the block upper Hessenberg matrices defined earlier. The com-
putation of Ty, seems to require additional matrix-vector products with A and extra

inner products of n-length vectors. To completely avoids this expensive step, we next
derive recursions to compute the block columns of the matrices Ty, directly from
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the block columns of the upper block Hessenberg matrix Hy,, without requiring the
computation of matrix-vector products with A. We start by defining the following
notation which will be used later.

1. Fork =1, ..., m, we partition ¥ and %} as
Y= 921 and =100 12,

where 7" and 7" correspond to the first p columns of #; and #; respectivel
k k P p y
and 7/,{(2), V/k(z) correspond to the last p columns of ¥, #; respectively.

2. For k = 1,...,m, we partition the upper triangular matrix Ay € R2>P*2P,
computed from Algorithm 2, as

(L1 4(1.2) -

Appp = | kf1 1(<2+21) ,  where A,(CZ;JI) e RP*P,
0 Ak+1

3. Let Hy,, be the 2mp x 2mp block upper Hessenberg matrix defined in (17) and

ei=eQI p where ¢; is the i-th vector of the canonical basis. From Algorithm 2,
we have

1 2 _ ~ ~
Uns1 = UL US 1= (A0, A7 9 D) = Vo Hopy [Bok1, @] (22)
and
Um+l = Wm—&-l Am+la (23)
which gives
Va1 = Uns1 AL (24)
where A;il is also a 2p x 2p upper triangular matrix.

Proposition 3 Let ﬁZm = [H; j] be the 2(m + 1)p x 2mp upper block Hessen-
berg matrix constructed by the extended block Lanczos algorithm and let o, =
W1 > AVay. Then, fork = 1

Ton@1 = M)

M~ ~ 1) =~ (12 2)\—

Toney = B Ay = Ha, @1 4y 21472 7 (25)

While fork =2,...,m

Tomerk—1 = Homer—1,
~ ~ ~ Ty N _
Tomen = Tomeu—1x® + (321{72 - [O h=2 ]szfzezkfz) (Aahe?,
2m—k+1)px 2k—2)p
where

L), 4
x® = 40D 410D,
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13 Page 12 of 23 H. Barkouki et al.

Proof To prove the equalities for odd block columns, we start by considering relations

(22) and (23) to get

1 ~ -
A ”Vk( ) = Up1 @) + Vg Hog Sp—y
= Yht1 Aky1 €1 + Vo Hop e
= Voiq2 Hox €2—1.

Pre-multiplying the above equality by Wsz 4o then

Dk+1) S
WA = (kb ok &1
2m—+2 k 02(m7k)px2(k+l)p 2k €2k—1

hence

Hipx

Tom To—1 =
02(m—k) px2kp

} exp—1 = Hypy €2k—1.

To prove (25), we use the first equality in (2)

(1,1) 4(1,2)
_ Ay A
[V, A7'Vi=viay = [7/1(1), "//1(2)] [ 0 A(z 2)i|

1 1,1 1 1,2 2 2,2
=[7/1()A§, )’%()A(V )+7/1()A§, )].

If A(Vl’l) and A(VZ’Z) are nonsingular, we obtain

1 1L,1)y— 1 1,2 2 2,2 1L1)y—
Ly gty (AGD) L 2 D 402 @) 42Dy 40Dyt

then
2 1 1,1 1 1,2 2,2)\—
A"f/l( ) = [7/1( )A(‘,’ ) _ A 7/1( )A(‘x )] (A(V )) 1.

Pre-multiplying by Wo,,,4» to get equation (25).

For the other even block columns, we proceed as follows. From (22), we have

2 2 ~
AUZ, =% — AVy Hy Px,
hence

T @ T @ _ wT ~
Won2 AU = Woppn 77 — Wy AV o e

~ ;]T2k ~
= ek — Hoyeox.
02(m—k) px2kp

@ Springer
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On the other hand, we use (24) to get

2 1 - 2
Vit = U (AP + Ul

—1 2,2
k+1 i1 (Ag) ™7

We multiply the last equation on the left by A, and then we use (23) to obtain
()] (1 —1 (1,2 2 -1 42,2
AV =AU, (Ak+1)( '+ 4 Ut (Ak+1)( )
(1) 4 (L1 4—1 (1,2 (2) —1 (2,2
= AV ALY AP AU, (AP

We pre-multiply by Wsz 4o and we use (27) to get

T 2 _ T (1) 4 (L1 4—1 1(1,2)
Womar AV = Wo i AV Ay (A

~ ;]TZk ~ ) -1 4(2,2)
+ | e — Hog exr ) (A )
< [Oz(m—szkp } frl

s ~ 1,1 —
= Tom Suq1 ALY (A2

~ ']Afzk ~ -1 1(2,2)
+ [ exr — Hyy € A ),
<2k [02<mk>px2kp} * 2k> i)

Then the proof is completed since we have Wsz oA ”//k(i)l = 'ﬁ‘m Cok+2- m|

Now we show the same result for the matrix ]Ijzm, and we derive recursions to
compute the block columns of this matrix directly from the block columns of Hy,,
without using extra matrix-vector products with A=7 .

Proposition 4 Let szm be the upper Hessenberg matrix szm = Wsz i) A1V,
Then, the following relations hold

Lon @ = [0 407 +2 407 ] (AP ™), 28)
and for k =1, ...,m, we have
Lo & = How &, (29)

~ - I - LD
Lom €2ky1 = (ezkl - [Oz( kz)k o ]sz 62k1> (A;({J;ll)) L (30)
m—k) px2kp

Proof To prove (28), we suppose that A(Vl’l) is nonsingular and use (26), then we
obtain

_ — — 2 2,2 -
A 17/1(1) —A lV(AE,I’l)) 1 _ [a//l(l)A(Vl, )+“I/1(2)A§/’ )](A(Vl,l)) 1

We pre-multiply the above equality by Wzrm 4o and we use the biorthogonality condi-
tion to get

- 1 ~ 1,2 ~ 2,2 1,1)\—
Whpa” N =@ al? + 2 a0 ()
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Then, equation (28) is obtained by using the fact that V2m+2A_l “//1(1) = ]Itzm el.
For the other even matrices, we proceed as follows. We start by using (22) and (23) to
have

—1 (2 > °
AT Y7 = Upyr €2 + Vor Hop e,
= ’V](+1 Ak+1 Ez + VZk sz ng
= Vopyo Hog €.

Now, we multiply on the left by Wsz 4, to get
Wi AT K = W, Vi i @,
hence

_ D+ ~
Wl Al @ (k+Dp Ho. e
am+2 k 02(m—k)px2tk+1)p 2k €2k

therefore
Hog

Lom 2% =
2m €2k |:02(m—k)p><2kp

:| = Ho e,

which gives relation (29).
For the odd matrices, we multiply (22) on the left by A~! and we consider only the
first p columns of each block to obtain

_ ~ 1 _ ~
A7 U2 = ”f/k( ) A "'V Hog @ap—1.
Since U4 = Yk+1 Ak+1, We have

~ D 4 (11
Uit = %140,

and if A,(cill) is nonsingular, we obtain

10 _ ~ (LD — 1 - ~ L1)\—
A 7/k(+)1 = A U@ (A1(<+1)) h= (”Vk( ) — AT Vo ok @—1) (A;(cﬂ)) L

Multiplying from the left by Wsz 4os We get

1 1 _ ~ L) —
Wi A = WE, 7D =W ATV e ) (A ) 7

and then
2m €2k+1 W 2m42 V 2m+2 €2k—1 W 2m42 2m

Dy ~ (1, —1
Hoy enx— A
[02(rn—k)px2kp 2% k-1 ) (Ayy)
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~ ~ 1673 ~ (1,Dy~1
= |ew-1—L P Hoy eox— AL
<2k 1 — Lom |:02(m—k)p><2kp] 2% €2k 1) (Ayp)

~ Lok ~ ) (1,1, 1
=lexw_1— Hoy err— A ,
(Zk 1 |:02(m—k)p><2kp:| 2 k-1 ) (A7)

which gives the relation (30). O

The results of the next two propositions will be used to prove other properties in the
next section which is devoted to the application of the extended block Lanczos method
to obtain reduced order models in large scale dynamical systems. As we will see, the
method allows one to approximate low and high frequencies of the corresponding
transfer function at the same time.

Proposition 5 Let Vy,, and W, be the matrices generated by Algorithm 2, and let
Lo = Wsz A~ Vy,,. Then we have

AT Vo By = Vo, L By, forj=0,...,m—1, 31)
(AT W By = Wo, (LY YV By, forj=0,...,m—1. (32)

Moreover, we have
T, Ej =LowEj, forj=1,...,m—1, (33)

where & is an 2mp x 2p tall and skinny matrix with an identity matrix of dimension

p at the j' block and zero elsewhere.

Proof Using equation (19) of Proposition 2, we have

A_IVZm - VZmLZm + qym+1Lm+l,mET

'm>

(34)

we pre-multiply j times by A~!, we re-arrange the result and then we multiply from
the right by [E; to get

J
AT Vo By = Vou L2, Bi + > AV A0 Ly m ERLS By
i=1

As Loy, is an upper block Hessenberg matrix, it follows that E! L) “E; = 0, for
j=1,...,m—1,and then Eq. (31) is verified. In a similar way, we can use equation
(21) of Proposition 2 to show (32).

Now to prove (33), we multiply (34) from the right by E; to get

AWy B = Vo Low B, forj=1,....,m—1.
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We multiply the above equality by Wsz A from the left and we use the biorthogonality
condition to have

Ei =Ty LlonE;, forj=1,...,m~—1.

Finally, Eq. (33) can be obtained if we assume that T»,, is nonsingular. O

The following result is proven in [1], it gives a general property for two upper Hes-
senberg matrices.

Proposition 6 Let T = (1; ;) and L = (L; ;) be two upper Hessenberg matrices
with blocks T; j, L ; € RP*P fori, j =1,...,m, and suppose that

TE;=LE;, forj=1,...,m—1.
Then
T*E) = LYKy, fork=1,....,m—1,

where B is an 2mp x 2p tall and skinny matrix with an identity matrix of dimension
p at the j' block and zero elsewhere.

3 Application to model reduction problems

The aim of this section is to show how to use the extended block Lanczos algorithm
described in last section to reduce the order of the original dynamical system described
by (1).

A classical way for relating the input to the output is to use the transfer function of
the original system (1). If we apply the Laplace transform to (1), we obtain

sX(s)=AX(s)+ BU(s)
Y(i) =CX(s),

where X (s), Y (s) and U (s) are the Laplace transforms of x(¢), y(¢) and u(¢), respec-
tively. If we eliminate X (s) in the previous two equations we obtain Y (s) = F(s) U (s),
where F (s) is called the transfer function of the system (1) and defined as

F(s)=C(sI,— A)~'B.

When p = 1, the dynamical system is called Single-Input Single-Output (SISO) sys-
tem. When the dimension # is very large, the simulation and control of the dynamical
system can lead to a huge computational burden. Then, the model reduction tech-
nique is to replace (1) by a lower-order r-dimensional dynamical system having the
following form

(35)

{)'Cr(t) = A; x(t) + By u(t)
yr(t) = Cp xr (1),
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where A, € R"™", B,, CI' € R"™P and r <« n. We require the approximate model
(35) to preserve properties of the original system (1) like regularity, stability and
passivity [30]. The output y, should be close to the output y of the original system
which means that the error should be small for an appropriate norm. The associated
low-order transfer function is denoted by

Fr(s) =Cr(s I, — Ar)_l B;.

Various model reduction methods for MIMO systems have been explored during the
last years. Some of them are based on Krylov subspace methods (moment matching)
while others use balanced truncation; see [3,15,18] and the references therein. A
popular model reduction technique for large scale systems is the moment matching
method considered first in [14]. The aim of this approach is to project the original
system onto Krylov subspaces computed by Arnoldi or Lanczos processes for SISO
and MIMO systems; see [9,12,20,21,23] and the references therein. Unfortunately,
the standard version of these methods tend to create reduced order models that poorly
approximate low frequency dynamics.

To overcome this problem, we present a new projection method that allows us
to compute a low order reduced model (35) by using the extended block Lanczos
process. The application of this algorithm to the pairs (A, B) and (AT, CT) gives two
biorthogonal bases V;,, and W»,,. Then the reduced order model (35) will be defined
by setting » = 2m and

Ao = Toy = ng AV, Byy = ng B and Cjy, = CVy,.

The approach used here is the moment matching approximations, see [5,6,16,17] and
the references therein. The aim of this technique is to produce a reduced order model
such that K moments are to be matched, where k is appropriately chosen.

Now, we use the Laurent series of the transfer function F around o = 0o to get

Fis)y=Y fis™,
i=0

where f; = C A’ Bfori > 0, are called the Markov parameters. Similarly, expanding
the reduced transfer function F»,, around infinity gives the matrix coefficients f; =
Com T5,, Bom, fori > 0. If o = 0, the Laurent series of F" around o can be written
as

o0
F(s) = Zmi+1 s',
i=0

where the matrix coefficients are m; = —C A7I B, forj=>1.
The development of the reduced transfer function Fy,, around zero gives the matrix
coefficient i; = —Ca,, T3, Bom, fori > 1.
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Then, the aim of the moment matching problem using the extended block Lanczos
algorithm is to produce a reduced order model such that the first 2m — 1 Markov
parameters and moments are to be matched, i.e.,

.]Zj=fj’ fOfJ=O,,2m_2, (36)

and
mj=mj, forj=0,...,2m—2. (37)

For the Markov parameters, the equality (36) is already proven in the literature, see [20]
and the references therein. The following result shows that the first 2m — 1 moments
resulting from the Laurent expansion of the transfer function F around o = 0 are also
matched.

Proposition 7 Let i j and m j be the matrix moments given by the Laurent expansions

of the transfer functions Fa,, and F, respectively, around o = Q. Then, the first 2m — 1
moments of the original and the reduced models are the same, that is,

%jzm],f0rj=0,,2(m_1)

Proof Letj € {0,1,...,2(m—1)}and ji, jo € {0, 1,...,m— 1} such that j; + j» =
j. Then, we have

mi=CA7/B=CA VT2 B=CcA VA 2B (38)

Applying Algorithm 1 to B and C gives

1,1 a,nq’
B:“I/1|:A‘6 ] and C=|:A‘6’ :| 2

Substituting this result in Eq. (38) yields

a,nq’ . . (1,1)
me[M ] a4

a.nq7 o (a0
:[A‘g ] ETWI A= A=12V,, B, [Ay) }

Therefore, using the result of Proposition 5, we get

PN A — g [AYY
m/=|: 16/ :| IEl L2n1W2mV2'"L2mE1|: ‘6 ]

a,nqT . (1,1)
A Ty J A
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Table 1 The test models

Matrices Sizes

Modified FOM n=1006,p =5
ISS n=270,p=3
fdm n =10.000, p =6
Flow-Meter n=9669, p=>5

On the other hand, since L,, and ’]Tz—”ll are both Hessenberg matrices that verify
’}1‘27”1 E; = Ly,[E;, then the application of Proposition 6 gives

L/

2m

E; =T, By, forj=0,....,m—1,

and so

anq’ . (11 anqT . (1,1
A - A A - A
o [T s [ [4] wrvaatonn 4]

0 0 2m
= CV,, T, W} B
= Cop Tz_,,i By,
= %] .
which completes the proof of Proposition 7. O

4 Numerical experiments

In this section, we give some experimental results to show the effectiveness of the
extended block Lanczos algorithm (EBLA) when applied to model reduction in large
scale dynamical systems. All the experiments were performed on a computer with an
Intel Core i5 processor at 1.3GHz and 8GB of RAM. The algorithms were coded in
Matlab 8.0.

To compute the J%-norm || F' — Fa lloc = SUpyer | F (jo) — Fom(jo)ll2, where
® € [1079,10°] and j= /—1, the following functions from LYAPACK [27] were
used :

— 1p_lgfrqg: Generates the set of logarithmically distributed frequency sampling
points.
— 1p_gnorm: Computes || F(jw) — Fam (jo)l|2-

In our experiments, we used some matrices from LYAPACK and different known
benchmark models listed in Table 1.

Example 1. The first test model is the International Space Station (ISS) model from
[24]. Tts dimension is n = 270 with 3 inputs and 3 outputs. This is a small dimension
model but it is generally difficult and always considered as a benchmark test. For the
second experiment, we considered the Flow Meter model. This system is obtained
from the discretization of a 2D convective thermal flow problem (flow meter model

@ Springer
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10 15

Singular values
Error norms

10—20

10° 10" 107 10° 100 10t 10 10° 10t 107 100 100 100 10°

Frequency Frequency

Fig. 1 Left: |F(jw)|l2 (circles) and its approximations || Fo,, (jw)||2 (solid). Right: the error norm
|F(jw) — Fa, (jw)|l2 for the ISS model

108 - 10°

10° 10°

3 »

= 104 E 10*5

g 5

: :

3 102 £ 107"

£ I

n

10° 107

107 107

10° 10* 10”7 10°  10*°  10*  10° 10°  10* 102 10° 10 10' 10°
Frequency Frequency

Fig.2 Results forthe f1ow-meter model. Left: | F(j w)||2(circles) and its approximations || Fa,, (j @) |2
(solid). Right: the error norm || F (j w) — F2,, (j @) |2

v(.5) from the Oberwolfach model reduction benchmark collection!, with 5 inputs
and 5 outputs.

The left curves of Fig.1 (ISS) and Fig. 2 (Flow Meter) show the frequency
responses of the original system (circles) compared with the frequency responses of
its approximations (solid line) for m = 5 . The right curves of these figures represent
the exact error norm || F'(j @) — F,, (j ) ||» for different frequencies w € [107°, 10°].
From Figs. 1 and 2, it is clear that the extended block Lanczos algorithm gives good
results for low and hight frequencies, i.e., the moments and Markov parameters of
the original transfer function are well approximated by those of the reduced transfer
function at the same time.

Example 2. In this example, we plotted the %%, error norm || F — F,, || versus the
number m of iterations for two different models. The first one is themodified FOM

I Oberwolfach model reduction benchmark collection, 2003. http://www.imtek.de/simulation/benchmark.
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2 1
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Fig. 3 The J% error |F — Fy,,|l0o versus the number of iterations for the £dm model (left curve) and
themodified fom model (right curve)

model from [24]. We notice that originally, the FOM model is a SISO system and we
modified the inputs and outputs to get a MIMO system. The matrices B and C are
then given by

B=1[by,....bs), C" =[cy,....col
whereblT =c = (10,...,10,1,..., 1) and by, ..., bs; c2,...,ce are random
——— — —
6 1000

column vectors.

For the second experiment, we used the £dm model [27]. For this model, the cor-
responding matrix A is obtained from the centered finite difference discretization of
the operator

0 0
Lau) = Au— f(x, y)ﬁ — g(x, y)% — hix, y)u,

on the unit square [0, 1] x [0, 1] with homogeneous Dirichlet boundary conditions
with
flx,y)=eY, g(x,y) =sin(xy) and h(x,y) = y> —x>.

The matrices B and C were random matrices with entries uniformly distributed in
[0, 1]. The number of inner grid points in each direction was ngp = 100 and the
dimension of A isn = n% = 10*. For this experiment, we used p = 6. As can be
shown from Fig. 3, the extended block Lanczos algorithm (EBL2) gives good results
with small values of m.

Example 3. In the last example we compared the extended block Lanczos algorithm
(EBLA) with the Iterative Rational Krylov Algorithm IRKA proposed in [7,19] . We
used four models: the ISS, the add32, the Modified fom and the £dm model
(with n = 10%, p = 6). In Table 2, we listed the obtained 7%, norm of the error
| F — Famllco, the required cpu-time and the dimension of the projected subspace. A
maximum number of m,,,, = 100 iterations was allowed to the TRKA method. As
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Table 2 Comparison between IRKA and EBLA for ISS, Modified fomand £dm models

EBLA IRKA

o error # dim(2mp) Time (s) oo error # dim(mp) Time (s)

ISs 8.41e—04 60 0.25 1.61e—04 75 12.71
Modified fom  3.89e—11 216 1.61 3.60e—10 150 78.66
fdm 6.07e—11 180 20.93 3.75e—11 150 100.60

observed from Table 2, IRKA and EBLA return similar results for the .77, norm, with
an important advantage in cpu-time for the EBLA.

5 Conclusion

In the present paper, we proposed a new process called extended block Lanczos,
allowing us to build biorthogonal bases of two extended block Krylov subspaces
associated to the matrices A, AT and their inverses. We derived some theoretical
results such as algebraic relations satisfied by the matrices obtained by this process.
We showed how the extended block Lanczos algorithm could be applied to model order
reductions for Multiple-Input Multiple-Output first-order linear dynamical systems.
The proposed procedure is tested on some benchmark problems of medium and large
dimensions, and the numerical results show that the extended block Lanczos algorithm
allows one to obtain reduced order models of small dimensions that approximate well
the initial large models.
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