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Abstract The paper deals with the approximation of integrals of the type

I ( f ; t) =
∫

D
f (x)K(x, t)w(x)dx, x = (x1, x2), t ∈ T ⊆ R

p, p ∈ {1, 2}

where D = [− 1, 1]2, f is a function defined on D with possible algebraic singularities
on ∂D, w is the product of two Jacobi weight functions, and the kernel K can be of
different kinds. We propose two cubature rules determining conditions under which
the rules are stable and convergent. Along the paper we diffusely treat the numerical
approximation for kernels which can be nearly singular and/or highly oscillating, by
using a bivariate dilation technique. Some numerical examples which confirm the
theoretical estimates are also proposed.
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1 Introduction

The paper deals with the approximation of integrals of the type

I ( f ; t) =
∫

D
f (x)K(x, t)w(x)dx, x = (x1, x2), t ∈ T ⊆ R

p, p ∈ {1, 2},
(1)

where f is a sufficiently smooth function inside D := [− 1, 1]2 with possible algebraic
singularities along the border ∂D, w is the product of two Jacobi weight functions,
and K is one of the following kernels

K1(x, ω) = 1

(|x − x0|2 + ω−1)λ
, λ ∈ R

+, x0 = (s0, t0) ∈ D,

K2(x, ω) = g(ω, x), (2)

where 0 �= ω ∈ R, g is an oscillatory smooth function with frequency ω. Moreover,
we will consider also kernels which can be possible combinations of the types K1,

K2. In what follows we will consider also

K3(x, ω) = K1(x, ω)K2(x, ω). (3)

The numerical evaluation of these integrals presents difficulties for “large” ω, since
K1 is close to be singular, K2 highly oscillates, while K3 includes both the aforesaid
problematic behaviors. In all the cases, for these kernels the modulus of the derivatives
grows as ω grows.

K1-type kernels appear, for instance, in two-dimensional nearly singular BEM
integrals on quadrilateral elements (see for instance [8,13]). Highly oscillating ker-
nels of the type K2 are useful in computational methods for oscillatory phenomena
in science and engineering problems, including wave scattering, wave propagation,
quantum mechanics, signal processing and image recognition (see [7] and references
therein). The combination of the two aspects, i.e. integrals with nearly singular and
oscillating kernels appear for instance in the solution of problems of propagation in
uniform waveguides with nonperfect conductors (see [5] and the references therein).

Here we propose a “product cubature formula” obtained by replacing the “regular”
function f by a bivariate Lagrange polynomial based on a set of knots chosen to
assure the stability and the convergence of the rule. Despite the simplicity of these
formulas, the computation of their coefficients is not yet an easy task. In the analogous
univariate case, to compute the corresponding coefficients one needs to determine
“modified moments” by means of recurrence relations, and to examine the stability of
these latter (see for instance [6,9,12,17,20]). This approach, however, does not appear
feasible for multivariate not degenerate kernels. Here we present a unique approach
for computing the coefficients of the aforesaid cubature rule when K belongs to the
types (2–3). Such method, that we call 2D-dilation method, is based on a preliminary
“dilation” of the domain and, by suitable transformations, on the successive reduction
of the initial integral to the sum of ones on D again. These manipulations “relax” in
some sense the “too fast” behavior ofK as ω grows. For a correct use of the 2D-dilation
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Cubature formulae for nearly singular and highly oscillating… Page 3 of 33 4

method, which could be also applied directly to compute integrals with kernels of the
kind (2–3), we determine conditions under which the rule is stable and convergent.

Both the rules have advantages and drawbacks. The product integration rule requires
a smaller number of evaluations of the integrand function f , while the number of
samples involved in the 2D-dilation rule increases as ω increases. On the other hand,
the product rule involves the computation of m2 coefficients, which are integrals, and
for this reason, in general its computational cost can be excessively high. However,
as we will show in Sect. 4.2.1, this cost can be drastically reduced when the kernels
present some symmetries.

We point out that many of the existing methods on the approximation of multivariate
integrals are reliable for very smooth functions (see [1–3,7,19,21] and references
therein). Some of them treat degenerate kernels [18], others require changes of variable
generally not adequate for weighted integrands [7,8]. Our procedure allows to compute
not degenerate weighted integrals, with oscillating and/or nearly singular kernels.

The paper is organized as follows. After some notations and preliminary results
stated in Sects. 2 and 3 contains the product cubature rule with results on the stability
and convergence for a wide class of kernels. In Sect. 4 we describe the 2D-dilation rule
in a general form, proving results about the stability and the rate of convergence of the
error. Moreover, we give some details for computing the coefficients of the product
cubature rule with kernels as in (2–3). In Sect. 5 we present some numerical exam-
ples, where our results are compared with those achieved by other methods. In Sect. 6
we suggest some criteria on the choice of the stretching parameter in the 2D-dilation
formula, and in Sect. 7 we propose a test for comparing our cubature formulae with
respect to their CPU time. Section 8 is devoted to the proofs of the main results. Finally,
the “Appendix” provides a detailed exposition of the formula 2D-dilation introduced
in Sect. 4.

2 Notations and tools

Along all the paper the constant C will be used several times, having different meaning
in different formulas. Moreover from now on we will write C �= C(a, b, . . .) in order
to say that C is a positive constant independent of the parameters a, b, . . ., and C =
C(a, b, . . .) to say that C depends on a, b, . . .. Moreover, if A, B > 0 are quantities
depending on some parameters, we write A ∼ B, if there exists a constant 0 < C �=
C(A, B) s.t.

B

C ≤ A ≤ CB.

Pm denotes the space of the univariate algebraic polynomials of degree at most m
and Pm,m the space of algebraic bivariate polynomials of degree at most m in each
variable.

In what follows we use the notation vα,β for a Jacobi weight of parameters α, β,
i.e. vα,β(z) := (1 − z)α(1 + z)β, z ∈ (− 1, 1), α, β > − 1.

Along the paper we set
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4 Page 4 of 33 D. Occorsio, G. Serafini

D := [− 1, 1]2, Ḋ = D\∂D = (− 1, 1)2,

x = (x1, x2), t = (t1, t2) ∈ T ⊆ R
p, p ∈ {1, 2}.

Finally, we will denote by Nm
1 the set {1, 2, . . . ,m}.

2.1 Function spaces

From now on we set

σ (x) = σ (x1, x2) = vγ1,δ1(x1)v
γ2,δ2(x2) =: σ1(x1)σ2(x2), (4)

with γi , δi ≥ 0, i = 1, 2. Define

Cσ =
{
f ∈ C(Ḋ) : lim

x→∂D
(σ f )(x) = 0

}
,

equipped with the norm

‖ f ‖Cσ = ‖ f σ‖∞ = max
x∈D

| f (x)|σ (x).

Whenever one or more of the parameters γ1, δ1, γ2, δ2 are greater than 0, functions in
Cσ can be singular on one or more sides of D. In the case γ1 = δ1 = γ2 = δ2 = 0 we
set Cσ = C(D).

For smoother functions, i.e. for functions having some derivatives which can be
discontinuous on ∂D, for r ≥ 1 we introduce the following Sobolev–type space

Wr (σ ) =
{
f ∈ Cσ : Mr ( f, σ ) := max

{∥∥∥∥∂r f

∂xr1
ϕr

1σ

∥∥∥∥
∞

,

∥∥∥∥∂r f

∂xr2
ϕr

2σ

∥∥∥∥
∞

}
< ∞

}
,

(5)

where ϕ1(x1) =
√

1 − x2
1 , ϕ2(x2) =

√
1 − x2

2 . We equip Wr (σ ) with the norm

‖ f ‖Wr (σ ) = ‖ f σ‖∞ + Mr ( f, σ ).

Denote by Em,m( f )σ the error of best polynomial approximation in Cσ by means
of polynomials in Pm,m

Em,m( f )σ = inf
P∈Pm,m

‖( f − P)σ‖∞.

In [15] (see also [11]) it was proved that for any f ∈ Wr (σ )

Em,m( f )σ ≤ CMr ( f, σ )

mr
, (6)

where 0 < C �= C(m, f ) and Mr ( f, σ ) defined in (5).
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For f, g ∈ Cσ , the following inequality can be easily proved

Em,m( f g)σ ≤ ‖gσ‖EM,M ( f )σ + ‖ f σ‖EM,M (g)σ , f ∈ Wr (σ ), (7)

where M = ⌊m
2

⌋
.

In what follows we use the notation

‖Fσ‖∞,A := max
(x,y)∈A

|F(x, y)|σ (x, y),

where A ⊆ D will be omitted if A ≡ D.
Finally, let us denote by L p

σ (D), 1 ≤ p < ∞ the collection of the functions

f (x) defined on D such that ‖ f σ‖p = (∫
D | f (x)σ (x)|p dx) 1

p < ∞. For σ ≡ 1,
L p

σ (D) = L p(D).

2.2 Gauss–Jacobi cubature rules

For any Jacobi weight u = vα,β , let {pm(u)}∞m=0 be the corresponding sequence of
orthonormal polynomials with positive leading coefficients, i.e.

pm(u, x) = γm(u)xm + terms of lower degree, γm(u) > 0,

and let {ξui }mi=1 be the zeros of pm(u).
From now on we set

w(x) = w1(x1)w2(x2), w1(x1) = vα1,β1(x1), w2(x2) = vα2,β2(x2), (8)

with α1, β1, α2, β2 > − 1.

Consider now the tensor-product Gauss–Jacobi rule,

∫
D
f (x)w(x) dx =

m∑
i=1

m∑
j=1

λ
w1
i λ

w2
j f (ξw1,w2

i, j ) + RG
m,m( f )

= Gw1,w2
m,m ( f ) + RG

m,m( f ), (9)

where ξ
w1,w2
i, j := (ξ

w1
i , ξ

w2
j ), λ

w j
i , i = 1, . . . ,m, denote the Christoffel numbers w.r.t

w j , j = 1, 2 and RG
m,m(P) = 0 for any P ∈ P2m−1,2m−1.

For its remainder term, the following bound holds (see [15]).

Proposition 1 Let f ∈ Cσ . Under the assumption

w
σ

∈ L1(D),

we have ∣∣∣RG
m,m( f )

∣∣∣ ≤ CE2m−1,2m−1( f )σ , (10)

where C �= C(m, f ).
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2.3 Bivariate Lagrange interpolation

LetLm,m(w, f, x) be the bivariate Lagrange polynomial interpolating a given function
f at the grid points {ξw1,w2

i, j , (i, j) ∈ Nm
1 × Nm

1 }, i.e.

Lm,m
(
w, f, ξw1,w2

i, j

) = f
(
ξ

w1,w2
i, j

)
, (i, j) ∈ Nm

1 × Nm
1 .

The polynomial Lm,m(w, f ) ∈ Pm−1,m−1 and Lm,m(w, P) = P , for any P ∈
Pm−1,m−1. An expression of Lm,m(w, f ) is

Lm,m(w, f, x) =
m∑
i=1

m∑
j=1

�
w1,w2
i, j (x) f (ξw1,w2

i, j ),

�
w1,w2
i, j (x) = �

w1
i (x1)�

w2
j (x2), �

wk
i (z) = pm(wk, z)

p′
m

(
wk, ξ

wk
i

)(
z − ξ

wk
i

) , k = 1, 2.

3 The product cubature rule

Let

I ( f ; t) =
∫

D
f (x)K(x, t)w(x)dx, (11)

w = w1w2 defined in (8), t ∈ T and K defined in D × T. By replacing the function f
in (11) with the Lagrange polynomial Lm,m(w, f ; x), we obtain the following product
cubature rule

I ( f ; t) =
m∑

r=1

m∑
s=1

Ar,s(K, t) f
(
ξw1,w2
r,s

) + RΣ
m,m( f, t) =: Σm,m( f, t) + RΣ

m,m( f, t)

(12)
where

Ar,s(K, t) =
∫

D
�w1,w2
r,s (x)K(x, t)w(x)dx (13)

and
RΣ

m,m( f, t) =: I ( f ; t) − Σm,m( f, t)

is the remainder term. About the stability and the convergence of the product rule we
are able to prove the following

Theorem 1 Let w(x) = w1(x1)w2(x2) be defined in (8) and t ∈ T. If there exist a σ

as defined in (4) s.t. f ∈ Cσ and the following assumptions are satisfied

K(t)
√
w ∈ L2(D), (14)

w
σ

,
σ√

wϕ1ϕ2
,

1

σ

√
w

ϕ1ϕ2
∈ L2(D), (15)

then we have
sup
m

|Σm,m( f, t)| ≤ C‖ f σ‖∞, (16)
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where C �= C(m, f ). Moreover, the following error estimate holds true

|RΣ
m,m( f, t)| ≤ CEm−1,m−1( f )σ , (17)

where C �= C(m, f ).

Remark 1 From (17) it follows that for m → ∞, the product rule error rate of decay
is bounded by that of the error of the best polynomial approximation of the only
function f . This appealing speed of convergence holds under the “exact” computation
of the coefficients in Σm,m( f, t). Their (approximate) evaluation is however not a
simple task; only for kernels having special properties it can be performed with a
low computational cost. Details on the computation of the coefficients (13) for some
kernels will be given in the next section.

4 The formula 2D-dilation and the computation of the product rule
coefficients for some kernels

In this Section we fix our attention on the kernels

K1(x, ω) = 1

(|x − x0|2 + ω−1)λ
, x0 = (s0, t0) ∈ D, λ ∈ R

+,

K2(x, ω) = g(ωx),

K3(x, ω) = K1(x, ω)K2(x, ω), (18)

0 �= ω ∈ R, under the assumption that the function g is sufficiently smooth. The
graphs in Figs. 1, 2, 3, 4, 5 and 6 show the behavior of some kernels of the types (18)
for some choices of the parameter ω.

Fig. 1 Kernel K1(x, ω) = (x2
1 + x2

2 + ω−1)−1 with ω = 102
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4 Page 8 of 33 D. Occorsio, G. Serafini

Fig. 2 Kernel K1(x, ω) = (x2
1 + x2

2 + ω−1)−1 with ω = 108

Fig. 3 Kernel K2(x, ω) = sin(ωx1x2), with ω = 108
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Fig. 4 Kernel K2(x, ω) = cos(ωx1x2), with ω = 108

Fig. 5 Kernel K3(x, ω) = sin(ωx1x2)(x2
1 + x2

2 + ω−1)−1 with ω = 104

Fig. 6 Section of the Kernel K3(x, ω) = sin(ωx1x2)(x2
1 + x2

2 + ω−1)−1 with ω = 104

To compute the product rule coefficients (13), we will use the 2D-dilation for-
mula that we describe next. Since the latter can be used in more general cases, we
present the dilation formula in a general form, by proving its stability and convergence
under suitable assumptions. Successively, we apply it for computing the coefficients
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4 Page 10 of 33 D. Occorsio, G. Serafini

Ar,s(Ki , ω), i = 1, 2, 3 of the product rule in (12). With regard to this last aspect, we
will show also how to reduce the computational cost in some special cases.

4.1 The 2D-dilation formula

To perform the evaluation of integral (1), with p = 2 and a kernel of type (18), the
main idea is to dilate the integration domain D by a change of variables in order to
relax in some sense the “too fast” behavior of K when ω grows. Successively the new
domain Ω is divided into S2 squares

{
Di, j

}
(i, j)∈NS

1 ×NS
1

and each integral is reduced

into D one more time. At last, the integrals are approximated by suitable Gauss–Jacobi
rules. For 1-dimensional unweighted integrals with a nearly singular kernel in Love’s
equation [16] and for highly oscillating kernels in [4], a “dilation” technique has been
developed.

Here we describe a dilation method for weighted bivariate integrals having nearly
singular kernels, highly oscillating kernels and also for their composition. Consider
integrals of the type

I(F, ω) =
∫

D
F(x)K(x, ω)w(x)dx, ω ∈ T = R, F ∈ Cσ ,

where K(x, ω) is one of the types in (18). Setting ω1 = |ω| 1
2 , by the changes of

variables x1 = η
ω1

, x2 = θ
ω1

, we get

I(F, ω) = ω2
1

∫
[−ω1,ω1]2

F

(
η

ω1
,

θ

ω1

)
K

(
η

ω1
,

θ

ω1
, ω

)
w1

(
η

ω1

)
w2

(
θ

ω1

)
dηdθ

and choosing d ∈ R
+ s.t. S = 2ω1

d ∈ N, we have

I(F, ω) = τ0

S∑
i=1

S∑
j=1

∫
Di, j

F

(
η

ω1
,

θ

ω1

)
K

(
η

ω1
,

θ

ω1
, ω

)
w1

(
η

ω1

)
w2

(
θ

ω1

)
dηdθ,

where τ0 = ω2
1 and

Di, j : [−ω1 + (i − 1)d,−ω1 + id] × [−ω1 + ( j − 1)d,−ω1 + jd] ,

∀(i, j) ∈ NS
1 × NS

1 .

By mapping each square Di, j into the unit square D and setting for k ∈ NS
1

ψk(z) =
(
z + 1

2

)
d − ω1 + (k − 1)d
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and for (i, j) ∈ NS
1 × NS

1

Fi, j (x) = F

(
ψi (x1)

ω1
,
ψ j (x2)

ω1

)
, Ki, j (x) = K

(
ψi (x1)

ω1
,
ψ j (x2)

ω1
, ω

)
,

wi, j (x) = w1

(
ψi (x1)

ω1

)
w2

(
ψ j (x2)

ω1

)
,

we get

I(F, ω) = d2τ0

4

S∑
i=1

S∑
j=1

∫
D
Fi, j (x)Ki, j (x)wi, j (x)dx

=: Ψm,m(F, ω) + RΨ
m,m(F, ω), (19)

where the cubature formulaΨm,m(F, ω)has been obtained by applying suitable Gauss–
Jacobi cubature rules to evaluate the S2 integrals in (19) and

RΨ
m,m(F, ω) = I(F, ω) − Ψm,m(F, ω)

is the remainder term. Deferring to the “Appendix” the explicit expression of
Ψm,m(F, ω), we state now a result about the stability and the convergence of the
rule.

Theorem 2 Assume w as in (8) and K(·, ω) as in (18). Then, if there exist a σ as
defined in (4) s.t. F ∈ Cσ and the following assumptions are satisfied

w
σ

∈ L1(D), (20)

then
|Ψm,m(F, ω)| ≤ C‖Fσ‖∞, 0 < C �= C(F,m). (21)

Moreover, for any F ∈ Wr (σ ) under the assumptions g ∈ C∞(Ω), Ω ≡ [−ω1, ω1]2,
S ≥ 2,

we get

|RΨ
m,m(F, ω)| ≤ C

(
d

2

(
1

ω1
+ 1

))r Nr (F,K)

mr
, (22)

where

Nr (F,K) = ‖Fσ‖∞ + max
h∈N2

1

max
k∈Nr

0

(∥∥∥∥∂r−kK(·, ω)

(∂xh)r−k

∥∥∥∥
Ω,∞

×
∥∥∥∥∂k F(·, ω)

(∂xh)k

∥∥∥∥∞

)
,

and 0 < C �= C(F,m).
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4.2 Computation of the product rule coefficients for kernels (18)

We provide now some details for computing the coefficients in (12) when the kernels
are of the types in (18), i.e.

Ar,s(K j , ω) =
∫

D
�w1,w2
r,s (x)K j (x, ω)w(x)dx, j = 1, 2, 3.

We point out that without loss of generality, we assume x0 a fixed data in the problem,
so that T = R and t = ω. By using 2D-dilation formula (19) of degree m with
F = �

w1,w2
r,s , we have

Ar,s(K j , ω) =
∫

D
�w1,w2
r,s (x)K j (x, ω)w(x)dx = Ψm,m(�w1,w2

r,s , ω)+RΨ
m,m(�w1,w2

r,s , ω).

(23)
About the rate of convergence of (23) we state the following

Corollary 1 Under the hypotheses of Theorem 2, for m > d
2 e

1
ω1 and for d ≥ 2,

ω1 ≥ 1, the following error estimate holds

∣∣RΨ
m,m(�w1,w2

r,s , ω)
∣∣ ≤ C T2m(K)

mm+1−μ
, (24)

where

T2m(K) = max
h∈N2

1

max
k∈N2m

m+1

∥∥∥∥∂kK(·, ω)

(∂xh)k

∥∥∥∥
Ω,∞

,

μ = max

{
αi + 1

2
− 2γi , βi + 1

2
− 2δi

}
, i ∈ {1, 2}, (25)

and C �= C(m, ω).

Following the previous work-scheme, the evaluation of the coefficient Ar,s(K, ω)

requires m4S2 long operations, with S increasing as ω increases. However, as the
numerical tests will show, the implementation of the product rule for smooth integrands
functions f and independently on the choice of the parameter ω, will give accurate
results for “small” values of m.

4.2.1 Cases of complexity reduction

In some cases the computational complexity can be drastically reduced. Assume
w1(x) = vα1,α1(x1). Slightly changing the notation set in Sect. 2, let us denote by
{ξw1

i }Mi=−M , M = ⌊m
2

⌋
, ξw1

0 = 0 for m odd, the zeros of pm(w1). Since w1 is an even
weight function, it is ξ

w1
i = −ξ

w1−i , i = 1, 2, . . . , M we have
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�w1
r (x1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�m
2 �∏

i=1

(
ξ

w1
i

)2 − x2
1(

ξ
w1
i

)2 , if r = 0, m odd,

(
x1

ξ
w1
r

) 1−(−1)m

2
�m

2 �∏
i=1
i �=r

x2
1 − (

ξ
w1
i

)2

(
ξ

w1
r

)2 − (
ξ

w1
i

)2

(
x1 + ξ

w1
r

2ξ
w1
r

)
, 1 ≤ r ≤ m.

Thus, assuming w(x) = w1(x1)w2(x2), w1 = vα1,α1 , w2 = vα2,α2 , if K(x, ω) is
symmetric through the axes x1 = 0 and x2 = 0, i.e.

K(−x, ω) = K(x, ω),

it is

Ar,s(K, ω) = Ar,m−s+1(K, ω), r ∈ Nm
1 , s ∈ NM

1 ,

Ar,s(K, ω) = Am−r+1,s(K, ω), s ∈ Nm
1 , r ∈ NM

1 ,

and the global computational cost has a reduction of 75%. If in addition α1 = α2, i.e.
w = vα1,α1vα1,α1 , since it is also

Ar,s(K, ω) = As,r (K, ω), (r, s) ∈ Nm
1 × Nm

1 ,

a reduction of 87.5% is achieved.
In the case K(x, ω) is odd w.r.t. both the coordinate axes, i.e.

K(−x, ω) = −K(x, ω),

and w = vα1,α1vα2,α2 , it is

Ar,s(K, ω) = −Ar,m−s+1(K, ω), r ∈ Nm
1 , s ∈ NM

1

Ar,s(K, ω) = −Am−r+1,s(K, ω), s ∈ Nm
1 , r ∈ NM

1 ,

CC (short for Computational Complexity) has a reduction of 75%. If, in addition,
α1 = α2, the following additional relations hold

Ar,s(K, ω) = As,r (K, ω), r, s ∈ Nm
1 ,

and CC has a reduction of 87.5%.

4.3 Degenerate kernels

Whenever the kernels satisfy K(x, ω) = ki (x1, ω)k j (x2, ω), for i, j ∈ {4, 5} where

k4(x, ω) = 1

((x − x0)2 + ω−1)λ
, k5(x, ω) = G(ωx),
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with x0 ∈ (− 1, 1), λ ∈ R
+, G ∈ C∞([−ω,ω]), the coefficients take the form

Ar,s(K, t) = Br (ki , ω)Bs(k j , ω), (r, s) ∈ Nm
1 × Nm

1 ,

where

Br (ki , ω) =
∫ 1

−1
�w1
r (x1)ki (x1, ω)w1(x1)dx1,

Bs(k j , ω) =
∫ 1

−1
�w1
s (x2)k j (x2, ω)w2(x2)dx2, r, s ∈ Nm

1 .

Also in this case the computation effort is drastically reduced, since Br (k j , ω), j =
1, 2 can be approximated by implementing the 1-D dilation method (see [4,16]).

5 Numerical examples

In this section we present some examples to test the cubature rule proposed in Sect.
3, comparing our results with those obtained by other methods. To be more precise,
we approximate each integral by the cubature rule (12) for increasing values of m,
choosing three different values of ω and computing the coefficients in (12) via 2D-
dilation rule. In each example we state also the numerical results obtained by the
Gauss–Jacobi cubature rule (shortly GJ-rule) and those achieved by the straightforward
application of the 2D-dilation rule (2D-d). About the first two tests involving nearly
singular kernels K1(·, ω), we provide also the results obtained by the iterated sinh
transformation proposed by Johnston et al. [8] (shortly JJE-method). The integrals in
Examples 3 and 4 involve oscillatory kernels of the type K2(·, ω). In Example 3 our
results are compared with those achieved by the method proposed by Huybrechs and
Vandevalle [7] (shortly HV-method), since the function f satisfies their assumptions
of convergence. The last two tests involve “mixed” kernels and for them we compare
our results with those achieved by the JJE-method related to the kernel K1(·, ω) with
function f replaced by fK2(·, ω).

We point out that all the computations were performed in double-machine precision
(eps ≈ 2.22044e−16) and in the tables the symbol “–” will mean that machine
precision has been achieved.

Example 1

I ( f ;ω) =
∫

D

ex1x2

x2
1 + x2

2 + ω−1
dx1dx2

f (x) = ex1x2 , K1(x, ω) = 1

x2
1 + x2

2 + ω−1
, w1 = w2 = 1,

The function f ∈ Wr (σ ) with σ = 1 for any r ≥ 1. In Table 1 the results obtained
by implementing the product rule (12) show that the machine precision is attained
at m = 16 for any choice of ω. A similar behavior presents the 2D-d, whose results
are set in Table 2. Also the JJE-method (Table 3) fastly converges, achieving almost
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satisfactory results, even if it is required the use of the Gauss–Laguerre cubature rule
of order m = 1024 to obtain 13 digits. Finally, as we can expect, by using the GJ-
rule, as ω increases a progressive loss of precision is detected, until results become
completely wrong (Table 4).

Table 1 Example 1: results by the product rule Σm,m ( f )

m ω = 102, S = 10 ω = 104, S = 102 ω = 106, S = 103

4 1.540e+01 2.984e+01 4.43e+01

8 1.54013067e+01 2.984630059e+01 4.43136435e+01

16 1.54013067981755e+01 2.98463005967465e+01 4.43136435598934e+01

Table 2 Example 1: results by 2D-d

m ω = 102, S = 10 ω = 104, S = 102 ω = 106, S = 103

4 1.5e+1 2.984e+1 4.431e+1

8 1.54013067e+1 2.98463005e + 1 4.43136435e+1

16 1.5401306798175e+1 2.9846300596746e+1 4.4313643559893e+1

32 1.5401306798175e+1 2.9846300596746e+1 4.43136435598934e+1

Table 3 Example 1: results by JJE-method

m ω = 102 ω = 104 ω = 106

4 1.5e+1 3.5e+1 6.5e+1

8 1.540e+1 3.0e+1 4.7e+1

16 1.540130e+1 2.984e+1 4.44e+1

32 1.540130679817e+1 2.9846300e+1 4.4313e+1

64 1.540130679817e+1 2.984630059674e+1 4.43136435e+1

128 1.540130679817e+1 2.984630059674e+1 4.431364355989e+1

256 1.540130679817e+1 2.984630059674e+1 4.431364355989e+1

512 1.540130679817e+1 2.984630059674e+1 4.431364355989e+1

1024 1.540130679817e+1 2.98463005967465e+1 4.431364355989e+1

Table 4 Example 1: results by
GJ-rule

m ω = 102 ω = 104 ω = 106

16 1.49e+1 1.82e+1 1.82e+1

32 1.53e+1 2.23e+1 2.25e+1

64 1.5401e+1 2.61e+1 2.68e+1

128 1.54013067981e+1 2.88e+1 3.11e+1

256 1.5401306798175e+1 2.97e+1 3.53e+1

512 1.54013067981755e+1 2.98e+1 3.94e+1
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Example 2

I ( f ;ω) =
∫

D

log
15
2 (x1 + x2 + 4)

x2
1 + x2

2 + ω−1

√
(1 − x2

1 )(1 − x2
2 )dx1dx2

f (x) = log
15
2 (x1 + x2 + 4), K(x, ω) = 1

x2
1 + x2

2 + ω−1

w1 = w2 = v
1
2 , 1

2 ,

σ1 = σ2 = v
1
4 , 1

4 , σ = σ1σ2

Also in this case the function f ∈ Wr (σ ) for any r ≥ 1. In Table 5 the results
obtained by implementing the product rule (12) show that the machine precision is
attained for m = 32. In this case the value of the seminorm growth faster than the
previous example. For instance, M10( f ) ∼ 2.5 × 104. A similar behavior presents
the 2D-d, whose results are given in Table 6. In this case the JJE-method in Table 7
converges lower than the previous example, achieving 8–9 exact digits. In this case

Table 5 Example 2: results by the product rule Σm,m ( f )

m ω = 102, S = 10 ω = 104, S = 102 ω = 106, S = 103

4 1.677e+2 3.35e+2 5.02e+2

8 1.6772623e+2 3.350653e+2 5.026790e+2

16 1.67726234163080e+2 3.3506538134727e+2 5.0267905399542e+2

32 – 3.35065381347276e+2 5.02679053995422e+2

Table 6 Example 2: results by 2D-d

m ω = 102, S = 10 ω = 104, S = 102 ω = 106, S = 103

4 1.677e+2 3.350e+2 5.026e+2

8 1.6772623e+2 3.35065381e+2 5.02679053e+2

16 1.67726234163080e+2 3.3506538134727e+2 5.026790539954e+2

32 1.67726234163080e+2 3.3506538134727e+2 5.026790539954e+2

Table 7 Example 2: results by JJE-method

m ω = 102 ω = 104 ω = 106

16 1.677e+2 3.35e+2 5.03e+2

32 1.677e+2 3.350e+2 5.02e+2

64 1.6772e+2 3.3506e+2 5.026e+2

128 1.67726e+2 3.35065e+2 5.02679e+2

256 1.677262e+2 3.35065e+2 5.02679e+2

512 1.6772623e+2 3.3506538e+2 5.026790e+2

1024 1.67726234e+2 3.35065381e+2 5.0267905e+2
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Table 8 Example 2: results by GJ-rule

m ω = 102 ω = 104 ω = 106

16 1.62e+2 2.02e+2 2.03e+2

32 1.67e+2 2.49e+2 2.51e+2

64 1.67726e+2 2.92e+2 3.00e+2

128 1.6772623416e+2 3.23e+2 3.50e+2

256 1.677262341630e+2 3.34e+2 3.99e+2

512 1.677262341630e+2 3.3506e+2 4.45e+2

1024 1.677262341630e+2 3.35065381e+2 4.82e+2

the changes of variables are applied to the whole integrand, including two Chebyshev
weights, and this explains this bad behavior. Similar to the previous test, by the GJ-rule
a progressive loss of precision occurs as ω increases, till ω = 106 for which the values
are completely wrong (Table 8).

Example 3

I ( f ;ω) =
∫

D
sinh(x1x2)e

iω1(x1+x2)dx1dx2

f (x) = sinh(x1x2), K(x, ω) = eiω1(x1+x2),

w1 = w2 = 1, w = w1w2

σ1 = σ2 = 1, σ = σ1σ2

The function f ∈ Wr (σ ) for any r ≥ 1, with σ = 1. By Table 9, containing the
results of the product rule (12), the machine precision is attained with m = 16 for
ω1 = 10, 102, while for greater values of ω1 the convergence is slower. Similar is
the behavior of the 2D-d whose results are in Table 10, where, as well as in other
examples, 1–2 final digits are lost w.r.t. the product rule Σm,m( f ). HV-method in
Table 11 gives very good results and this is not surprising, since, according to the
convergence hypotheses of the HV-method, the oscillator (x + y) and the function f
are both analytic. Finally, for large ω1, the GJ-rule doesn’t give any correct result till
m ≤ 512, achieving acceptable results only for m = 1024 (see Table 12).

Table 9 Example 3: results by the product rule Σm,m ( f )

m ω1 = 10, S = 10 ω1 = 102, S = 102 ω1 = 103, S = 103

4 − 2.73e−2 − 3.53e−4 − 1.47e−6

8 − 2.73295580e−2 − 3.54895e−4 − 1.480988e−6

16 − 2.73295580076672e−2 − 3.54895314058265e−4 − 1.4809885630938e−6

32 – – − 1.4809885630938e−6

64 – – − 1.48098856309385e−6
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Table 10 Example 3: results by 2D-d

n ω1 = 10, S = 10 ω1 = 102, S = 102 ω1 = 103, S = 103

4 − 2.73295e−2 − 3.54895e−4 − 1.480988e−6

8 − 2.7329558007667e−2 − 3.548953140582e−4 − 1.480988563093e−6

16 − 2.7329558007667e−2 − 3.548953140582e−4 − 1.480988563093e−6

32 − 2.7329558007667e−2 − 3.5489531405826e−4 − 1.480988563093e−6

64 − 2.73295580076672e−2 − 3.54895314058265e−4 − 1.4809885630938e−6

Table 11 Example 3: results by HV-method

n ω1 = 10 ω1 = 102 ω1 = 103

4 − 2.732955800e−02 − 3.5489531405826e−04 − 1.4809885630938e−06

8 − 2.7329558007667e−02 − 3.5489531405826e−04 − 1.4809885630938e−06

16 − 2.73295580076672e−02 − 3.5489531405826e−04 − 1.4809885630938e−06

32 − 2.73295580076672e−02 − 3.5489531405826e−04 − 1.48098856309385e−06

64 − 3.46e+36 − 3.54895314058265e−04 –

Table 12 Example 3: results by GJ-rule

n ω1 = 10 ω1 = 102 ω1 = 103

16 − 2.73295580076e−2 − 3.2e−2 − 1.91e−2

32 − 2.732955800766e−2 − 8.9e−3 − 4.81e−2

64 − 2.732955800766e−2 − 3.5489e−4 − 4.67e−2

128 − 2.732955800766e−2 − 3.54895314058e−4 − 3.30e−4

256 − 2.732955800766e−2 − 3.54895314058e−4 −6.33e−3

512 − 2.732955800766e−2 − 3.54895314058e−4 − 2.64e−7

1024 − 2.732955800766e−2 − 3.54895314058e−4 − 1.48098856309e−6

Example 4

I ( f ;ω) =
∫

D
| sinh(x1x2)|11.5 sin(ωx1x2)v

− 1
4 , 1

4 (x1)v
− 1

4 , 1
4 (x2)dx1dx2

f (x) = | sinh(x1x2)|11.5, K(x, ω) = sin(ωx1x2)

w1 = w2 = v− 1
4 , 1

4

σ1 = σ2 = 1, σ = σ1σ2

The function f ∈ W11(σ ) for σ1 = σ2 = 1. By Table 13 which con-
tains the results of the product rule (12), the machine precision is attained with
m = 512 for ω = 102, while for greater values of ω the convergence is
slower, but 14 digits are taken. However, the results are coherent with the the-
oretical estimate (17) combined with (6), since the seminorm M11( f ) ∼ 1011.
Similar is the behavior of the 2D-d whose results are in Table 14, where,
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as well as in other examples, 1–2 final digits are lost w.r.t. the cubature for-
mula Σm,m( f ). Since the assumptions of the HV-method are not satisfied, we
didn’t implement it. Finally, for large ω, the GJ-rule doesn’t give any correct
result till m ≤ 512, achieving acceptable results for m = 1024 only (see
Table 15).

Table 13 Example 4: results by the product rule Σm,m ( f )

m ω = 102, S = 10 ω = 103, S = 32 ω = 104, S = 102

8 − 4.478551724e−3 − 2.10e−4 9.45e−6

16 − 6.436821087e−3 − 2.98e−4 1.20e−5

32 − 6.439284731e−3 − 2.98928017714e−4 1.20606902036e−5

64 − 6.4392847317303e−3 − 2.989280177142e−4 1.2060690203683e−5

128 − 6.4392847317303e−3 − 2.989280177142e−4 1.2060690203683e−5

256 − 6.4392847317303e−3 − 2.9892801771422e−4 1.2060690203683e−5

512 − 6.43928473173037e−3 − 2.9892801771422e−4 1.2060690203683e−5

Table 14 Example 4: results by 2D-d

m ω = 102, S = 10 ω = 103, S = 32 ω = 104, S = 102

16 − 6.43928473173e−3 3.47e−3 8.58e−4

32 − 6.439284731730e−3 − 2.98928017714e−4 7.78e−4

64 − 6.439284731730e−3 − 2.98928017714e−4 1.2060e−5

128 − 6.439284731730e−3 − 2.989280177142e−4 1.2060690203e−5

256 − 6.439284731730e−3 − 2.989280177142e−4 1.2060690203e−5

Table 15 Example 4: results by
GJ-rule

m ω = 102 ω = 103 ω = 104

64 − 6.4392847e−3 − 1.34e−2 − 2.78e−3

128 − 6.4392847317e−3 − 2.30e−3 − 5.70e−5

256 − 6.4392847317e−3 − 1.43e−3 6.82e−3

512 − 6.4392847317e−3 − 4.08e−4 3.13e−3

1024 − 6.4392847317e−3 − 4.08e−4 − 8.56e−4
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Example 5

I ( f ;ω) =
∫

D
(x1 + x2)

20 sin(ωx1x2)

x2
1 + x2

2 + ω−1
dx1dx2

f (x) = (x1 + x2)
20, K(x, ω) = sin(ωx1x2)

x2
1 + x2

2 + ω−1
,

w1 = w2 = 1, w = w1w2

σ1 = σ2 = 1, σ = σ1σ2

The integral contains a mixed-type kernel, with f ∈ Wr (σ ) for any r . The results of
the product rule (12) given in Table 16 are coherent with the theoretical estimates, since
the values of the seminorms are too large. For instance for r = 20, it isMr ( f ) ∼ 1018.

Comparing our results with those obtained with the 2D-d given in Table 17, we observe
that more or less 2 digits are lost w.r.t. the product rule. In absence of other procedures,
we have forced the use of the JJE-method, by which for ω = 100 the results present

Table 16 Example 5: results by the product rule Σm,m ( f )

m ω = 102, S = 10 ω = 103, S = 32 ω = 104, S = 102

16 3.666247e+1 − 3.0625e−1 3.22e−3

32 3.666247509043e+1 − 3.06250405322e−1 3.2214048203e−3

64 3.666247509043e+1 − 3.06250405322e−1 3.22140482036e−3

128 3.666247509043e+1 − 3.06250405322e−1 3.22140482036e−3

256 3.6662475090432e+1 − 3.06250405322e−1 3.221404820367e−3

512 3.66624750904321e+1 − 3.0625040532207e−1 3.2214048203672e−3

Table 17 Example 5: results by 2D-d

m ω = 102, S = 10 ω = 103, S = 32 ω = 104, S = 102

16 3.6662475090e+1 1.29e+2 8.98e+0

32 3.66624750904e+1 − 3.062504053e−01 1.60e+1

64 3.66624750904e+1 − 3.0625040532e−01 3.2214e−03

128 3.66624750904e+1 − 3.0625040532e−01 3.221404820e−03

Table 18 Example 5: results by
JJE-method

m ω = 102 ω = 103 ω = 104

64 3.73e+1 2.92e+3 1.17e+3

128 3.6662475090e+01 − 2.66e+2 − 4.38e+2

256 3.6662475090e+01 1.02e+2 − 8.48e+1

512 3.6662475090e+01 7.92e+0 − 1.68e+2

1024 3.66624750904e+01 − 8.76e−1 − 5.98e+1
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Table 19 Example 5: results by
GJ-rule

m ω = 102 ω = 103 ω = 104

64 3.666247e+1 3.93e+2 − 8.40e+2

128 3.6662475090e+1 4.21e+2 4.01e+2

256 3.66624750904e+1 2.10e+0 − 3.36e+1

512 3.66624750904e+1 − 8.76e−01 4.89e+1

1024 3.66624750904e+1 − 8.76e−01 − 3.68e+1

12 correct digits, while with larger ω the results are completely wrong (see Table 18).
However this bad behavior is to be expected, since the oscillating factor is not covered
within their method. Finally, the results in Table 19 evidence that GJ-rule is unreliable
for ω large.

Example 6

I ( f ;ω) =
∫

D
|x1 − x2|7.1 sin(ωx1x2)

x2
1 + x2

2 + ω−1
v

1
2 , 1

2 (x1)v
− 1

4 ,− 1
4 (x2)dx1dx2

f (x) = |x1 − x2|7.1, K (x, ω) = sin(ωx1x2)

x2
1 + x2

2 + ω−1
,

w1 = v
1
2 , 1

2 , w2 = v− 1
4 ,− 1

4

σ1 = v
1
4 , 1

4 , σ2 = 1, σ = σ1σ2

We conclude with a test on a mixed-type kernel. Here the function f ∈ W7(σ ).
Since the seminorm Mr ( f ) ∼ 6×103, according to the theoretical estimate, 15 exact
(not always significant) digits are computed for m = 512 (Table 20). The results are
comparable with those achieved by the 2D-d (Table 21), while the GJ-rule results
in Table 23, as well as those achieved by the JJE-method in Table 22, give poor
approximations.

Table 20 Example 6: results by the product rule Σm,m ( f )

m ω = 102, S = 10 ω = 103, S = 32 ω = 104, S = 102

16 − 4.23e−3 − 1.83e−4 − 4.42e−8

32 − 4.23634e−3 − 1.8313e−4 1.29e−8

64 − 4.23634393e−3 − 1.831311e−4 1.44e−8

128 − 4.2363439329e−3 − 1.8313118e−4 1.4448e−8

256 − 4.2363439329106e−3 − 1.8313118400e−4 1.444854e−8

512 − 4.23634393291069e−3 − 1.831311840010e−4 1.44485497e−8
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Table 21 Example 6: results by 2D-d

m ω = 102, S = 10 ω = 103, S = 32 ω = 104, S = 102

16 − 4.2363439329e−3 − 9.75e−3 1.75e−2

32 − 4.23634393291e−3 − 1.8313118400e−4 − 7.41e−3

64 − 4.23634393291e−3 − 1.8313118400e−4 1.44e−8

128 − 4.23634393291e−3 − 1.8313118400e−4 1.44485e−8

256 − 4.23634393291e−3 − 1.8313118400e−4 1.444854e−8

512 − 4.23634393291e−3 − 1.8313118400e−4 1.4448549e−8

Table 22 Example 6: results by
JJE-method

m ω = 102 ω = 103 ω = 104

64 − 4.53e−3 − 7.21e−1 − 2.71e−1

128 − 4.26e−3 4.73e−1 4.18e−1

256 − 4.24e−3 4.22e−2 7.40e−2

512 − 4.23e−3 − 2.36e−2 7.23e−2

1024 − 4.23e−3 1.72e−5 1.28e−2

Table 23 Example 6: results by
GJ-rule

m ω = 102 ω = 103 ω = 104

64 − 4.236e−3 3.46e−1 3.83e−1

128 − 4.2363439329e−3 − 1.18e−1 4.03e−2

256 − 4.2363439329e−3 − 1.96e−2 − 4.86e−2

512 − 4.2363439329e−3 − 1.35e−4 6.52e−2

1024 − 4.2363439329e−3 1.74e−5 3.43e−3

6 The choice of the parameter d

Now we want to discuss briefly how to choose the number S2 of the domain subdi-
visions in the 2D-dilation rule, or equivalently how to set the length d of the squares
side, since S = 2ω1

d . By the error estimate (22), assuming negligible the contribute of
Nr (F,K) and fixing the desired computational accuracy toll, m and S are inversely
proportional. Therefore, whenever let be useful to havem as small as possible, we have
to take larger S. We point out that this behavior depends on the slower rate of conver-
gence of the involved Gauss–Jacobi cubature rules when the “stretching” parameter
S is “too small” or d is too large.

Of course, the previous considerations are not yet conclusive on the choice of S.
However, by numerical evidence, a good “compromise” to reduce m seems to be
S = �ω1� and therefore d = 2ω1

S ∼ 2. To show this behavior, we propose the graphic
of the relative errors achieved for some values of d chosen between 2 and ω1, referred
to the first two numerical tests produced in the Sect. 5 (see Figs. 7, 8).
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Fig. 7 Errors behaviors for different choices of d in Example 1

Fig. 8 Errors behaviors for different choices of d in Example 2

7 A comparison between product and 2D-dilation rules

We propose a comparison between the proposed rules w.r.t. the time complexity. The
following Tables 24 and 25 contain the computational times (in seconds) obtained
by implementing the product rule Σm,m( f ) and the 2D-dilation rule Ψm,m( f, ω) for
the integrals given in Examples 1–2 of Sect. 5. For each of them the times have been
computed for ω = 102, 104, 106, by implementing both the algorithms in Matlab
version R2016a, on a PC with a Intel Core i7-2600 CPU 3.40 GHz and 8 GB of
memory. We point out that times related to the product formula Σm,m( f ) include
those spent for computing the coefficients {Ar,s(K, ω)}(r,s)∈Nm

1 ×Nm
1

.
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Table 24 Times for Σm,m ( f ) and Ψm,m ( f, ω) in Example 1

m ω = 102 ω = 104 ω = 106

Σm,m ( f ) Ψm,m ( f, ω) Σm,m ( f ) Ψm,m ( f, ω) Σm,m ( f ) Ψm,m ( f, ω)

4 0.016 0.015 0.85 0.63 76.19 65.44

8 0.023 0.020 1.22 0.81 120.74 89.66

16 0.036 0.029 2.22 1.98 220.61 167.47

32 0.055 0.047 4.49 2.96 451.06 295.76

Table 25 Times for Σm,m ( f ) and Ψm,m ( f, ω) in Example 2

m ω = 102 ω = 104 ω = 106

Σm,m ( f ) Ψm,m ( f, ω) Σm,m ( f ) Ψm,m ( f, ω) Σm,m ( f ) Ψm,m ( f, ω)

4 0.023 0.018 0.852 0.669 79.33 65.08

8 0.025 0.024 1.208 1.124 123.81 109.97

16 0.036 0.033 2.219 2.155 229.61 217.20

32 0.068 0.072 4.449 4.630 458.91 461.75

As one can see, the timings required by the product rule are a little bit longer, but
not too much, than those required by the 2D-dilation rule, till m is small. However, in
the Example 2, with m = 32 and for all the values of ω, the timings required by the
product rule are a little bit smaller than those required by the 2D-dilation rule . Indeed,
2D-dilation requires (mS)2 samples of the integrand function f , where S increases
on ω. Thus the global time strongly depend on the computing time of the function. In

Example 2 the time complexity for evaluating f (x) = log
15
2 (x1+x2+4) is longer than

the time for computing f (x) = ex1x2 in Example 1. This variability cannot happen in
the product rule, where the number m of function samples is independent of ω. In any
case, since in the product rule the main effort is mainly due to the computation of its
coefficients, it should be preferable to use it when the kernels present some symmetry
properties, by virtue of them, the number of the coefficients is drastically reduced (see
Sect. 4.2.1).

8 Proofs

First we recall a result needed in the successive proof. Let

Sm(w1, h, t) =
m∑
i=0

ai (h)pi (wi , t), ai (h) =
∫ 1

−1
h(τ )pi (w1, τ )w1(τ ) dτ

be the m-th Fourier sum of the univariate function h ∈ L p
σ1((− 1, 1)) and let

Sm,m(w,G) be the bivariatem−th Fourier sum in the orthonormal polynomial systems
{pm(w1)}m , {pm(w2)}m of a given function G ∈ L p

σ (D), i.e.
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Sm,m(w,G, x) = Sm(w2, Sm(w1,Gx2 , x1), x2) ≡ Sm(w1, Sm(w2,Gx1 , x2), x1),

where Sm,m(w,G) ∈ Pm,m . For 1 < p < ∞, under the assumptions (see for instance
[15, p.2332])

σ√
wϕ1ϕ2

∈ L p(D),
w
σ

∈ Lq(D),
1

σ

√
w

ϕ1ϕ2
∈ Lq(D), q = p

p − 1
,

then, for any f ∈ Cσ

‖Sm,m(w, f )σ‖p ≤ C‖ f σ‖∞, C �= C(m, f ). (26)

Proof of Theorem 1. First we prove

||Lm,m(w; f )K(·, t)w||1 ≤ C‖ f σ‖∞, (27)

which implies (16). For any fixed t ∈ T, let gm = sgn(Lm,m(w; f )K (x, t)).
Then,

||Lm,m(w; f )K(·, t)w||1 =
∫

D
Lm,m(w; f ; x)K(x, t)(x)gm(x)w(x)dx

=
∣∣∣∣∣∣
m∑
i=1

m∑
j=1

λ
w1
m,iλ

w2
m, j f

(
ξ

w1,w2
i, j

) m−1∑
k=0

pk
(
w1, ξ

w1
i

) m−1∑
r=0

pr
(
w2, ξ

w2
j

)

×
∫

D
pk(w1, x1)pr (w2, x2)K(x, t)gm(x)w(x)dx

∣∣∣∣

=
∣∣∣∣∣∣
m∑
i=1

m∑
j=1

λ
w1
m,iλ

w2
m, j f

(
ξ

w1,w2
i, j

)
Sm,m

(
w;K(·, t)gm; ξ

w1,w2
i, j

)
∣∣∣∣∣∣

By Hölder inequality

||Lm,m(w; f )K(·, t)w||1 ≤
m∑
i=1

λ
w1
i

⎛
⎝ m∑

j=1

λ
w2
j f 2(ξw1,w2

i, j

)
⎞
⎠

1
2

×
⎛
⎝ m∑

j=1

λ
w2
j S2

m,m

(
w;K(·, t)gm; ξ

w1,w2
i, j

)⎞⎠
1
2

(28)

≤
⎛
⎝ m∑

i=1

m∑
j=1

λ
w1
i λ

w2
j f 2(ξw1,w2

i, j

)
⎞
⎠

1
2

(29)
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×
⎛
⎝ m∑

i=1

m∑
j=1

λ
w1
i λ

w2
j S2

m,m

(
w; K (·, t)gm; ξ

w1,w2
i, j

)⎞⎠
1
2

. (30)

Now, taking into account (26) and the assumptions (15)

⎛
⎝ m∑

i=1

m∑
j=1

λ
w1
i λ

w2
j S2

m,m

(
w;K(·, t)gm; ξ

w1,w2
i, j

)
⎞
⎠

1
2

=
(∫

D
S2
m,m (w;K(·, t)gm; x)w(x)dx

) 1
2

(31)

= ‖Sm,m (w;K(·, t)) √
w‖2 ≤ C‖K(·, t)√w‖2. (32)

Moreover,

⎛
⎝ m∑

i=1

m∑
j=1

f 2(ξw1,w2
i, j

)
⎞
⎠

1
2

≤ || f σ ||∞
⎛
⎝ m∑

i=1

m∑
j=1

λ
w1
i λ

w2
j

σ
(
ξ

w1,w2
i, j

)
⎞
⎠

1
2

and taking into account the relationship (see [14, p. 673 (14)])

λ
w j
i ∼ w j (x

w j
i )Δξ

w j
i , Δξ

w j
i = ξ

w j
i+1 − ξ

w j
i , j = 1, 2,

it follows

m∑
i=1

m∑
j=1

λ
w1
i λ

w2
j

σ
(
ξ

w1,w2
i, j

) ≤
m∑
i=1

m∑
j=1

Δξ
w1
i w1

(
ξ

w1
i

)
σ1

(
ξ

w1
i

) Δξ
w2
j w2

(
ξ

w2
j

)
σ2

(
ξ

w2
j

) ≤
∫

D

w(x)
σ (x)

dx ≤ C.

(33)
Combining last inequality and (32) with (28), (27) follows. To prove (17), start from

∣∣RΣ
m,m( f ; t)∣∣ ≤

∫
D

∣∣[ f (x) − P∗
m−1,m−1(x)

]
K(x, t)

∣∣w(x) dx

+
∫

D

∣∣Lm,m
(
w; f − P∗

m−1,m−1; x)K(x, t
)∣∣w(x) dx

=: A1(t) + A2(t), (34)

where P∗
m−1,m−1(x) is the best approximation polynomial of f ∈ Cσ . By Hölder

inequality and taking into account (14) and (15) it follows

A1(t) ≤ CEm−1,m−1( f )σ

∫
D

|K(x, t)|w(x)
σ (x)

dx ≤ CEm−1,m−1( f )σ . (35)

Since by (27)
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A2(t) ≤ CEm−1,m−1( f )σ , (36)

(17) follows combining (35), (36) with (34). ��

Proof of Theorem 2 First we prove (21). Starting from expression (38) given in the
“Appendix”, we obtain the following bound:

|Ψm,m(F, ω)| ≤ d2τ0

4
U1 max

x∈D
|F(x)K (x, ω)σ (x)|

{
τ1

m∑
r=1

m∑
s=1

λ
u2
r λ

u4
s

σ
(
ξ
u2,u4
r,s

)

+ τ2

m∑
r=1

m∑
s=1

λ
u2
r λ

u3
s

σ
(
ξ
u2,u3
r,s

) + τ3

m∑
r=1

m∑
s=1

λ
u1
r λ

u4
s

σ
(
ξ
u1,u4
r,s

) + τ4

m∑
r=1

m∑
s=1

λ
u1
r λ

u3
s

σ
(
ξ
u1,u3
r,s

)

+ τ1

S−1∑
j=2

m∑
r=1

m∑
s=1

λ
u2
r λ

u0
s

σ
(
ξ
u2,u0
r,s

) + τ2

S−1∑
i=2

m∑
r=1

m∑
s=1

λ
u0
r λ

u3
s

σ
(
ξ
u0,u3
r,s

)

+ τ1

S−1∑
i=2

m∑
r=1

m∑
s=1

λ
u0
r λ

u4
s

σ
(
ξ
u0,u4
r,s

) + τ3

S−1∑
j=2

m∑
r=1

m∑
s=1

λ
u1
r λ

u0
s

σ
(
ξ
u1,u0
r,s

)

+ τ1

S−1∑
i=2

S−1∑
j=2

m∑
r=1

m∑
s=1

λ
u0
r λ

u0
s

σ
(
ξ
u0,u0
r,s

)
⎫⎬
⎭ ,

where

U1 = max

(
‖U1‖, ‖U2‖, ‖U3‖, ‖U4‖, max

j∈Nm
1

(‖U5, j‖, ‖U6, j‖, ‖U7, j‖, ‖U8, j‖) ,

max
i∈Nm

1 , j∈Nm
1

‖U9,i, j‖
)

,

and using (33), we have

|Ψm,m(F, ω)| ≤ CU1‖FK(·, ω)σ‖∞

⎧⎨
⎩

∑
k=0,1,2

∑
j=0,3,4

∫
D

uk(x1)u j (x2)

σ (x1, x2)
dx1dx2

⎫⎬
⎭ .

Then, taking into account the assumption (20) and Proposition 1, in view of the bound-
edness of K(·, ω), we can conclude

|Ψm,m(F, ω)| ≤ C‖Fσ‖∞.

Now we prove (22). By (38) taking into account (10) and under the assumption (20)
we have
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∣∣RΨ
m,m(F, ω)

∣∣ ≤ C
{
E2m−1,2m−1(F1,1K1,1U1)σ + E2m−1,2m−1(F1,1K1,1U2)σ

+E2m−1,2m−1(FS,1KS,1U3)σ +
S−1∑
j=2

E2m−1,2m−1(F1, j K1, jU5, j )σ

+
S−1∑
i=2

E2m−1,2m−1(Fi,SKi,SU6,i )σ +
S−1∑
i=2

E2m−1,2m−1(Fi,1Ki,1U7,i )σ

+
S−1∑
j=2

E2m−1,2m−1(FS, j KS, jU8, j )σ

+
S−1∑
i=2

S−1∑
j=2

E2m−1,2m−1(Fi, j Ki, jU9,i, j )σ

+ E2m−1,2m−1(FS,SKS,SU4)σ
}
.

Taking into account (7) we get

|RΨ
m,m(F, ω)| ≤ C

⎧⎨
⎩U

S∑
j=1

S∑
i=1

Em−1,m−1(Fi, j Ki, j )σ

+M̃max
r

mr

S∑
j=1

S∑
i=1

‖Fi, j Ki, jσ‖∞

⎫⎬
⎭ (37)

where

U = max

(
‖U1σ‖, ‖U2σ‖, ‖U3σ‖, ‖U4σ‖,

max
j∈Nm

1

(‖U5, jσ‖, ‖U6, jσ‖, ‖U7, jσ‖, ‖U8, jσ‖), max
i∈Nm

1 , j∈Nm
1

‖U9,i, jσ‖
)

≤ C

and

M̃max
r := max

{
max

1≤k≤4
Mr (Uk), max

2≤i≤S−1

[
Mr (U5,i ),Mr (U6,i ),Mr (U7,i ),Mr (U8,i ),

max
2≤ j≤S−1

Mr (U9,i, j )

]}
≤ C

(
d

2ω1

)r
U .

Since for h ∈ {1, 2} and (i, j) ∈ NS
1 × NS

1

∣∣∣∣ ∂r

(∂xh)r

(
Fi, j Ki, j

)
(x1, x2)

∣∣∣∣ ≤
r∑

k=0

(
r

k

) ∣∣∣∣∣
∂k

(∂xh)k
Fi, j (x1, x2)

∣∣∣∣∣
∣∣∣∣∣

∂r−k

(∂xh)r−k
Ki, j (x1, x2)

∣∣∣∣∣ ,
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we have
∣∣∣∣ ∂r

(∂xh)r
(
Fi, j Ki, j

)
(x1, x2)

∣∣∣∣ϕh(xh)
rσ (x1, x2)

≤ max
k∈Nr

0

{∥∥∥∥ ∂k F

(∂xh)k
ϕr
hσ

∥∥∥∥∞

∥∥∥∥∂r−kK(·, ω)

(∂xh)r−k

∥∥∥∥
Ω,∞

}
r∑

k=0

(
r

k

)(
d

2ω1

)k (
d

2

)r−k

= max
k∈Nr

0

{∥∥∥∥ ∂k F

(∂xh)k
ϕr
hσ

∥∥∥∥∞

∥∥∥∥∂r−kK(·, ω)

(∂xh)r−k

∥∥∥∥
Ω,∞

}(
d

2

)r (
1

ω1
+ 1

)r

,

Ω ≡ [−ω1, ω1]2,

and therefore, taking into account (6), by (37) it follows

|RΨ
m,m(F, ω)| ≤ C

mr

{
U max

h∈N2
1

max
k∈Nr

0

(∥∥∥∥ ∂k F

(∂xh)k
ϕr
hσ

∥∥∥∥∞

∥∥∥∥∂r−kK(·, ω)

(∂xh)r−k

∥∥∥∥
Ω,∞

)

×
(
d

2

)r (
1

ω1
+ 1

)r

+ M̃max
r ‖FKσ‖∞

}

≤ C
mr

Nr (F, K )

(
d

2

)r (
1

ω1
+ 1

)r

,

where

Nr (F, K ) = ‖Fσ‖∞ + max
h∈N2

1

max
k∈Nr

0

(∥∥∥∥∂r−kK(·, ω)

(∂xh)r−k

∥∥∥∥
Ω,∞

×
∥∥∥∥∂k F(·, ω)

(∂xh)k

∥∥∥∥∞

)
.

and the thesis follows. ��

Proof of Corollary 1 In order to use Theorem 2 with r = 2m, we have to estimate
N2m(�

w1,w2
r,s ,K). By iterating the weighted Bernstein inequality (see for instance [10,

p.170])

‖(�w1
r )(m−1)ϕm−1

1 σ1‖∞ ≤ C mm−1‖�w1
r σ1‖∞

and taking into account that under the hypotheses (15) [10, Th.4.3.3, p.274 and p.256]

max|x |≤1

m∑
k=1

|�w1
k (x)| σ1(x)

σ1(ξ
w1
k )

≤ Cmμ,

with μ defined in (25), we can conclude

‖(�w1
r )(m−1)ϕm−1

1 σ1‖∞ ≤ C mm−1‖�w1
r σ1‖∞ ≤ C mm−1+μ, C �= C(m).
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Hence,

N2m(�w1,w2
r,s ,K) ≤ C mm−1+μ max

h∈N2
1

max
k∈Nm−1

0

∥∥∥∥∂2m−kK(·, ω)

(∂xh)2m−k

∥∥∥∥
Ω,∞

and by (22) and using

(
d

2m

)2m (
1

ω1
+ 1

)2m

≤ e
−2m logm

(
1− log(d/2)

logm − 1
ω1 logm

)
≤ 1

m2m

for m > d
4 e

1
ω1 , the thesis follows. ��

Acknowledgements We want to thank the anonymous referee for the careful reading of the manuscript
and for the valuable comments. We are also grateful to Professor G. Mastroianni for his helpful suggestions.

9 Appendix

Now we derive the expression of the cubature rule (2). Recalling the settings

ψk(z) =
(
z + 1

2

)
d − ω1 + (k − 1)d, k = 1, 2, . . . , S

Fi, j (x) = F

(
ψi (x1)

ω1
,
ψ j (x2)

ω1

)
, Ki, j (x) = K

(
ψi (x1)

ω1
,
ψ j (x2)

ω1
, ω

)

wi, j (x) = w1

(
ψi (x1)

ω1

)
w2

(
ψ j (x2)

ω1

)
,

we get

I(F, ω) = d2τ0

4

S∑
i=1

S∑
j=1

∫
D
Fi, j (x)Ki, j (x)wi, j (x)dx

= d2τ0

4

⎧⎨
⎩τ1

∫
D
F1,1(x)K1,1(x)U1(x)u2(x1)u4(x2) dx

+τ2

∫
D
F1,S(x)K1,S(x)U2(x)u2(x1)u3(x2)dx

+τ3

∫
D
FS,1(x)KS,1(x)U3(x)u1(x1)u4(x2)dx

+τ4

∫
D
FS,S(x)KS,S(x)U4(x)u1(x1)u3(x2)dx

+τ1

S−1∑
j=2

∫
D
F1, j (x)K1, j (x)U5, j (x)u2(x1)dx

123



Cubature formulae for nearly singular and highly oscillating… Page 31 of 33 4

+τ2

S−1∑
i=2

∫
D
Fi,S(x)Ki,S(x)U6,i (x)u3(x2)dx

+τ1

S−1∑
i=2

∫
D
Fi,1(x)Ki,1(x)U7,i (x)u4(x2)dx

+τ3

S−1∑
j=2

∫
D
FS, j (x)KS, j (x)U8, j (x)u1(x1)dx

+ τ1

S−1∑
i=2

S−1∑
j=2

∫
D
Fi, j (x)Ki, j (x)U9,i, j (x)dx

⎫⎬
⎭ ,

where

U1(x) = vα1,0
(

ψ1(x1)

ω1

)
vα2,0

(
ψ1(x2)

ω1

)
,

U2(x) = vα1,0
(

ψ1(x1)

ω1

)
v0,β2

(
ψS(x2)

ω1

)
,

U3(x) = v0,β1

(
ψS(x1)

ω1

)
vα2,0

(
ψ1(x2)

ω1

)
,

U4(x) = v0,β1

(
ψS(x1)

ω1

)
v0,β2

(
ψS(x2)

ω1

)
,

U5, j (x) = vα1,0
(

ψ1(x1)

ω1

)
w2

(
ψ j (x2)

ω1

)
,

U6,i (x) = v0,β2

(
ψS(x2)

ω1

)
w1

(
ψi (x1)

ω1

)
,

U7,i (x) = vα2,0
(

ψ1(x2)

ω1

)
w1

(
ψi (x1)

ω1

)
,

U8, j (x) = v0,β1

(
ψS(x1)

ω1

)
w2

(
ψ j (x2)

ω1

)
,

U9,i, j (x) = w1

(
ψi (x1)

ω1

)
w2

(
ψ j (x2)

ω1

)

and

τ1 =
(

d

2ω1

)β1+β2

, τ2 =
(

d

2ω1

)β1+α2

, τ3 =
(

d

2ω1

)α1+β2

, τ4 =
(

d

2ω1

)α1+α2

.

u0 = v0,0, u1 = vα1,0, u2 = v0,β1 , u3 = vα2,0, u4 = v0,β2 .

Then, approximating each integral by the proper Gauss–Jacobi rule depending on the
couple of weight functions arising in the integral, according to the notation in (9), we
get
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I(F, ω) = d2τ0

4

⎧⎨
⎩τ1G(u2,u4)

m,m

(
F1,1K1,1U1

) + τ2G(u2,u3)
m,m

(
F1,SK1,SU2

)

+τ3G(u1,u4)
m,m

(
FS,1KS,1U3

) + τ4G(u1,u3)
m,m

(
FS,SKS,SU4

)

+τ1

S−1∑
j=2

G(u2,u0)
m,m

(
F1, j K1, jU5, j

) + τ2

S−1∑
i=2

G(u0,u3)
m,m

(
Fi,SKi,SU6,i

)

+τ1

S−1∑
i=2

G(u0,u4)
m,m

(
Fi,1Ki,1U7,i

) + τ3

S−1∑
j=2

G(u1,u0)
m,m

(
FS, j KS, jU8, j

)

+ τ1

S−1∑
i=2

S−1∑
j=2

G(u0,u0)
m,m

(
Fi, j Ki, jU9,i, j

)
⎫⎬
⎭ =: Ψm,m(F, ω) + RΨ

m,m(F, ω).

(38)
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