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Abstract We propose an implicit Newmark method for the time integration of
the pressure–stress formulation of a fluid–structure interaction problem. The space
Galerkin discretization is based on the Arnold–Falk–Winther mixed finite element
methodwith weak symmetry in the solid and the usual Lagrange finite elementmethod
in the acousticmedium.We prove that the resulting fully discrete scheme is well-posed
and uniformly stable with respect to the discretization parameters and Poisson ratio,
and we provide asymptotic error estimates. Finally, we present numerical tests to
confirm the asymptotic error estimates predicted by the theory.
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1 Introduction

Recently, the time-domain fluid–structure interaction problem has been formulated in
[13] by considering the stress tensor and the fluid pressure as primary variables. The
resulting variational problem is symmetric and immune to the locking phenomenon
that generally affects displacement based formulations in the nearly incompressible
case. Indeed, the convergence analysis presented in [13] revealed that the space semi-
discrete Galerkin scheme based on the Arnold–Falk–Winther mixed finite element
method with weak symmetry in the solid and the Lagrange finite element method
in the acoustic medium is uniformly stable with respect to the space discretization
parameter and the Poisson ratio. We also point out that the method provides a direct
approximation of the stress tensor, which is the variable of interest in many applica-
tions. We refer to [13] for more details and for a comparison with the formulations
proposed in [10] and [6].

This paper completes the study given in [13] by carrying out the convergence
analysis of an implicit time integration based on the Newmark trapezoidal rule. Fol-
lowing the steps given in [12, Section 6], we establish the unconditional stability of
the resulting fully discrete method when the mesh parameters h and �t go to 0 and
when the Lamé coefficient λ tends to infinity. Finally, we prove that if the kth-order
Arnold–Falk–Winther element and the kth-order Lagrange element (k ≥ 1) are used
in the solid and the fluid domains, respectively, then the error exhibits a combined
space–time asymptotic behaviour given by O(hk) + O((�t)2).

The rest of the paper is organized as follows. We begin by introducing in Sect. 2
some basic notations and properties needed in the forthcoming analysis. In Sects. 3
and 4 we summarize the results obtained in [13] which will be required to present our
numerical scheme. Then, in Sect. 5 we use an implicit Newmark method to obtain a
fully discrete version of the problem and carry out its convergence analysis. Finally, in
Sect. 6we present numerical results that confirm the theoretical convergence estimates.

2 Notations and preliminary results

In what follows, I denotes the identity matrix of Rd×d (d = 2, 3), and 0 repre-
sents the null vector in R

d or the null tensor in R
d×d . In addition, given τ := (τi j )

and σ := (σi j ) ∈ R
d×d , we define as usual the transpose tensor τt := (τ j i ), the

trace tr τ := ∑d
i=1 τi i , the deviatoric tensor τD := τ − 1

d (tr τ ) I , and the tensor

inner product τ : σ := ∑d
i, j=1 τi jσi j . We now let � be a polyhedral Lipschitz

bounded domain ofRd , with boundary ∂�, and denote byD(�) the space of infinitely
differentiable functions with compact support in �. For s ∈ R, ‖·‖s,� stands indis-
tinctly for the norm of the Hilbertian Sobolev spaces Hs(�), Hs(�)d or [Hs(�)]d×d ,
with the convention H0(�) := L2(�). We also denote by (·, ·)0,� the inner prod-
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uct in L2(�), L2(�)d or [L2(�)]d×d . We notice that the orthogonal decomposition
[L2(�)]d×d = [L2(�)]d×d

sym ⊕ [L2(�)]d×d
skew holds true with

[L2(�)]d×d
sym :=

{
τ ∈ [L2(�)]d×d; τ = τt

}
and

[L2(�)]d×d
skew := {τ ∈ [L2(�)]d×d; τ = −τt}.

We introduce the Hilbert space

H(div ,�) :=
{
τ ∈ [L2(�)]d×d; div τ ∈ L2(�)d

}
,

whose norm is given by ‖τ‖2H(div ,�) := ‖τ‖20,� + ‖div τ‖20,�. In turn, given p ∈
[1,+∞], T > 0 and a separableHilbert space V with norm ‖·‖V , we let L

p((0, T ); V )

be the space of classes of functions f : (0, T ) → V that are Bochner-measurable
and such that ‖ f ‖Lp((0,T );V ) < ∞, with

‖ f ‖p
Lp((0,T );V )

:=
∫ T

0
‖ f (t)‖p

V dt (1 ≤ p < ∞) and

‖ f ‖L∞((0,T );V ) := ess sup
[0,T ]

‖ f (t)‖V .

For any k ∈ N, we consider the space Ck((0, T ); V ) of all functions f with (strong)
derivatives f ( j) in C0((0, T ); V ) for all 1 ≤ j ≤ k, where C0((0, T ); V ) stands for
the Banach space consisting of all continuous functions f : [0, T ] → V . We will
also denote ḟ and f̈ the first and second derivatives with respect to the variable t .
Furthermore, we will use the Sobolev space

W1,p((0, T ); V ) :=
{

f : ∃g ∈ Lp((0, T ); V ) and ∃ f0 ∈ V such that

f (t) = f0 +
∫ t

0
g(s) ds ∀ t ∈ [0, T ]

}

.

With the convention that W0,p((0, T ); V ) = Lp((0, T ); V ), the space Wk,p

((0, T ); V ) is defined recursively for all k ∈ N, that is

Wk,p((0, T ); V ) :=
{

f : ∃g ∈ Wk−1,p((0, T ); V ) and ∃ f0 ∈ V

such that f (t) = f0 +
∫ t

0
g(s) ds ∀ t ∈ [0, T ]

}

.

Throughout this paper we use C (with or without subscripts) to denote generic con-
stants independent of the parameters indicated at each instance.We point out that these
constants may take different values at different places.
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Fig. 1 Fluid and solid domains
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3 Stress–pressure variational formulation of the model problem

We consider a solid body represented by a connected polyhedral Lipschitz domain
�S whose boundary is given by two connected components � and 	. The cavity
�F delimited by the inner boundary � is filled with an homogeneous, inviscid and
compressible fluid (see Fig. 1). Our objective is to compute the linear oscillations that
take place in the fluid–solid domain � := �S ∪ � ∪ �F, under the action of a given
loading f : (0, T ] × �S → R

n prescribed in the solid domain. We assume that the
solid is fixed at a nonempty part 	D of the external boundary 	 := ∂� and impose
a traction-free boundary condition on its complement 	N := 	\	D. We denote n
the outward unit normal vector to 	 ∪ � and select on � the orientation that points
outward to �F. More precisely, the mathematical model associated to the physical
phenomenon under interest is given by the set of equations

ρSü − div Cε(u) = f in �S × (0, T ], (3.1)

c−2 p̈ − �p = 0 in �F × (0, T ], (3.2)

Cε(u)n + pn = 0 on � × (0, T ], (3.3)

∂p

∂n
+ ρF ü · n = 0 on � × (0, T ], (3.4)

u = 0 on 	D × (0, T ], (3.5)

Cε(u)n = 0 on 	N × (0, T ], (3.6)

with the corresponding initial conditions. Here, p is the fluid pressure, C : R
d×d →

R
d×d is the Hooke operator given by

Cτ := λ (tr τ ) I + 2μτ ∀ τ ∈ R
d×d ,

ε(u) is the linearized strain tensor, which is given, in terms of the solid displacement
field u, by

ε(u) := 1

2

{
∇u + (∇u)t

}
,
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A fully discrete scheme for the pressure–stress… 1423

ρS > 0 is the density of the solid, λ > 0 and μ > 0 are its Lamé coefficients, c > 0
is the acoustic speed in the fluid, and ρF > 0 is its density.

The stress tensor σ := C ε(u) , which is imposed here as a primary unknown in
the solid, is sought in the Sobolev space

W :=
{
τ ∈ H(div ,�S); τn = 0 on 	N

}
,

while the pressure p belongs to H1(�F). These two variables are linked through
Eq. (3.3), which can be interpreted as an implicitly prescribed normal stress on the
contact boundary�. Aswe are dealingwith a dual formulation in�S, this transmission
condition becomes essential, and hence we could impose it weakly through a suitable
Lagrange multiplier (as we did in [14]), or alternatively, we could incorporate it into
the continuous space. Here, we follow [15] and choose the second option by defining
the global space

X :=
{
(τ , q) ∈ W × H1(�F); τn + qn = 0 on �

}
,

which is endowed with the Hilbertian norm ‖(τ , q)‖2 := ‖τ‖2H(div ,�S)
+ ‖q‖21,�F

.
We still have to impose a further restriction in X. Indeed, it is essential to take into

account the conservation of the angular momentum, which is characterized by the
symmetry of the stress tensor. This induces us to consider the closed subspace

X
sym := {(τ , q) ∈ X; τ = τt}.

We point out that, stable mixed finite elements for the linear elastostatic problem have
been arduous to construct because of this symmetry restriction (cf. [1–3,5,7,9]).One of
the prevailing techniques [1,3,7,9] used to dealwith this difficulty consists in imposing
weakly the symmetry through the introduction of a Lagrange multiplier, which turns
out to be equal to the rotation r := 1

2

{∇u − (∇u)t
}
. Recently, this mixed finite

element strategywith reduced symmetry has been successfully applied to the elasticity
eigenproblem [17], to the indefinite elasticity problem [16], to elastodynamics [4,
12], and to time-domain fluid–structure interaction problems [13]. It is important to
bear in mind that, in what follows, there will be an underlying Lagrange multiplier
(corresponding to the symmetry restriction) that we have chosen to hide for economy
in notations.We refer to [12] (or its preliminary summarized version [11]) for a similar
analysis for the elastodynamics inwhich the rotation variable ismaintained as an active
unknown.

We now notice that Xsym is dense in the space

H
sym := [L2(�S)]d×d

sym × L2(�F)

endowed with the norm ‖(τ , q)‖20 := ‖τ‖20,�S
+ ‖q‖20,�F

. This allows us to pose the
stress–pressure variational formulation of the fluid–solid interaction problem in the
following terms (see [13, eq.(3.11)] for details):
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Find (σ , p) ∈ L∞((0, T );Xsym) ∩ W1,∞ ((0, T );Hsym) such that

((σ̈ , p̈)(t), (τ , q))C + A ((σ , p)(t), (τ , q))

= −ρ−1
S

(
f (t), div τ

)
0,�S

∀(τ , q) ∈ X
sym,

(
σ (0), p(0)

) = (σ 0, p0),
(
σ̇ (0), ṗ(0)

) = (σ 1, p1), (3.7)

where

((σ , p), (τ , q))C := (C−1σ , τ )0,�S + 1

ρFc2
(p, q)0,�F

and

A ((σ , p), (τ , q)) := ρ−1
S (div σ , div τ )0,�S + ρ−1

F (∇ p,∇q)0,�F .

Here, f ∈ L1((0, T );L2(�S)
d) is a given body force in �S and (σ 0, p0) ∈ X

sym and
(σ 1, p1) ∈ H

sym are prescribed initial data.
The stability of our analysis with respect to λ when this parameter tends to infinity

relays essentially on the following result.

Lemma 3.1 There exist constants c2 ≥ c1 > 0 independent of λ such that

c1 ‖(τ , q)‖2 ≤ ‖(τ , q)‖20,C + A ((τ , q), (τ , q)) ≤ c2 ‖(τ , q)‖2 ∀(τ , q) ∈ X,

(3.8)
where ‖(τ , q)‖20,C := ((τ , q), (τ , q))C .

Proof The bound from above follows immediately from the fact that

(C−1σ , τ )0,�S = 1

2μ

∫

�S

σD : τD + 1

d(2μ + dλ)

∫

�S

(tr σ )(tr τ )

is bounded by a constant independent of λ. The left inequality may be found in [17,
Lemma 2.1]. ��

The well-posedness of problem (3.7) is established as follows (cf. [13, Theorem
3.1]) .

Theorem 3.1 Assume that f ∈ W1,1((0, T );L2(�S)
d). Then, problem (3.7) admits a

unique solution (σ , p) ∈ C0((0, T );Xsym)∩C1((0, T );Hsym). Moreover, there exists
a constant C > 0, independent of λ and T , such that

ess sup
[0,T ]

‖(σ , p)(t)‖ + ess sup
[0,T ]

‖(σ̇ , ṗ)(t)‖0,C

≤ C T
{

‖ f ‖W1,1(L2(�S))
+ ‖(σ 0, p0)‖ + ‖(σ 1, p1)‖0

}
.

Although problem (3.7) is well-posed in the sense of Hadamard, it turns out that
a compatibility condition must be imposed to the initial data (σ 0, p0) ∈ X

sym and
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(σ 1, p1) ∈ H
sym in order to remove non physical components from the solution. These

spurious modes are due to the fact that the seminorm A ((τ , q), (τ , q))1/2 admits the
nontrivial kernel K in Xsym

c given by

K :=
{
(τ , q) ∈ X

sym
c ; div τ = 0

}
,

where X
sym
c := Xc ∩ X

sym, with Xc := {(τ , q) ∈ X; q = constant} . It has been
shown in [17] that all physically relevant eigenfunctions of the eigenproblem associ-
ated with the linear evolution problem (3.7) lie on the orthogonal K⊥ to K in X

sym

with respect to the inner product
(·, ·)C , i.e.,

K
⊥ := {(σ , p) ∈ X

sym; ((σ , p), (τ , q))C = 0 ∀(τ , q) ∈ K
}
,

andK is the eigenspace associated with an infinite-multiplicity eigenvalue equal to 1.
A physically meaningful solution of problem (3.7) should then belong to K

⊥ for all
t ∈ [0, T ]. This property is simply achieved by imposing the condition at initial time,
i.e.,

(σ 0, p0) ∈ K
⊥ and (σ 1, p1) ∈ K

⊥.

It is shown in [13, Theorem 2.1] that there exits a linear and bounded operator

D : K⊥ → L2(�S)
d × [L2(�S)]d×d

skew

(σ , p) �→ (u, r) := D(σ , p)

uniquely characterized, for any (σ , p) ∈ K
⊥, by the unique solution (u, r) ∈

L2(�S)
d × [L2(�S)]d×d

skew of

(r, τ )0,�S + (u, div τ )0,�S = − ((σ , p), (τ , ξ))C ∀(τ , ξ) ∈ Xc.

Moreover, if (u, r) := D(σ , p), then it can be shown that u is none other than the
displacement field, with u(t) ∈ [H1(�S)]d ∀ t > 0, and r = 1

2

{∇u − (∇u)t
}
is the

rotation. The following result (cf. [13, Theorem 3.2]) establishes the relation between
the solution (σ , p) of problem (3.7) and the weak solution of the displacement–
pressure formulation of the fluid–structure interaction problem.

Theorem 3.2 Assume that the initial data of problem (3.7) are such that (σ 0, p0),
(σ 1, p1) ∈ K

⊥, and let (u0, r0) := D(σ 0, p0) and (u1, r1) := D(σ 1, p1). If (σ , p)

is the solution of (3.7), then the pair (u, p), with

u(t) :=
∫ t

0

{∫ s

0
ρ−1
S

(
div σ (z) + f (z)

)
dz

}

ds + u0 + tu1,

solves the displacement–pressure formulation of the fluid–structure interaction prob-
lem given by the Eqs. (3.1)–(3.6) subject to the initial conditions (u(0), p(0)) =
(u0, p0) and (u̇(0), ṗ(0)) = (u1, p1).
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4 Finite element discretization spaces and technical tools

We consider shape regular affine meshes Th that subdivide the domain �̄ = �̄S ∪ �̄F
into triangles/tetrahedra K of diameter hK . The parameter h := maxK∈Th {hK } repre-
sents the mesh size of Th . In what follows, we assume that each triangle/tetrahedron
of Th is contained either in �̄S or in �̄F, and denote

T S
h := {K ∈ Th; K ⊂ �̄S

}
and T F

h := {K ∈ Th; K ⊂ �̄F
}
.

Moreover, we let �h be the triangulation induced by Th on �, whose elements (edges
or triangles) are denoted by T . Next, given an integer m ≥ 0 and a domain D ⊆ R

d ,
Pm(D) denotes the space of polynomials of degree at most m on D. The space of
piecewise polynomial functions of degree at most m associated with T ∗

h , ∗ ∈ {S,F},
is denoted by

Pm(T ∗
h ) :=

{
v ∈ L2(�∗); v|K ∈ Pm(K ), ∀K ∈ T ∗

h

}
.

Similarly, Pm(�h) := {φ ∈ L2(�); φ|T ∈ Pm(T ), ∀T ∈ �h
}
. In addition, for

k ≥ 1, the finite element spaces

Wh := Pk(T S
h )d×d ∩ W, Qh := Pk−1(T S

h )d×d ∩ [L2(�S)]d×d
skew, and

Uh := Pk−1(T S
h )d ,

correspond to the kth-order element of the Arnold–Falk–Winther (AFW) family intro-
duced for the mixed formulation of elastostatic problem with reduced symmetry. It is

important to notice that Wsym
h :=

{
τ h ∈ Wh; ∫

�S
τ h : s = 0 ∀s ∈ Qh

}
, which

is the weakly symmetric version of Wh , is not a subspace of the symmetric ten-
sors of W . The pressure is approximated in the usual Lagrange finite element space
Vh := Pk(T F

h ) ∩ H1(�F).
Next, we recall some well-known approximation properties of the finite element

spaces introduced above.Given s > 0, it is well-known that the usual kth-order Brezzi-
Douglas-Marini (BDM) interpolation operator (see [8]) �h : [Hs(�S)]d×d ∩ W →
Wh satisfies for 0 < s ≤ 1/2 the error estimate

‖τ − �hτ‖0,�S ≤ Chs
{

‖τ‖s,�S + ‖div τ‖0,�S

}
∀τ ∈ [Hs(�S)]d×d ∩ W .

For more regular functions τ ∈ [Hs(�S)]d×d with s > 1/2, it holds

‖τ − �hτ‖0,�S ≤ Chmin{s,k+1} ‖τ‖s,�S , ∀τ ∈ [Hs(�S)]d×d . (4.1)

Moreover, we have the commuting diagram properties

div (�hτ ) = Uh(div τ ) and (�hσ )n = πh(σn) (4.2)
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for all τ ∈ Hs(�S)
d×d ∩ H(div ,�S), s > 0, where Uh : L2(�S)

d → Uh

is the L2(�S)
d -orthogonal projector and πh is the vectorial version of πh , which

is the L2(�)-orthogonal projector onto Pk(�h). In addition, we denote by Rh :
[L2(�S)]d×d

skew → Qh the orthogonal projector with respect to the [L2(�S)]d×d -norm,
and let �h : H1(�F) → Vh be the operator that, given p ∈ H1(�F), is uniquely
characterized by

(∇�h p,∇q)0,�F = (∇ p,∇q)0,�F ∀q ∈ Vh and
∫

�F

�h p = 0.

Then, there hold

‖r − Rh r‖0,�S
≤ Chmin{s,k} ‖r‖s,�S ∀r ∈ [Hs (�S)]d×d ∩ [L2(�S)]d×d

skew, (4.3)

‖v − Uhv‖0,�S
≤ Chmin{s,k} ‖v‖s,�S ∀v ∈ Hs (�S)d , (4.4)

|p − �h p|1,�F ≤ Chmin{s,k} ‖p‖1+s,�F
∀p ∈ H1+s (�F), (4.5)

‖ϕ − πhϕ‖0,� ≤ Chmin{s,k+1}
⎛

⎝
∑

T ∈�h

‖ϕ‖2s,T

⎞

⎠

1/2

∀ϕ ∈
∏

T ∈�h

Hs (T )d . (4.6)

We now introduce the discrete energy space Xh := {(τ , q) ∈ Wh × Vh; τn + qn =
0 on}, and its subspace Xh,c = {(τ , q) ∈ Xh; q = constant}. We also consider their
weakly symmetric versions Xsym

h := {(τ , q) ∈ Wsym
h × Vh; τn + qn = 0 on �

}

and Xsym
h,c := Xh,c ∩X

sym
h , respectively. The kernelKh of the bilinear form A in Xsym

h
is given by

Kh :=
{
(τ , q) ∈ X

sym
h,c ; div τ = 0

}
,

and we notice that, in general, neither Kh ⊆ K nor K⊥
h ⊆ K

⊥, with

K
⊥
h := {(σ h, ph) ∈ X

sym
h ; ((σ h, ph), (τ , ξ))C = 0 ∀(τ , ξ) ∈ Kh

}
.

The projector � and its discrete counterpart �h (introduced in [13]) are the key
tools in the convergence analysis that we will undertake in the following section. They
are characterized by the following properties.

Lemma 4.1 There exist a linear operators � : X → X
sym and �h : X → X

sym
h

such that

‖�(τ , q)‖ + ‖�h(τ , q)‖ ≤ C ‖(τ , q)‖ ∀ (τ , q) ∈ X,

with C > 0, independent of λ and h. Moreover, �̃ := �|Xsym is the (·, ·)C-orthogonal
projection of Xsym onto K

⊥.

Proof See [13, Section 5]. ��
Lemma 4.2 Assume that (τ , q) ∈ K

⊥ with τ ∈ [Hs(�S)]d×d for some s > 0, and let
(v, s) := D(τ , q) and ψ := v|� . Then, there exists a constant C > 0, independent of
h and λ, such that
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‖(τ , q) − �h(τ , q)‖ ≤ C
{

‖τ − �hτ‖H(div ,�S)
+ ‖qn − πh(qn)‖0,� + ‖s − Rh s‖0,�S

+ ‖v − Uhv‖0,�S
+ ‖ψ − πhψ‖0,� + |q − �hq|1,�F

}
.

Proof See [13, Lemma 5.8]. ��

5 Time–space discretization

5.1 The fully discrete scheme

Given L ∈ N, we consider a uniform partition of the time interval [0, T ] with step
size �t := T/L . Then, for any continuous function φ : [0, T ] → R and for each
k ∈ {0, 1, . . . , L} we denote φk := φ(tk), where tk := k �t . In addition, we adopt the
same notation for vector/tensor valued functions and introduce the notations

tk+ 1
2

:= tk+1 + tk
2

, φk+ 1
2 := φk+1 + φk

2
, φk− 1

2 := φk + φk−1

2
,

and the discrete time derivatives

∂tφ
k := φk+1 − φk

�t
and ∂̄tφ

k := φk − φk−1

�t
,

from which we notice that

∂t ∂̄tφ
k = ∂̄tφ

k+1 − ∂̄tφ
k

�t
= ∂tφ

k − ∂tφ
k−1

�t
= φk+1 − 2φk + φk−1

�t2
.

The Newmark trapezoidal rule applied to the Galerkin space-semidiscretization intro-
duced in [13] for problem (3.7) reads as follows: For k = 1, . . . , L − 1, find
(σ k+1

h , pk+1
h ) ∈ X

sym
h such that

(
∂t ∂̄t (σ

k
h, pk

h), (τ , q)
)

C
+ A

⎛

⎝

⎛

⎝
σ

k+ 1
2

h + σ
k− 1

2
h

2
,

p
k+ 1

2
h + p

k− 1
2

h

2

⎞

⎠ , (τ , q)

⎞

⎠

= − ρ−1
S

(
f (tk), div τ

)
0,�S

∀ (τ , q) ∈ X
sym
h . (5.1)

Moreover, for the sake of simplicity, we assume that the scheme (5.1) is started up
with

(σ 0
h, p0h) := �h(σ 0, p0) and (σ 1

h, p1h) := �h(σ (t1), p(t1)). (5.2)

We insist here upon the fact that it is necessary to introduce a Lagrangemultiplier in
order to relax the weak symmetry constraint definingWsym

h . This permits one to deal
with the well-known BDM-finite element basis functions of the spaceWh in order to
obtain the linear systems of equations arising from (5.1) at each iteration step.
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Now, recalling that (σ , p) stands for the solution of (3.7), we introduce the discrete
errors

ek
σ,h := σ ∗

h(tk) − σ k
h ∈ Wsym

h , and ek
p,h := p∗

h(tk) − pk
h ∈ Vh,

where, as in [13], we define (σ ∗
h, p∗

h) := �h(σ , p), and observe that (ek
σ,h, ek

p,h) ∈
X
sym
h . Then, thanks to (5.2), we have e0σ,h = e1σ,h = 0 and e0p,h = e1p,h = 0. In turn,

the starting point of our convergence analysis is the following error equation

(
∂t ∂̄t (ek

σ,h, ek
p,h), (τ , q)

)

C
+ A

⎛

⎝

⎛

⎝
e

k+ 1
2

σ,h + e
k− 1

2
σ,h

2
,

e
k+ 1

2
p,h + e

k− 1
2

p,h

2

⎞

⎠ , (τ , q)

⎞

⎠

=
(
(χk

1,σ ,χk
1,p), (τ , q)

)

C
+ A
(
(χk

2,σ ,χk
2,p), (τ , q)

)
∀ (τ , q) ∈ X

sym
h ,

(5.3)

where the consistency terms are, for ξ ∈ {σ , p},

χk
1,ξ := ∂t ∂̄tξ

∗
h (tk) − ξ̈ (tk) and χk

2,ξ := ξ∗
h (tk+1) + 2ξ∗

h (tk) + ξ∗
h (tk−1)

4
− ξ(tk).

By definition of (σ ∗
h, p∗

h), we have that

(div (σ ∗
h(tk) − σ (tk)), div τ )0,�S = 0 ∀ (τ , q) ∈ Xh,

and

(∇(p∗
h(tk)− p(tk)),∇q)0,�F = (∇(p(tk) − �h p(tk)),∇q)0,�F = 0 ∀ (τ , q) ∈ Xh .

Hence, we can substitute in the right hand side of (5.3) the functions χk
2,σ and χk

2,p
by

χ̄k
2,ξ := χk

2,ξ − (ξ∗
h (tk) − ξ(tk)) = ξ∗

h (tk+1) − 2ξ∗
h (tk) + ξ∗

h (tk−1)

4
∀ ξ ∈ {σ , p}

without altering the error equation.

5.2 Convergence analysis

We begin by establishing the following stability result.
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Lemma 5.1 There exists a constant C > 0, independent of λ, h and �t , such that for
each n ∈ N there holds

max
n

∥
∥
∥(∂t en

σ,h, ∂t e
n
p,h)

∥
∥
∥
0,C

+ max
n

∥
∥
∥
∥div e

n+ 1
2

σ,h

∥
∥
∥
∥
0,�S

+ max
n

∥
∥
∥
∥∇e

n+ 1
2

p,h

∥
∥
∥
∥
0,�F

≤ C
{
max

n

∥
∥
∥(χn

1,σ ,χn
1,p)

∥
∥
∥
0,C

+ max
n

∥
∥div ∂t χ̄

n
2,σ

∥
∥
0,�S

+ max
n

∥
∥
∥∇∂t χ̄

n
2,p

∥
∥
∥
0,�F

+ max
n

∥
∥div χ̄n

2,σ

∥
∥
0,�S

+ max
n

∥
∥
∥∇χ̄n

2,p

∥
∥
∥
0,�F

}
. (5.4)

Proof Taking (τ , q) =
(
ek+1
σ,h − ek−1

σ,h

2�t
,

ek+1
p,h − ek−1

p,h

2�t

)

in (5.3) and using

ek+1
σ,h − ek−1

σ,h

2�t
= e

k+ 1
2

σ,h − e
k− 1

2
σ,h

�t
= ∂t ek

σ,h + ∂t e
k−1
σ,h

2
,

and the similar identity for
ek+1

p,h − ek−1
p,h

2�t
, we find that

1

2�t

((
∂t ek

σ,h − ∂t e
k−1
σ,h , ∂t e

k
p,h − ∂t e

k−1
p,h ), (∂t ek

σ,h + ∂t e
k−1
σ,h , ∂t e

k
p,h + ∂t e

k−1
p,h

))

0,C

+ 1

2�t
A

((

e
k+ 1

2
σ,h + e

k− 1
2

σ,h , e
k+ 1

2
p,h + e

k− 1
2

p,h

)

,

(

e
k+ 1

2
σ,h − e

k− 1
2

σ,h , e
k+ 1

2
p,h − e

k− 1
2

p,h

))

=
(
(
χk
1,σ ,χk

1,p

)
,

(
∂t ek

σ,h + ∂t e
k−1
σ,h

2
,
∂t ek

p,h + ∂t e
k−1
p,h

2

))

0,C

+ A

⎛

⎝
(
χ̄k
2,σ , χ̄ k

2,p

)
,

⎛

⎝
e

k+ 1
2

σ,h − e
k− 1

2
σ,h

�t
,

e
k+ 1

2
p,h − e

k− 1
2

p,h

�t

⎞

⎠

⎞

⎠ ,

which can also be written as

1

2�t

(∥
∥
∥
∥

(
∂t ek

σ,h, ∂t e
k
p,h)

∥
∥
∥
2

0,C
−
∥
∥
∥(∂t e

k−1
σ,h , ∂t e

k−1
p,h

)∥∥
∥
∥

2

0,C

)

+ 1

2�t

{

A

((

e
k+ 1

2
σ,h , e

k+ 1
2

p,h

)

,

(

e
k+ 1

2
σ,h , e

k+ 1
2

p,h

))

− A

((

e
k− 1

2
σ,h , e

k− 1
2

p,h

)

,

(

e
k− 1

2
σ,h , e

k− 1
2

p,h

))}

=
(
(
χk
1,σ ,χk

1,p

)
,

(
∂t ek

σ,h + ∂t e
k−1
σ,h

2
,
∂t ek

p,h + ∂t e
k−1
p,h

2

))

0,C

+ A

⎛

⎝
(
χ̄k
2,σ , χ̄k

2,p

)
,

⎛

⎝
e

k+ 1
2

σ,h − e
k− 1

2
σ,h

�t
,

e
k+ 1

2
p,h − e

k− 1
2

p,h

�t

⎞

⎠

⎞

⎠ .
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In this way, multiplying by 2�t and summing up the foregoing identity over k =
1, . . . , n, gives

∥
∥
∥(∂t en

σ,h, ∂t e
n
p,h)

∥
∥
∥
2

0,C
+ A

((

e
n+ 1

2
σ,h , e

n+ 1
2

p,h

)

,

(

e
n+ 1

2
σ,h , e

n+ 1
2

p,h

))

= 2�t
n∑

k=1

(
(
χk
1,σ ,χk

1,p

)
,

(
∂t ek

σ,h + ∂t e
k−1
σ,h

2
,
∂t ek

p,h + ∂t e
k−1
p,h

2

))

0,C

+ 2�t
n∑

k=1

A

⎛

⎝
(
χ̄k
2,σ , χ̄k

2,p

)
,

⎛

⎝
e

k+ 1
2

σ,h − e
k− 1

2
σ,h

�t
,

e
k+ 1

2
p,h − e

k− 1
2

p,h

�t

⎞

⎠

⎞

⎠

= 2�t
n∑

k=1

(
(
χk
1,σ ,χk

1,p

)
,

(
∂t ek

σ,h + ∂t e
k−1
σ,h

2
,
∂t ek

p,h + ∂t e
k−1
p,h

2

))

0,C

− 2�t
n−1∑

k=1

A

((
∂t χ̄

k
2,σ , ∂t χ̄

k
2,p

)
,

(

e
k+ 1

2
σ,h , e

k+ 1
2

p,h

))

+ 2A

((
χ̄n
2,σ , χ̄n

2,p

)
,

(

e
n+ 1

2
σ,h , e

n+ 1
2

p,h

))

.

It is now straightforward to deduce from the last identity and the Cauchy-Schwarz
inequality, that there exists a constant C0 > 0, independent of λ, h and �t , such that

max
n

∥
∥
∥(∂t en

σ,h, ∂t e
n
p,h

∥
∥
∥
0,C

+ max
n

√

A

((

e
n+ 1

2
σ,h , e

n+ 1
2

p,h

)

,

(

e
n+ 1

2
σ,h , e

n+ 1
2

p,h

))

≤ C0

{

�t
L∑

k=1

∥
∥
∥(χk

1,σ ,χk
1,p)

∥
∥
∥
0,C

+�t
L−1∑

k=1

√

A
((

∂t χ̄
k
2,σ , ∂t χ̄

k
2,p), (∂t χ̄

k
2,σ , ∂t χ̄

k
2,p

))

+ max
n

√

A
(
(χ̄n

2,σ , χ̄n
2,p), (χ̄

n
2,σ , χ̄n

2,p)
)
}

,

and the result follows from the lower bound of (3.8). ��
We now aim to bound the expression

Mh(σ , p) := max
n

∥
∥
∥(σ̇ , ṗ)(tn+ 1

2
) − (∂tσ

n
h, ∂t pn

h)

∥
∥
∥
0,C

+ max
n

∥
∥
∥
∥div σ (tn+ 1

2
) − div σ

n+ 1
2

h

∥
∥
∥
∥
0,�S

+max
n

∥
∥
∥
∥∇
(

p(tn+ 1
2
) − p

n+ 1
2

h

)
∥
∥
∥
∥
0,�F

.

123



1432 C. García et al.

To this end, we first observe thanks to the triangle inequality and the stability
estimate (5.4) that

Mh(σ , p) ≤ M̃h(σ , p) + C M̂h(σ , p), (5.5)

where

M̃h(σ , p) := max
n

∥
∥
∥(σ̇ , ṗ)(tn+ 1

2
) − (∂tσ

∗
h(tn), ∂t p∗

h(tn))
∥
∥
∥
0,C

+ max
n

∥
∥div
(
σ (tn+ 1

2
) − (σ ∗

h)n+ 1
2
)∥
∥
0,�S

+ max
n

∥
∥
∥∇(p(tn+ 1

2
) − (p∗

h)n+ 1
2
)∥∥
∥
0,�F

and

M̂h(σ , p) := maxn

∥
∥
∥(χn

1,σ ,χn
1,p)

∥
∥
∥
0,C

+ maxn

∥
∥
∥div ∂t χ̄

n
2,σ

∥
∥
∥
0,�S

+max
n

∥
∥
∥∇∂t χ̄

n
2,p

∥
∥
∥
0,�F

+ max
n

∥
∥div χ̄n

2,σ

∥
∥
0,�S

+ max
n

∥
∥
∥∇χ̄n

2,p

∥
∥
∥
0,�F

.

The following two lemmas apply Taylor expansions with integral remainder to
derive upper bounds for the terms on the right hand side of (5.5).

Lemma 5.2 Assume that the solution (σ , p) ∈ C0((0, T );Xsym) ∩ C1((0, T );Hsym)

to problem (3.7) satisfies σ ∈ C2((0, T );H(div ,�S) ∩ Hs(�S)
n×n) ∩ C3((0, T );

H(div ,�S)) for some s > 0 and p ∈ C3(H1(�F)). Then, there exists a constant
C > 0, independent of λ, h and �t , such that

M̃h(σ , p) ≤ C
{ ∥
∥σ − σ ∗

h

∥
∥
W1,∞((0,T );H(div ,�S))

+ ∥∥p − p∗
h

∥
∥
W1,∞((0,T );H1(�F))

+ (�t)2
( ∥
∥σ ∗

h

∥
∥
W3,∞((0,T );H(div ,�S))

+ ∥∥p∗
h

∥
∥
W3,∞((0,T );H1(�F))

) }
.

(5.6)

Proof Using Taylor expansions centered at t = tn+ 1
2
gives for each ξ ∈ {σ , p},

ξ(tn+ 1
2
) − (ξ∗

h )n+ 1
2 = ξ(tn+ 1

2
) − ξ∗

h (tn+ 1
2
) − 1

2

∫ tn+1

tn
ξ̈∗

h (t)

(
�t

2
− |t − tn+ 1

2
|
)

dt

(5.7)
and

ξ̇ (tn+ 1
2
) − ∂tξ

∗
h (tn) = ξ̇ (tn+ 1

2
) − ξ̇∗

h (tn+ 1
2
) − 1

2�t

∫ tn+1

t
n+ 1

2

d3ξ∗
h (t)

dt3
(tn+1 − t)2 dt

− 1

2�t

∫ t
n+ 1

2

tn

d3ξ∗
h (t)

dt3
(tn − t)2 dt.

(5.8)
Then, it is not difficult to see that using (5.8) with ξ = σ and ξ = p, and then applying
the space differential operators div and ∇ to ξ = σ and ξ = p, respectively, in (5.7),
we arrive at (5.6). ��
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Lemma 5.3 Assume that the solution (σ , p) ∈ C0((0, T );Xsym) ∩ C1((0, T );Hsym)

to problem (3.7) satisfies σ ∈ C2((0, T );H(div ,�S) ∩ Hs(�S)
n×n) ∩ C4((0, T );

H(div ,�S)) for some s > 0 and p ∈ C4(H1(�F)). Then, there exists a constant
C > 0, independent of λ, h and �t , such that

M̂h(σ , p) ≤ C
{ ∥
∥σ − σ ∗

h

∥
∥
W2,∞((0,T );H(div ,�S))

+ ∥∥p − p∗
h

∥
∥
W2,∞((0,T );H1(�F))

+ (�t)2
( ∥
∥σ ∗

h

∥
∥
W4,∞((0,T );H(div ,�S))

+ ∥∥p∗
h

∥
∥
W4,∞((0,T );H1(�F))

) }
.

(5.9)

Proof Using now Taylor expansions centered at t = tn we have for each ξ ∈ {σ , p},

χn
1,ξ = ξ̈∗

h (tn) − ξ̈ (tn) + 1

6(�t)2

∫ tn+1

tn−1

d4ξ∗
h (t)

dt4
(�t − |t − tn|)3 dt, (5.10)

χ̄n
2,ξ = 1

4

∫ tn+1

tn−1

ξ̈∗
h (t)(�t − |t − tn|) dt, (5.11)

and

∂t χ̄
n
2,ξ = ξ∗

h (tn+2) − 3ξ∗
h (tn+1) + 3ξ∗

h (tn) − ξ∗
h (tn−1)

4�t

= 1

8�t

{∫ tn+2

tn

d3ξ∗
h (t)

dt3
(tn+2 − t)2 dt

− 3
∫ tn+1

tn

d3ξ∗
h (t)

dt3
(tn+1 − t)2 dt +

∫ tn

tn−1

d3ξ∗
h (t)

dt3
(tn−1 − t)2 dt

}

.

(5.12)

In this way, proceeding similarly as for the previous lemma, that is by applying now
(5.10), (5.11) and (5.12), we obtain (5.9). Further details are omitted. ��

As a consequence of Lemmas 5.2, 5.3, and 4.2, we are able to establish next the
required bound for Mh(σ , p).

Lemma 5.4 Assume that the solution (σ , p) ∈ C0((0, T );Xsym) ∩ C1((0, T );Hsym)

to problem (3.7) satisfies σ ∈ C2((0, T );H(div ,�S) ∩ Hs(�S)
n×n) ∩ C4((0, T );H

(div ,�S)) for some s > 0 and p ∈ C4(H1(�F)). Then, there exists a constant C > 0,
independent of λ, h and �t , such that
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Mh(σ , p) ≤ C
{

‖σ − �hσ‖W2,∞((0,T );H(div ,�S))

+ ‖pn − πh(pn)‖W2,∞((0,T );L2(�)d )

+ ‖r − Rh r‖W2,∞((0,T );[L2(�S)]d×d
skew)

+ ‖u − Uhu‖W2,∞((0,T );L2(�S)d )

+ ‖ψ − πhψ‖W2,∞((0,T );L2(�)d )

+ ‖∇(p − �h p)‖W2,∞((0,T );L2(�F)d )

+ (�t)2
(

‖σ‖W4,∞((0,T );H(div ,�S))
+ ‖p‖W4,∞((0,T );H1(�F))

)}
,

(5.13)

where (u, r) = D(σ , p) and ψ = u|� .

Proof It follows straightforwardly from the initial estimate (5.5) and Lemmas 5.2 and
5.3 that

Mh(σ , p) ≤ C
{ ∥
∥σ − σ ∗

h

∥
∥
W2,∞((0,T );H(div ,�S))

+ ∥∥p − p∗
h

∥
∥
W2,∞((0,T );H1(�F))

+ (�t)2
( ∥
∥σ ∗

h

∥
∥
W4,∞((0,T );H(div ,�S))

+ ∥∥p∗
h

∥
∥
W4,∞((0,T );H1(�F))

) }
,

(5.14)
On the other hand, the uniform boundedness of �h : X → X

sym
h with respect to

h and λ, and our regularity assumptions, imply that there exists a constant C > 0,
independent of h and λ, such that

∥
∥σ ∗

h

∥
∥
W4,∞((0,T );H(div ,�S))

+ ∥∥p∗
h

∥
∥
W4,∞((0,T );H1(�F))

≤ C
{

‖σ‖W4,∞((0,T );H(div ,�S))
+ ‖p‖W4,∞((0,T );H1(�F))

}
.

(5.15)

Finally, combining (5.14) and (5.15) we conclude that

Mh(σ , p) ≤ C
{ ∥
∥σ − σ ∗

h

∥
∥
W2,∞((0,T );H(div ,�S))

+ ∥∥p − p∗
h

∥
∥
W2,∞((0,T );H1(�F))

+ (�t)2
(

‖σ‖W4,∞((0,T );H(div ,�S))
+ ‖p‖W4,∞((0,T );H1(�F))

) }
,

and the result follows by applying Lemma 4.2 to (σ , p) ∈ K
⊥. ��

We notice here that while the constant C > 0 appearing in (5.13) is independent
of λ, the first error term on the left-hand side, namely (σ̇ , ṗ)(tn+ 1

2
) − (∂tσ

n
h, ∂t pn

h),
is estimated in the λ-dependent norm ‖·‖C . Hence, Lemma 5.4 ensures that only the
convergence of the semi-norms

max
n

∥
∥
∥
∥div

(

σ (tn+ 1
2
) − σ

n+ 1
2

h

)∥
∥
∥
∥
0,�S

and max
n

∥
∥
∥
∥∇
(

p(tn+ 1
2
) − p

n+ 1
2

h

)∥
∥
∥
∥
0,�F

remain unaltered when λ goes to infinity. We aim now to apply Lemma 3.1 to deduce
the same stability behaviour in the fullX-norm. To this end, we first need the following
intermediate result.
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Lemma 5.5 Under the hypotheses of Lemma 5.4 there exists a constant C > 0,
independent of λ, h and �t , such that

max
n

∥
∥
∥
∥(σ , p)(tn+ 1

2
) −
(

σ
n+ 1

2
h , p

n+ 1
2

h

)∥
∥
∥
∥
0,C

≤ C
{

‖σ − �hσ‖W2,∞((0,T );H(div ,�S))
+ ‖∇(p − �h p)‖W2,∞((0,T );L2(�F)d )

+ ‖pn − πh(pn)‖W2,∞((0,T );L2(�)d ) + ‖u − Uhu‖W2,∞((0,T );L2(�S)d )

+ ‖ψ − πhψ‖W2,∞((0,T );L2(�)d ) + ‖r − Rh r‖W2,∞((0,T );[L2(�S)]d×d
skew)

+ (�t)2
(

‖σ‖W4,∞((0,T );H(div ,�S))
+ ‖p‖W4,∞((0,T );H1(�F))

) }
.

(5.16)

Proof We first notice that for each ξ ∈ {σ , p} there holds
(

ξ(tk+ 1
2
) − ξ

k+ 1
2

h

)

−
(

ξ(tk− 1
2
) − ξ

k− 1
2

h

)

= ξ(tk+ 1
2
) − ξ(tk− 1

2
)

−�t

2
(ξ̇ (tk+ 1

2
) + ξ̇ (tk− 1

2
))

+ �t

2
(ξ̇ (tk+ 1

2
) − ∂tξ

k
h )

+ �t

2

(
ξ̇ (tk− 1

2
) − ∂tξ

k−1
h

)
.

(5.17)

Then, using a Taylor expansion centered at t = tk , we find that

ξ(tk+ 1
2
) − ξ(tk− 1

2
) − �t

2

(
ξ̇ (tk+ 1

2
) + ξ̇ (tk− 1

2
)
)

= 1

2

∫ t
k+ 1

2

tk

d3ξ(t)

dt3
(tk+ 1

2
− t)2 dt + 1

2

∫ tk

t
k− 1

2

d3ξ(t)

dt3
(tk− 1

2
− t)2 dt

− �t

2

∫ t
k+ 1

2

t
k− 1

2

d3ξ(t)

dt3

(
�t

2
− |t − tk |

)

dt ∀ ξ ∈ {σ , p}. (5.18)

Substituting (5.18) in (5.17), and summing the resulting identities over k = 1, . . . , n,
we deduce that there exists a constant C0 > 0, independent of λ, h and �t , such that

max
n

∥
∥
∥
∥(σ , p)(tn+ 1

2
) −
(

σ
n+ 1

2
h , p

n+ 1
2

h

)∥
∥
∥
∥
0,C

≤ C0

{
(�t)2

( ‖σ‖W3,∞((0,T );L2(�S)d×d )

+ ‖p‖W3,∞((0,T );L2(�F))

) + max
n

∥
∥
∥(σ̇ , ṗ)(tn+ 1

2
) − (∂tσ

n
h, ∂t pn

h)

∥
∥
∥
0,C

}
.

Finally, (5.16) is a direct consequence of the foregoing estimate and Lemma 5.4. ��
We are now in a position to establish the following asymptotic error estimate.
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Theorem 5.1 Assume that the solutions (σ , p) to problem (3.7) satisfies the regu-

larity assumptions (σ , p) ∈ C4((0, T );Xsym) and (u, p) ∈ C2
(
(0, T );Hk+1(�S)

d ×
Hk+1(�F)

)
, for some k ≥ 1, where u is the displacement associated to (σ , p) through

operator D. Then, there exists a constant C > 0, independent of λ, h and �t , such
that

max
n

∥
∥
∥
∥

(
σ (tn+ 1

2
) − σ

n+ 1
2

h , p(tn+ 1
2
) − p

n+ 1
2

h

)∥∥
∥
∥ ≤ C

{
hk + (�t)2)

}
.

Proof We deduce immediately from Lemmas 5.4 and 5.5 that there exists a constant
C0 > 0, independent of λ, h and �t , such that

max
n

∥
∥
∥
∥(σ , p)

(
tn+ 1

2

)
−
(

σ
n+ 1

2
h , p

n+ 1
2

h

)∥
∥
∥
∥
0,C

+ max
n

∥
∥
∥
∥div

(

σ
(

tn+ 1
2

)
− σ

n+ 1
2

h

)∥
∥
∥
∥
0,�S

+ max
n

∥
∥
∥
∥∇
(

p
(

tn+ 1
2

)
− p

n+ 1
2

h

)∥
∥
∥
∥
0,�F

≤ C0

{
‖σ − �hσ‖W2,∞((0,T );H(div ,�S))

+ ‖pn − πh(pn)‖W2,∞((0,T );L2(�)d ) + ‖r − Rh r‖W2,∞((0,T );[L2(�S)]d×d
skew)

+ ‖u − Uhu‖W2,∞((0,T );L2(�S)d ) + ‖ψ − πhψ‖W2,∞((0,T );L2(�)d )

+ ‖∇(p − �h p)‖W2,∞((0,T );L2(�F)d ) + (�t)2 ‖σ‖W4,∞((0,T );H(div ,�S))

+ (�t)2 ‖p‖W4,∞((0,T );H1(�F))

}
,

and the result follows from the norm equivalency provided by Lemma 3.1 and the
approximation properties given by (4.1), (4.2) and (4.3)–(4.6). ��

6 Numerical results

In this section we present several numerical experiments confirming the good perfor-
mance of the fully discrete Galerkin scheme (5.1) as applied to a two-dimensional
model problem. In all what follows, given the solution (σ n

h, pn) of (5.1) at a time level
n�t , we postprocess the corresponding displacement field un

h by solving the auxiliary
saddle point problem:

Find σ ∗
h ∈ Wh with σ ∗

hn = −pn
hn on �, r∗

h ∈ Qh and un
h ∈ Uh such that

(C−1σ ∗
h + r∗

h, τ )0,�S + (un
h, div τ )0,�S = 0 ∀τ ∈ W�

h ,

(div σ ∗
h, v)0,�S = (div σ n

h, v)0,�S ∀v ∈ Uh,

(σ ∗
h, s)0,�S = 0 ∀s ∈ Qh,

(6.1)

where W�
h := {τ ∈ Wh; τn = 0, on �}.

For each mesh size h, the individual relative errors produced by the fully discrete
Galerkin method (5.1) are measured at the final time step as follows:

eh(σ ) :=
‖σ (tL− 1

2
) − σ

L− 1
2

h ‖H(div ,�S)

‖σ (tL− 1
2
)‖H(div ,�S)

, eh(p) :=
‖p(tL− 1

2
) − p

L− 1
2

h ‖1,�F

‖p(tL− 1
2
)‖1,�F

,
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eh(u) :=
‖u(tL− 1

2
) − u

L− 1
2

h ‖0,�S

‖u(tL− 1
2
)‖0,�S

,

where
{
(σ n

h, pn
h), n = 0, . . . , L

}
is the solution of (5.1) and (σ , p) is the solution of

(3.7). In turn, we introduce the experimental rates of convergence

rh(σ ) := log(eh(σ )/eĥ(σ ))

log(h/ĥ)
, rh(p) := log(eh(p)/eĥ(p))

log(h/ĥ)
,

rh(u) := log(eh(u)/eĥ(u))

log(h/ĥ)
,

where eh and eĥ are the errors corresponding to two consecutive triangulations with

mesh sizes h and ĥ, respectively.
We now describe the main data of the three examples that will be reported in the

following. For each one of them we consider �S = (0, 1)2\[0.25, 0.75]2, �F =
(0.25, 0.75)2, T = 1, ρS = 1, and ρF = 1. In Example 1, we choose Lamé constants
λ = μ = 1.0, take 	D = 	 and select the datum f so that the exact solution for the
displacement and pressure are given, respectively, by

u(x, t) := sin(4πx1) sin(4πx2)

(
sin t
sin t

)

∀ x := (x1, x2) ∈ �S,∀ t > 0,

and

p(x, t) := sin(4πx1) sin(4πx2) sin(4
√
2π t) ∀ x := (x1, x2) ∈ �F, ∀ t > 0.

In Example 2, we use again the same displacement and Lamé constants of the first
example and choose f so that the exact solution for the pressure is given by

p(x, t) := sin(x1 − 0.5) sin(x2 − 0.5) sin(
√
2t) ∀ x := (x1, x2) ∈ �F, ∀ t > 0.

In addition, in this case we incorporate the traction boundary condition

σn = t̂ on 	N ,

with 	N := {x2 = 0, 0 ≤ x1 ≤ 1}.
Finally, in Example 3 we test the locking-free character of the method in the nearly

incompressible case. For this purpose, we consider nowLamé constants corresponding
to a Poisson ratio ν = 0.49 and Young modulus E = 1.0, that is

μ = E

2(1 + ν)
= 0.336 and λ = νE

(1 + ν)(1 − 2ν)
= 16.443,

and maintain the displacement, pressure and traction condition of Example 2.
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Table 1 Convergence history in the case 	N = ∅ and λ = μ = 1.0

h = �t N eh(σ ) rh(σ ) eh(u) rh(u) eh(p) rh(p)

1/16 7489 8.837e−03 − 8.041e−03 − 9.635e−02 −
1/32 29,313 1.929e−03 2.195 1.901e−03 2.081 2.038e−02 2.241

1/64 115,969 4.623e−04 2.061 4.688e−04 2.020 4.990e−03 2.030

1/128 461,313 1.144e−04 2.014 1.166e−04 2.008 1.257e−03 1.990

Table 2 Convergence history in the case 	N �= ∅ and λ = μ = 1.0

h = �t N eh(σ ) rh(σ ) eh(u) rh(u) eh(p) rh(p)

1/16 7489 8.562e−03 − 6.453e−03 − 2.335e−01 −
1/32 29,313 1.845e−03 2.214 1.450e−03 2.154 2.657e−02 3.136

1/64 115,969 4.412e−04 2.064 3.572e−04 2.021 5.491e−03 2.274

1/128 461,313 1.090e−04 2.017 8.905e−05 2.004 1.358e−03 2.016

Table 3 Convergence history in the case E = 1.0, ν = 0.49

h = �t N eh(σ ) rh(σ ) eh(u) rh(u) eh(p) rh(p)

1/16 7489 9.019e−03 − 3.362e−02 − 1.343e+00 −
1/32 29,313 1.946e−03 2.212 2.755e−03 3.609 1.808e−01 2.893

1/64 115,969 4.673e−04 2.058 8.749e−04 1.655 2.830e−02 2.675

1/128 461,313 1.133e−04 2.044 2.404e−04 1.863 6.590e−03 2.103

For all the above described examples we consider the AFW elements of order
k = 2 for the spatial discretization in the solid, and the usual second order Lagrange
element for the corresponding discretization in the acoustic medium. Tables 1, 2 and 3
depict the convergence results obtained by taking equal time and space discretizations
parameters �t and h, respectively. The size of the linear systems solved at each
iteration step is indicated by the parameter N . We report on the relative errors and the
convergence orders for these three examples. As predicted by the theoretical results,
we observe that in all cases the quadratic convergence rate of the error is attained in
each variable. In addition, we remark from Example 3 that the method is also robust
for nearly incompressible materials, thus confirming its locking-free character.
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