
Calcolo (2017) 54:1481–1490
https://doi.org/10.1007/s10092-017-0236-1

Improved convergence theorems of modulus-based
matrix splitting iteration method for nonlinear
complementarity problems of H-matrices

Hua Zheng1

Received: 17 March 2017 / Accepted: 20 August 2017 / Published online: 5 September 2017
© Springer-Verlag Italia S.r.l. 2017

Abstract In this paper, the convergence conditions of the modulus-based matrix
splitting iteration method for nonlinear complementarity problem of H -matrices are
weakened. The convergence domain given by the proposed theorems is larger than the
existing ones. Numerical examples show the advantages of the new theorems.
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1 Introduction

In this work, we consider the nonlinear complementarity problem (NCP( f )) consists
of finding vectors z ∈ Rn such that

f (z) = Az + q + ϕ(z) ≥ 0, z ≥ 0 and zT f (z) = 0, (1)

where A ∈ Rn×n , q ∈ Rn and ϕ(z) is nonlinear function.
If ϕ(z) = 0, (1) reduces to the linear complementarity problem (LCP(q, A)),

which arises in the optimal stopping inMarkov chain, the economies with institutional
restrictions upon prices, the network equilibrium problems, the linear and quadratic
programming, the free boundary problems and the contact problems; see [1,2] for
details.
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In the recent years, the modulus-based matrix splitting iteration method and its
various generalizations for solving LCP(q, A) were widely studied, which yields a
series of iteration methods, such as modulus-based Jacobi, Gauss–Seidel, SOR and
AOR iteration methods. For more works about the modulus-based matrix splitting
iteration method, see [3–14]. The global convergence conditions of these methods are
discussed when the system matrix is either a positive definite matrix or an H+-matrix;
see the references mentioned above for details.

If ϕ(z) in (1) is a general function, then the problem (1) belongs to nonlinear
complementarity problems, see [15,16] for their important applications in various
fields. In [17] and [18], themodulus-basedmatrix splitting iterationmethod for solving
a class of NCP( f ) is established. Ma and Huang present the modified modulus-based
matrix splitting iteration method in [19]. The two step modulus-based matrix splitting
iterationmethod is given in [20]. The convergence results are givenwhen A is a positive
definite matrix in these works. When A is an H -matrix, the convergence analysis is
presented only in [17], where the splitting is assumed to be an H -compatible splitting.

In this paper, the convergence theories of modulus-based matrix splitting iteration
method for NCP( f ) of H -matrices is improved by giving a weaker condition of
splitting and a lager convergence domain.

The rest of this paper is organized as follows. In Sect. 2 we give some useful
notations, definitions and lemmas. In Sect. 3 we give the new convergence analysis.
Numerical tests are presented in Sect. 4 and a conclusion remark is given in the final
section.

2 Preliminaries

The goal of this section is to introduce some notations, preliminary definitions and
necessary lemmas.

For two m × n real matrices B = (bi j ) and C = (ci j ) the order B ≥ (>)C
means bi j ≥ (>)ci j for any i and j. Let e be an n × 1 vector whose elements are all
equal to 1, A = (ai j ) ∈ Rn×n and let A = DA = L A − UA = DA − BA, where
DA, L A,UA and BA are the diagonal, the strictly lower-triangular, the strictly upper-
triangular and nondiagonal matrices of A, respectively. For v = (v1, ..., vn)

T ∈ Rn ,
diag(v) = diag(v1, ..., vn) denotes a diagonal matrix with vi , i = 1, 2, · · · , n as its
diagonal entries.

By |A| we denote |A| = (|ai j |) and the comparison matrix of A is 〈A〉 = (〈ai j 〉),
defined by 〈ai j 〉 = |ai j | if i = j and 〈ai j 〉 = −|ai j | if i �= j . The matrix A is
called (e.g., see [21]) a Z -matrix if all of its off-diagonal entries are non-positive,
an M-matrix if it is a nonsingular Z -matrix with A−1 ≥ 0, and an H -matrix if its
comparison matrix 〈A〉 is an M-matrix. Specially, an H -matrix with positive diagonal
entries is called an H+-matrix (e.g., see [22]).

The splitting A = M − N is called an M-splitting if M is an M-matrix and
N is nonnegative; an H -splitting if 〈M〉 − |N | is an M-matrix; and an H -compatible
splitting if 〈A〉 = 〈M〉−|N | (e.g., see [13]). Note that if A = M−N is anM-splitting,
then ρ(M−1N ) < 1 (e.g., see [21]). It is known that an H -compatible splitting of an
H -matrix is an H -splitting, but not vice versa, see [8,13].
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Lemma 1 [23] Let A be an H-matrix. Then |A−1| ≤ 〈A〉−1.

Lemma 2 [24] Let B ∈ Rn×n be a strictly diagonal dominant matrix. Then ∀C ∈
Rn×n,

||B−1C ||∞ ≤ max
1≤i≤n

(|C |e)i
(〈B〉e)i .

Lemma 3 [21] Let A be a Z-matrix. Then A is an M-matrix if and only if there exists
a positive diagonal matrix D, such that AD is a strictly diagonal dominant matrix
with positive diagonal entries.

3 Improved convergence theorems

Let A = M − N be a splitting of A, h be a positive constant, and Ω be a positive
diagonal matrix. It is known from [17] and [18] that (1) can be changed to a equivalent
fixed-point equations. The next lemma is a known result.

Lemma 4 [17] Let A = M − N be a splitting of the matrix A ∈ Rn×n, and Ω be a
positive diagonal matrix. For (1), the following statements hold true:
(1) If z is a solution of (1),then x = h

2 (z − Ω−1 f (z)) satisfies the implicit fixed-point
equation:

(Ω + M)x = Nx + (Ω − A)|x | − h

[
q + ϕ

(
1

h
(|x | + x)

)]
; (2)

(2) If x satisfies (2), then z = 1
h (|x | + x) is a solution of (1).

By (2), the modulus-based matrix splitting iteration method for solving (1) is given
below:

Method 1 [17,18] Let A = M − N be a splitting of A. Given an initial vector
x (0) ∈ Rn, for k = 1, 2, · · · until the iteration sequence {z(k)}+∞

k=1 ⊂ Rn is convergent,
compute x (k) ∈ Rn by solving the linear system

(Ω+M)x (k)=Nx (k−1)+(Ω − A)|x (k−1)| − h

[
q + ϕ

(
1

h

(
|x (k−1)| + x (k−1)

))]
,

(3)

and set

z(k) = 1

h

(
|x (k)| + x (k)

)
.

Here Ω is an n × n positive diagonal matrix and h is a positive constant.
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In Method 1, taking

M = 1

α
(DA − βL A), N = 1

α
[(1 − α)DA + (α − β)LA + αUA] ,

we can obtain the modulus-based accelerated overrelaxation (MAOR) iteration
method, which extends a series of relaxation modulus-based methods, such as the
modulus-based successive overrelaxation (MSOR) iteration method, the modulus-
based Gauss–Seidel (MGS) iteration method and the modulus-based Jacobi (MJ)
iteration method when α = β, α = β = 1 and α = 1, β = 0, respectively; see
[17] for details.

To present the following discussion, we assume that

ϕ(z) = (ϕ1(z1)), ϕ2(z2)), · · · , ϕn(zn))
T

is differentiable, satisfying that 0 ≤ dϕi (zi )
dzi

≤ ψi , where ψi ∈ R, i = 1, 2, · · · , n. By

the mean-value theorem, there exists ζ
(k)
i ∈ R, such that

ϕi (z
(k)
i ) − ϕ(z∗i ) = dϕi (ζ

(k)
i )

dzi
(z(k)i − z∗i ), i = 1, 2, · · · , n.

Let

Ψ (k) = diag

(
dϕ1(ζ

(k)
1 )

dz1
,
dϕ2(ζ

(k)
2 )

dz2
, · · · ,

dϕn(ζ
(k)
n )

dzn

)

and Ψ = diag(ψ1, ψ2, · · · , ψn). (4)

Then we have

ϕ(z(k)) − ϕ(z∗) = Ψ (k)(z(k) − z∗) and Ψ (k) ≤ Ψ. (5)

Lemma 5 Let Ω be a positive diagonal matrix, A ∈ Rn×n be an H+-matrix and
A = M − N be an H-splitting of A. Then Ω + M is an H-matrix and there exists a
positive diagonal matrix D such that (〈M〉− |N |)D and (Ω +〈M〉)D are two strictly
diagonal dominant matrices, and (〈A〉 + 〈M〉 − |N |)De > 0.

Proof Since A = M−N is an H -splitting of A, 〈M〉−|N | and 〈A〉 are twoM-matrices.
From Lemma 3, there exists a positive diagonal matrix D, such that (〈M〉 − |N |)D is
a strictly diagonal dominant matrix. For 〈M〉 ≥ 〈M〉 − |N |, (Ω + 〈M〉)D is strictly
diagonal dominant too. Since

〈A〉 + 〈M〉 − |N |
= |DM − DN | − |BM − BN | + 〈M〉 − |N |
≥ |DM | − |DN | − |BM | − |BN | + 〈M〉 − |N |
= 2(〈M〉 − |N |),
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(〈A〉 + 〈M〉 − |N |)D is also a strictly diagonal dominant matrix, and then (〈A〉 +
〈M〉 − |N |)De > 0.

Theorem 3.1 Let A be an H+-matrix, A = M − N be an H-splitting and (5) holds
with Ψ (k) and Ψ given by (4). If Ω ≥ DM + Ψ , then the iteration sequence {z(k)}+∞

k=1
generated by Method 1 converges to the unique solution z∗ ∈ Rn of (1) for any initial
vector x (0) ∈ Rn.

Proof Let z∗ be a solution of (1). Then we have x∗ = h
2 (z∗ − Ω−1 f (z∗)), leading to

(Ω + M)x∗ = Nx∗ + (Ω − A)|x∗| − h

[
q + ϕ

(
1

h

(|x∗| + x∗))]
. (6)

To prove lim
k→+∞ z(k) = z∗, we need only to prove lim

k→+∞ x (k) = x∗. By Lemma 5,

Ω + M is a H -matrix. With (3), (6) and Lemma 1, we have

|x (k) − x∗|
=

∣∣∣(Ω + M)−1
{
N (x (k−1) − x∗) + (Ω − A)(|x (k−1)| − |x∗|)

− h

[
ϕ

(
1

h

(
|x (k−1)| + x (k−1)

))
− ϕ

(
1

h

(|x∗| + x∗))]}∣∣∣∣
=

∣∣∣(Ω + M)−1
{
N (x (k−1) − x∗) + (Ω − A)(|x (k−1)| − |x∗|)

−Ψ (k−1)
[
(|x (k−1)| − |x∗|) + (x (k−1) − x∗)

]}∣∣∣
=

∣∣∣(Ω + M)−1
[(

N − Ψ (k−1)
) (

x (k−1) − x∗)

+ (Ω − A − Ψ (k−1))
(
|x (k−1)| − |x∗|

)]∣∣∣
≤ |(Ω + M)−1|(|N − Ψ (k−1)| + |Ω − M + N − Ψ (k−1)|)|x (k−1) − x∗|
≤ (Ω + 〈M〉)−1(|N − Ψ (k−1)| + |Ω − M − Ψ (k−1)| + |N |)|x (k−1) − x∗|
.= L1|x (k−1) − x∗|, (7)

where

L1 = M̃−1
1 Ñ1, M̃1 = Ω + 〈M〉 and Ñ1 = |N − Ψ (k−1)| + |Ω − M − Ψ (k−1)| + |N |.

If Ω ≥ DM + Ψ , we have

M̃1 − Ñ1

= Ω + 〈M〉 − |N − Ψ (k−1)| − |Ω − M − Ψ (k−1)| − |N |
= 2〈M〉 − 2|N | + |Ψ (k−1)| + |N | − |N − Ψ (k−1)|

≥ 2〈M〉 − 2|N |. (8)

Since A = M − N is an H -splitting, 〈M〉 − |N | is an M-matrix. we easily have that
M̃1 is an M-matrix too. Obviously, M̃1 − Ñ1 is a Z -matrix. Hence by (8), M̃1 − Ñ1 is
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an M-matrix. Together with that M̃ is an M-matrix and Ñ1 ≥ 0, we have that M̃ − Ñ
is an M-splitting. Then ρ(L1) < 1, which implies that lim

k→+∞ x (k) = x∗. �

Let α, β be the relaxation parameters used in MAOR. Since M = 1
α
(DA − βL A),

obviously, we have the next corollary.

Corollary 1 With the same notations and assumptions as in Theorem 3.1, let α, β

be the relaxation parameters in MAOR. If 0 < β ≤ α ≤ 1 and Ω ≥ 1
α
DA + Ψ ,

the iteration sequence {z(k)}+∞
k=1 generated by MAOR converges to the unique solution

z∗ ∈ Rn of (1) for any initial vector x (0) ∈ Rn.

Remark 1 Clearly, the assumption that A = M − N is an H -splitting in Theorem 3.1
and Corollary 1, is weaker than the one in Theorem 4.3 of [17], where such splitting
is assumed to be an H -compatible splitting.

Next we give another convergence theorem which provided a larger convergence
domain than that in [17].

Theorem 3.2 Let A be an H+-matrix, A = M − N be an H-splitting of A and (5)
hold with Ψ (k) and Ψ given by (4). Then the iteration sequence {z(k)}+∞

k=1 generated
by Method 1 converges to the unique solution z∗ ∈ Rn of (1) for any initial vector
x (0) ∈ Rn provided that Ω satisfies one of the following conditions:

(I)

Ω ≥ DA + Ψ ;

(II) [
1

2
(|A| − 〈M〉 + |N |) + Ψ

]
De < ΩDe ≤ (DA + min

1≤i≤n
ψi I )De, (9)

where D is given by Lemma 5.

Proof By (7), we have

|x (k) − x∗|
≤ |(Ω + 〈M〉)−1|(|N − Ψ (k−1)| + |Ω − A − Ψ (k−1)|)|x (k−1) − x∗|
.= L2|x (k−1) − x∗|,

where

L2 = M̃−1
2 Ñ2, M̃ = Ω + 〈M〉, Ñ2 = |N − Ψ (k−1)| + |Ω − A − Ψ (k−1)|.

By Lemma 2 and 5, we have

||D−1L2D|| = ||(M̃2D)−1(Ñ2D)|| ≤ max
1≤i≤n

(Ñ2De)i

(M̃2De)i
. (10)
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Case (I) If Ω ≥ DA + Ψ , we have

M̃2De − Ñ2De

= (Ω + 〈M〉 − |N − Ψ (k−1)| − |Ω − A − Ψ (k−1)|)De

= (〈A〉 + 〈M〉 − |N | + |Ψ (k−1)| + |N | − |N − Ψ (k−1)|)De

≥ (〈A〉 + 〈M〉 − |N |)De

> 0.

Case (II) If
[ 1
2 (|A| − 〈M〉 + |N |) + Ψ

]
De < ΩDe ≤ (DA + min

1≤i≤n
ψi I )De, we

have

M̃2De − Ñ2De

≥ (2Ω − |A| + 〈M〉 − |N | − 2|Ψ (k−1)|)De

≥ (2Ω − |A| + 〈M〉 − |N | − 2|Ψ |)De

> 0.

Summarizing Case (I) and (II), by (10), we have ρ(L2) ≤ ||D−1L2D|| < 1. �
Remark 2 For MAOR, since M = 1

α
(DA − βL A), we have DM ≥ DA. Hence the

convergence domain in Theorem 3.2 is larger than that in Theorem 4.4 of [17].

4 Numerical examples

In this section, we give a numerical example to show the advantages of the new
convergence theorems. All the computations were run by MATLAB R2016a on an
Intel(R) Core(TM), where the CPU is 2.50 GHz and the memory is 4.00 GB.

In the following numerical implementations, all initial vectors are chosen to be
x (0) = e and all iterations are terminated once

||min(Az(k) + q + ϕ(z(k)), z(k))||2
||min(Az(1) + q + ϕ(z(0)), z(0))||2 ≤ 10−6,

where the minimum is taken componentwise.

Example 1 [18,19,25] Consider the problem arises from the discretization of the
boundary problems. Let D = (0, 1) × (0, 1) and function g satisfy g(0, y) =
y(1 − y), g(x, y) = 0 on y = 0, y = 1 or x = 1. Find u such that

⎧⎪⎪⎨
⎪⎪⎩

u ≥ 0, in D;
−Δ + f (u, x, y) − 8(y − 0.5) ≥ 0, in D;
u(−Δ + f (u, x, y) − 8(y − 0.5)) = 0, in D;
u = g, on ∂D,

where f (u, x, y) is continuously differentiable and ∂ f
∂u ≥ 0 on D̄ × {u : u ≥ 0}.
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By discreting the problem using the five-point difference scheme with mesh-step
size h = 1

2ς , we can get the nonlinear complementarity problem (1). More concretely,
the matrix A is given by the block tridiagonal matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S −I
−I S −I

−I S
. . .

. . .
. . . −I
−I S −I

−I S

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Rn×n,

with S = tridiag(−1, 4,−1) ∈ Rm×m and I ∈ Rm×m is the identity matrix, where
n = m2 and m = 1

h − 1.
Clearly, A is a symmetry positive definite H+-matrix. Let f (u, x, y) be u2, u −

sinu, ln(1 + x) and arctanu, respectively. If we take Ψ = 2I , it is easy to see that
(5) holds. We present two experiments with different parameters.
Experiment (I) Take Ω = DA + 2I . Let ς = 8 and ς = 9, respectively. Consider
the splitting A = M1 − N1, where

M1 =

⎛
⎜⎜⎜⎝
Ŝ

Ŝ
. . .

Ŝ

⎞
⎟⎟⎟⎠ and Ŝ = tridiag(1, 4, 0). (11)

Experiment (II) Let Ω = DA and Ω = DA − 0.9I , respectively. Take ς = 9 and
consider the MSOR (α = 1.2).

All numerical results are shown in Table 1, whereMethod 1 converges for all cases.
The number of iteration steps is denoted by ‘IT’ and the elapsed CPU time in seconds
is denoted by ‘CPU’.

In Experiment (I), since 〈M1〉 − |N1| �= 〈A〉, the splitting (11) is not an H -
compatible splitting, which leads to that the convergence results of Method 1 in [17]
cannot be used here. On the other hand, for 〈M1〉 − |N1| is an M-matrix, the splitting

Table 1 Numerical results of Example 1

f (u, x, y) Experiment (I) Experiment (II)

ς = 8 ς = 9 Ω = DA Ω = DA − 0.9I
IT CPU IT CPU IT CPU IT CPU

u2 44 0.4936 46 2.3146 22 1.0523 42 2.1301

u − sinu 161 1.7996 164 8.6693 89 4.4786 76 4.0518

ln(1 + u) 47 0.6779 49 2.8868 25 1.3970 39 2.2961

arctanu 44 0.4976 45 2.302 26 1.3271 50 2.6430
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(11) is an H -splitting. The results of Experiment (I) show the advantage of Theorem
3.1.

In Experiment (II), Ω = DA and Ω = DA − 0.9I are in the convergence range
(9), which is not the convergence condition of Theorem 4.4 of [17]. The results of
Experiment (II) also show the advantage of Theorem 3.2.

5 Conclusion

Theorems 3.1 and 3.2 give the convergence theories of modulus-based matrix splitting
iteration methods for NCP( f ) under the weaker condition that A = M − N is an
H -splitting. Since an H -splitting of an H -matrix is not necessarily an H -compatible
splitting,we havemore choices for the splitting A = M−N whichmakes themodulus-
based matrix splitting iteration methods converge than [17]. Furthermore, comparing
to the convergence domain in [17], a larger one is given by Theorems 3.2. Therefore,
our convergence theories extend the scope of modulus-based matrix splitting iteration
methods for NCP( f ) in applications.
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