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Abstract In this paper we analyze the convergence properties of two-level and W-
cycle multigrid solvers for the numerical solution of the linear system of equations
arising from hp-version symmetric interior penalty discontinuous Galerkin discretiza-
tions of second-order elliptic partial differential equations on polygonal/polyhedral
meshes. We prove that the two-level method converges uniformly with respect to the
granularity of the grid and the polynomial approximation degree p, provided that the
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number of smoothing steps, which depends on p, is chosen sufficiently large. An
analogous result is obtained for the W-cycle multigrid algorithm, which is proved to
be uniformly convergent with respect to the mesh size, the polynomial approximation
degree, and the number of levels, provided the number of smoothing steps is chosen
sufficiently large. Numerical experiments are presentedwhich underpin the theoretical
predictions; moreover, the proposed multilevel solvers are shown to be convergent in
practice, even when some of the theoretical assumptions are not fully satisfied.

Keywords hp-discontinuous Galerkin methods · Polygonal/polyhedral grids ·
Two-level and multigrid algorithms

Mathematics Subject Classification 65N30 · 65N55 · 65N22

1 Introduction

The original articles concerned with the construction and mathematical analysis of
Discontinuous Galerkin (DG) methods date back over 50 years ago. For hyperbolic
partial differential equations, in 1973 Reed and Hill, cf. [53], developed the first DG
discretization of the neutron transport equation. Independently, DG methods were
constructed for elliptic problems based on weakly enforcing Dirichlet boundary con-
ditions; see, for example, [18,19,47,50]. In particular, we highlight the works of
Nitsche [50], Baker [20], Wheeler [61] and Arnold [16], which form the basis of the
class of interior penalty DG methods. Since the very early work, DG methods were
partially abandoned, in part due to the increase in the number of degrees of freedom
compared, for instance, with their conforming counterparts. However, in the last two
decades there has been a renewed interest in the field of discontinuous discretizations
both from a theoretical and computational viewpoint, cf. [38,39,45,54], for example.
This resurgence is due to the inherent advantages offered by DG schemes, such as, for
example, the limited interelement communication, which is restricted only to neigh-
bouring elements, the local conservativity property, the simplicity in treating meshes
with hanging nodes, and the development of efficient hp-adaptivity refinement strate-
gies. Moreover, recently in [21–23,36] it has been shown that the underlying DG
polynomial bases may be efficiently constructed in the physical frame, without need-
ing to map local polynomial spaces defined in a given reference/canonical frame. In
this way, DGmethods can easily deal with general-shaped elements, including polyg-
onal/polyhedral elements, cf. [3,4,6,8,21,33–36] and the recent review paper [5]. The
flexibility of DG methods in handling general meshes has no immediate counterpart
in the conforming framework, where the design of suitable finite element spaces for
meshes of polygons/polyhedra is far frombeing a trivial task. Several examples include
the Composite Finite Element Method [43,44], the Polygonal Finite Element Method
[58,59], the Extended Finite Element Method [40], the Mimetic Finite Difference
Method [7,28,30–32,46] and the most recent Virtual Element Method [1,2,25–27].

At present, the design of solvers and preconditioners for DG discretizations on
nonstandard grids lends itself to huge developments in the field of numerical analysis.
Indeed, to the best of our knowledge, the only study regarding solution techniques for
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Multigrid algorithms for hp-version interior... 1171

this class of problems is reported in [9], where a nonoverlapping Schwarz precondi-
tioner for composite DG finite element methods on complicated domains is analyzed,
see also the recent paper [12] where optimal bounds for nonoverlapping Schwarz pre-
conditioners for hp-version DG methods on standard shape-regular grids have been
obtained. In the current article we exploit the theoretical framework developed in [36]
to study the performance of a two-level and W-cycle multigrid solver. The possibil-
ity to employ general-shaped elements in the physical framework makes the choice
of multilevel schemes natural. The flexibility afforded by this approach allows us to
define the set of grids needed in the multigrid algorithm by agglomeration; thereby,
the definition of the associated subspaces is straightforward, since inter-element con-
tinuity is not required. This property overcomes the usual difficulties encountered in
the construction of agglomeration multigrid schemes in the conforming framework,
where the agglomeration strategy must be followed by a proper definition of the con-
forming subspaces. In [37], for example, the sublevels are obtained by combining a
graph based agglomeration algorithm and re-triangulations, thus resulting in a set of
non-nested grids, while the associated nested subspaces are defined by introducing
suitable interpolation operators. The resulting V-cycle multigrid algorithm converges
uniformly with respect to the meshsize h provided that the number of levels is kept
fixed.

In this paper we analyze the convergence of a two-level scheme and W-cycle
multigrid method for the solution of the linear system of equations arising from the
hp-version of the interior penalty DG scheme on polygonal/polyhedral meshes [36],
thereby, extending the theoretical framework developed in [13] for standard quasi-
uniform triangular/quadrilateral meshes, cf. also [14] for three-dimensional numerical
experiments. Our analysis is based on the smoothing and approximation properties
associated with the proposed method: the former corresponds to a Richardson itera-
tion, whose study requires a result concerning the spectral properties of the stiffness
matrix, while the latter is inherent to the interior penalty DG scheme itself and exploits
the error estimates derived in [36]. We show that, under suitable assumptions on the
agglomerated coarse grid, both the two-level and the W-cycle multigrid schemes con-
verge uniformly with respect to the granularity of the underlying partition and the
polynomial approximation degree p, provided that the number of smoothing steps
is chosen of order p2+μ, with μ = 0, 1. Throughout the analysis, we also track the
dependence of the error reduction factor of the two solvers on the geometric proper-
ties of the agglomerated grids, thereby recovering a similar result to the case when
standard quasi-uniform triangular and/or quadrilateral meshes are employed.

The rest of this paper is organized as follows. In Sect. 2 we introduce the interior
penalty DG scheme for the discretization of second-order elliptic problems on general
meshes consisting of polygonal/polyhedral elements. Then in Sect. 3, we recall some
preliminary analytical results concerning this class of schemes. In Sect. 4 we define
the multilevel framework and introduce several technical results. We then focus first
on the analysis of the two-level method, followed by the extension to the W-cycle
multigrid solver. The main theoretical results are investigated through a series of
numerical experiments presented in Sect. 6, where we also present a comparison
with an unsmoothed Algebraic Multigrid method. Finally, in Sect. 7 we draw some
conclusions.
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2 Model problem and discretization

We consider the weak formulation of the Poisson problem, subject to a homogeneous
Dirichlet boundary condition: find u ∈ V = H2(Ω) ∩ H1

0 (Ω) such that

∫
Ω

∇u · ∇v dx =
∫

Ω

f v dx ∀v ∈ V, (1)

withΩ ∈ R
d , d = 2, 3, a convex polygonal/polyhedral domain with Lipschitz bound-

ary and f a given function in L2(Ω).
For the sake of brevity, throughout this article, we write x � y and x � y in

lieu of x ≤ Cy and x ≥ Cy, respectively, for a positive constant C independent
of the discretization parameters. Moreover, x ≈ y means that there exist constants
C1,C2 > 0 such that C1y ≤ x ≤ C2y. When required, the constants will be written
explicitly.

In view of the forthcoming multigrid analysis, we denote by {T j }Jj=1 a sequence
of partitions of the domain Ω , each of which consists of disjoint open polygo-
nal/polyhedral elements κ of diameter hκ , such that Ω = ⋃

κ∈T j
κ̄ , j = 1, . . . , J .

We denote the mesh size of T j , j = 1, . . . , J , by h j = maxκ∈T j hκ . To each
T j , j = 1, . . . , J , we associate the corresponding DG finite element space Vj ,
j = 1, . . . , J , defined as

Vj = {v ∈ L2(Ω) : v|κ ∈ Pp j (κ), κ ∈ T j },

where Pp j (κ) denotes the space of polynomials of total degree at most p j ≥ 1 on
κ ∈ T j . A suitable choice of the sequences {T j }Jj=1 and {Vj }Jj=1 leads to the so-
called h- and p-multigrid schemes. In particular, the h−multigrid method is based
on employing a constant polynomial approximation degree for each j , j = 1, . . . , J ,
(i.e., p j = p), on a set of nested partitions {T j }Jj=1, such that the coarse level T j−1,
j = 2, . . . , J , is obtained by agglomeration from T j in such a way that

h j−1 � h j ≤ h j−1 ∀ j = 2, . . . , J, (2)

i.e., we assume a bounded variation hypothesis between subsequent levels. In the p-
multigrid method, the partition is kept fixed for any j , j = 1, . . . , J , while we assume
that the polynomial degrees vary moderately from one level to another, i.e.,

p j−1 ≤ p j � p j−1 ∀ j = 2, . . . , J. (3)

Note that with the above choices we obtain nested finite element spaces Vj , j =
1, . . . , J , i.e., V1 ⊆ V2 ⊆ · · · ⊆ VJ .
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2.1 Grid assumptions

In this section, we outline some key definitions and assumptions. For any T j , j =
1, . . . , J , when no hanging nodes/edges are included in the partition, we define the
interfaces of the mesh T j as the set of (d − 1)-dimensional facets of the elements
κ ∈ T j . The presence of hanging nodes/edges, on the other hand, can be handled by
defining the interfaces of T j as the intersection of the (d − 1)-dimensional facets of
neighboring elements. This implies that, for d = 2, an interface will always consist
of a piecewise linear line segment, i.e., they consist of a set of (d − 1)–dimensional
simplices. However, in general for d = 3, the interfaces of T j will consist of general
polygonal surfaces. Thereby, we assume that each planar section of each interface
of an element κ ∈ T j may be subdivided into a set of co-planar triangles ((d −
1)–dimensional simplices). We refer to these (d − 1)–dimensional simplices, whose
union form the interfaces of T j , as faces. With this notation, we assume that the sub-
tessalation of element interfaces into (d − 1)–dimensional simplices is given. We
denote byF j the set of all mesh faces; moreover, we have thatF j = F I

j ∪F B
j , where

F I
j is the set of interior element faces of T j , such that F ⊆ ∂κ+∩∂κ− for any F ∈ F I

j ,

where κ± are two adjacent elements in T j . The setF B
j contains the boundary element

faces, i.e., F ⊂ ∂Ω for F ∈ F B
j .

We are now ready to introduce the following assumptions on the partitions T j ,
j = 1, . . . , J ; cf. [33]. In the case of the h-multigrid scheme, these assumptions must
be satisfied for the meshes generated by the underlying agglomeration process.

Assumption 1 Given κ ∈ T j , there exists a set of nonoverlapping (not necessarily
shape-regular) d–dimensional simplices T� ⊆ κ , � = 1, 2, . . . , nκ , such that, for any
face F ⊂ ∂κ , F = ∂κ ∩ ∂T�, for some �,

∪nκ

�=1T � ⊆ κ,

and the diameter hκ of κ can be bounded by

hκ � d|T�|
|F | , � = 1, 2, . . . , nκ .

Remark 1 We point out that Assumption 1 does not put a restriction on either the
number of faces that an element possesses, or indeed themeasure of a face of an element
κ ∈ T j , relative to themeasure of the element itself. This will be particularly important
in the agglomeration procedure employed within our h-multigrid method, since as
the number of levels increases, the number of faces that the resulting agglomerated
elements may contain grows, while their measure, relative to the element measure,
may degenerate.

Remark 2 Aspointed out in [33],meshes obtained by agglomeration of a finite number
of polygons that are uniformly star-shapedwith respect to the largest inscribed ball will
automatically satisfy Assumption 1. Therefore, from the practical point of view, given
a fine-level mesh TJ consisting of uniformly star-shaped elements, a finite number of

123



1174 P. F. Antonietti et al.

agglomeration steps will produce a sequence of admissible grids. To allow the number
of agglomeration levels to increase arbitrarily one can either (i) ensure that each of
the agglomerated meshes satisfy Assumption rm 1; (ii) check, at each level, that the
(slightly more restrictive) shape-regularity criterion on the agglomerates is satisfied.

Assumption 2 For any κ ∈ T j , j = 1, . . . , J , we assume that hdκ ≥ |κ| � hdκ , with
d = 2, 3.

We next introduce the following additional mesh condition, cf. [35], which will be
required in order to obtain the inverse estimates presented in Lemma 4.

Assumption 3 Every polytopic element κ ∈ T j , admits a sub-triangulation into at
most mκ ∈ N non-overlapping, shape-regular simplices si , i = 1, 2, . . . ,mκ , such
that κ̄ = ∪mκ

i=1s̄i and

|si | � |κ|

for all i = 1, . . . ,mκ . The hidden constant is independent of κ and T j .

In view of the approximation result that will be presented in the next section we also
introduce the following additional assumption.

Assumption 4 Let T �
j = {K}, denote a covering of Ω consisting of shape-regular

d-dimensional simplicesK. We assume that, for any κ ∈ T j , there existsK ∈ T �
j such

that κ ⊂ K, diam(K) � hκ , and

max
κ∈T j

card
{
κ ′ ∈ T j : κ ′ ∩ K 
= ∅, K ∈ T �

j such that κ ⊂ K
}

� 1.

We also need the following assumption on the quality of agglomerated grids.

Assumption 5 For any F ∈ F j ∩ F j−1, j = 2, . . . , J , we denote by κ±
j and κ±

j−1
the neighboring elements sharing the face F in T j and T j−1, respectively. We assume
that there exists Θ > 0 such that

1 <
hκ±

j−1

hκ±
j

≤ Θ ∀F ∈ F j ∩ F j−1.

We remark that Assumption 5 is satisfied if the agglomeration algorithm preserves
the shape-regularity of the elements. In Fig. 1, we show two examples of possible
macroelements: the agglomerate on the left is not suitable to guarantee Assumption 5
due to the presence of a dominant dimension, while the element on the right can be
considered appropriate. Moreover, we note that the fulfilment of Assumption 5 can
be considered a good criterion in evaluating the quality of the agglomerated grids
employed in the multigrid algorithm, cf. Fig. 1 for an illustration.

Finally, to keep the notation as simple as possible, in the forthcoming analysis we
will assume that, for any j = 1, . . . , J , the decompositions T j are quasi-uniform.
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Fig. 1 Examples of agglomerated elements. The agglomerated element on the left violates Assumption 5
whereas the one on the right satisfies Assumption 5

Assumption 6 For any j = 1, . . . , J , it holds h j ≈ minκ∈T j hκ .

We remark that the above assumption can be weakened and only a local bounded
variation property is needed for our theoretical analysis; see Remark 4 below for
details.

2.2 DG formulation

The definition of the proceeding DG method is based on employing suitable jump
and average operators. To this end, for (sufficiently smooth) vector- and scalar-valued
functions τ and v, respectively, we define jumps and averages across F ∈ F j , j =
1, . . . , J , as follows:

�τ� = τ+ · n+ + τ− · n−, {{τ }} = τ+ + τ−

2
, F ∈ F I

j ,

�v� = v+n+ + v−n−, {{v}} = v+ + v−

2
, F ∈ F I

j ,

�v� = v+n+, {{τ }} = τ+, F ∈ F B
j ,

where v± and τ± denote the traces of v and τ on F taken from the interior of κ±,
respectively, and n± the outward unit normal vectors to ∂κ±, respectively, cf. [17].
On any level j , j = 1, . . . , J , we consider the bilinear formA j (·, ·) : Vj × Vj → R,
corresponding to the symmetric interior penalty DG method, defined by

A j (u, v) =
∑
κ∈T j

∫
κ

∇u · ∇v dx −
∑
F∈F j

∫
F

({{∇u}} · �v� + �u� · {{∇v}}) ds (4)

+
∑
F∈F j

∫
F

σ j �u� · �v� ds,
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1176 P. F. Antonietti et al.

whereσ j ∈ L∞(F j )denotes the interior penalty stabilization functionσ j : F j → R
+,

which is defined by

σ j (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C j
σ max

κ∈{κ+,κ−}

{ p2j
hκ

}
, x ∈ F, F ∈ F I

j , F ⊂ ∂κ+ ∩ ∂κ−,

C j
σ

p2j
hκ

, x ∈ F, F ∈ F B
j , F ⊂ ∂κ+ ∩ ∂Ω,

(5)

with C j
σ > 0 independent of p j , |F | and |κ|.

In this article, we develop two-level andW-cycle multigrid schemes to compute the
solution of the following problem on the finest level J : find uJ ∈ VJ such that

AJ (uJ , vJ ) =
∫

Ω

f vJ dx ∀vJ ∈ VJ . (6)

3 Preliminary results

We first recall the following trace-inverse inequality for polygonal/polyhedral ele-
ments.

Lemma 1 Assume that the sequence of meshes T j , j = 1, . . . , J , satisfies Assump-
tion 1. Let κ ∈ T j , j = 1, . . . , J , be a polygonal/polyhedral element, then the
following bound holds

‖v‖2L2(∂κ)
≤ C j

inv

p2j
hκ

‖v‖2L2(κ)
∀ v ∈ Pp j (κ), (7)

where C j
inv is independent of |κ|, p j and v.

The proof can be obtained with trivial modifications with respect to the ones given
in [33,34]. For the sake of completeness we report it and refer to [33,34] for further
details.

Proof FromAssumption 1, there exists a set of nonoverlapping (not necessarily shape-
regular) d-simplicial elements T� ⊆ κ such that, given a face F ⊂ ∂κ , for some �,
1 ≤ � ≤ nκ , F = ∂κ ∩ ∂T�. Therefore,

‖u‖2L2(∂κ)
=

∑
F⊂∂κ

‖u‖2L2(F)
� p2j

nκ∑
�=1

|F |
|T�| ‖u‖2L2(T�)

�
p2j
hκ

nκ∑
�=1

‖u‖2L2(T�)
≤ p2j

hκ

‖u‖2L2(κ)
,
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as required. Here, in the first inequality we have employed the following classical
trace-inverse estimate on d-simplicial elements

‖u‖2L2(F)
� p2j

|F |
|T�| ‖u‖2L2(T�)

,

cf. [41,56], for example; the second bound exploits Assumption 1, namely, that
|F ||T�|−1 � dh−1

κ .

Next, we endow the finite element spaces Vj , j = 1, . . . , J , with the following DG
norm:

‖w‖2DG, j =
∑
κ∈T j

∫
κ

|∇w|2 dx +
∑
F∈F j

∫
F

σ j |�w�|2 ds.

The well–posedness of the DG formulation is established in the following lemma

Lemma 2 Assume that the sequence of meshes T j , j = 1, . . . , J , satisfies Assump-

tion 1 and that the constant C j
σ , j = 1, . . . , J , appearing in the definition (5) of the

stabilization function is chosen sufficiently large. Then, the following continuity and
coercivity bounds, respectively, hold

A j (u, v) ≤ Ccont‖u‖DG, j‖v‖DG, j ∀u, v ∈ Vj ,

A j (u, u) ≥ Ccoer‖u‖2DG, j ∀u ∈ Vj , (8)

whereCcont andCcoer are positive constants, independent of the discretization param-
eters.

The proceeding error estimates are based on the following approximation result,
which is a simplified version of the analogous bound presented in [36, Proof of Theo-
rem 5.2]. To this end, we define E : Hs(Ω) → Hs(Rd), s ∈ N0, such that Ev|Ω = v,
to denote the extension operator presented in Stein [57].

Lemma 3 Assume that Assumptions 1 and 4 hold. Let v|κ ∈ Hk(κ), k > d/2, such
that Ev|K ∈ Hk(K), for each κ ∈ T j , j = 1, . . . , J , where κ ⊂ K, K ∈ T �

j . Then

there exists a projection operator Π̃ j : L2(Ω) → Vj such that

‖v − Π̃ jv‖DG, j ≤ C j
interp

hs−1
j

pk−1−μ/2
j

‖v‖Hk (Ω), (9)

where s = min{p j + 1, k}, and the constant C j
interp depends on the shape-regularity

constant of the covering T �
j , but is independent of the discretization parameters, as

well as the number of faces per element and the relative measure of the faces. Here,
μ = 0 whenever a p−optimal interpolant can be constructed and μ = 1 otherwise.
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1178 P. F. Antonietti et al.

Next, we state error bounds for the underlying interior penalty DG scheme in terms
of both the DG and L2(Ω)-norms.

Theorem 7 Assume that Assumptions 1 and 4 hold.Denote by u j ∈ Vj , j = 1, . . . , J ,
the DG solution of problem (6) posed on level j , i.e.,

A j
(
u j , v j

) =
∫

Ω

f v j dx ∀v j ∈ Vj .

If the solution u of (1) satisfies u|κ ∈ Hk(κ), k > 1+ d/2, such that Eu|K ∈ Hk(K),
for each κ ∈ T j , j = 1, . . . , J , where κ ⊂ K, K ∈ T �

j , then the following bounds
hold

‖u − u j‖DG, j ≤ G j
hs−1
j

pk−1−μ/2
j

‖u‖Hk (Ω), (10)

‖u − u j‖L2(Ω) ≤ C j
L2

hsj

pk−μ
j

‖u‖Hk (Ω), (11)

where s = min{p j + 1, k} and the constants G j and C j
L2 are independent of the

discretization parameters. Here, μ = 0 whenever a p−optimal interpolant can be
constructed and μ = 1 otherwise.

Before proceeding with the proof, we point out that the above error bounds hold
provided Assumptions 1 and 4 are satisfied; however, we stress that no limitation is
placed on the maximum number of faces that each polygonal/polyhedral element may
possess. Moreover, there is no restriction on the relative size of each face of an element
compared to its diameter.

Proof The error bound (10) stems from the general result derived in [36, Theorem 5.2]
under the condition that Assumptions 1 and 4 hold. Thereby, we now proceed with the
proof of the bound on the L2(Ω)-norm of the error, cf. (11). To this end, we employ
a standard duality argument: let w ∈ V , be the solution of the problem

A j (v,w) =
∫

Ω

(u − u j )v dx ∀v ∈ V,

j = 1, . . . , J . Exploiting a standard elliptic regularity assumption, we note that

‖w‖H2(Ω) � ‖u − u j‖L2(Ω).

According to Galerkin orthogonality, we immediately obtain

‖u − u j‖2L2(Ω)
= A j

(
u − u j , w

)
= A j

(
u − u j , w − wI

)
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� ‖u − u j‖DG, j‖w − wI‖DG, j

for all wI ∈ Vj . Hence, selecting wI = Π̃ jw, employing (9) gives

‖w − wI‖DG, j � C j
interp

h j

p1/2j

‖w‖H2(Ω) � C j
interp

h j

p1−μ/2
j

‖u − u j‖L2(Ω),

which together with (10) gives the desired result.

Equipped with Assumption 3, we now quote the following result from [35]; for
brevity the proof is omitted. However, we point out that the proof presented in [35]
holds under slightly weaker mesh conditions; for simplicity of presentation, this level
of detail is omitted.

Lemma 4 Assume that Assumptions2and3hold. Then, for any v ∈ Vj , j = 1, . . . , J ,
the following inverse estimate holds

‖∇u‖2L2(κ)
≤ C j

I p
4
j h

−2
κ ‖u‖2L2(κ)

,

where C j
I > 0 is independent of the discretization parameters.

The inverse estimate presented in Lemma 4 is fundamental to the proof of the
following upper bound on the maximum eigenvalue of A j (·, ·). We recall that the
analogous result on standard grids can be found in [10], cf. also [11].

Theorem 8 Given that Assumptions 1, 2, 3, and 6 hold, then for any u ∈ Vj , j =
1, . . . , J , we have that

A j (u, u) ≤ C j
eig

p4j
h2j

‖u‖2L2(Ω)
,

where the constant C j
eig is independent of the discretization parameters.

Proof Given the continuity of the bilinear formsA j (·, ·) stated inLemma2,we restrict
ourselves to estimate the two terms involved in the DG norm. The local contributions
of the H1 seminorm can be simply bounded by applying Lemma 4 and the quasi-
uniformity of the partition, i.e.,

∑
κ∈T j

|u|2H1(κ)
≤

∑
κ∈T j

C j
I p

4
j h

−2
κ ‖u‖2L2(κ)

≤
(
max
κ∈T j

C j
I

) p4j
h2j

‖u‖2L2(Ω)
.

To bound the norm of the jump across F ∈ F j , we employ the inverse inequality (7);
thereby, we get

∑
F∈F j

‖σ 1/2
j �u�‖2L2(F)

�
∑
κ∈T j

‖σ 1/2
j �u�‖2L2(∂κ)

� C j
σC

j
inv

p4j
h2j

‖u‖2L2(Ω)
.
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The statement of the theorem immediately follows based on summing the above
bounds.

The theoretical results derived in this section form the basis of the analysis of the
proposed multigrid algorithms presented in the following section.

4 Two-level and W-cycle multigrid algorithms

The forthcoming analysis is based on the classical multigrid theoretical framework
already employed in [13] for high-order DG schemes on standard quasi-uniform
meshes. The two key ingredients in the construction of our proposedmultigrid schemes
are the inter-grid transfer operators and the smoothing scheme. The prolongation oper-
ator connecting the space Vj−1 to Vj , j = 2, . . . , J , is denoted by I jj−1 : Vj−1 → Vj ,

while its adjointwith respect to the L2(Ω)-inner product (·, ·) is the restriction operator
I j−1
j : Vj → Vj−1 defined by

(
I jj−1v,w

)
=

(
v, I j−1

j w
)

∀v ∈ Vj−1, w ∈ Vj .

As a smoothing scheme, we choose a Richardson iteration, whose operator is defined
as:

Bj = Λ j Id j , (12)

with Id j the identity operator on level Vj , and Λ j ∈ R is an upper bound for the
spectral radius of the operator A j : Vj → Vj , defined by

(A ju, v) = A j (u, v) ∀u, v ∈ Vj , j = 1, . . . , J. (13)

For the definition of the solvers, we first address the two-level method. Given the
problem AJu J = f J with AJ : VJ → VJ defined according to (13), and f J ∈ VJ

such that

( f J , v) =
∫

Ω

f v dx ∀v ∈ VJ ,

in Algorithm 1 we outline the two-level cycle, whereMG2lvl(z0,m1,m2) denotes the
approximate solution obtained after one iteration, with initial guess z0 and m1, m2
pre- and post-smoothing steps, respectively.

As a multilevel extension of Algorithm 1, we consider a standard W-cycle scheme.
On level j , we consider A j z = g, for a given g ∈ Vj . The approximate solution
obtained by applying the j-th level iteration to the above linear system, with ini-
tial guess z0 and m1, m2 pre- and post-smoothing steps, respectively, is denoted by
MGW ( j, g, z0,m1,m2). On the coarsest level j = 1, the corresponding subproblem
is solved based on employing a direct method, i.e.,

MGW (1, g, z0,m1,m2) = A−1
1 g,
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Algorithm 1 Two-level scheme
Pre-smoothing:
for i = 1, . . . ,m1 do

z(i) = z(i−1) + B−1
J ( f J − AJ z

(i−1));
end for

Coarse grid correction:

rJ−1 = I J−1
J ( f J − AJ z

(m1));

eJ−1 = A−1
J−1rJ−1;

z(m1+1) = z(m1) + I JJ−1eJ−1;

Post-smoothing:
for i = m1 + 2, . . . ,m1 + m2 + 1 do

z(i) = z(i−1) + B−1
J ( f J − AJ z

(i−1));
end for

MG2lvl(z0,m1,m2) = z(m1+m2+1).

Algorithm 2Multigrid W-cycle scheme
if j = 1 then

MGW (1, g, z0,m1,m2) = A−1
1 g.

else
Pre-smoothing:
for i = 1, . . . ,m1 do

z(i) = z(i−1) + B−1
j (g − A j z

(i−1));
end for

Coarse grid correction:

r j−1 = I j−1
j (g − A j z

(m1));

e j−1 = MGW ( j − 1, r j−1, 0,m1,m2);
e j−1 = MGW ( j − 1, r j−1, e j−1,m1,m2);

z(m1+1) = z(m1) + I jj−1e j−1;

Post-smoothing:
for i = m1 + 2, . . . ,m1 + m2 + 1 do

z(i) = z(i−1) + B−1
j (g − A j z

(i−1));
end for

MGW ( j, g, z0,m1,m2) = z(m1+m2+1).

end if

while for j > 1 we apply the recursive procedure outlined in Algorithm 2.We observe
that Algorithm 1 can be considered as a special case of Algorithm 2, corresponding
to J = 2.
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4.1 Convergence analysis of the two-level method

We first define the following norms based on the operator A j , j = 1, . . . , J ,

|||v|||s, j =
√(

As
jv, v

)
j

∀s ∈ N ∪ {0}, v ∈ Vj , j = 1, . . . , J.

Hence,

|||v|||21, j = (A jv, v) j = A j (v, v) , |||v|||20, j = (v, v) j = ‖v‖2L2(Ω)
∀v ∈ Vj .

In order to undertake the convergence analysis of the two-level solver outlined in
Algorithm 1, we follow the approach developed in [13]. We then provide an estimate
based on the error propagation operator, which is defined by

E
2lvl
m1,m2

v = Gm2
J

(
IdJ − I JJ−1P

J−1
J

)
Gm1

J , (14)

with GJ = IdJ − B−1
J AJ , and the operator P J−1

J : VJ → VJ−1 defined as

AJ−1

(
P J−1
J v,w

)
= AJ

(
v, I JJ−1w

)
∀v ∈ VJ , w ∈ VJ−1. (15)

We now study separately the smoothing property and the approximation property. We
also point out that that by Theorem 8, we can bound Λ j , j = 1, . . . , J , in (12) as
follows

Λ j � C j
eig

p4j
h2j

.

The last result is employed to prove the smoothing property in the next lemma; see
[13, Lemma 4.3] for the proof.

Lemma 5 (Smoothing property) Given that Assumptions 1, 2, 3 and 6 hold. for any
v ∈ Vj , j = 1, . . . , J , we have

|||Gm
j v|||1, j ≤ |||v|||1, j ,

|||Gm
j v|||s, j � C j

eig

(s−t)/2
p2(s−t)
j ht−s

j (1 + m)(t−s)/2|||v|||t, j ,
for 0 ≤ t < s ≤ 2 and m ∈ N\{0}.

(16)

The approximation property stems from exploiting the L2(Ω) error estimates stated
in (11) on levels J and J − 1.

Lemma 6 (Approximation property) Assume that Assumptions 1 and 4 hold. Let μ

be defined as in Lemma 3. For any v ∈ VJ , the following inequality holds

|||
(
IdJ − I JJ−1P

J−1
J

)
v|||0,J �

(
CJ

L2 + CJ−1
L2

) h2J−1

p2−μ
J−1

|||v|||2,J . (17)
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Proof For any v ∈ VJ , we consider the following equality

|||
(
IdJ − I JJ−1P

J−1
J

)
v|||0,J = ‖

(
IdJ − I JJ−1P

J−1
J

)
v‖L2(Ω) (18)

= sup
0 
=φ∈L2(Ω)

∫
Ω

φ
(
IdJ − I JJ−1P

J−1
J

)
v dx

‖φ‖L2(Ω)

.

Next, we consider the solution η of the following problem

∫
Ω

∇η · ∇v dx =
∫

Ω

φv dx ∀v ∈ V,

for φ ∈ L2(Ω), and let ηJ ∈ VJ and ηJ−1 ∈ VJ−1 be the corresponding DG approx-
imations in VJ and VJ−1, respectively, given by

AJ (ηJ , v) =
∫

Ω

φv dx ∀v ∈ VJ ,

AJ−1 (ηJ−1, v) =
∫

Ω

φv dx ∀v ∈ VJ−1.

(19)

By Theorem 7 and the hypotheses (2) and (3), we deduce that

‖η − ηJ‖L2(Ω) � CJ
L2

h2J−1

p2−μ
J−1

‖η‖H2(Ω),

‖η − ηJ−1‖L2(Ω) � CJ−1
L2

h2J−1

p2−μ
J−1

‖η‖H2(Ω),

and from a standard elliptic regularity assumption, it follows that

‖η − ηJ‖L2(Ω) � CJ
L2

h2J−1

p2−μ
J−1

‖φ‖L2(Ω),

‖η − ηJ−1‖L2(Ω) � CJ−1
L2

h2J−1

p2−μ
J−1

‖φ‖L2(Ω).

(20)

Recalling the definition of P J−1
J , cf. (15), and (19), for any w ∈ VJ−1, we get

AJ−1

(
P J−1
J ηJ , w

)
= AJ

(
ηJ , I

J
J−1w

)
= AJ (ηJ , w)

=
∫

Ω

φw dx = AJ−1 (ηJ−1, w) .

Hence,
ηJ−1 = P J−1

J ηJ . (21)
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According to [13, Lemma 4.1], the following generalized Cauchy–Schwarz inequality
holds

AJ (v,w) ≤ |||v|||0,J |||w|||2,J , (22)

for any v,w ∈ VJ . We now employ (19) and the definition of P J−1
J in (15), followed

by (21), the Cauchy–Schwarz inequality (22) and the error estimates (20), to get

∫
Ω

φ
(
IdJ − I JJ−1P

J−1
J

)
v dx = AJ (ηJ , v) − AJ

(
ηJ , I

J
J−1P

J−1
J v

)

= AJ (ηJ , v) − AJ−1

(
P J−1
J ηJ , P

J−1
J v

)

= AJ (ηJ , v) − AJ−1

(
ηJ−1, P

J−1
J v

)

= AJ

(
ηJ − I JJ−1ηJ−1, v

)

≤ |||ηJ − ηJ−1|||0,J |||v|||2,J
≤ (‖ηJ − η‖L2(Ω) + ‖ηJ−1 − η‖L2(Ω)

) |||v|||2,J
�

(
CJ

L2 + CJ−1
L2

) h2J−1

p2−μ
J−1

‖φ‖L2(Ω)|||v|||2,J .
(23)

Substituting (23) into (18) gives the desired result.

The convergence result for the two-level method, involving the error propagation
operator E2lvl

m1,m2
defined in (14), is obtained by combining Lemma 5 and Lemma 6.

Theorem 9 Assume that Assumptions 1, 2, 3, 4, and 6 hold. Let μ be defined as in
Lemma 3. Then, there exists a positive constantC2lvl independent of the mesh size and
the polynomial approximation degree, such that

|||E2lvl
m1,m2

v|||1,J ≤ C2lvlΣJ |||v|||1,J , (24)

for any v ∈ VJ , with

ΣJ = C̃J,J−1
p2+μ
J

(1 + m1)1/2(1 + m2)1/2
,

where C̃J,J−1 = CJ
eig(C

J
L2 + CJ−1

L2 ). Therefore, the two-level method converges uni-
formly provided the number of pre- and post-smoothing steps satisfy

(1 + m1)
1/2(1 + m2)

1/2 ≥ χC̃J,J−1 p
2+μ
J ,

for a positive constant χ > C2lvl.

Proof The statement of the theorem follows in a straightforward manner by applying
the smoothing property (16) twice, the approximation property (17) and exploiting the
bounded variation assumptions (2) and (3).
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We observe that the geometric properties of the partitions are hidden in the constant
C̃J,J−1. As a consequence, a good quality agglomerated coarse grid is fundamental
to guarantee a mild condition on the minimun number of smoothing steps.

4.2 Convergence of the W-cycle multigrid algorithm

Wefirst need to establish the equivalence betweenDGnorms on subsequent grid levels.
We point out that, in contrast to the case of standard quasi-uniform grids presented in
[13], such an equivalence result does not follow in a straightforward manner; indeed,
here we need to exploit Assumption 5 introduced in the previous section. Under these
assumptions, the proof of the following result follows immediately.

Lemma 7 Assuming Assumption 5 holds, then for any v ∈ Vj−1, j = 2, . . . , J , we
have that

‖v‖DG, j ≤ Cequiv‖v‖DG, j−1, (25)

where Cequiv = Cequiv(Θ), in general, depends on the quality of the agglomerated
grids.

Lemma 7 is essential to deduce the stability of the operators I jj−1 and P j−1
j , j =

2, . . . , J . In particular, we state the following bounds.

Lemma 8 Assuming Assumption 5 holds, then there exists a constant Cstab ≥ 1,
independent of the mesh size, the polynomial approximation degree and the level j ,
j = 2, . . . , J , such that

|||I jj−1v|||1, j ≤ Cstab|||v|||1, j−1 ∀v ∈ Vj−1, (26)

|||P j−1
j v|||1, j−1 ≤ Cstab|||v|||1, j ∀v ∈ Vj . (27)

The proof of Lemma 8 is based on employing inequality (25); for details, see [13,
Lemma 4.6].

Remark 3 We stress that the constant Cstab depends on Cequiv in (25), which means
that the quality of the agglomeratedmeshes plays a crucial role in keeping this constant
bounded, thus resulting in the uniformity with respect to the mesh size and the number
of levels as shown in Theorem 10 below.

The error propagation operator associated to Algorithm 2 is defined as

⎧⎨
⎩
E1,m1,m2v = 0

E j,m1,m2v = Gm2
j

(
Id j − I jj−1

(
Id j − E

2
j−1,m1,m2

)
P j−1
j

)
Gm1

j v, j = 2, . . . , J,

(28)
where G j = Id j − B−1

j A j and P j−1
j is defined analogously to (15), cf. [29,42]. Then

the convergence estimate for the W-cycle multigrid scheme follows from Theorem 9
and the stability estimates (26) and (27).
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Theorem 10 Assume that Assumptions 1, 2, 3, 4, 5, and 6 hold. Let μ be defined as in
Lemma 3. Let C2lvl and Cstab be defined as in Theorem 9 and Lemma 8, respectively,
and let C̃ j, j−1 be defined as in Theorem 9, but on the level j , i.e., C̃ j, j−1 = C j

eig(C
j
L2+

C j−1
L2 ), j = 2, . . . , J . Then, there exists a constant Ĉ > C2lvl, independent of the mesh

size, the polynomial approximation degree and the level j , j = 1, . . . , J , such that, if
the number of pre- and post-smoothing steps satisfy

(m1+1)1/2(m2+1)1/2 ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p2+μ
j C̃ j, j−1

(Cstab)
2Ĉ2

Ĉ − C2lvl
if C̃ j−1, j−2 ≤ C̃ j, j−1,

p2+μ
j

(C̃ j−1, j−2)
2

C̃ j, j−1

(Cstab)
2Ĉ2

Ĉ − C2lvl
otherwise,

(29)
then

|||E j,m1,m2v|||1, j ≤ ĈΣ j |||v|||1, j ∀v ∈ Vj , (30)

with

Σ j = C̃ j, j−1
p2+μ
j

(1 + m1)1/2(1 + m2)1/2
. (31)

Proof The proof follows the derivation of the analogous result presented in [13, The-
orem 4.7]. For j = 1, the statement of the theorem trivially holds. For j > 1, by an
induction hypothesis, we assume that (30) holds for j − 1. By the definition of the
error propagation operator E j,m1,m2v in (28), it follows that

|||E j,m1,m2v|||1, j ≤ |||Gm2
j

(
Id j − I jj−1P

j−1
j

)
Gm1

j v|||1, j
+ |||Gm2

j I jj−1E
2
j−1,m1,m2

P j−1
j Gm1

j v|||1, j .

The first term corresponds to a two-level method between level j and j − 1. We now
observe that the smoothing property of Lemma 5 and the approximation property of
Lemma 6 can be extended to any level Vj , j = 2, . . . , J , and we therefore have, by
Theorem 9, that

|||Gm2
j

(
Id j − I jj−1P

j−1
j

)
Gm1

j v|||1, j ≤ C2lvlΣ j |||v|||1, j .

The bound on the second term is obtained by applying the smoothing property (16)
for j = 2, . . . , J , the stability estimates (26) and (27) and the induction hypothesis;
thereby, we get

|||Gm2
j I jj−1E

2
j−1,m1,m2

P j−1
j Gm1

j v|||1, j ≤ (Cstab)
2Ĉ2Σ2

j−1|||v|||1, j .

We then obtain

|||E j,m1,m2v|||1, j ≤
(
C2lvlΣ j + (Cstab)

2Ĉ2Σ2
j−1

)
|||v|||1, j .
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We now observe that the following relation between Σ j−1 and Σ j holds

Σ j−1 = Σ j

(
p j−1

p j

) (
C̃ j−1, j−2

C̃ j, j−1

)
≤ Σ j

(
C̃ j−1, j−2

C̃ j, j−1

)
.

Using the above identity we have that

C2lvlΣ j + (Cstab)
2Ĉ2Σ2

j−1

≤
(
C2lvl + (Cstab)

2Ĉ2 (C̃ j−1, j−2)
2

C̃ j, j−1

p2+μ
j

(1 + m1)1/2(1 + m2)1/2

)
Σ j .

We then observe that if m1 and m2 are such that

(1 + m1)
1/2(1 + m2)

1/2 ≥ p2+μ
j

(C̃ j−1, j−2)
2

C̃ j, j−1

(Cstab)
2Ĉ2

Ĉ − C2lvl
,

it follows thatC2lvlΣ j +(Cstab)
2Ĉ2Σ2

j−1 ≤ ĈΣ j . Notice that for C̃ j−1, j−2 ≤ C̃ j, j−1
the above condition on m1 and m2 can be simplified as follows

(1 + m1)
1/2(1 + m2)

1/2 ≥ p2+μ
j C̃ j, j−1

(Cstab)
2Ĉ2

Ĉ − C2lvl
,

and thereforewe obtainC2lvlΣ j+(Cstab)
2Ĉ2Σ2

j−1 ≤ ĈΣ j , and the proof is complete.

As in the two-level case, inequality (30) implies that the convergence of the method
is guaranteed if the number of smoothing steps is chosen sufficiently large, cf. (29).
Moreover, compared to the case of standard quasi-uniform grids, cf. [13], the bound
(29) on the number of smoothing steps involves a dependence on the geometric
properties of the underlying agglomerated meshes, which in principle, could lead to
shape-regularity conditions on the hierarchy of grids employed. However, we remark
that, in practice, the numerical simulations indicate that the proposed multigrid algo-
rithms converge uniformly, even when low quality agglomerated grids are employed;
moreover, an increase in the polynomial order does not seem to require a higher number
of smoothing steps to obtain a convergent iteration, cf. Sect. 6 for details.

Remark 4 Whenever the agglomerated grids are not quasi-uniform, i.e., Assumption 6
does not hold, Theorems 9 and 10 still hold. More precisely, we need to introduce the
ratio θ j between the maximum and minimum element size on level j , i.e.,

θ j = maxκ∈T j hκ

minκ∈T j hκ

, j = 1, . . . , J.

Assuming there exists a constant Cmesh, independent of the granularity of the mesh,
such that

θ j ≤ Cmesh, j = 1, . . . , J,
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then the results in Theorem 9 and Theorem 10 hold with

Σ j = θ2j C̃ j, j−1
p2+μ
j

(1 + m1)1/2(1 + m2)1/2
,

cf. (31). Moreover, the bound (29) is modified as follows

(1+m1)
1/2(1+m2)

1/2 ≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Cstab)2Ĉ2

Ĉ − C2lvl

(Cmesh)4

θ2j

C̃ j, j−1 p
2+μ
j if C̃ j−1, j−2 ≤ C̃ j, j−1,

(Cstab)2Ĉ2

Ĉ − C2lvl

(Cmesh)4

θ2j

(C̃ j−1, j−2)
2

C̃ j, j−1
p2+μ
j otherwise.

(32)

Remark 5 We recall that in Theorem 10 and Remark 4, in order to guarantee the
convergence of the method, we require a lower bound on the number of smoothing
steps, cf. (29) and (32). Such a condition guarantees that the resultingW-cycle method
is uniformly convergent with respect to the mesh size, the polynomial approximation
degree, and the number of levels. In fact, for C̃ j−1, j−2 ≤ C̃ j, j−1, from (32) and using
that θ j ≤ Cmesh, j = 1, . . . , J , we obtain

ĈΣ j = Ĉθ2j C̃ j, j−1
p2+μ
j

(1 + m1)1/2(1 + m2)1/2

≤ Ĉ − C2lvl

(Cstab)
2Ĉ

θ4j

(Cmesh)
4 ≤ Ĉ − C2lvl

(Cstab)
2Ĉ

< 1.

An analogous result can be obtained for C̃ j−1, j−2 > C̃ j, j−1. Moreover, we note
that we have considered the general setting of (32), since (29) can be regarded as a
particular case.

5 Weaker geometric assumptions on the quality of the agglomerates

In this section we briefly provide some details regarding the minimal regularity
requirements needed to guarantee that our geometric h−multigrid method is conver-
gent. Indeed, the theoretical analysis of our two-level andW-cyclemultigrid algorithms
solver can be undertaken under weaker mesh assumptions on the shape of the elements
and the quality of the agglomerated grids than those satisfying Assumptions 1 and 3.
Definition 1 For each κ ∈ T j , j = 1, . . . , J , we denote by F �

κ the set of all possible
d-simplices contained in κ and having at least one face in common with κ . Moreover,
we denote by κ

�
F , an element in F �

κ sharing a face F with κ ∈ T j .

Secondly, as an alternative to Assumption 1, wemay consider the following condition.

Assumption 11 (Weaker mesh regularity assumptions) For any j = 1, . . . , J , the
mesh T j satisfies the following regularity properties.

11.a The number of faces of any κ ∈ T j , j = 1, . . . , J , is uniformly bounded;
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11.b For any F ∈ F j ∩ F j−1, j = 2, . . . , J , we denote by κ±
j and κ±

j−1 the
neighboring elements sharing the face F in T j and T j−1, respectively. We
assume that there exists Θ > 0 such that

1 <
|κ±

j−1|
|κ±

j | ≤ Θ ∀F ∈ F j ∩ F j−1 and
|κ±

j |
sup

κ
�
F∈κ±

j
|κ�

F | ≈ |κ±
j−1|

sup
κ

�
F∈κ±

j−1
|κ�

F | .

Assumption11.amight in principle be critical in ourmultilevel framework, because the
number of faces grows with the number of levels due to the agglomeration process.
As a consequence, this assumption is only satisfied if the number of levels is kept
limited. However, it will be demonstrated in Sect. 6, that this assumption only seems
to be required from a theoretical point of view.

A key step in the weakening of the mesh conditions is establishing an inverse
inequality of the form outlined in Lemma 1, which holds for general polyg-
onal/polyhedral elements. Indeed, assuming Assumption 11.a is satisifed, then
following inverse inequality holds, cf. [36, Lemma 4.4].

Lemma 9 Let κ ∈ T j , j = 1, . . . , J , be a polygonal/polyhedral element, and let
F ⊂ ∂κ be one of its faces. Then, for each v ∈ Pp j (κ), we have

‖v‖2L2(F)
≤ CINV( j, p j , κ, F)

p2j |F |
|κ| ‖v‖2L2(κ)

,

with

CINV( j, p j , κ, F) = C min

⎧⎨
⎩

|κ|
sup

κ
�
F⊂κ

|κ�
F | , p

2d
j

⎫⎬
⎭ .

and κ
�
F ∈ F �

κ as in Definition 1. The positive constant C is independent of

|κ|/ sup
κ

�
F∈κ

|κ�
F |, p j and v.

Equipped with Lemma 9, the interior penalty stabilization function σ j , must be appro-
priately redefined; see [36] for details. Finally, we observe that Assumption 11.b,
together with (3), implies that

CINV( j, p j , κ
±
j , F) ≈ CINV( j − 1, p j−1, κ

±
j−1, F) ∀ F ∈ F j ∩ F j−1, j = 2, . . . , J.

6 Numerical results

In this section we present several numerical simulations to verify the theoretical esti-
mates provided in Theorems 9 and 10 in the case of a two dimensional problem on the
unit square Ω = (0, 1)2. For the numerical tests, we consider the two sets of meshes
shown in Figs. 2 and 3. The first set of initial grids are shown in Fig. 2 (top line) and
consist of 512 (Set 1), 1024 (Set 2), 2048 (Set 3) and 4096 (Set 4) polygonal elements.
These meshes have been generated using the software package PolyMesher [60].
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Set 1 Set 2 Set 3 Set 4

G1

G2

G3

G4

Fig. 2 Sequences of agglomerated grids employed for numerical simulations. Top line fine grids consisting
of 512 (Set 1), 1024 (Set 2), 2048 (Set 3) and 4096 (Set 4) polygonal elements

We also consider an initial set of decompositions constisting of 582 (Set 1), 1086 (Set
2), 2198 (Set 3) and 4318 (Set 4) shape-regular triangles as depicted in Fig. 3 (top
line). Each initial grid is then subsequently coarsened in order to obtain a sequence of
nested partitions by employing the software package MGridGen [48,49].

Before testing the performance of the two-level and W-cycle multigrid solvers
presented in Algorithm 1 and Algorithm 2, respectively, we first address the issue
of the choice of the penalization coefficient C j

σ in (4). According to Lemma 2, the
bilinear formA j (·, ·) is coercive provided that C j

σ is chosen large enough. In Table 1,

we report the coercivity constant Ccoer of (8) for a fixed value of C j
σ ≡ Cσ =

10 for j = 1, . . . , 4. We observe that the bilinear form is uniformly coercive for a
constant value of the penalization coefficient,which is of the samemagnitude as the one
typically employed on standard shape-regular triangular meshes. As a consequence,
in the following, we set C j

σ ≡ Cσ = 10 for j = 1, . . . , 4.
We now consider the sequence of the grids shown in Fig. 2, Set 1, and numerically

evaluate the constant C2lvlΣJ , J = 2, in Theorem 9 and the constant ĈΣ3 in Theo-
rem 10, for the h-version of the two solvers, based on selectingm1 = m2 = m = 2p2,
cf. Fig. 4. Here, we observe that C2lvlΣ2 and ĈΣ3 are roughly (asymptotically) con-
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Set 1 Set 2 Set 3 Set 4

G1

G2

G3

G4

Fig. 3 Sequences of agglomerated grids employed for numerical simulations. Top line fine grids consisting
of 582 (Set 1), 1086 (Set 2), 2198 (Set 3) and 4318 (Set 4) triangular elements

Table 1 Value of the coercivity
constant Ccoer for the sets of
grids considered in Fig. 2 with

C j
σ = Cσ = 10, j = 1, . . .,4

Set 1 Set 2 Set 3 Set 4

G1 0.7385 0.7375 0.7370 0.7364

G2 0.7624 0.7564 0.7559 0.7545

G3 0.7827 0.7818 0.7720 0.7611

G4 0.8153 0.8054 0.8001 0.7827

stant, as the polynomial degree p increases; thereby, this implies that C̃J,J−1, J = 2, 3,
respectively, is approximately O(1), as p increases. Notice also that, in practice, the
parameter μ = 0, even whenever a p–optimal interpolant cannot be explicetely con-
structed.

Next, we investigate the performance of the two-level and W-cycle multigrid
schemes in terms of the convergence factor

ρ = exp

(
1

N
ln

‖rN‖2
‖r0‖2

)
,
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Fig. 4 Estimates of C2lvlΣJ
and ĈΣ3 in (24) and (30),
respectively, as a function of p,
and m1 = m2 = m = 2p2.
Sequence of agglomerated
meshes shown in Fig. 2, Set 1

1 2 3 4 5 6
0.6

0.7

0.8

0.9

1

p

Two-level
W-cycle, 3 levels

where N denotes the number of iterations required to attain convergence up to a
(relative) tolerance of 10−8 and rN and r0 are the final and initial residual vectors,
respectively. In Table 2, we report the iteration counts and the convergence factor
(in parenthesis), needed to attain convergence of the h-version of the two-level (TL)
method andW-cyclemultigrid scheme (with 3 and 4 levels), as a function of the number
of elements (given by the choice of different grid sets), and the number of smoothing
steps (m1 = m2 = m). Here, we have fixed the polynomial approximation order on
each level p j ≡ p = 1. We first observe that, although the agglomerated grids, in
general, do not necessarily strictly satisfy Assumption 2, the number of iterations, for
fixedm, does not significantly increase with the number of elements in the underlying
mesh;moreover, for theW-cycle solver, the number of iterations remains boundedwith
the number of levels. As expected, the convergence is faster for larger values of m
and the solvers are convergent provided the number of smoothing steps is sufficiently
large. For each grid, we have also reported the iteration counts NCG

it for the Conjugate
Gradient (CG) method, which shows that the two proposed solvers outperform the CG
scheme in terms of the number of iterations required to attain convergence, even when
a small number of smoothing steps are employed. For the sake of comparison, we also
report the iteration counts NPCG

it for the Preconditioned Conjugate Gradient (PCG)
method, based on employing a simple block Jacobi preconditioner. The extension to
polytopic grids of the domain decomposition preconditioning techniques, such as, for
example, the ones proposed in [10,12,15], in the DG setting, or in [52,55], in the
conforming setting, are currently under investigation and will be the subject of future
research. Table 3 presents analogous results for the first three sets of meshes, in the
casewhen p = 3. Here, we observe that, as expected, the convergence factor increases,
but the increase in p does not require an increase in the minimal number of smoothing
steps needed to ensure that the underlying multilevel solvers are convergent.

Next, we consider the sets of nested grids obtained by agglomerating the
shape-regular triangularmeshes shown in Fig. 3, first row. The initial triangular decom-
positions constist of 528 (Set 1), 1086 (Set 2), 2198 (Set 3) and 4318 (Set 4) elements,
cf. Fig. 3, first row. In Table 4, we show the iteration counts needed to attain conver-
gence with respect to a fixed tolerance of 10−8 as a function of the set (i.e., the number
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Table 2 Iteration counts and converge factor (in parenthesis) of the h-version of the two-level andW-cycle

solvers and iteration counts of the CG/PCG methods as a function of m (C j
σ ≡ Cσ = 10, p = 1)

TL W-cycle TL W-cycle

3 lvl 4 lvl 3 lvl 4 lvl

Set 1 Set 2

m = 3 133 (0.87) 160 (0.89) 167 (0.90) 121 (0.86) 191 (0.91) 188 (0.91)

m = 5 95 (0.82) 113 (0.85) 113 (0.85) 88 (0.81) 121 (0.86) 125 (0.86)

m = 8 72 (0.77) 82 (0.80) 81 (0.80) 67 (0.76) 86 (0.81) 88 (0.81)

m = 12 57 (0.72) 63 (0.74) 62 (0.74) 54 (0.71) 65 (0.75) 67 (0.76)

m = 16 49 (0.68) 52 (0.70) 51 (0.69) 46 (0.67) 55 (0.71) 56 (0.72)

m = 20 44 (0.65) 45 (0.66) 44 (0.66) 40 (0.63) 48 (0.68) 49 (0.68)

NCG
it = 445, NPCG

it = 326 NCG
it = 633, NPCG

it = 480

Set 3 Set 4

m = 3 140 (0.88) 188 (0.91) 192 (0.91) 162 (0.89) 198 (0.91) 198 (0.91)

m = 5 99 (0.83) 124 (0.86) 128 (0.87) 112 (0.85) 131 (0.87) 131 (0.87)

m = 8 74 (0.78) 89 (0.81) 91 (0.82) 83 (0.80) 94 (0.82) 94 (0.82)

m = 12 58 (0.73) 68 (0.76) 69 (0.76) 65 (0.75) 73 (0.77) 72 (0.77)

m = 16 49 (0.68) 56 (0.72) 57 (0.72) 55 (0.71) 61 (0.74) 61 (0.74)

m = 20 43 (0.65) 48 (0.68) 49 (0.68) 49 (0.68) 53 (0.71) 53 (0.70)

NCG
it = 946, NPCG

it = 678 NCG
it = 1234, NPCG

it = 958

Sequences of agglomerated meshes shown in Fig. 2

Table 3 Iteration counts of the h-version of the two-level and W-cycle solvers as a function of m and the

number of levels and iteration counts of the CG/PCG methods (C j
σ ≡ Cσ = 10, p = 3)

Set 1 Set 2 Set 3

TL W-cycle TL W-cycle TL W-cycle

3 lvl 4 lvl 3 lvl 4 lvl 3 lvl 4 lvl

m = 3 1281 1334 1342 1168 1272 1362 1230 1379 1391

m = 5 816 832 839 737 790 844 774 852 860

m = 8 546 551 561 487 517 551 513 555 557

m = 12 388 394 400 343 363 385 362 387 384

m = 16 305 312 316 268 284 299 284 301 296

m = 20 254 261 263 222 235 246 235 249 242

NCG
it = 1954, NPCG

it = 885 NCG
it = 2809, NPCG

it = 1264 NCG
it = 4174, NPCG

it = 1708

Sequences of agglomerated meshes shown in Fig. 2

of elements) and the number of smoothing steps of the h-version of the two-level
and W-cycle multigrid solvers, with p j = p = 1. We recall that, as in the previous

numerical test, we have considered C j
σ ≡ Cσ = 10, for each j . The results are similar

to the case of initial polygonal meshes, with uniform convergence with respect to the
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Table 4 Iteration counts and converge factor (in parenthesis) of the h-version of the two-level andW-cycle

solvers and iteration counts of the CG and PCG methods as a function of m (C j
σ ≡ Cσ = 10, p = 1)

TL W-cycle TL W-cycle

3 lvl 4 lvl 3 lvl 4 lvl

Set 1 Set 2

m = 4 246 (0.90) 258 (0.90) 262 (0.90) 282 (0.89) 291 (0.90) 292 (0.90)

m = 6 177 (0.87) 185 (0.87) 188 (0.87) 199 (0.86) 205 (0.87) 204 (0.87)

m = 10 120 (0.81) 125 (0.82) 127 (0.82) 133 (0.81) 136 (0.82) 136 (0.82)

m = 14 94 (0.77) 98 (0.78) 99 (0.78) 104 (0.77) 106 (0.78) 106 (0.78)

m = 18 79 (0.74) 82 (0.74) 83 (0.74) 87 (0.74) 89 (0.75) 89 (0.75)

NCG
it = 551, NPCG

it = 369 NCG
it = 771, NPCG

it = 504

Set 3 Set 4

m = 4 328 (0.90) 333 (0.91) 329 (0.90) 421 (0.91) 425 (0.91) 422 (0.91)

m = 6 231 (0.87) 234 (0.88) 232 (0.87) 292 (0.88) 293 (0.89) 292 (0.89)

m = 10 153 (0.82) 154 (0.83) 153 (0.82) 190 (0.83) 191 (0.84) 189 (0.84)

m = 14 118 (0.78) 119 (0.79) 118 (0.78) 145 (0.79) 148 (0.80) 146 (0.80)

m = 18 98 (0.75) 99 (0.75) 98 (0.75) 120 (0.76) 123 (0.77) 122 (0.77)

NCG
it = 1145, NPCG

it = 718 NCG
it = 1630, NPCG

it = 974

Sequences of agglomerated meshes shown in Fig. 3

granularity of the mesh and, in the case of the W-cycle solver, also with respect to
the number of levels. We again attain improved performance, compared to the stan-
dard CG and PCG methods, in terms of the number of iterations required to attain
convergence.

Finally, we present a more exhaustive investigation of the effect of increasing p
while keeping fixed the number of smoothing steps. For this set of experiments, we
consider a fine grid of 1024 elements and the corresponding agglomerated meshes
(Set 2 in Fig. 2). In Table 5 we report the iteration counts of the h-version of the
two-level and W-cycle solvers as a function of p, employing m = 5 pre- and post-
smoothing steps. We observe that, as expected, even though both multilevel solvers
converge for a fixed value ofm, the number of iterations required to reduce the relative
residual below the given tolerance grows with increasing p. However, the two-level
and W-cycle multigrid solvers still employ less iterations, than the number required
by both the CG and PCGmethods, cf. the last two columns of Table 5. As a numerical
comparison, we have solved the correspoding linear systems of equations employing
an unsmoothed aggregation Algebraic Multigrid (AMG) algorithm based on three
popular algebraic agglomeration strategies. More precisely, in the considered AMG
methods the agglomerates are formed, at a purely algebraic level, by using either
the maximal independent set, the (approximate) maximum weighted matching or the
greedy aggregation algorithms, and the resulting coarse levels are then employed as
before within a W -cycle iteration with a Richardon smoother with m = 5 pre- and
post-smoothing steps. In Table 6 we report, for each of the considered agglomeration
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Table 5 Iteration counts of the
h-version of the two-level and
W-cycle solvers as a function of
p and the number of levels and
corresponding CG/PCG iteration

counts (C j
σ ≡ Cσ = 10, m = 5)

TL W-cycle NCG
it NPCG

it

3 lvl 4 lvl

p = 1 88 121 125 633 480

p = 2 357 434 443 1701 953

p = 3 737 790 844 2809 1264

p = 4 958 1093 1184 4574 1821

p = 5 876 1096 1201 6796 2213Sequence of agglomerated
meshes shown in Fig. 2, Set 2

Table 6 Number of agglomeration levels (N. levels) and computed convergce factors (ρ) of Algebraic
W -cycle multigrid method (Richardon smoother, m = 5 pre- and post-smoothing steps) as a function of p

Max. independent set Max. weighted matching Greedy aggregation NAMG
it

ρ N. levels ρ N. levels ρ N. levels

p = 1 0.9990 3 0.9987 7 0.9992 5 >5000

p = 2 0.9989 3 0.9986 8 0.9988 5 >5000

p = 3 0.9989 3 0.9986 8 0.9990 6 >5000

p = 4 0.9989 3 0.9986 9 0.9989 6 >5000

p = 5 0.9989 3 0.9986 9 0.9988 6 >5000

The agglomerates are formed algebraically by using either the maximal independent set, the (approximate)
maximum weighted matching or the greedy aggregation algorithms. The initial fine grid is shown in Fig. 2,
Set 2 (first row)

strategies, the number of agglomeration levels (N. levels), as well as the computed
convergence factors ρ. As it is clear from the results reported in Table 6, classical alge-
braic agglomeration procedures are not efficient when applied to the matrices arising
from high-order DG approximations; indeed in all the cases the resulting algorithm
is not able to reduce the (relative) residual below the given tolerance within 5000
iterations, cf. last column of Table 6 where the iteration counts (NAMG

it ) are shown.
Such behaviour strongly suggests that the geometric information needs to be taken
into account in the construction of the solver and/or more sophisticated (aggressive)
aggregation-based algebraic algorithms, as well as Schwarz-type smoothers, such as
the ones proposed, for example, in [24,51], should be considered. Such developments
are currently under investigation and will be the subject of future research.

7 Conclusions

We have presented and analyzed two-level and multigrid schemes for the efficient
solution of the linear system of equations arising from the hp-version of the interior
penalty DG scheme on polygonal/polyhedral meshes. The attractive feature of the
proposed algorithms is that the auxiliary sequence of meshes needed by the multilevel
solver can be generated by a (successive) general geometric agglomeration procedure
starting from an initial grid made of (possibly arbitrarily-shaped) elements. Such an
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approach fully exploits the flexibilty of DG methods in terms of their ability to handle
arbitrarily-shaped elements, including polytopic elements, see [4,6,8,21,33,35,36],
and the recent review paper [5]. Extending the theoretical results recently presented
in [13] on quasi-uniform meshes, we have proved that, under mild geometric assump-
tions on the quality of the agglomerates, both the two-level and W-cycle multigrid
schemes converge uniformly with respect to the discretization parameters (namely,
the granularity of the underlying partition and the polynomial approximation degree
p) and, for the multigrid scheme, the number of levels, provided that the number
of smoothing steps is chosen sufficiently large. We have also demonstrated through
numerical experiments that the theoretical assumption concerning the need to employ
a sufficiently large number of smoothing steps is not needed in practice, i.e., our algo-
rithms converge even if the number of smoothing steps is kept fixed independently of
the polynomial approximation degree p. However, in this latter case, the performance
of the iterative solvers deteriorates, as expected, when increasing p.
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