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Abstract In this paper, the normwise condition number of a linear function of the
equality constrained linear least squares solution called the partial condition number is
considered. Its expression and closed formulae are first presented when the data space
and the solution space aremeasured by theweighted Frobenius norm and theEuclidean
norm, respectively. Then, we investigate the corresponding structured partial condition
numberwhen the problem is structured. To estimate these condition numberswith high
reliability, the probabilistic spectral norm estimator and the small-sample statistical
condition estimation method are applied and two algorithms are devised. The obtained
results are illustrated by numerical examples.
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1 Introduction and preliminaries

The equality constrained linear least squares problem can be stated as follows:

LSE : min
Bx=d

‖b − Ax‖2 , (1.1)

where A ∈ R
m×n and B ∈ R

s×n with m + s ≥ n ≥ s ≥ 0, b ∈ R
m and d ∈ R

s .
Hereafter, the symbols Rm×n and R

n stand for the set of m × n real matrices and the
real vector space of dimension n, respectively. To ensure that the LSE problem (1.1)
has a unique solution, we need to assume that [6]

rank(B) = s, null(A) ∩ null(B) = {0}. (1.2)

The first condition in (1.2) implies that the linear system Bx = d is consistent and
hence that the LSE problem (1.1) has a solution, and vice versa; The second one,
which says that the matrix [AT , BT ]T is full column rank, guarantees that there is a
unique solution to (1.1), and vice versa. Here, for a matrixC,CT denotes its transpose.
Throughout this paper, we assume that the conditions in (1.2) always hold. In this case,
the unique solution to the LSE problem (1.1) can be written as [6,8]

x(A, B, b, d) = (AP)†b + B†
Ad, (1.3)

where
P = In − B†B, B†

A = (In − (AP)†A)B†

with In being the identity matrix of order n and B† being the Moore-Penrose inverse
of B. When s = 0, i.e., B = 0 and d = 0, the LSE problem (1.1) reduces the classic
linear least squares (LLS) problem

LLS : min
x∈Rn

‖b − Ax‖2 , (1.4)

the conditions in (1.2) reduce to A being full column rank which ensures that the
solution to (1.4) is unique, and the solution (1.3) reduces to x(A, b) = A†b.

The LSE problem finds many important applications in some areas. For example,
we will encounter it in the analysis of large scale structures, in signal processing, and
in solving inequality constrained least squares problem [4,6,19]. So, some scholars
considered its algorithms and perturbation analysis (see e.g., [4,6,8,10,19,29]). An
upper bound for the normwise condition number of the LSE problem was presented in
[8], and the mixed and componentwise condition numbers and their easily computable
upper bounds of this problem can be derived from [21] as the special case.

In this paper, we mainly consider the partial condition number of the LSE problem
when the data spaceRm×n ×R

s×n ×R
m ×R

s and the solution spaceRn are measured
by the weighted Frobenius norm

‖(αA A, αB B, αbb, αdd)‖F =
√

α2
A ‖A‖2F + α2

B ‖B‖2F + α2
b ‖b‖22 + α2

d ‖d‖22
(1.5)
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with αA > 0, αB > 0, αb > 0, and αd > 0, and the Euclidean norm ‖x‖2, respec-
tively. As mentioned in Abstract, the partial condition number which is also called the
subspace condition number [7] is referred to the condition number of a linear function
of the LSE solution x(A, B, b, d), i.e., LT x(A, B, b, d) with L ∈ R

n×k (k ≤ n). This
kind of condition number has some advantages. For example, when L is the identity
matrix or a column vector of the identity matrix, the partial condition number will
reduce to the condition number of the solution x(A, B, b, d) or of an element of the
solution. Cao and Petzold first proposed the partial condition number for linear sys-
tems [7]. Later, it was proposed for LLS problem and total least squares problem [1,2].
In [1,2,7], the authors also provided some specific motivations for investigating this
kind of condition number.

The idea on the weighted Frobenius norm can be traced back to Gratton [14],
who derived the normwise condition number for the LLS problem (1.4) based on the
following weighted Frobenius norm

‖(αA, βb)‖F =
√

α2 ‖A‖2F + β2 ‖b‖2, α > 0, β > 0. (1.6)

Subsequently, this kind of norm was used for the partial condition number for the
LLS problem [1] and the normwise condition number of the truncated singular value
solution of a linear ill-posed problem [5]. As pointed out in [14], this norm is very
flexible. With it, we can monitor the perturbations on A and b. For example, if α →
∞, no perturbation on A will be permitted; similarly, if β → ∞, there will be no
perturbation on b allowed. Obviously, the norm in (1.5) is a simple generalization of
the one in (1.6), and is also very flexible. There is another kind of generalization of the
norm in (1.6): ‖(T A, βb)‖F , which was used by Wei et al. in [30] for the normwise
condition number of rank deficient LLS problem.Here, T is a positive diagonalmatrix.

Like the structured linear systems and the structured LLS problem, the structured
LSE problem arises in many applications, e.g., in signal processing and the area of
optimization [6,19]. Rump [25,26] presented the perturbation theory for the structured
linear systems with respect to normwise distances and componentwise distances. The
obtained results generalized the corresponding ones in [15]. For the structured LLS
problems, Xu et al. [31] considered their structured normwise condition numbers, and
Cucker and Diao [9] presented their structured mixed and componentwise condition
numbers. In addition, the structured condition numbers for the total least squares
problem were provided by Li and Jia in [20]. The results in [20,25,26,31] show that
the structured condition number can be much tighter than the unstructured one. So,
based on the study on the partial condition number, we also investigate the structured
partial condition number of the structured LSE problem.

The rest of this paper is organized as follows. Section 2 presents the expression and
closed formulae of the partial condition number for the LSE problem. The expression
of the corresponding structured partial condition number is given in Sect. 3. On basis of
the probabilistic spectral norm estimator by Hochstenbach [16] and the small-sample
statistical condition estimation (SSCE) method by Kenney and Laub [18], Sect. 4 is
devoted to the statistical estimates and algorithms of the results derived in Sects. 2
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and 3. The numerical experiments for illustrating the obtained results are provided in
Sect. 5.

Beforemoving to the following sections, we first introduce some results on the oper-
ator ‘vec’ and Kronecker product, and the generalized singular value decomposition
(GSVD) of a matrix pair. They will be necessary later in this paper.

For a matrix A = [a1, . . . , an] ∈ R
m×n with ai ∈ R

m , the operator ‘vec’ is defined
as follows

vec(A) = [aT1 , . . . , aTn ]T ∈ R
mn .

Let A = (ai j ) ∈ R
m×n and B ∈ R

p×q . The Kronecker product between A and B is
defined by (see, e.g., [17, Chapter 4])

A ⊗ B =

⎡
⎢⎢⎢⎣

a11B a12B · · · a1n B
a21B a22B · · · a2n B

...
...

. . .
...

am1B am2B · · · amn B

⎤
⎥⎥⎥⎦ ∈ R

mp×nq .

This definition implies that when m = 1 and q = 1, i.e, when A is a row vector and
B is a column vector,

A ⊗ B = BA. (1.7)

From [17, Chapter 4], we have

(A ⊗ B)T = (AT ⊗ BT ), (1.8)

vec(AXB) =
(
BT ⊗ A

)
vec(X), (1.9)

Πmnvec(A) = vec(AT ),

Πpm(A ⊗ B)Πnq = (B ⊗ A), (1.10)

where X ∈ R
n×p, and Πmn is the vec-permutation matrix depending only on the

orders m and n. Especially, when n = 1, i.e., A is a column vector, then Πnq = Iq
and hence

Πpm(A ⊗ B) = (B ⊗ A). (1.11)

In addition, the following result is also from [17, Chapter 4]

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), (1.12)

where the matrices C and D are of suitable orders.
For the matrix pair A, B in (1.1) and (1.2), there exist orthogonal matrices U ∈

R
m×m and V ∈ R

s×s , and a nonsingular matrix X ∈ R
n×n such that

A = UΣX−1, B = VΛX−1, (1.13)
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where

Σ =
[

Σ1 0
0 0

]
=
⎡
⎣
In−s 0 0
0 SA 0
0 0 0

⎤
⎦ , Λ = [

0 Λ1
] =

[
0 SB
0 Is−t

]

with

SA = diag(α1, . . . , αt ), SB = diag(β1, . . . , βt ),

α1 � α2 � · · · � αt > 0, 0 < β1 � β2 � · · · � βt , α2
i + β2

i = 1, i = 1, . . . , t,

and t = rank(A) + s − n. This decomposition is called the GSVD of a matrix pair
(see e.g., [13, p. 309], [27]). When B = 0, the GSVD can reduce to the SVD of A:

A = UΣXT , (1.14)

where X is orthogonal andΣ1 = diag(σ1, . . . , σrank(A))with σi being the i-th singular
value of A.

2 The partial condition number

Let L ∈ R
n×k with k ≤ n. We consider the following function

g : Rm×n × R
s×n × R

m × R
s → Rk

(A, B, b, d) → g(A, B, b, d) = LT x(A, B, b, d) = LT (AP)†b + LT B†
Ad.

From [8,21], it can be seen that the function g is continuously Fréchet differentiable
in a neighborhood of (A, B, b, d). Thus, denoting by g′ the Fréchet derivative of g,
and using the chain rules of composition of derivatives or from [8,21], we have

g′(A, B, b, d) : Rm×n × R
s×n × R

m × R
s → Rk

(ΔA,ΔB,Δb,Δd) → g′(A, B, b, d)◦(ΔA,ΔB,Δb,Δd)

= LT ((AP)T AP)†(ΔA)T r − LT (AP)†(ΔA)x + LT (AP)†(Δb)

− LT ((AP)T AP)†(ΔB)T (AB†
A)T r − LT B†

A(ΔB)x + LT B†
A(Δd).

Here, g′(A, B, b, d)◦(ΔA,ΔB,Δb,Δd) denotes that we apply the function
g′(A, B, b, d) to the perturbation variable (ΔA,ΔB,Δb,Δd) at the point (A, B, b, d)

and r = b − Ax is called the residual vector. Thus, according to [11,24], we have
the absolute normwise condition number of g at the point (A, B, b, d) based on the
weighted Frobenius norm (1.5):

κLSE (A, B, b, d) = max
(αAΔA,αBΔB,αbΔb,αdΔd) �=0

∥∥g′(A, B, b, d)◦(ΔA, ΔB, Δb, Δd)
∥∥
2

‖(αAΔA, αBΔB, αbΔb, αdΔd)‖F
.

(2.1)

As mentioned in Sect. 1, the condition number κLSE (A, B, b, d) is called the partial
condition number of the LSE problem (1.1) with respect to L .
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1126 H. Li, S. Wang

In the following, we provide an expression of κLSE (A, B, b, d).

Theorem 2.1 The partial condition number of the LSE problem (1.1) with respect to
L is

κLSE (A, B, b, d) = ∥∥Mg′
∥∥
2 , (2.2)

where

Mg′ = [M1, M2, M3, M4] (2.3)

with

M1 =
(
rT ⊗ (LT ((AP)T AP)†)

)
Πmn − xT ⊗ (LT (AP)†)

αA
,

M2 = −
(
(rT AB†

A) ⊗ (LT ((AP)T AP)†)
)

Πsm + xT ⊗ (LT B†
A)

αB
,

M3 = LT (AP)†

αb
, M4 = LT B†

A

αd
.

Proof Applying the operator vec to g′(A, B, b, d)◦(ΔA,ΔB,Δb,Δd) and using
(1.9) and (1.10), we have

g′(A, B, b, d)◦(ΔA, ΔB, Δb, Δd) = vec(g′(A, B, b, d)◦(ΔA,ΔB, Δb,Δd))

=
(
rT ⊗ (LT ((AP)T AP)†)

)
Πmnvec(ΔA) −

(
xT ⊗ (LT (AP)†)

)
vec(ΔA)

−
(
(rT AB†

A) ⊗ (LT ((AP)T AP)†)
)

Πsmvec(ΔB) −
(
xT ⊗ (LT B†

A)
)
vec(ΔB)

+LT (AP)†(Δb) + LT B†
A(Δd)

= Mg′

⎡
⎢⎢⎣

αAvec(ΔA)

αBvec(ΔB)

αb(Δb)
αd (Δd)

⎤
⎥⎥⎦ .

Thus, considering (1.5) and the fact that for any matrix C, ‖C‖F = ‖vec(C)‖2,

κLSE (A, B, b, d) = max
(αAΔA,αBΔB,αbΔb,αdΔd) �=0

∥∥∥∥∥∥∥∥
Mg′

⎡
⎢⎢⎣

αAvec(ΔA)

αBvec(ΔB)

αb(Δb)
αd (Δd)

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

αAvec(ΔA)

αBvec(ΔB)

αb(Δb)
αd (Δd)

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2

= ∥∥Mg′
∥∥
2 .

(2.4)


�
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Remark 2.1 Setting L = In and αA = αB = αb = αd = 1 in (2.2), and using
the property on the spectral norm that for the matrices C and D of suitable orders,
‖[C, D]‖2 ≤ ‖C‖2 + ‖D‖2, we have

κLSE (A, B, b, d) ≤
∥∥∥
(
rT ⊗ ((AP)T AP)†

)
Πmn − xT ⊗ (AP)†

∥∥∥
2

+
∥∥∥
(
(rT AB†

A) ⊗ ((AP)T AP)†
)

Πsm + xT ⊗ B†
A

∥∥∥
2

+
∥∥∥(AP)†

∥∥∥
2
+
∥∥∥B†

A

∥∥∥
2

= κLSEup(A, B, b, d),

where κLSEup(A, B, b, d) is essentially the same as the upper bound for the
normwise condition number of the LSE problem (1.1) obtained in [8]. Note that
κLSEup(A, B, b, d) ≤ 4κLSE (A, B, b, d), which can be verified from a simple fact
that ‖C‖2 + ‖D‖2 + ‖E‖2 + ‖F‖2 ≤ 4 ‖[C, D, E, F]‖2. Hence, the bound is a good
approximation of the normwise condition number κLSE (A, B, b, d). The numerical
results given in Sect. 5 confirm this claim.

Note that the expression of the partial condition number κLSE (A, B, b, d) given in
Theorem 2.1 contains Kronecker product. This introduces some large sparse matri-
ces. The following theorem provides a closed formula of κLSE (A, B, b, d) without
Kronecker product.

Theorem 2.2 A closed formula of the partial condition number κLSE (A, B, b, d) is
given by

κLSE (A, B, b, d) = ‖C‖1/22 , (2.5)

where

C =
⎛
⎜⎝‖r‖22

α2
A

+
∥∥∥rT AB†

A

∥∥∥
2

2

α2
B

⎞
⎟⎠ LT ((AP)T AP)†)2L

+
(

‖x‖22
α2
A

+ 1

α2
b

)
LT ((AP)T AP)†)L

+
(

‖x‖22
α2
B

+ 1

α2
d

)
LT B†

A(B†
A)T L + 1

α2
B

LT ((AP)T AP)†xrT AB†
A(B†

A)T L

+ 1

α2
B

LT B†
A(B†

A)T AT rxT ((AP)T AP)†L . (2.6)

Proof Noting

∥∥Mg′
∥∥
2 =

∥∥∥Mg′MT
g′
∥∥∥
1/2

2
=
∥∥∥M1M

T
1 + M2M

T
2 + M3M

T
3 + M4M

T
4

∥∥∥
1/2

2
,
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and

M3M
T
3 = LT ((AP)T AP)†)L

α2
b

, M4M
T
4 = LT B†

A(B†
A)T L

α2
d

, (2.7)

it suffices to obtain the expressions of M1MT
1 and M2MT

2 .
Let

M11 =
(
rT ⊗ (LT ((AP)T AP)†)

)
Πmn, M12 = xT ⊗ (LT (AP)†).

Then

M1M
T
1 = 1

α2
A

(
M11M

T
11 + M12M

T
12 − M11M

T
12 − M12M

T
11

)
.

By (1.8) and (1.12), we have

M11M
T
11 =

(
rT ⊗ (LT ((AP)T AP)†)

) (
r ⊗ (((AP)T AP)†L)

)

= ‖r‖22 LT ((AP)T AP)†)2L ,

M12M
T
12 =

(
xT ⊗ (LT (AP)†)

) (
x ⊗ (((AP)†)T L)

)
= ‖x‖22 LT ((AP)T AP)†)L .

Note that

(AP)†r = (AP)†(b − Ax) = x − B†
Ad − (AP)†Ax by (1.3)

= x − B†
ABx − (AP)†Ax = 0.

The last equality in the above equation follows from the GSVD of the matrix pair A, B
in (1.13) and the expressions on (AP)† and B†

A in Remark 2.3 below. In fact,

B†
AB = XΛ†ΛX−1 = X

[
0 0
0 Is

]
X−1,

(AP)†A = X

⎡
⎣
In−s 0 0
0 0 0
0 0 0

⎤
⎦ΣX−1 = X

[
In−s 0
0 0

]
X−1,

which mean that B†
AB + (AP)†A = In and hence x − B†

ABx − (AP)†Ax = 0. Thus,
by (1.8), (1.11), and (1.12),

M11M
T
12 =

(
rT ⊗ (LT ((AP)T AP)†)

) (
(((AP)†)T L) ⊗ x

)
by (1.8) and (1.11)

= (rT ((AP)†)T L) ⊗ (LT ((AP)T AP)†x) by (1.12)

= 0 = (M12M
T
11)

T .
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As a result,

M1M
T
1 = 1

α2
A

(
‖r‖22 LT ((AP)T AP)†)2L + ‖x‖22 LT ((AP)T AP)†)L

)
. (2.8)

Now, let

M21 =
(
(rT AB†

A) ⊗ (LT ((AP)T AP)†)
)

Πsm, M22 = xT ⊗
(
LT B†

A

)
.

Then

M2M
T
2 = 1

α2
B

(
M21M

T
21 + M22M

T
22 + M21M

T
22 + M22M

T
21

)
. (2.9)

By (1.8) and (1.12), we get

M21M
T
21 =

(
(rT AB†

A) ⊗ (LT ((AP)T AP)†)
) (

(rT AB†
A)T ⊗ (((AP)T AP)†L)

)

=
∥∥∥rT AB†

A

∥∥∥
2

2
LT ((AP)T AP)†)2L , (2.10)

M22M
T
22 =

(
xT ⊗ (LT B†

A)
) (

x ⊗ ((B†
A)T L)

)
= ‖x‖22 LT B†

A(B†
A)T L , (2.11)

and by (1.8), (1.11), (1.12), and (1.7), we get

M21M
T
22 =

(
(rT AB†

A) ⊗ (LT ((AP)T AP)†)
) (

((B†
A)T L) ⊗ x

)
by (1.8) and (1.11)

= (rT AB†
A(B†

A)T L) ⊗ (LT ((AP)T AP)†x) by (1.12)

= LT ((AP)T AP)†xrT AB†
A(B†

A)T L by (1.7)

=
(
M22M

T
21

)T
. (2.12)

Substituting (2.10)–(2.12) into (2.9) gives

M2M
T
2 = 1

α2
B

(∥∥∥rT AB†
A

∥∥∥
2

2
LT ((AP)T AP)†)2L + ‖x‖22 LT B†

A(B†
A)T L

)

+ 1

α2
B

LT ((AP)T AP)†xrT AB†
A(B†

A)T L

+ 1

α2
B

LT B†
A(B†

A)T AT rxT ((AP)T AP)†L . (2.13)

From (2.7), (2.8), and (2.13), we have the desired result (2.5). 
�
Remark 2.2 When B = 0 and d = 0, that is, when the LSE problem reduces to the
LLS problem (1.4), P = In and rank(A) = n. Thus,

((AP)T (AP))† = (AT A)−1, B†
A = 0,
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and hence

κLLS(A, b) =
∥∥∥∥∥
‖r‖22
α2
A

LT (AT A)−2L +
(

‖x‖22
α2
A

+ 1

α2
b

)
LT (AT A)−1L

∥∥∥∥∥
1/2

2

,

(2.14)

which is the closed formula of the partial condition number of the LLS problem.
Furthermore, if L is a column vector, i.e., k = 1, then

κLLS(A, b) =
(

‖r‖22
α2
A

LT (AT A)−2L +
(

‖x‖22
α2
A

+ 1

α2
b

)
LT (AT A)−1L

)1/2

=
(

‖r‖22
α2
A

∥∥∥LT (AT A)−1
∥∥∥
2

2
+
(

‖x‖22
α2
A

+ 1

α2
b

)∥∥∥LT A†
∥∥∥
2

2

)1/2

,

(2.15)

which is just the result given in Corollary 1 in [1].

Remark 2.3 Using the GSVD of the matrix pair A, B in (1.13), and (3.3), (3.4), and
(3.15) in [28], we have

(AP)† = X (Σ(In − Λ†Λ))†UT

= X

⎛
⎝
⎡
⎣
In−s 0 0
0 SA 0
0 0 0

⎤
⎦
⎛
⎝In −

⎡
⎣

0 0
S−1
B 0
0 Is−t

⎤
⎦
[
0 SB 0
0 0 Is−t

]⎞
⎠
⎞
⎠

†

UT

= X

⎛
⎝
⎡
⎣
In−s 0 0
0 SA 0
0 0 0

⎤
⎦
⎡
⎣
In−s 0 0
0 0 0
0 0 0

⎤
⎦
⎞
⎠

†

UT = X

⎡
⎣
In−s 0 0
0 0 0
0 0 0

⎤
⎦UT

and

B†
A = (In − (AP)†A)XΛ†V T

=
⎛
⎝In − X

⎡
⎣
In−s 0 0
0 0 0
0 0 0

⎤
⎦UTU

⎡
⎣
In−s 0 0
0 SA 0
0 0 0

⎤
⎦ X−1

⎞
⎠ XΛ†V T

= X

⎡
⎣
0 0 0
0 It 0
0 0 Is−t

⎤
⎦
⎡
⎣

0 0
S−1
B 0
0 Is−t

⎤
⎦ V T = X

⎡
⎣

0 0
S−1
B 0
0 Is−t

⎤
⎦ V T = XΛ†V T .

Then

(AP)†
(
(AP)†

)T = X1X
T
1 , AB†

A = U

⎡
⎣

0 0
SAS

−1
B 0

0 0

⎤
⎦ V T = U2

[
SAS

−1
B 0

0 0

]
V T ,

(2.16)
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B†
A(B†

A)T = X

⎡
⎣
0 0 0
0 S−2

B 0
0 0 Is−t

⎤
⎦ XT = X2

[
S−2
B 0
0 Is−t

]
XT
2 , (2.17)

AB†
A(B†

A)T = U

⎡
⎣
0 0 0
0 SAS

−2
B 0

0 0 0

⎤
⎦ XT = U2

[
SAS

−2
B 0

0 0

]
XT
2 , (2.18)

where X = [X1, X2] with X1 ∈ R
n×(n−s) and X2 ∈ R

n×s , and U = [U1,U2] with
U1 ∈ R

m×(n−s) and U2 ∈ R
m×(m−n+s). Substituting (2.16)–(2.18) into (2.6) yields

C =

⎛
⎜⎜⎜⎜⎝

‖r‖22
α2
A

+

∥∥∥∥rTU2

[
SAS

−1
B 0

0 0

]∥∥∥∥
2

2

α2
B

⎞
⎟⎟⎟⎟⎠

LT (X1X
T
1 )2L + LT (X1S1X

T
1 + X2S2X

T
2 )L

+ 1

α2
B

LT X1X
T
1 xr

TU2

[
SAS

−2
B 0

0 0

]
XT
2 L + 1

α2
B

LT X2

[
SAS

−2
B 0

0 0

]
UT
2 r xT X1X

T
1 L

(2.19)

with

S1 =
(

‖x‖22
α2
A

+ 1

α2
b

)
In−s, S2 =

(
‖x‖22
α2
B

+ 1

α2
d

)
Λ−2

1 . (2.20)

In particular, when B = 0, the GSVD (1.13) reduces to the SVD of A (1.14). In
this case, P = In and rank(A) = n. Hence, we have

(AP)† = XΣ†UT = X [Σ−1
1 , 0]UT , B†

A = 0,

and

(AP)†
(
(AP)†

)T = XΣ−2
1 XT .

Thus,

C = ‖r‖22
α2
A

LT XΣ−4
1 XT L +

(
‖x‖22
α2
A

+ 1

α2
b

)
LT XΣ−2

1 XT L .

As a result, we get a closed formula of the partial condition number of the LLS problem
based on the SVD of A:

κLLS(A, b) =
∥∥∥SXT L

∥∥∥
2
, (2.21)
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1132 H. Li, S. Wang

where S is a diagonal matrix with the i-th diagonal element being

Sii = 1

σi

√√√√σ−2
i ‖r‖22 + ‖x‖22

α2
A

+ 1

α2
b

.

The closed formula (2.21) is just the one given in Theorem 1 in [1], where it was
derived by a different approach.

Remark 2.4 From (2.19) and (2.5) with setting L = In and αA = αB = αb = αd = 1
and using (1.13), we have the following upper bound for the normwise condition
number of the LSE problem:

κLSE (A, B, b, d) ≤ (a1 + a2 + a3)
1/2,

where

a1 = ‖r‖22
(
1 + α2

1

β2
1

)
‖X‖42, a2 =

(
1 + ‖x‖22

) 1

β2
1

‖X‖22, a3 = 2
α1

β2
1

‖r‖2‖x‖2‖X‖32.

Moreover, using (2.8) in [29], we obtain ‖X‖2 = 1
σn
, where σn is the smallest singular

value of

[
A
B

]
. Hence, the main factors causing the ill-conditioning of LSE problem

are ‖r‖2, β1, and σn .

3 The structured partial condition number

Suppose that S1 ⊆ R
m×n and S2 ⊆ R

s×n are two linear subspaces, which consist
of two classes of structured matrices, respectively. From [15,20,25], we have that if
A ∈ S1 and B ∈ S2, then

vec(A) = ΦS1s1, vec(B) = ΦS2s2, (3.1)

where ΦS1 ∈ R
mn×k1 and ΦS2 ∈ R

sn×k2 are the fixed structure matrices reflecting the
structures of S1 and S2, respectively, and s1 ∈ R

k1 and s2 ∈ R
k2 are the vectors of the

independent parameters in the structured matrices, respectively. Based on the above
explanation, the structured perturbations ΔA ∈ S1 and ΔB ∈ S2 can be written as

vec(ΔA) = ΦS1(Δs1), vec(ΔB) = ΦS2(Δs2), (3.2)

where Δs1 ∈ R
k1 and Δs2 ∈ R

k2 can be regarded as the perturbations of s1 and s2,
respectively.
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Nowwe present the definition of the structured partial condition number of the LSE
problem (1.1):

κS
LSE (A, B, b, d) = max

(αAΔA,αBΔB,αbΔb,αdΔd) �=0
ΔA∈S1,ΔB∈S2

∥∥g′(A, B, b, d)◦(ΔA, ΔB, Δb, Δd)
∥∥
2

‖(αAΔA, αBΔB, αbΔb, αdΔd)‖F
,

which is a natural variant of the partial condition number in (2.1). From (2.4), it follows
that

κ S
LSE (A, B, b, d) = max

(αAΔA,αBΔB,αbΔb,αdΔd) �=0
ΔA∈S1,ΔB∈S2

∥∥∥∥∥∥∥∥
Mg′

⎡
⎢⎢⎣

αAvec(ΔA)

αBvec(ΔB)

αb(Δb)
αd(Δd)

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

αAvec(ΔA)

αBvec(ΔB)

αb(Δb)
αd(Δd)

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2

. (3.3)

Considering (3.2), we have

⎡
⎢⎢⎣
vec(ΔA)

vec(ΔB)

Δb
Δd

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ΦS1 0 0 0
0 ΦS2 0 0
0 0 Im 0
0 0 0 Is

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Δs1
Δs2
Δb
Δd

⎤
⎥⎥⎦ .

Substituting the above equation into (3.3) yields

κ S
LSE (A, B, b, d)

= max
(αA(Δs1),αB (Δs2),αb(Δb),αd (Δd)) �=0

∥∥∥∥∥∥∥∥
Mg′

⎡
⎢⎢⎣

ΦS1 0 0 0
0 ΦS2 0 0
0 0 Im 0
0 0 0 Is

⎤
⎥⎥⎦

⎡
⎢⎢⎣

αA(Δs1)
αB(Δs2)
αb(Δb)
αd(Δd)

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

ΦS1 0 0 0
0 ΦS2 0 0
0 0 Im 0
0 0 0 Is

⎤
⎥⎥⎦

⎡
⎢⎢⎣

αA(Δs1)
αB(Δs2)
αb(Δb)
αd(Δd)

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2

.

(3.4)
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Note that
∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

ΦS1 0 0 0
0 ΦS2 0 0
0 0 Im 0
0 0 0 Is

⎤
⎥⎥⎦

⎡
⎢⎢⎣

αA(Δs1)
αB(Δs2)
αb(Δb)
αd(Δd)

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

αA(Δs1)
αB(Δs2)
αb(Δb)
αd(Δd)

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

ΦT
S1

ΦS1 0 0 0
0 ΦT

S2
ΦS2 0 0

0 0 Im 0
0 0 0 Is

⎤
⎥⎥⎦

⎡
⎢⎢⎣

αA(Δs1)
αB(Δs2)
αb(Δb)
αd(Δd)

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥

1/2

2

and the structured matrices ΦS1 and ΦS2 are column orthogonal [20]. Then

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

ΦS1 0 0 0
0 ΦS2 0 0
0 0 Im 0
0 0 0 Is

⎤
⎥⎥⎦

⎡
⎢⎢⎣

αA(Δs1)
αB(Δs2)
αb(Δb)
αd(Δd)

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣
D1 0 0 0
0 D2 0 0
0 0 Im 0
0 0 0 Is

⎤
⎥⎥⎦

⎡
⎢⎢⎣

αA(Δs1)
αB(Δs2)
αb(Δb)
αd(Δd)

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2

,

(3.5)

where D1 = diag(w1) and D2 = diag(w2) with

w1 = [∥∥ΦS1(1, :)
∥∥
2 , . . . ,

∥∥ΦS1 (k1, :)
∥∥
2

]
, w2 = [∥∥ΦS2 (1, :)

∥∥
2 , . . . ,

∥∥ΦS2 (k2, :)
∥∥
2

]
.

Here, the Matlab notation is used. Combining (3.4) and (3.5) implies

κ S
LSE (A, B, b, d)

= max
(αA(Δs1),αB (Δs2),αb(Δb),αd (Δd))�=0

∥∥∥∥∥∥∥∥
Mg′

⎡
⎢⎢⎣

ΦS1 D
−1
1 0 0 0

0 ΦS2 D
−1
2 0 0

0 0 Im 0
0 0 0 Is

⎤
⎥⎥⎦

⎡
⎢⎢⎣

D1 0 0 0
0 D2 0 0
0 0 Im 0
0 0 0 Is

⎤
⎥⎥⎦

⎡
⎢⎢⎣

αA(Δs1)
αB (Δs2)
αb(Δb)
αd (Δd)

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

D1 0 0 0
0 D2 0 0
0 0 Im 0
0 0 0 Is

⎤
⎥⎥⎦

⎡
⎢⎢⎣

αA(Δs1)
αB (Δs2)
αb(Δb)
αd (Δd)

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2

.

Then we can derive the expression of the structured partial condition number of the
LSE problem, which is presented in the following theorem.

Theorem 3.1 The structured partial condition number of the LSE problem (1.1) with
respect to L and the structures S1 and S2 is

κ S
LSE (A, B, b, d) =

∥∥∥∥∥∥∥∥
Mg′

⎡
⎢⎢⎣

ΦS1D
−1
1 0 0 0

0 ΦS2D
−1
2 0 0

0 0 Im 0
0 0 0 Is

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2

, (3.6)

where Mg′ is given in (2.3).
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Remark 3.1 It is easy to verify that

⎡
⎢⎢⎣

ΦS1D
−1
1 0 0 0

0 ΦS2D
−1
2 0 0

0 0 Im 0
0 0 0 Is

⎤
⎥⎥⎦

is column orthonormal. Thus,

∥∥∥∥∥∥∥∥
Mg′

⎡
⎢⎢⎣

ΦS1D
−1
1 0 0 0

0 ΦS2D
−1
2 0 0

0 0 Im 0
0 0 0 Is

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
2

≤ ∥∥Mg′
∥∥
2 .

That is, the structured partial condition number is always tighter than the unstructured
one. This fact can also be seen from the definitions of these two condition numbers.
As done in [25,31], it is valuable to discuss the ratio between the structured and
unstructured partial condition numbers of the LSE problem in detail. We won’t go that
far in this paper, and only provide a numerical example in Sect. 5 to show that the
structured partial condition number is indeed tighter than the unstructured one.

Remark 3.2 When B = 0 and d = 0, we have the structured partial condition number
of the LLS problem and its upper bound:

κ S
LLS(A, b) =

∥∥∥∥∥

[(
rT ⊗ (LT (AT A)−1)

)
Πmn − xT ⊗ (LT A†)

αA
ΦS1D

−1
1 ,

LT A†

αb

]∥∥∥∥∥
2

(3.7)

≤
∥∥∥∥∥

[(
rT ⊗ (LT (AT A)−1)

)
Πmn − xT ⊗ (LT A†)

αA
,
LT A†

αb

]∥∥∥∥∥
2

, (3.8)

where the upper bound (3.8) is just the unstructured partial condition number of the
LLS problem. Here, it should be pointed out that the structured condition number of
the LLS problem derived from (3.7) by setting L = In and αA = αb = 1 is a little
different from the ones in [31] because two additional conditions are added besides
the structure requirement in [31].

Remark 3.3 Similar to Theorem 2.2, we can consider giving the compact expression
for the structured condition number (3.6). Unfortunately, the obtained compact expres-
sion is very complicated. For example, the terms M11MT

11 and M12MT
12 appearing in

the proof of Theorem 2.2 are replaced with the following two ones:

M11ΦS1D
−2
1 ΦT

S1
MT

11 =
(
rT ⊗ (LT ((AP)T AP)†)

)
ΠmnΦS1D

−2
1 ΦT

S1
ΠT

mn(
r ⊗ (((AP)T AP)†L)

)
.
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1136 H. Li, S. Wang

M12ΦS1D
−2
1 ΦT

S1
MT

12 =
(
xT ⊗ (LT (AP)†)

)
ΦS1D

−2
1 ΦT

S1

(
x ⊗ (((AP)†)T L)

)
.

Considering that ΦS1 can be written as

ΦS1 = [
vec(Z1), . . . , vec(Zk1)

]
,

where Z1, . . . , Zk1 are the basis matrices of the linear subspace S1, and using (1.9)
and (1.10), we have

(
rT ⊗ (LT ((AP)T AP)†)

)
ΠmnΦS1

=
(
rT ⊗ (LT ((AP)T AP)†)

) [
vec(ZT

1 ), . . . , vec(ZT
k1)
]

=
[
LT ((AP)T AP)†ZT

1 r, . . . , L
T ((AP)T AP)†ZT

k1r
]
.

Thus, writing D1 = diag(d1, . . . , dk1), we obtain

M11ΦS1D
−2
1 ΦT

S1
MT

11 =
k1∑
i=1

1

d2i
LT ((AP)T AP)†ZT

i rr
T Zi ((AP)T AP)†L .

Similarly, we have

M12ΦS1D
−2
1 ΦT

S1
MT

12 =
k1∑
i=1

1

d2i
LT (AP)†Zi xx

T ZT
i ((AP)†)T L .

Unlike the case in the proof of Theorem 2.2, we cannot combine the two terms

M11ΦS1D
−2
1 ΦT

S1
MT

11 and M12ΦS1D
−2
1 ΦT

S1
MT

12.

Worse, we cannot check that the cross term

M11ΦS1D
−2
1 ΦT

S1
MT

12 =
k1∑
i=1

1

d2i
LT ((AP)T AP)†ZT

i r x
T ZT

i ((AP)†)T L

is zero. These facts make the compact expression for the structured condition number
(3.6) be very complicated. So, we omit the compact expression here. In addition, we
only consider the linear structures of the matrices A and B in this section. Similarly,
the linear structures of the vectors b and d can also be put into the partial condi-
tion number. Furthermore, inspired by [9,20,26], exploring the structured mixed and
componentwise condition numbers of the LSE problem will be interesting. We will
investigate this problem in the future research.
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4 Statistical condition estimates

We first provide a statistical estimate of the partial condition number by using the
probabilistic spectral norm estimator. This estimator was proposed by Hochstenbach
[16] and can estimate the spectral norm of amatrix reliably. Inmore detail, the analysis
of the estimator in [16] suggests that the spectral norm of a matrix can be contained in
a small interval [α1, α2]with high probability, where α1 is the guaranteed lower bound
of the spectral norm of the matrix derived by the famous Lanczos bibdiagonalization
method [12] and α2 is the probabilistic upper bound with probability at least 1 − ε

with ε � 1 derived by finding the largest zero of a polynomial. Meanwhile, we can
require α2/α1 � 1 + δ with δ being a user-chosen parameter. Based on the above
estimator, we can devise Algorithm 1.

Algorithm 1 Probabilistic spectral norm estimator for the partial condition number
(2.5)
Input: ε, d and matrix C in (2.6).
Output: Probabilistic spectral norm estimator of the partial condition number (2.5): κPLSE (A, B, b, d).

1. Get a random starting vector v0 from U (Sk−1), the uniform distribution over unit sphere Sk−1 in Rk .
2. Compute ‖C‖2 ∈ [θ1, θ2] by probabilistic spectral norm estimator.

(a) Determine δ ∈ [0, π/2] by k, ε and
∫ arcsin(δ)
0 cosk−2(t)dt = ε

2

∫ 1
0 t

k−3
2 (1 −

t)−
1
2 dt

(
ε
∫ π

2
0 cosk−2(t)dt

)
.

(b) for j = 1, . . . , d
(c) u = Cv j
(d) if j > 1
(e) u = u − β j−1u j−1

(f) u = u − [u1, . . . , u j−1](uT [u1, . . . , u j−1])T
(g) end
(h) α j = ‖u‖2
(i) u j = u/α j

(j) v = CT u
(k) v = v − α jv j

(l) v = v − [v1, . . . , v j−1](vT [v1, . . . , v j − 1])T
(m) vβ j = ‖v‖2
(n) v j+1 = v/β j
(o) end
(p) Determine the largest singular value θ1 of Bk , and an upper bidiagonal matrix with αi on the

diagonal and βi on upper subdiagonal.
(q) Determine the probabilistic upper bound θ2 for ‖C‖2 with probabability ≥ 1 − ε by a Lanczos

polynomial (see [16]).
3. Estimate the partial condition number (2.5) by

κPLSE (A, B, b, d) =
√

θ1 + θ2

2
.

Remark 4.1 The step 2 of Algorithm 1 is directly taken from [16], and a detailed
explanation can be found there. In the practical implementation of Algorithm 1, d is
the dimension of Krylov space and can be automatically determined by the algorithm.
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Moreover, as suggested in [16], explicitly forming matrix C is not necessary because
what we really need is the product of a random vector with the matrixC orCT . Hence,
some techniques in solving linear system can be employed to reduce the computational
burden, especially for large scale problems. Furthermore, it is worthy to point out that
Algorithm 1 is also applicable to estimating the partial structured condition number
(3.6) since it is also the spectral norm of a matrix.

Now we introduce an alternative approach based on the SSCE method [3,18] for
estimating the normwise condition number of the solution x(A, B, b, d). Denote by
κLSEi (A, B, b, d) the normwise condition number of the function zTi x(A, B, b, d),
where zi s are chosen from U(Sn−1) and are orthogonal. Then, from (2.6), we have

κ2
LSEi (A, B, b, d) =

⎛
⎜⎝‖r‖22

α2
A

+
∥∥∥rT AB†

A

∥∥∥
2

2

α2
B

⎞
⎟⎠ zTi ((AP)T AP)†)2zi

+
(

‖x‖22
α2
A

+ 1

α2
b

)
zTi ((AP)T AP)†)zi

+
(

‖x‖22
α2
B

+ 1

α2
d

)
zTi B

†
A(B†

A)T zi

+ 2

α2
B

zTi ((AP)T AP)†xrT AB†
A(B†

A)T zi . (4.1)

The analysis based on SSCE method in [3] shows that

κSLSE (A, B, b, d) = ωq

ωn

√√√√
q∑

i=1

κ2
LSEi (A, B, b, d) (4.2)

is a good estimate of the normwise condition number of the LSE problem (1.1). In the
above expression, ωq is the Wallis factor with ω1 = 1, ω2 = 2/π , and

ωq =
{

1·3·5···(q−2)
2·4·6···(q−1) , for q odd,
2
π

2·4·6···(q−2)
3·5·7···(q−1) , for q even,

when q > 2.

It can be approximated by

ωq ≈
√

2

π(q − 1
2 )

(4.3)

with high accuracy. In summary, we can propose Algorithm 2.

Remark 4.2 In Algorithm 2, κ2
LSEi (A, B, b, d) is computed by the Eq. (4.1). In prac-

tice, the computation of κ2
LSEi (A, B, b, d) should rely on the intermediate results of
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Algorithm 2 SSCE method for the normwise condition number of the LSE solution
Input: Sample size q and matrix C in (2.6) with L = In .
Output: SSCE estimator of the normwise condition number of the LSE solution: κSLSE (A, B, b, d).

1. Generate q random vectors [z1, . . . , zq ] → Z from U(Sn−1).
2. Orthonormalize these vectors using the QR facotization [Z ,∼] = QR(Z).
3. For i = 1, . . . , q, compute κ2LSEi (A, B, b, d) by (4.1).
4. Approximate ωq and ωn by (4.3).
5. Estimate the normwise condition number by

κSLSE (A, B, b, d) = ωq

ωn

√√√√
q∑

i=1

κ2LSEi (A, B, b, d).

the process for solving the LSE problem to reduce the computational burden. Just as
carried out in [3], where the estimate is computed by using the R factor of QR decom-
position, it is better to compute κ2

LSEi (A, B, b, d) through a formula descended from
(2.19) instead of (2.6) if we solve the LSE problem by GSVD.

4.1 Complexity analysis

Since the main tasks in both Algorithms 1 and 2 are to compute the Moore-Penrose
inverses of B, AP and (AP)T AP , and the computation of Moore-Penrose inverse
in MATLAB needs SVD, we claim that the computational complexities of these two
algorithms are dominated by the computation of SVD. When Golub-Reinsch SVD is
used [13], the computational complexities of forming B†, (AP)† and ((AP)T AP)†

are O(5s2n + 9sn2 + 9n3), O(n2s + 6m2n + 9mn2 + 9n3) and O(m2n + mn2 +
23n3), respectively. Based on these results, we now present the complexity analysis of
Algorithms 1 and 2. We first consider Algorithm 2 whose computational complexity
mainly consists of two parts. The first one is from forming C with L = In which can
be given by considering the results mentioned above, and the other one is from the
orthonormalization procedure which requires O(4n2q −2nq2 +2/3q3) if Household
transformation is used [13]. Summing up the operations on matrix, we obtain the
computational complexity of Algorithm 2: O(5s2n+13sn2+13mn2+5m2n+41n3+
4n2q − 2nq2 + 2/3q3). Note that in the practical implication of Algorithm 2, p is
usually chosen tobe2or 3which is enough for practical application and ismuch smaller
compared with n. So the computational complexity of QR decomposition can be
omitted. For Algorithm 1, the first part of computational complexity is also to form C .
However, considering that d is the dimension ofKrylov space and can be automatically
determined by the stop criterion of iteration ε, we find that it is not a easy task to give a
detailed computational complexity analysis of the rest part of the algorithm in general.
In a special case, for example, when k is given, the computational complexity of the
inner loop is about O(dk2). Under this circumstance, the computational complexity
of Algorithm 1 is composed of O(5s2n+13sn2 +13mn2 +5m2n+41n3 +dk2) and
the process of finding δ and the probabilistic lower bound.
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5 Numerical experiments

In this section, we will present two numerical examples to illustrate the reliability of
the statistical condition estimates proposed in Sect. 4 and to compare the structured
condition number and the unstructured one, respectively. In these two examples, we
will set αA = αB = αb = αd = 1 and the matrix L be the identity matrix. In addition,
the claim in Remark 2.1 will also be verified in Example 5.1.

Example 5.1 Similar to [23], we construct the random LSE problem through its aug-
mented system (see Equation (3.7) in [10]), and generate the example as follows. Let
u1 ∈ R

m, u2 ∈ R
s , and v1, v2 ∈ R

n be unit random vectors, and set

A = U1

[
D1
0

]
V1, B = U2

[
D2 0

]
V2, Ui = Im(s) − 2uiu

T
i , and Vi = In − 2viv

T
i ,

where D1 = n−l1diag(nl1 , (n−1)l1 , . . . , 1) and D2 = s−l2diag(sl2 , (s−1)l2 , . . . , 1).
Let the solution x be x = (1, 22, . . . , n2)T and the residual vector r = b − Ax be
a random vector of specified norm. Thus, just letting the lagrange multiplier λ =
−(BBT )−1BAT r , b = Ax + r and d = Bx gives the desired LSE problem, and it is
easy to check that the condition numbers of A and B are κ(A) = nl1 and κ(B) = sl2 ,
respectively. Recall that for any matrix C , its condition number κ(C) is defined by
κ(C) = ‖C‖2

∥∥C†
∥∥
2.

In our numerical experiments, we set m = 100, n = 80 and s = 50, and choose
the parameters ε = 0.001, δ = 0.01 in Algorithm 1 and q = 2 in Algorithm 2. By
varying the condition numbers of A and B, and the residual’s norm ‖r‖2, we test the
performance of Algorithms 1 and 2. More precisely, for each pair of κ(A) and ‖r‖2
with a fixed κ(B), 500 random LSE problems are generated and used for the test. The
numerical results on mean and variance of the ratios between the statistical condition
estimate and the exact condition number defined as

rssce = κSLSE (A, B, b, d)/κLSE (A, B, b, d),

rpce = κPLSE (A, B, b, d)/κLSE (A, B, b, d)

are reported in Table 1. In addition, we also give a numerical verification of the claim
given in Remark 2.1. The numerical results of the ratio

κLSEup(A, B, b, d)/κLSE (A, B, b, d)

are presented in Table 2. In these experiments, we solve the constructed random
LSE problems by GSVD, i.e., using the results from Remark 2.3, and compute the
exact condition number via (2.19) and (2.5). Here, it should be pointed out that the
predetermined exact solution is generally not the same as the computed one. This fact
is illustrated in Fig. 1, where, for 50 random LSE problems, we plot the relative error
‖x̂ − x‖2/‖x‖2 with ‖r‖2 = 10−1. Moreover, from Fig. 1, we can see that when the
coefficient matrices become ill-conditioned, the computed solution by GSVDmethod
gets inaccurate. Sowemay resort to someother directmethods (see [13,Chapter 12]) or
iterative techniques to get more accurate solution for the problem with ill-conditioned
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coefficient matrices. The main reasons why we use the GSVD method in this paper
are that, with the intermediate results of solving LSE problem by this method, we
can compute the condition number via (2.19) and (2.5) conveniently and this method
is very effective for the coefficient matrices with small condition numbers. More
specifically, from [22], the computational complexity of GSVD is about O(8m2n +
8s2n + 6mn2 + 6sn2 + 8msn + 62/3n3), which occupies the major computational
burden of solving LSE problem. With the intermediate results, we can compute (2.19)
with about O(4n3 + ns2 − 2n2s) flops, and this saves much computational effort
compared with calculating (2.6) directly. On the other hand, from the complexity
analysis given in 4.1, we need about O(4n3 + ns2 − 2n2s + 4n2q − 2nq2 + 2/3q3)
flops for Algorithm 2, and O(4n3+ns2−2n2s+dk2) flops plus the process of finding
δ and the probabilistic lower bound for Algorithm 1 to estimate the condition number.
It is easy to see that the computational burden of estimating the condition number is
much smaller than that of computing the exact condition number via GSVD method.

From Table 1, one can easily find that in general both Algorithms 1 and 2 can
give reliable estimates of the normwise condition number. In comparison, Algorithm
1 performs more stable since the variances with this algorithm are smaller in most
cases. Meanwhile, it should be point out that when l1 = l2 = 0, Algorithm 2 may
give an inaccurate estimate, i.e., the ratio may be larger than 10. This phenomenon
also exists in estimating the normwise condition number of the LLS problem [3].
Although the expression of κLSE (A, B, b, d) is more complicated than that of the
normwise condition number of the LLS problem and the circumstances on these two
problems are different, we believe that the underlying reason should be the same; the
reader can refer to [3] for a detailed explanation.

Table 2 indicates that κLSEup(A, B, b, d) is indeed larger than κLSE (A, B, b, d).
However, the difference between them is not so significant, especially when the con-
dition numbers of the involved matrices are very large. In the latter case, they are
the same if we only take four decimal places in our numerical experiments. These
numerical results confirm the analysis in Remark 2.1.

Example 5.2 Let A and B be nonsymmetric gaussian random Toeplitz matrices of
order n = 100. This means that the entries of these two matrices are generated from
standard normal distribution and the basis matrices for generating the linear space S1
or S2 are

Z1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

, Z2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

1 0 · · · 0 0
0 1 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

, · · · , Zn−1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 1 0
0 0 · · · 0 1
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

Zn =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

,
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Table 2 Ratios of κLSEup(A, B, b, d) and κLSE (A, B, b, d) with κ(A) = nl1 , κ(B) = sl2 and ‖r‖2 =
10−1

l2 = 0 l2 = 3 l2 = 5

Min Median Max Min Median Max Min Median Max

l1 = 0 2.0001 2.0001 2.0001 1.0001 1.0003 1.0008 1.0000 1.0000 1.0000

l1 = 3 1.0199 1.0405 1.2561 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

l1 = 5 1.0010 1.2272 1.3192 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Fig. 1 The relative error ‖x̂ − x‖2/‖x‖2 with ‖r‖2 = 10−1

and henceΦS1 = ΦS2 = [vec(Z1), · · · , vec(Zn)]. Analogous to Example 5.1, we also
let the solution x be x = (1, 22, · · · , n2)T and the residual vector r be a random vector
of specified norm, and obtain the computed solution by GSVD method. However,
unlike Example 5.1, it seems impossible to restrict a specific condition number to
gaussian random Toeplitz matrices.

In our numerical experiment, for each r , we test 200 pairs of random Toeplitz
matrices A and B. The numerical results on the ratio between κLSE (A, B, b, d) and
κ S
LSE (A, B, b, d) defined by

ratio = κLSE (A, B, b, d)

κ S
LSE (A, B, b, d)

are presented in Fig. 2, which confirms the theoretical analysis in Remark 3.1.

From Fig. 2, we also find that there are some points near 10, which means that the
unstructured condition number can be 10 times larger than the structured one. Thus, it
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Fig. 3 The influence of dimension

may lead to anoverestimatewhenusing the unstructured condition number to give error
bounds in a structured LSE problem. Moreover, we also note that, for different ‖r‖2s,
the ratios seem to follow the same trend gathering in the interval [5, 10]. Whereas,
from numerical experiments, we verify that the ratio tends to be larger as n increases.
In the numerical experiments, we set ‖r‖2 = 1 and n = 20 ∗ i − 10, i = 1 : 11, and,
for every n, we test 50 LSE problems with random Toeplitz coefficient matrices A
and B. The numerical results are presented in Fig. 3, where the circle line denotes the
mean value of ratios and the solid line denotes the corresponding variances. The fact
shown in the figure means that the structured condition number has more advantage
comparedwith the unstructured one as the dimensions of coefficient matrices increase.
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