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Abstract A nonmonotone trust-region method for the solution of nonlinear systems
of equations with box constraints is considered. The method differs from existing
trust-region methods both in using a new nonmonotonicity strategy in order to accept
the current step and a new updating technique for the trust-region-radius. The overall
method is shown to be globally convergent. Moreover, when combined with suit-
able Newton-type search directions, the method preserves the local fast convergence.
Numerical results indicate that the new approach is more effective than existing trust-
region algorithms.
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1 Introduction

We consider the constrained system of nonlinear equations

F(x) = 0, x ∈ Ω, (1)

where Ω ⊆ R
n is defined by

Ω := {x ∈ R
n | li ≤ xi ≤ ui ∀i = 1, . . . , n}, (2)
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for some given lower and upper bounds satisfying −∞ ≤ li < ui ≤ +∞ for all
i = 1, . . . , n, and F : O → R

n is assumed to be continuously differentiable on
an open set O ⊆ R

n such that Ω ⊆ O. Hence, we are looking for a solution of
the nonlinear equation F(x) = 0 belonging to a region that is defined by some box
constraints.

In many instances, the bound constraints occur quite naturally and have a monetary
or physical meaning. They are also helpful to locate a solution if some a priori infor-
mation is available regarding the area in which the solution belongs to, and they can
be used to avoid regions in which F or some of its components are not defined. Note
also that more general inequality constraints can be reformulated as a box-constrained
system simply by adding suitable slack variables.

The nonlinear system of Eq. (1) with box constraints (2) therefore represents an
important class of problems forwhich a number of differentmethods have been devised
especially during the last 15 years. Among those which have the desirable properties
of being both globally and locally fast convergent, we refer the reader to the papers
[5–10,27,29,35,37,41,46] and references therein. The majority of these papers deal
with trust-region-type methods to get global convergence, though some line search
techniques are also available. Local convergence is guaranteed in different ways using
projected Newton steps, active-set strategies, affine-scaling interior-point techniques,
or QP-based methods.

The main focus in this paper is a trust-region strategy for the solution of the sys-
tem (1) which uses a new nonmonotonicity strategy combined with a corresponding
strategy for the updating of the trust-region radius. Both ingredients play a significant
role for the practical behaviour of trust-region methods [23,38]. In principle, the non-
monotonicity is often very helpful for highly nonlinear functions with narrow curved
valleys, and might also improve the likelihood to find a global minimum. On the other
hand, the choice of the trust-region radius is crucial and too big/small trust-region
radius may imply a number of unsuccessful iterations where essentially the iterates
are unchanged, and there is a high computational cost of the overall procedure.

The nonmonotonicity idea was first used in the watchdog strategy by Chamberlain
et al. [11] to avoid the Maratos effect in SQP-type methods. The seminal paper by
Grippo et al. [24] introduces a general nonmonotonicity technique for unconstrained
optimization that subsequently turned out to be extremely useful in different areas to
improve the efficiencyof severalmethods.Their techniquehas been further generalized
in the paper [25]. On the other hand, it has also been noted by several authors [1,2,4,
12,39,44] that the original nonmonotonicity strategy by Grippo et al. [24] has some
disadvantages so that there are a couple of recent contributions which try to avoid
these disadvantages by using a more careful nonmonotonicity strategy. We postpone
a more detailed discussion of this subject to Sect. 2 where we also introduce our new
technique.

Froma theoretical point of view,wewould like to point out that there are somediffer-
ences regarding nonmonotonicities used within line search and trust-region methods.
To this end, let us define the natural merit function

f (x) := 1

2
‖F(x)‖22, (3)
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associated to the given nonlinear system of equations, and note that the constrained
system of equations can be restated as the optimization problem

min f (x) s.t. x ∈ Ω. (4)

The global convergence theory of any method for the solution of (1) tries to find at
least a stationary point of (4), i.e. a vector x∗ ∈ Ω satisfying

∇ f (x∗)T (x − x∗) ≥ 0, ∀ x ∈ Ω. (5)

The paper is organized in the following way: Sect. 2 introduces our new non-
monotonicity strategy together with a corresponding updating rule for the trust-region
radius and finally states the complete trust-region framework together with some pre-
liminary results. The global convergence analysis is carried out in Sect. 3 and shows
that every accumulation point of a sequence generated by our nonmonotone trust-
region method is a stationary point of (4). Locally fast convergent modifications of
our nonmonotone trust-region method are presented in Sect. 4, where three different
strategies are discussed in detail. Numerical results are then presented in Sect. 5, and
we close with some final remarks in Sect. 6.

Notation: The symbol ‖ · ‖ denotes the Euclidean vector norm or the associated
matrix norm, while ‖ · ‖∞ is the maximum norm of a vector. For a vector x ∈ R

n with
components xi and an index set I ⊆ {1, . . . , n}, the subvector xI ∈ R

|I | consists of
all components xi (i ∈ I ). Similarly, for a matrix A = (ai j ) ∈ R

n×n and index sets
I, J ⊆ {1, . . . , n},wewrite AI J for the submatrixwith the elementsai j (i ∈ I, j ∈ J ).
Given a nonempty, closed, and convex set X ⊆ R

n , wewrite PX (x) for the (Euclidean)
projection of a vector x ∈ R

n onto X . Recall that these projections are very easy to
compute when X is described by box constraints. In particular, the natural residual

p(x) := PΩ(x − ∇ f (x)) − x, (6)

is simple to evaluate for the Ω from (2), and it is well-known that x∗ is a solution of
p(x) = 0 if and only if x∗ satisfies the stationary point condition from (5).

2 Trust-region algorithm

This section gives the details of our trust-region algorithm. Compared to existing
methods, it uses both a different nonmonotonicity strategy for accepting a new iterate
and a new updating technique for the trust-region radius. The corresponding details
are given in Sects. 2.1 and 2.2, respectively. The resulting trust-region method is then
presented in Sect. 2.3 together with some preliminary results.

2.1 Nonmonotonicity technique

We first recall the quadratic model that is used in the context of trust-region methods.
Given an iterate xk ∈ Ω , we define
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qk(d) := 1

2
‖F(xk) + F ′(xk)d‖2

= f (xk) + ∇ f (xk)T d + 1

2
dT F ′(xk)T F ′(xk)d

= f k + (gk)T d + 1

2
dT J T

k Jkd,

where, for simplicity of notation, we set

f k := f (xk), Fk := F(xk), gk := ∇ f (xk), Jk := F ′(xk),

throughout this paper; note thatwewill sometimes alsowrite gk instead of gk whenever
this is more convenient. Using the �∞-norm for the trust-region, our trust-region
subproblem then reads as follows:

min
d

qk(d) s.t. xk + d ∈ Ω, ‖d‖∞ ≤ Δk,

where Δk > 0 denotes a given trust-region radius. Defining lk, uk ∈ R
n component-

wise by

lk
j := max {l j − xk

j , −Δk}, uk
j := min {u j − xk

j , Δk}, ∀ j = 1, . . . , n, (7)

the trust-region subproblem is equivalent to

min
d

qk(d) s.t. lk ≤ d ≤ uk, (8)

where the inequalities are taken component-wise. Since lk
j ≤ 0 and uk

j ≥ 0 for all
j = 1, . . . , n, the zero vector is always feasible for (8).
In traditional trust-region approaches, the ratio

f k − f (xk + dk)

qk(0) − qk(dk)
, (9)

between the actual and predicted reduction around the current iterate xk is used as a
measure for the agreement between the quadratic model qk and the nonlinear objective
function f . The first use of a nonmonotone technique in a trust-region framework is, to
the best of our knowledge, attributed to Deng et al. [13]. They presented the following
ratio

rk := f l(k) − f (xk + dk)

qk(0) − qk(dk)
, (10)

where

f l(k) := f (xl(k)) := max
0≤ j≤m(k)

{ f k− j }, k ∈ N0 := N ∪ {0}, (11)
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with m(0) = 0 and 0 ≤ m(k) ≤ min{m(k − 1) + 1, M} with M ≥ 1. Note that the
index l(k) is, usually, not uniquely defined in (11) since the maximummay be attained
at different iterates, but as this non-uniqueness is irrelevant for our convergence the-
ory, l(k) just denotes one of the iteration counters where the maximum is attained.
As already noted in the introduction, however, this classical nonmonotonicity rule has
some drawbacks. In particular, this strategy is based on a decrease with respect to
the maximum function value within the last few iterations and, therefore, completely
discards small intermediate function values. This motivated some authors to take a
convex combination or a weighted average of former successive iterates [41,44]. The
strategy used by Zhang and Hager [44] for a line search method in unconstrained opti-
mization has been applied to a nonmonotone trust-region framework by Ahookhosh
and Amini [2], where the ratio (10) is changed to

r̂k := Ck − f (xk + dk)

qk(0) − qk(dk)
, (12)

with

Ck :=
{

f k, if k = 0,
(

ηk−1Qk−1Ck−1 + f k
)

/Qk if k ≥ 1,
(13)

and

Qk :=
{

1, if k = 0,
ηk−1Qk−1 + 1, if k ≥ 1,

(14)

where ηk−1 ∈ [ηmin, ηmax] for certain parameters 0 ≤ ηmin ≤ ηmax ≤ 1.
To develop the global convergence results that are available for the monotone case,

Ulbrich [41] presented a variant of the nonmonotone technique (11), which is as
follows

f l(k)
λ :=

{

f k, if k = 0,

max
{

f k,
∑m(k)−1

j=0 λk, j f k− j
}

, if k ≥ 1,
(15)

where λ ∈ (0, 1/M], and λk, j ≥ λ satisfying
∑m(k)−1

j=0 λk, j = 1. This formula can be
a good approximation for (11) if we choose λ sufficiently small and set

λk, j = λ if j �= l(k), λk, j = 1 − (m(k) − 1)λ. (16)

Of course, in [41], it is proposed that iterations k, k − 1, . . . , k − m(k) + 1 used in
(15) are successful, but, we use (15) with this difference that the mentioned iterations
may be successful or unsuccessful.

Lemma 1 The inequality f k ≤ f l(k)
λ ≤ f l(k) holds for all k ∈ N0 such that the

iterates x0, x1, . . . , xk exist.
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Proof The statement is obviously true for k = 0 since m(0) = 0 by definition. Hence,
consider an arbitrary k ≥ 1. Since we always have f l(k) ≥ f k , it follows that

f l(k)
λ = max

⎧

⎨

⎩

f k,

m(k)−1
∑

j=0

λk, j f k− j

⎫

⎬

⎭

≤ max

⎧

⎨

⎩

f k, f l(k)

m(k)−1
∑

j=0

λk, j

⎫

⎬

⎭

= max
{

f k, f l(k)
}

= f l(k),

Moreover

f l(k)
λ = max

⎧

⎨

⎩

f k,

m(k)−1
∑

j=0

λk, j f k− j

⎫

⎬

⎭

≥ f k,

and this completes the proof. ��
In order to introduce a potentially more efficient nonmonotonicity technique and to

establish the global convergence results, we replace Ck−1 by f l(k)
λ in (13). The main

idea is to set up a weaker sequence relation to the generated sequence (15) whenever
iterates are near the optimizer. In other words, we produce the new nonmonotone
formula

˜Ck
λ :=

{

f k, if k = 0,
(

ηk−1Qk−1 f l(k)
λ + f k

)

/Qk if k ≥ 1,
(17)

with ηk−1 ∈ [ηmin, ηmax] and ηmin, ηmax as before, and with Qk satisfying (14).
Finally, we introduce the new ratio as

r̃k :=
˜Ck

λ − f (xk + dk)

qk(0) − qk(dk)
. (18)

The definition of ˜Ck
λ implies the following result which, to some extent, motivates the

updating rule for the sequence Qk .

Lemma 2 The inequality f k ≤ ˜Ck
λ ≤ f l(k)

λ ≤ f l(k) holds for all k ∈ N0 such that
the iterates x0, x1, . . . , xk exist.

Proof The statement is obviously true for k = 0 since m(0) = 0 by definition. Hence
consider an arbitrary k ≥ 1. Since we always have f l(k) ≥ f l(k)

λ ≥ f k , it follows that

˜Ck
λ = (

ηk−1Qk−1 f l(k)
λ + f k)/Qk ≤ (

ηk−1Qk−1 f l(k)
λ + f l(k)

λ

)

/Qk = f l(k)
λ ≤ f l(k),

where the last equality comes from the definition of Qk . Similarly, we obtain

˜Ck
λ = (

ηk−1Qk−1 f l(k)
λ + f k)/Qk ≥ (

ηk−1Qk−1 f k + f k)/Qk = f k,

and this completes the proof. ��
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The previous result makes clear that our ratio (18) is more restrictive than the classical
nonmonotone criterion (10) derived from the original paper by Grippo et al. [24]. On
the other hand, it leaves more freedom than the monotone variant (9).

2.2 Adaptive radius strategy

The overall behavior of the trust-region method is very sensitive to the updating rule
for the trust-region radius Δk . Classical updating schemes depend on the size of the
ratio from (9) between the actual and predicted reduction. This often works quite
satisfactory. On the other hand, it measures the agreement between the actual and
predicted reduction essentially only in the direction of the vector dk . Hence this ratio
might be close to one though f might be a highly nonlinear function for which qk

is not a good approximation. In general, the traditional updating rule may therefore
lead to unnecessarily large or small values of Δk , resulting in a number of subsequent
iterations where only this radius gets changed, and this increases the total iteration
count and the total cost of the underlying algorithm.

In other words, the previous value Δk−1 might not be a good starting point to
compute the new radius Δk . An alternative choice within a monotone trust-region
framework was suggested in [3,21,45] where the authors take the current value
‖Fk‖ = ‖F(xk)‖ as the basis. This avoids large values of Δk close to a solution,
and tries to overcome small values of Δk far away from a solution. Furthermore, the
size of unconstrained Newton-type steps are, under a nonsingularity condition, within
a constant times ‖F(xk)‖ which motivates, to some extent, the strategy applied in
[3,21,45].

Since we use a nonmonotone trust-region method, it is natural to replace ‖Fk‖
by its counterpart from the nonmonotonicity strategy. Similar updating has also been
suggested recently in [17,18]. Specifically, let us define

Fl(k) := max
0≤ j≤m(k)

{‖Fk− j‖}, k ∈ N0. (19)

Based on the new technique (15), we propose a new adaptive radius procedure to
control the radius size by

Δk :=
⎧

⎨

⎩

σ1Δk−1, if r̃k−1 < ρ1,

P[Δmin,Δmax](̂Ck), if r̃k−1 ∈ [ρ1, ρ2),
P[Δmin,Δmax](σ2̂Ck), if r̃k−1 ≥ ρ2.

(20)

where 0 < ρ1 < ρ2 < 1 (step acceptance parameter), 0 < σ1 < 1 < σ2 (trust-region
scaling parameter) and Δmax > Δmin > 0 are suitable constants, P[Δmin,Δmax](·)
denotes the projection onto the interval [Δmin,Δmax], and

̂Ck :=
{ ‖Fk‖, if k = 0,
(

ηk−1Qk−1Fl(k) + ‖Fk‖)/Qk if k ≥ 1,
(21)
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in which Qk satisfies (14). Note that the updating of Δk follows traditional rules for
r̃k−1 < ρ1 (this case corresponds to the unsuccessful iterations), but that the updating
is different in the other cases.

Note also that, after each successful iteration, the new trust-region radius is at least
as large as a given positive numberΔmin. This avoids the trust-region radius to be very
small after a successful iteration, and this fact plays an important role both in our global
and in the local convergence analysis. To the best of our knowledge, such a strategy
occurred, for the first time, in the paper [26] by Jiang et al. and has subsequently been
applied also by some other authors, see, e.g., [31,41]. The introduction of the upper
bound Δmax is not needed from a theoretical point of view, but avoids unnecessarily
large trust-regions.

Similar to Lemma 2, we can also prove the following result.

Lemma 3 The inequality ‖Fk‖ ≤ ̂Ck ≤ Fl(k) holds for all k ∈ N0 such that the
iterates x0, x1, . . . , xk exist.

Hence the new sequence ̂Ck is always larger than ‖Fk‖, and this helps to prevent a
shrinking of the radius whenever the iterates are far away from a solution. On the
other hand, the upper bound Fl(k) of ̂Ck together with the updating rule (20) implies
that the radius becomes not too large when we are close to a solution. These features
are supposed to yield a better or more reasonable control of the radius size than the
classical updating scheme. The numerical results given in Sect. 5 indicate that this is
indeed the case.

2.3 Algorithm

In this section, we describe in detail our nonmonotone trust-region-type method for
the solution of box-constrained nonlinear equations, prove some of its elementary
properties and, in particular, show that the algorithm is well-defined. We begin with
a formal statement of our nonmonotone trust-region method which is fully motivated
by the corresponding discussion in the previous sections.

Algorithm 1 (Nonmonotone trust-region method—global version)

(S.0) Choose x0 ∈ Ω , Δ0 > 0, 0 < ρ1 < ρ2 < 1, 0 < σ1 < 1 < σ2, Δmax >

Δmin > 0, ε ≥ 0, and set k := 0, ˜C0
λ := f (x0), ̂C0 := ‖F(x0)‖.

(S.1) If ‖p(xk)‖∞ ≤ ε: STOP.
(S.2) Define lk, uk by (7), and compute dk as an approximate solution of the trust-

region subproblem (8).
(S.3) Compute the ratio

r̃k :=
˜Ck

λ − f (xk + dk)

qk(0) − qk(dk)
.

If r̃k ≥ ρ1, we set xk+1 := xk + dk and call iteration k successful; otherwise,
we set xk+1 := xk and call iteration k unsuccessful.

(S.4) Compute ˜Ck+1
λ and ̂Ck+1 using (17) and (21), respectively.
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(S.5) Update the trust-region-radius according to

Δk+1 :=
⎧

⎨

⎩

σ1Δk, if r̃k < ρ1,

P[Δmin,Δmax](̂Ck+1), if r̃k ∈ [ρ1, ρ2),
P[Δmin,Δmax](σ2̂Ck+1), if r̃k ≥ ρ2.

(S.6) Set k ← k + 1, and go to (S.1).

In our subsequent convergence analysis, we assume implicitly that ε = 0 and that
Algorithm 1 generates an infinite sequence, i.e., it does not terminate after finitely
many iterations in a stationary point of the optimization problem (4). Note also that,
by construction, all vectors xk generated by Algorithm 1 belong to the feasible set Ω .

Note that we only require an approximate solution of the trust-region subproblem
in (S.2). While this is a very vague formulation, the subsequent convergence theory
clarifieswhat is really needed toget global and superlinear convergence.Theminimizer
of qk along the projected steepest descent direction ˜dk := μpk , in which μ ∈ [0, 1],
is Cauchy point, i.e.,

dk = tk˜d
k,

which the scalar tk > 0 is a solution of the one-dimensional problem

tk := argmin
t≥0

qk(t˜d
k) s.t lk ≤ t˜dk ≤ uk .

The following result is our counterpart of a standard inequality known from [36]
for the unconstrained trust-region subproblem based on the l2-norm. Here we deal
with the l∞-norm which, in addition, is restricted to the feasible set described by box
constraints. A very similar result has been shown previously in [43] in the context of
box constrained optimization problems under the additional assumption (translated to
our context) that Jk is nonsingular. Here we modify the technique of proof to allow
also singular matrices Jk . Note that similar results are known for box-constrained
equations in the context of affine-scaling interior-point methods, cf. [14,28,29,42].

Lemma 4 Given an iterate xk and a solution dk of the trust-region subproblem (8),
it holds that

qk(0) − qk(d
k) ≥ 1

2
‖p(xk)‖∞ min

{

‖p(xk)‖∞
‖J T

k Jk‖
, ‖p(xk)‖∞,Δk

}

, (22)

(with the usual interpretation that the minimum is attained at the second or third term
if the denominator ‖J T

k Jk‖ in the first term is zero).

Proof Recall that pk := p(xk) = PΩ(xk − gk) − xk , and let us define

d := μpk with μ := min

{

1,
Δk

‖pk‖∞

}

, (23)
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where, without loss of generality, we can assume that pk �= 0 (otherwise, the statement
obviously holds since zero is always feasible for the subproblem (8), apart from the
fact that the algorithm would have stopped at iteration k). Note also that we skipped
the dependence of d and μ on the index k for notational convenience.

The definition of d from (23) implies

xk + d = xk + μpk = (1 − μ)xk + μPΩ(xk − gk) ∈ Ω,

since μ ∈ [0, 1] andΩ is convex. Furthermore, we have ‖d‖∞ ≤ Δk by construction.
Hence d is feasible for (8). Consequently, the scaled vector

˜d := td = td + (1 − t)0 for 0 ≤ t ≤ 1,

is feasible for (8) since both d and the zero vector belong to the convex feasible set of
(8). Let us consider

ϕ(t) := qk(˜d) − qk(0) = qk(td) − qk(0) = tgT
k d + 1

2
t2dT J T

k Jkd.

In order to compute the minimizer of this one-dimensional function over all t ∈ [0, 1],
we distinguish two cases.
Case 1: dT J T

k Jkd > 0. Then ϕ is a strictly convex quadratic function with a unique
minimizer in [0, 1] given by

t̄ := argmint∈[0,1]ϕ(t) = min

{

− gT
k d

dT J T
k Jkd

, 1

}

,

(note that gT
k d < 0, cf. the following analysis). Since dk is the minimum of the

subproblem (8), it follows that

qk(d
k) − qk(0) ≤ ϕ(t̄) =

{− 1
2 (g

T
k d)2/(dT J T

k Jkd), if − gT
k d ≤ dT J T

k Jkd,

gT
k d + 1

2dT J T
k Jkd, else.

Taking into account that dT J T
k Jkd < −gT

k d in the second case, we obtain

qk(d
k) − qk(0) ≤ ϕ(t̄) ≤

{− 1
2 (g

T
k d)2/(dT J T

k Jkd), if − gT
k d ≤ dT J T

k Jkd,
1
2gT

k d, else.

Now, we have

−gT
k d = −μgT

k pk

= μ(−gk)T (PΩ(xk − gk) − xk)

= μ
(

(xk − gk) − PΩ(xk − gk)
)T (

PΩ(xk − gk) − xk)
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A new class of nonmonotone adaptive trust-region... 779

+μ
(

PΩ(xk − gk) − xk)T (
PΩ(xk − gk) − xk)

≥ μ
∥

∥PΩ(xk − gk) − xk
∥

∥

2 = μ‖pk‖2 ≥ μ‖pk‖2∞,

where the first inequality comes from the projection theorem, and the second inequality
follows immediately from that fact that ‖ · ‖ represents the Euclidean norm. Putting
the last two estimates together, we obtain

qk(0) − qk(d
k) ≥ −ϕ(t̄)

≥ min

{

1

2

(gT
k d)2

dT J T
k Jkd

,−1

2
gT

k d

}

≥ 1

2
min

{

μ2‖pk‖4
dT J T

k Jkd
, μ‖pk‖2

}

≥ 1

2
min

{

μ2‖pk‖4
‖J T

k Jk‖‖d‖2 , μ‖pk‖2
}

(23)= 1

2
min

{

μ2‖pk‖4
μ2‖J T

k Jk‖ ‖pk‖2
, μ‖pk‖2

}

= 1

2
‖pk‖min

{

‖pk‖
‖J T

k Jk‖
, μ‖pk‖

}

≥ 1

2
‖pk‖∞ min

{

‖pk‖∞
‖J T

k Jk‖
, μ‖pk‖∞

}

(23)= 1

2
‖pk‖∞ min

{

‖pk‖∞
‖J T

k Jk‖
, ‖pk‖∞,Δk

}

.

This is the desired inequality in Case 1.
Case 2: dT J T

k Jkd = 0. Then ϕ(t) = tgT
k d is a linear function. Using (23), the

feasibility of xk , and the monotonicity of the projection operator, we have

gT
k d = μgT

k pk

= −μ(−gk)T (PΩ(xk − gk) − xk)

= −μ(−gk)T (PΩ(xk − gk) − PΩ(xk)
)

≤ 0.

Furthermore, since PΩ(xk − gk) �= PΩ(xk) (otherwise, we would have pk = 0 and
the algorithm would have stopped), standard properties of the projection operator
guarantee that the inequality gT

k d ≤ 0 is strict. Hence d is a descent direction, and it
follows that, again, there is a unique minimizer of ϕ(t) on [0, 1] given by

t̄ := argmint∈[0,1]ϕ(t) = 1.

123



780 M. Kimiaei

Note that we also have −gT
k d > 0 = dT J T

k Jkd. Hence we obtain as in Case 1, where
the minimum is attained at t̄ = 1, that

qk(0) − qk(d
k) ≥ 1

2
‖pk‖∞ min

{‖pk‖∞,Δk
}

.

Together with Case 1, this completes the proof. ��
Note that the previous result implies that the denominator in the definition of the ratio
r̃k in (S.3) is always positive if dk is the solution of (8). In particular, it therefore
follows that Algorithm 1 is well-defined.

Lemma 4 assumes that dk is an exact solution of the convex quadratic trust-region
subproblem from (8). However, the proof of this result explicitly computes, in a very
simple way, Cauchy point (though the notion of a Cauchy point is nonunique in the
constrained case) which satisfies the central inequality (22), so that, in particular, each
global minimum also satisfies this inequality. To have the constructive procedure from
the proof of Lemma 4 explicitly available, we recall the corresponding technique in
the following algorithm.

Algorithm 2 (Procedure to compute an inexact solution dk of (8))

(a) Define μk := min
{

1, Δk
‖p(xk )‖∞

}

.

(b) Set ˜dk := μk p(xk).

(c) Set tk := min
{ − gT

k
˜dk

(˜dk )T J T
k Jk˜dk , 1

}

(where the minimum is attained at 1 if the

denominator is zero).
(d) Compute dk := tk˜dk.

The two main properties of the vector dk computed in Algorithm 2 are summarized in
the following result which follows immediately from Lemma 4 and the construction
of dk .

Lemma 5 The vector dk computed by Algorithm 2 satisfies inequality (22) and
‖dk‖∞ ≤ ‖p(xk)‖∞.

In principle, it is possible to find approximate solutions dk of the trust-region sub-
problem (8) whose size is not related to ‖p(xk)‖∞. On the other hand, both properties
mentioned in Lemma 5 turn out to be important for our global convergence analysis.
We therefore make the following assumption.

Assumption 1 There exist constants c, c1, c2 > 0 such that the approximate solutions
dk computed in (S.2) of Algorithm 1 satisfy

(a) ‖dk‖∞ ≤ c‖p(xk)‖∞ for all k ∈ N0;

(b) qk(0) − qk(dk) ≥ c1‖p(xk)‖∞ min
{ ‖p(xk )‖∞

‖J T
k Jk‖ , c2‖p(xk)‖∞,Δk

}

for all k ∈ N0.

Recall that this assumption is satisfied with c := 1, c1 := 0.5, c2 := 1 by the approx-
imate solution dk computed in Algorithm 2. Conditions like those summarized in
Assumption 1 arise quite frequently in the context of trust-region methods. Assump-
tion 1 (a), for example, also occurs, at least implicitly, within the class of affine-scaling
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interior-point methods when a certain scaling matrix is assumed to be bounded, cf.
[29,41,42]. On the other hand, Assumption 1 (b) guarantees a decrease which is at
least as good as a fraction of the Cauchy step computed in Algorithm 2; in particular,
it implies that the vectors dk gives a better value of the quadratic model qk than the
zero vector.

In our subsequent global convergence analysis, only Assumption 1 (b) is required in
the first preliminary results, but in order to get a final convergence result, Assumption 1
(a) is also needed.

3 Global convergence

We present the global convergence properties of Algorithm 1. To this end, we begin
with some technical results in Sect. 3.1 and then discuss the global convergence itself
in Sect. 3.2.

3.1 Some technical results

In order to prove global convergence ofAlgorithm1,wefirst need to establish a number
of preliminary results. We begin by showing that, the sequence f l(k) is monotonically
decreasing.

Lemma 6 Let the sequence {xk} be generated by Algorithm 1 such that the approx-
imate solutions dk satisfy Assumption 1 (b). Then the sequences { f l(k)} and {Fl(k)}
are monotonically decreasing, hence convergent.

Proof See [24]. ��
An immediate consequence of the previous result is the fact that the entire sequence
{xk} generated by Algorithm 1 remains in the (feasible) level set L(x0) := {x ∈ Ω |
f (x) ≤ f (x0)} of the starting point x0.

Corollary 1 Assume that the sequence {dk} satisfies Assumption 1 (b). Then all iter-
ates xk generated by Algorithm 1 belong to the level set L(x0).

Proof In view of Lemma 6, we get f k ≤ f l(k) ≤ f l(0) = f 0 = f (x0), and this
implies that any iterate xk generated by Algorithm 1 belongs to the level set L(x0). ��
Toestablish suitable convergence properties ofAlgorithm1,we also state the following
standard assumption.

Assumption 2 The sequence of Jacobian matrices {Jk} is bounded, i.e. there exists
some number � > 0 such that ‖Jk‖ ≤ � for all k ∈ N0.

Using Assumption 2, we also obtain the following consequence.

Corollary 2 Suppose that Assumption 2 holds, and the sequence {dk} satisfies
Assumption 1 (b). Then there are constants γ1, γ2 > 0 such that

qk(0) − qk(d
k) ≥ γ1‖p(xk)‖2∞ min

{

γ2,Δk
}

,

for all k ∈ N0.
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Proof In view of Assumptions 1 (b) and 2, we have

qk(0) − qk(d
k) ≥ c1‖p(xk)‖∞ min

{‖p(xk)‖∞
�2 , c2‖p(xk)‖∞,Δk

}

.

Since ‖F(xk)‖ ≤ ‖F(x0)‖ for all k ∈ N0 by Corollary 1, and since ‖gk‖ =
‖J T

k F(xk)‖ ≤ ‖Jk‖‖F(xk)‖ ≤ �‖F(x0)‖ by Assumption 2, the nonexpansiveness
of the projection operator immediately yields

‖p(xk)‖ = ‖PΩ(xk − gk) − PΩ(xk)‖ ≤ ‖gk‖ ≤ �‖F(x0)‖,

and a similar bound then holds for the expression ‖p(xk)‖∞ due to the equivalence of
all norms in finite-dimensional spaces. For some constant �∞ > 0, we therefore get

qk(0) − qk(d
k) ≥ c1‖p(xk)‖∞ min

{‖p(xk)‖∞
�2 , c2‖p(xk)‖∞,

‖p(xk)‖∞Δk

‖p(xk)‖∞

}

≥ c1‖p(xk)‖2∞ min

{

1

�2 , c2,
Δk

‖p(xk)‖∞

}

≥ c1‖p(xk)‖2∞ min

{

1

�2 , c2,
Δk

�∞‖F(x0)‖∞

}

≥ c1‖p(xk)‖2∞
�∞‖F(x0)‖2∞

min

{

min

{

�∞‖F(x0)‖2∞
�2 , c2�∞‖F(x0)‖∞

}

,Δk

}

= γ1‖p(xk)‖2∞ min
{

γ2,Δk
}

,

which γ1 := c1
�∞‖F(x0)‖2∞ and γ2 := min{�∞‖F(x0)‖2∞

�2 , c2�∞‖F(x0)‖∞}. This yields
the desired result. ��
The following lemma shows that there are infinitely many successful iterations in
Algorithm 1.

Lemma 7 Let Assumption 2 be satisfied and suppose that Assumption 1 (b) holds for
the sequence {dk}. Then there exist infinitely many successful iterations in Algorithm 1.

Proof To prove, we first suppose that there are only finitelymany successful iterations.
Similarly to Lemma 3.3 in [17], we then can obtain, for all k ∈ N0 sufficiently large,
that

f (xk) − f (xk + dk)

qk(0) − qk(dk)
≥ ρ1.

Taking into account that ˜Ck
λ ≥ f (xk) in view of Lemma 2 (since we assume there

are only finitely many successful iterations, this is actually an equality for all k suffi-
ciently large), we eventually have another successful iteration, a contradiction to our
assumption. ��
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3.2 Main global convergence results

In order to obtain a suitable global convergence result, we need the following additional
smoothness assumption regarding the objective function f .

Assumption 3 The function f is uniformly continuous on the level set L(x0).

Note that this assumption is satisfied, in particular, if f is Lipschitz-continuous on
L(x0). This situation occurs, e.g., if L(x0) is bounded, which certainly holds if the
feasible set Ω itself is bounded.

The following result plays a fundamental role in our global convergence analysis and
shows, in particular, that the entire sequence { f (xk)}, thoughnonmonotone, converges.

Proposition 4 Let {xk} be a sequence generated by Algorithm 1 such that the approx-
imate solutions dk in (S.2) satisfy Assumption 1. Suppose further that Assumptions 2
and 3 hold. Then

lim
k→∞ f l(k) = lim

k→∞ f l(k)
λ = lim

k→∞
˜Ck

λ = lim
k→∞ f (xk),

in particular, these limits exist.

Proof In view of Lemma 2, it suffices to show that limk→∞ f l(k) = limk→∞ f (xk)

holds. We further note that the limit limk→∞ f l(k) exists by Lemma 6.
Definê1(k) := l(k + M + 2) for all k ∈ N0. Then̂1(k) ≥ k + 2, and we can write

xk+1 = x
̂1(k) −

̂1(k)−k−1
∑

j=1

(

x
̂1(k)− j+1 − x

̂1(k)− j ). (24)

We want to show that

lim
k→∞ ‖xk+1 − x

̂1(k)‖∞ = 0, (25)

then it follows that

lim
k→∞ f (xl(k)) = lim

k→∞ f (x
̂1(k)) = lim

k→∞ f (xk+1) = lim
k→∞ f (xk),

where the first equality follows from the fact that {̂1(k)} is a subsequence of {l(k)},
the second equality uses (25) and the assumed uniform continuity of f (recall that all
iterates xk belong to the level set L(x0) in view of Corollary 1), and the third equality
is obvious.

Hence it suffices to verify (25). To this end, we exploit (24) and show simultane-
ously, by induction, that

lim
k→∞

∥

∥x
̂1(k)− j+1 − x

̂1(k)− j
∥

∥∞ = 0 ∀ j = 1, 2, . . . (26)
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and

lim
k→∞ f (x

̂1(k)− j ) = lim
k→∞ f (x

̂1(k)) ∀ j = 1, 2, . . . . (27)

Note that we have assumed that k is large enough to make the indiceŝ1(k) − j + 1
(or̂1(k) − j) nonnegative. Since

̂1(k) − k − 1 = l(k + M + 2) − k − 1 ≤ (k + M + 2) − k − 1 = M + 1 ∀k ∈ N0,

the number of terms in the sum (24) is uniformly bounded by the constant M + 1,
hence (26) implies (25).

Let us begin our induction with j = 1, and let K ⊆ N0 be the (infinite) subset of
successful iterations. For any k ∈ K , we obtain from Lemma 2 that

f l(k) − f (xk+1) = f l(k) − f (xk + dk) ≥ ˜Ck
λ − f (xk + dk) ≥ ρ1

(

qk(0) − qk(d
k)
)

,

hence

f l(k) − f (xk+1) ≥ ρ1predk, (28)

where predk := qk(0) − qk(dk) denotes the predicted reduction which, in view of
Assumption 1 (b), is always nonnegative. Replacing k by l(k) − 1 and assuming
l(k) − 1 ∈ K , we therefore get

f l(l(k)−1) − f (xl(k)) ≥ ρ1predl(k)−1 ≥ 0.

Since the left-hand side converges to zero by Lemma 6, it follows that

lim
k→∞ predl(k)−1 = 0, (29)

provided that l(k) − 1 ∈ K for all k ∈ N0. Using Assumptions 1 and 2, we further
obtain

predl(k)−1 ≥ c1
∥

∥p(xl(k)−1)‖∞ min

{‖p(xl(k)−1)‖∞
�2 , c2‖p(xl(k)−1)‖∞,Δl(k)−1

}

≥ c1
∥

∥p(xl(k)−1)‖∞ min

{‖p(xl(k)−1)‖∞
�2 , c2‖p(xl(k)−1)‖∞, ‖dl(k)−1‖∞

}

≥ c1
c2
∥

∥dl(k)−1‖∞ min

{‖dl(k)−1‖∞
�2 , c2

∥

∥dl(k)−1
∥

∥∞, c
∥

∥dl(k)−1‖∞
}

= γ̃
∥

∥dl(k)−1
∥

∥

2
∞ ≥ γ̃

∥

∥xl(k) − xl(k)−1
∥

∥

2
∞,

with γ̃ := c1
c2
min

{ 1
�2 , c2, c

}

being constant. Hence (29) implies

lim
k→∞

∥

∥xl(k) − xl(k)−1
∥

∥∞ = 0; (30)
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in view of its derivation, this limit holds only under the assumption that all iterations
l(k)−1 are successful, however, it trivially holds if some of even all of these iterations
are unsuccessful since then we have xl(k) = xl(k)−1. Since {̂1(k)} is a subsequence
of {l(k)}, we therefore obtain (26) for j = 1. Using (26) together with the uniform
continuity of f , we also obtain (27) from Lemma 6 and (26) with j = 1.

Suppose that (26) and (27) hold for some j ∈ N, and consider the index j + 1.
Using (28) and substituting k bŷ1(k) − j − 1 and assuming, for the moment, that
̂1(k) − j − 1 ∈ K , we get

f (xl(̂1(k)− j−1)) − f (x
̂1(k)− j ) ≥ ρ1pred̂1(k)− j−1. (31)

Note that we have

lim
k→∞ f (xl(k)) = lim

k→∞ f (x
̂1(k)) = lim

k→∞ f (x
̂1(k)− j ),

where the first equality comes from the fact that {̂1(k)} is a subsequence of {l(k)},
and the second equality uses the induction hypothesis from (27). We therefore obtain
from Lemma 6 that the left-hand side of (31) converges to zero, hence it follows that
pred̂1(k)− j−1 → 0 for k → ∞ provided that all iterationŝ1(k)− j −1 are successful.
Similar to the derivation of (30), this implies

lim
k→∞

∥

∥x
̂1(k)− j − x

̂1(k)− j−1
∥

∥∞ = 0, (32)

and this limit holds independent of whether or not the iterationŝ1(k) − j − 1 are suc-
cessful. Finally, using (32) together with Assumption 3, and exploiting the induction
hypothesis (27), we also obtain

lim
k→∞ f (x

̂1(k)− j−1) = lim
k→∞ f (x

̂1(k)− j ) = lim
k→∞ f (x

̂1(k)),

and this completes our induction. ��
The previous result may be viewed as our main step in proving global convergence of
Algorithm 1. We only need one more lemma before coming to the main result of this
section.

Lemma 8 Let Assumption 2 hold, and suppose that the sequence {dk} satisfies
Assumption 1 (b). Let {xk}K be a subsequence converging to a point x∗. If x∗ is
not a stationary point of (4), then

lim inf
k→∞,k∈K

Δk > 0.

Proof Define the index set

K := {k − 1 | k ∈ K}.
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Then the subsequence {xk+1}k∈K converges to x∗. We have to show that

lim inf
k→∞,k∈K

Δk+1 > 0.

Suppose this does not hold. Subsequencing if necessary, we can therefore assume that

lim
k→∞,k∈K

Δk+1 = 0. (33)

In view of the updating rule for the trust-region radius (note that the lower bound
Δmin > 0 used for all successful iterations plays a central role here), this implies that
all iterates k ∈ K with k sufficiently large are unsuccessful. Hence we have

r̃k < ρ1, (34)

and xk+1 = xk for all k ∈ K large enough. Since {xk+1}k∈K converges to x∗ by
assumption, this also implies that the subsequence {xk}k∈K converges to x∗. Taking
into account the updatingΔk+1 = σ1Δk for all unsuccessful iterations k, we therefore
obtain

lim
k→∞,k∈K

Δk = 0, (35)

from (33).
Since the limit point x∗ is non-stationary by assumption, there exists a constant

δ > 0 such that ‖p(xk)‖∞ ≥ δ for all k ∈ K. Exploiting Corollary 2 and using (35),
we therefore obtain

qk(0) − qk(d
k) ≥ γ1‖p(xk)‖2∞ min{γ2,Δk} ≥ γ1δ

2Δk ≥ γ1δ
2‖dk‖∞, (36)

for all k ∈ K sufficiently large, and for suitable constants γ1, γ2 > 0. Using the
continuous differentiability of f , we can find, for each k ∈ N0, a vector ξ k = xk +
θkdk, θk ∈ (0, 1), such that

f (xk + dk) = f (xk) + ∇ f (ξ k)T dk . (37)

Since {dk}k∈K → 0 in view of (35) and {xk}k∈K → x∗, we also have {ξ k}k∈K → x∗.
Using (36), (37), and Assumption 2, we therefore get

∣

∣

∣

∣

f (xk) − f (xk + dk)

qk(0) − qk(dk)
− 1

∣

∣

∣

∣

=
∣

∣qk(dk) − f (xk + dk)
∣

∣

qk(0) − qk(dk)

=
∣

∣∇ f (xk)T dk + 1
2 (d

k)T J T
k Jkdk − ∇ f (ξ k)T dk

∣

∣

qk(0) − qk(dk)

≤ ‖∇ f (xk) − ∇ f (ξ k)‖‖dk‖ + 1
2�

2‖dk‖2
γ1δ2‖dk‖∞
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≤ γ̃

(

∥

∥∇ f (xk) − ∇ f (ξ k)
∥

∥+ 1

2
�2‖dk‖

)

→ 0 for k → ∞, k ∈ K,

where γ̃ > 0 denotes a suitable constant. Hence

f (xk) − f (xk + dk)

qk(0) − qk(dk)
≥ ρ1 ∀k ∈ K sufficiently large.

In view of Lemma 2, this implies

r̃k =
˜Ck

λ − f (xk + dk)

qk(0) − qk(dk)
≥ ρ1 ∀k ∈ K sufficiently large,

a contradiction to (34). ��
The following is ourmain global convergence result and shows that every accumulation
point of a sequence {xk} generated by Algorithm 1 is a stationary point of problem
(4).

Theorem 1 Let Assumptions 2 and 3 hold, and let {xk} be a sequence generated by
Algorithm 1 such that the approximate solutions of the trust-region subproblem satisfy
Assumption 1. If there exists an accumulation point of the sequence {xk}, then every
accumulation point x∗ is a stationary point of (4).

Proof Let {xk}k∈K be a subsequence converging to x∗. Since xk+1 = xk for all
unsuccessful iterations k, and since there are infinitely many successful iterations in
view of Lemma 7, we can assume without loss of generality that all iterations k ∈ K
are successful.

Suppose that x∗ is not a stationary point of (4). Then there exists a constant δ > 0
such that ‖p(xk)‖∞ ≥ δ for all k ∈ K sufficiently large. Since the iterates k ∈ K are
successful by construction, we obtain from Lemma 2 and Corollary 2 that

f l(k) − f (xk + dk) ≥ ˜Ck
λ − f (xk + dk)

≥ ρ1
(

qk(0) − qk(d
k)
)

≥ ρ1γ1‖p(xk)‖2∞ min{γ2,Δk}
≥ ρ1γ1δ

2 min
{

γ2,Δk
}

,

for all k ∈ K sufficiently large. Since f l(k) − f (xk + dk) →K 0 due to Proposition 4,
we obtain Δk ≤ γ2 for all k ∈ K large enough and limk→∞,k∈K Δk = 0, but this
contradicts Lemma 8. ��

Lemma 7 showed that there exist infinitely many successful iterations in Algo-
rithm 1. We now denote the set of successful iterations in Algorithm 1 as follows

˜K := {k ∈ N0 | r̃k ≥ ρ1}.

123



788 M. Kimiaei

Let us define {ki }i∈N0 as the members of ˜K such that k0 < k1 < k2 < · · · . In the
following remark, we show that the formula (15) can be rewritten, for ki ∈ ˜K , as
follows

f l(ki ) :=
s′
∑

p=0

˜λki ,p f ki−p ,

where s′ ≤ s := m(k) − 1 and
∑s′

p=0
˜λki ,p = 1. In other words, we can rewrite f l(ki )

as a convex combination of some function values of successful iterations.

Remark 1 In order to prove the next theorem, we first need to define the set of
unsuccessful iterations by J := ⋃∞

i=0 Ji , in which J0 := {k | k < k0} and
Ji := {k | ki−1 < k < ki } for i ≥ 1, and then we explain the above representa-
tion of f l(ki ). To do so, we have, for i ≥ s, the following three cases:

(a) If all iterations ki −1, ki −2, . . . , ki −s′ are successful (s′ = s), then the definition
˜K , for p = 0, . . . , s′, leads to

f ki −p = f ki−p ,

and therefore f l(ki ) can be represented as

f l(ki ) :=
s
∑

p=0

˜λki ,p f ki−p , (38)

where˜λki ,p = λki ,p for p = 0, . . . , s.
(b) If all iterations ki − 1, ki − 2, . . . , ki − s are unsuccessful (s′ ≤ s), then these

unsuccessful iterations belong to J . According to Algorithm 1, it is possible that
xki −p := xki−1 for some p ∈ {1, . . . , s} provided that ki − p ∈ Ji , xki −p := xki−2

for some p ∈ {1, . . . , s} and that ki − p ∈ Ji−1, and so on, hence

f l(ki ) :=
s′
∑

p=0

˜λki ,p f ki−p , (39)

where˜λki ,0 = λki ,0 and the remainder of the coefficients˜λki ,p, for p ∈ {1, . . . , s′},
are as the sum of some coefficients λki ,p such that

∑s′
p=0

˜λki ,p = 1.
(c) If some iterations ki − 1, ki − 2, . . . , ki − s are successful and some other are

unsuccessful, then the representation of f l(ki ) is a combination of (38) and (39).

For i < s, we have the following cases:

(i) In the special case of i = 0, since k0 − 1, k0 − 2, . . . , k0 − s < k0, they belong
to J0, then Algorithm 1 implies f k0−p = f k0 for p ∈ {1, . . . , s′} and hence
f l(ki ) = f k0 .

(ii) For i = 1, since k1 − 1, k1 − 2, . . . , k1 − s < k1, we have the following items:
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(a) If one of the mentioned iterations is k0 and the remainder of iterations belong
to J0, then f l(ki ) = f k0 .

(b) If one of the mentioned iterations is k0 and the remainder of iterations belong
to J1, then f l(ki ) is a convex combination of f k0 and f k1 .

(c) If all iterations of k1 −1, k1 −2, . . . , k1 − s belong to J1, then f l(ki ) = f k1 .
(iii) For i = 2, . . . , s−1,we canwrite, similar to twoprevious cases, f l(ki ) in terms of

oneof f kp for p = 0, . . . , s−1or the convex combination of f k0 , f k1 , . . . , f ks−1

or the convex combination of some f k0 , f k1 , . . . , f ks−1 .

Next, we only need to restrict our attention to the case where there are infinitely many
successful iterations.

Theorem 2 Let Assumption 2 hold, and suppose that the sequence {dk} satisfies
Assumption 1. Then

lim inf
k→∞ ‖p(xk)‖∞ = 0.

Proof By contradiction, suppose that lim infk→∞ ‖p(xk)‖∞ = 0 is not satisfied.
Hence, let us assume that there is a constant δ > 0 and an infinite subsetK ⊆ N0 such
that

‖p(xk)‖∞ ≥ δ, ∀k ∈ K.

By induction, we first show for ki ∈ ˜K (for i ≥ 1)

f ki < f 0 − ρ1λ

i−2
∑

j=0

predk j
− ρ1predki−1

≤ f 0 − ρ1λ
∑

j<i

predk j
, (40)

where pred j := q j (0) − q j (d j ) and i is the index of successful iterations.
For the case i = 1, we first show that f k1 = f k0+1 since the members of set

{k0 + 1, k0 + 2, . . . , k1 − 1} are the index of unsuccessful iterations between k0
and k1, according to Algorithm 1 (̃rk0+ j < ρ1), we have xk0+ j := xk0 for j =
1, . . . , k1 − k0 − 1. From this fact and since

f l(k0)
λ − f k0+1

predk0

≥ r̃k0 ≥ ρ1,

we have

f k1 = f k0+1 = f l(k0)
λ − ( f l(k0)

λ − f k0+1) < f l(k0)
λ − ρ1predk0 ≤ f 0 − ρ1predk0 .

Let us now make the induction hypothesis, namely, that (40) holds for 1, 2, . . . , i .
Note that, similar case i = 1, we have f ki+1 = f ki +1 since the members of set
{ki + 1, ki + 2, . . . , ki+1 − 1} are the index of unsuccessful iterations between ki and
ki+1, according to Algorithm 1, we have xki + j := xki for j = 1, . . . , ki+1 − ki − 1.
We have the following two cases:
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1) If ˜Cki
λ = f l(ki )

λ = f ki , then the induction hypothesis implies

f ki+1 = f ki +1 = f ki − ( f ki − f ki +1) = f ki − ( f l(ki )
λ − f ki +1)

< f 0 − ρ1λ

i−2
∑

j=0

predk j
− ρ1predki−1

− ρ1predki

λ≤1≤ f 0 − ρ1λ

i−1
∑

j=0

predk j
− ρ1predki

2) If ˜Cki
λ �= f ki , then f l(ki )

λ ≥ ˜Cki
λ > f ki and Remark 1 leads to f l(ki )

λ =
∑s′

p=0
˜λki ,p f ki−p . This fact along with

f l(ki )
λ − f ki+1

predki

≥ r̃ki ≥ ρ1,

implies

f ki+1 = f ki +1 = f l(ki )
λ − ( f l(ki )

λ − f ki +1) =
s′
∑

p=0

˜λki ,p f ki−p − ( f l(ki )
λ − f ki +1)

<

s′
∑

p=0

˜λki ,p

⎛

⎝ f 0 − ρ1λ

i−p−2
∑

j=0

predk j
− ρ1predki−p−1

⎞

⎠− ρ1predki

Now, by using these facts that {0, . . . , s′} × {0, . . . , i − s′ − 2} ⊂ {(p, r) | 0 ≤
p ≤ s′, 0 ≤ j ≤ i − p − 2},˜λki ,0 +˜λki ,1 + · · · +˜λki ,s′ = 1 and˜λki ,p ≥ λ, we can
obtain the above inequality as follows

f ki+1 < f 0 − ρ1λ

i−s′−2
∑

j=0

⎛

⎝

s′
∑

p=0

˜λki ,p

⎞

⎠ predk j
− ρ1λ

s′
∑

p=0

predk j−p−1
− ρ1predki

≤ f 0 − ρ1λ

i−s′−2
∑

j=0

predk j
− ρ1λ

i−1
∑

j=i−s′−1

predk j
− ρ1predki

= f 0 − ρ1λ

i−1
∑

j=0

predk j
− ρ1predki

≤ f 0 − ρ1λ
∑

j<i+1

predk j
.
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By Corollary 2, for ki ∈ ˜K ∩ K, we have

f l(ki )
λ − f ki +1 ≥ ˜Cki

λ − f ki +1 ≥ ρ1predki
≥ ρ1γ1‖p(xki )‖2∞

min{γ2,Δki } ≥ ρ1γ1δ
2 min{γ2,Δki }.

Proposition 4, as i → ∞, implies that

Δki ≤ γ2, (41)

leading

predki
≥ γ1δ

2Δki .

Hence, if there exists K ′ ⊂ K ′′ := ˜K ∩ K such that
∑

k∈K ′ Δk = ∞, we have

f 0 ≥ f 0 − f ki
(40)≥ ρ1λ

∑

k j ∈K ′′
j<i

predk j
≥ ρ1λ

∑

k j ∈K ′′
j<i

γ1δ
2Δk j

≥ ρ1λ
∑

k j ∈K ′
j<i

γ1δ
2Δk j → ∞, (as i → ∞)

which this is a contradiction. Therefore,

∑

k j ∈K ′
j<i

Δk j < ∞, (as i → ∞).

This fact leads to

∑

ki ∈K ′′
Δki < ∞,

and then

∑

ki ∈K ′′
‖xki +1 − xki ‖∞ ≤

∑

ki ∈K ′′
Δki < ∞.

This fact implies that the sequence {xki }ki ∈K ′′ is cauchy, hence convergent. But by
Theorem 1, every accumulation point is a stationary point and this would yield the
desired contradiction. ��
Now we give a stronger result on the global convergence which is for all limit points.
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Theorem 3 Let Assumption 2 hold, and suppose that the sequence {dk} satisfies
Assumption 1. Then

lim
k→∞ p(xk) = 0.

Proof Assume, by contradiction, that the conclusion does not hold, then there is a
subsequence of successful iterations such that

‖p(xti )‖∞ ≥ 2δ > 0,

for some δ > 0 and for all i . Theorem 2 guarantees that, for each i , there exists a first
successful iteration l(ti ) > ti such that ‖p(xl(ti ))‖∞ < δ. Let us denote li := l(ti ) and
define the index set Λi := {k | ti ≤ k < li }. Thus, there exists another subsequence
li such that

‖p(xk)‖∞ ≥ δ, ∀k ∈ Λi and ‖p(xli )‖∞ < δ. (42)

Let us define Λ := ∪∞
i=0Λ

i . Then, we have

lim inf
k→∞,k∈Λ

‖p(xk)‖∞ ≥ δ,

which the proof of Theorem 2 implies

∑

k∈Λ

Δk < ∞,

and consequently

lim
i→∞

∑

k∈Λi

Δk = 0.

Hence

‖xti − xli ‖∞ ≤
∑

j∈Λi

‖x j − x j+1‖∞ ≤
∑

j∈Λi

Δ j → 0, as i → ∞,

which deduces from continuity of p(x) on L(x0)

lim
i→∞ ‖p(xti ) − p(xli )‖∞ = 0.

This is a contradiction since (42) implies ‖p(xti ) − p(xli )‖∞ ≥ δ. ��
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4 Local convergence

Algorithm 1, as it stands, is globally convergent, but not necessary locally fast con-
vergent since, thus far, we only assume that the approximate solution dk computed in
(S.2) satisfies the (gradient-like) conditions from Assumption 1. However, the method
can be combined with suitable Newton-like steps in order to obtain a trust-region
method with both global and local fast convergence properties. Three possibilities are
presented in the following sections.

4.1 The projected Newton step

Here we follow an idea by Ulbrich [41]. The analysis is therefore similar to the one
from that paper, but carried out (more or less) in detail since several steps will also be
used in the two subsequent sections where other Newton-type steps are considered.

Recall that Ω denotes the feasible set, defined by some lower bounds li and upper
bounds ui . Let us define

Ωk := {

d ∈ R
n | li − xk

i ≤ di ≤ ui − xk
i and − Δk ≤ di ≤ Δk ∀i = 1, . . . , n

}

,

which is the feasible set of the trust-region subproblem (8) at iteration k. Assuming
that Jk = F ′(xk) is nonsingular, we further set

dk
N := −J (xk)−1F(xk), dk

P N := PΩ(xk + dk
N ) − xk, dk

P := PΩk (d
k
N ), (43)

i.e., dk
N is the unconstrained Newton-direction which, in general, is not feasible in

our constrained setting, whereas dk
P N denotes the projected Newton direction, hence

xk + dk
P N = PΩ(xk + dk

N ) ∈ Ω is always feasible. On the other hand, dk
P N might not

be a feasible candidate for the current trust-region subproblem, hence we also define
dk

P as the projection of the unconstrained Newton-direction onto the set Ωk .
All these search directions are superlinearly convergent directions in the following

sense: Suppose that x∗ denotes a solution of the given problem (1) such that the
Jacobian J (x∗) is nonsingular, and assume further that we have an arbitrary sequence
{xk} converging to x∗, then it holds that

‖xk + dk
N − x∗‖ = o(‖xk − x∗‖) and ‖xk + dk

P N − x∗‖ = o(‖xk − x∗‖);

the former is simply the standard property of the unconstrained Newton method,
and the latter is a direct consequence of this fact using the nonexpansiveness of the
projection operator. Since, as noted in [41], it holds that dk

P = dk
P N locally (cf. our

analysis below), it follows that also dk
P is a superlinearly convergent direction in the

above sense. As soon as one can take xk+1 := xk + dk for a superlinearly convergent
direction dk , one therefore has a locally superlinearly convergent method.

After these preliminary comments, we now present a locally fast convergent mod-
ification of Algorithm 1.
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Algorithm 3 (Nonmonotone Projected Newton-type Trust-Region Method)
Identical to Algorithm 1, except that (S.2) should be replaced by:

(S.2) Define lk, uk by (7). Compute dk
P from (43) and

r̃ P
k :=

˜Ck
λ − f (xk + dk

P )

qk(0) − qk(dk
P )

.

If r̃ P
k ≥ ρ1, we set dk := dk

P , xk+1 := xk + dk, and call iteration k successful;
otherwise, or if dk

P cannot be calculated, we compute a vector dk satisfying
Assumption 1 (e.g., by using Algorithm 2) and define the ratio

r̃k :=
˜Ck

λ − f (xk + dk)

qk(0) − qk(dk)
.

If r̃k ≥ ρ1, we set xk+1 := xk + dk and still call iteration k successful. In all
other cases, we define xk+1 := xk and call iteration k unsuccessful.

Our primary aim will be to show that, locally around a solution x∗ of (1) such that
J (x∗) is nonsingular, the ratio test r̃ P

k ≥ ρ1 is satisfied. In view of our previous
comments, this then implies the local superlinear convergence of Algorithm 3. The
global convergence properties known for Algorithm 1 are, more or less, inherited by
Algorithm 3; we will comment on this later in this section.

We begin our local analysis with the following technical result.

Lemma 9 Let x∗ be an accumulation point of a sequence {xk} generated by Algo-
rithm 3 such that x∗ is a solution of (1) with J (x∗) being nonsingular, and suppose
that Assumption 2 holds. Then, for every given θ ∈ (0, 1), there exists a neighbour-
hood of x∗ such that for any xk from this neighbourhood where k − 1 is a successful
iteration, the following statements hold:

(a) ‖dk
P − dk

N ‖ ≤ ‖xk + dk
N − x∗‖;

(b)
∣

∣qk(dk
P )
∣

∣ ≤ γ ‖F(xk)‖‖xk + dk
N − x∗‖ for some constant γ > 0;

(c) (1 − θ) f (xk) ≤ qk(0) − qk(dk
P ) ≤ (1 + θ) f (xk).

Proof (a) Since J (x∗) is nonsingular, there exist constants α > 0 and ξ > 0 such that

‖J (x)−1‖ ≤ α (uniform boundedness of inverse Jacobians) (44)

and

ξ‖x − x∗‖ ≤ ‖F(x)‖ (local error bound condition) (45)

for all x in a sufficiently small neighbourhood of x∗.Moreover, since F is continuously
differentiable, there exists a constant L > 0 with

‖F(x) − F(x∗)‖ ≤ L‖x − x∗‖ (local Lipschitz condition) (46)
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for all x sufficiently close to x∗.
Now, let xk be given such that k − 1 is a successful iteration and such that xk

is sufficiently close to x∗. In particular, let conditions (44), (45), and (46) hold with
x = xk , and assume that α‖F(xk)‖ < Δmin is satisfied. Then we obtain from (44)
and the definition of the Newton direction that

‖dk
N ‖ = ‖J−1

k F(xk)‖ ≤ α‖F(xk)‖ < Δmin ≤ Δk,

where the last inequality follows from the updating rule of the trust-region radius
together with the fact that k − 1 is assumed to be a successful iteration. Hence the
trust-region bound is locally inactive, and we therefore obtain

dk
P = PΩk (d

k
N ) = PΩ−xk (dk

N ) = PΩ(xk + dk
N ) − xk = dk

P N . (47)

This implies

‖dk
P‖ = ‖dk

P N ‖ = ‖PΩ(xk + dk
N ) − PΩ(xk)‖ ≤ ‖dk

N ‖. (48)

Since x∗ ∈ Ω , it follows from the definition of the projection that

‖dk
P − dk

N ‖ = ‖dk
P N − dk

N ‖ = ‖PΩ(xk + dk
N ) − (xk + dk

N )‖ ≤ ‖x∗ − (xk + dk
N )‖,
(49)

hence assertion (a) follows.
(b) We still assume that xk is sufficiently close to x∗ such that the inequalities from
the proof of part (a) hold. Then

‖dk
N ‖ ≤ α‖F(xk)‖ = α‖F(xk) − F(x∗)‖ ≤ αL‖xk − x∗‖,

in view of (44) and (46), hencewe obtain from (48), (49), Assumption 2, and qk(dk
N ) =

0 (by definition) that

∣

∣qk(d
k
P )
∣

∣ = ∣

∣qk(d
k
P ) − qk(d

k
N )
∣

∣

=
∣

∣

∣

∣

gT
k (dk

P − dk
N ) + 1

2
(dk

P + dk
N )T J T

k Jk(d
k
P − dk

N )

∣

∣

∣

∣

≤ ∥

∥J T
k F(xk) + 1

2
J T

k Jk(d
k
P + dk

N )
∥

∥ · ‖dk
P − dk

N ‖
≤ (

�‖F(xk)‖ + �2‖dk
N ‖)‖dk

P − dk
N ‖

≤ (

� + α�2)‖F(xk)‖‖xk + dk
N − x∗‖

= γ ‖F(xk)‖‖xk + dk
N − x∗‖,

for some constant γ > 0, hence statement (b) holds.
(c) Given the parameter θ ∈ (0, 1) and using (45), we can assume without loss of gen-
erality (exploiting the local superlinear convergence property of the Newton direction)
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that xk is sufficiently close to x∗ such that, in addition to the previous inequalities, we
also have

2γ
‖xk + dk

N − x∗‖
‖F(xk)‖ ≤ 2γ

ξ

‖xk + dk
N − x∗‖

‖xk − x∗‖ ≤ θ.

Dividing the inequality from statement (b) by f (xk) = 1
2‖F(xk)‖2, we therefore

obtain, on the one hand, that

qk(0) − qk(dk
P )

f (xk)
= f (xk) − qk(dk

P )

f (xk)
= 1 − qk(dk

P )

f (xk)
≥ 1 −

∣

∣qk(dk
P )
∣

∣

f (xk)
≥ 1

−2γ
‖xk + dk

N − x∗‖
‖F(xk)‖ ≥ 1 − θ,

and, on the other hand, that

qk(0) − qk(dk
P )

f (xk)
= 1 − qk(dk

P )

f (xk)
≤ 1 +

∣

∣qk(dk
P )
∣

∣

f (xk)
≤ 1 + θ.

Hence, we have

1 − θ ≤ qk(0) − qk(dk
P )

f (xk)
≤ 1 + θ.

Multiplication with f (xk) yields assertion (c). ��
Note that statements (a) and (b) of the previous result hold for any xk sufficiently close
to x∗, independent of the given parameter θ . This parameter, whose precise value has
an influence of the size of the neighbourhood, appears in statement (c) only.

We next show that the search direction dk
P , locally, satisfies the two conditions from

Assumption 1.

Lemma 10 Let the assumptions from Lemma 9 hold. Then, for any xk sufficiently close
to x∗ where k − 1 is a successful iteration, the direction dk

P satisfies Assumption 1.

Proof (a) We first note that the assumed nonsingularity of J (x∗) implies that the
function‖p(·)‖provides a local error bound, i.e., there exists a constantβ > 0 such that
β‖x −x∗‖ ≤ ‖p(x)‖ for all x sufficiently close to x∗, see, e.g., [20, Proposition 5.3.7].
Together with the previous observations and constants from the proof of Lemma 9,
we therefore obtain

‖dk
P‖ = ‖dk

P N ‖ = ‖PΩ(xk + dk
N ) − PΩ(xk)‖ ≤ ‖dk

N ‖ ≤ α‖F(xk)‖
= α‖F(xk) − F(x∗)‖ ≤ αL‖xk − x∗‖ ≤ αL

β
‖p(xk)‖,

for all xk sufficiently close to x∗. This implies that Assumption 1 (a) holds for dk = dk
P

and all xk sufficiently close to x∗.
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(b) Using Assumption 2, we obtain

‖p(xk)‖ = ‖PΩ(xk − gk) − PΩ(xk)‖ ≤ ‖gk‖ ≤ �‖F(xk)‖,

for all xk sufficiently close to x∗, hence it follows that there is a constant γ > 0 such
that

‖p(xk)‖2∞ ≤ γ f (xk).

Given an arbitrary parameter θ ∈ (0, 1) and using Lemma 9 (c), we therefore obtain

qk(0) − qk(d
k
P ) ≥ (1 − θ) f (xk) ≥ 1 − θ

γ
‖p(xk)‖2∞,

for xk close enough to x∗. Since iteration k − 1 is assumed to be successful and xk is
sufficiently close to x∗, we have Δk ≥ Δmin ≥ ‖p(xk)‖∞, hence it follows that

qk(0) − qk(d
k
P ) ≥ 1 − θ

γ
‖p(xk)‖∞ min

{‖p(xk)‖∞,Δk
}

.

This implies that Assumption 1 (b) also holds for dk = dk
P and all xk sufficiently close

to x∗. ��
We now state the main local convergence result of Algorithm 3.

Theorem 4 Let x∗ be an accumulation point of a sequence {xk} generated by Algo-
rithm 3 such that x∗ is a solution of (1) with J (x∗) being nonsingular, and suppose
that Assumption 2 holds. Then the following statements hold:

(a) The entire sequence {xk} converges to x∗.
(b) Eventually, only projected Newton steps dk = dk

P are taken.
(c) The sequence {xk} converges superlinearly to x∗.

Proof By assumption, there is a subsequence converging to x∗. In particular, this
means that there must be infinitely many successful iterations. But this is also clear
since otherwise Algorithm 3 would eventually reduce to Algorithm 1, hence the
statement would follow from Lemma 7. Hence, we can assume without loss of gen-
erality that we have an iterate xk sufficiently close to x∗ such that iteration k − 1 was
successful. In particular, this implies that we can apply Lemma 9.

We first note, using dk
P = dk

P N once again (cf. (47)), that

f (xk) − f (xk + dk
P )

qk(0) − qk(dk
P )

= f (xk) − f (xk + dk
P N )

qk(0) − qk(dk
P N )

= f (xk) − f (xk + dk
P N )

f (xk)
· f (xk)

qk(0) − qk(dk
P N )

=
(

1 − f (xk + dk
P N )

f (xk)

)

f (xk)

qk(0) − qk(dk
P )

.
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The first factor on the right-hand side is arbitrarily close to one for xk sufficiently close
to x∗ due to the superlinear convergence property of the (projected) Newton direction,
cf. [30, Proposition 8], and the second factor can also be assumed to be arbitrarily
close to one due to Lemma 9 (c) where θ was an arbitrary number from (0, 1). Using
Lemma 2, it therefore follows that r̃ P

k ≥ ρ1, hence iteration k is also successful, and
xk+1 = xk + dk

P = xk + dk
P N . In particular, it follows from standard properties

of the local convergence of the (projected) Newton direction that the new iterate
xk+1 is even closer to x∗ than xk , hence we can repeat the previous arguments and
obtain by induction that the entire sequence {xk} converges to x∗ and that eventually
only projected Newton steps dk = dk

P are taken, which implies the local superlinear
convergence of the method. This means that statements (a), (b), and (c) hold. ��
Theorem 4 describes the local convergence of Algorithm 3. It provides a local super-
linear rate of convergence, but, in a similar way, one can also verify a local quadratic
convergence rate provided that J (·) is locally Lipschitz continuous around the solution
x∗.

On the other hand, Algorithm 3 might not have the same global convergence prop-
erties as Algorithm 1 since, globally, the two conditions from Assumption 1 may not
hold for the projected Newton direction, especially when the corresponding sequence
of inverse Jacobians J−1

k becomes very ill-conditioned. However, in practice, one can
test whether these two conditions hold with suitable constants, and then we inherit the
global convergence theory from Algorithm 1. Lemma 10 then says that, locally, we
still take the fast convergent projected Newton direction provided that the correspond-
ing constants are chosen appropriately, i.e., in this sense Algorithm 3 is both globally
and locally fast convergent.

4.2 The active-set Newton step

This section presents an active-set Newton step that goes back to [27]. It is based on
a suitable identification of the correct active set at a solution x∗ and comes from a
more general framework presented in [19]. Some authors use this active-set strategy
also from a global point of view which has the advantage that the dimension of the
corresponding subproblems are smaller than for the full-dimensional problem. On the
other hand, such an active-set strategy yields some undesirable discontinuity. Taking
into account that global convergence can be obtained by some very simple and cheap
calculations (like theCauchy-type step fromAlgorithm2), our feeling is that the active-
set strategy should be used only to get local fast convergence where the computation of
a Newton-type step might really reduce the overall costs and the discontinuity might
not occur in case the correct active set has already been identified.

For a precise definition of the active-set trust-region method, we choose a constant
δ > 0 such that

δ <
1

2
min

i=1,...,n

∣

∣ui − li
∣

∣, (50)

and then define
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δk := min
{

δ, γ

√

‖F(xk)‖}, (51)

where γ > 0 denotes another constant. Given an iterate xk , we then set

Ak := {

i | xk
i − li ≤ δk or ui − xk

i ≤ δk
}

,

Ik := {

1, . . . , n
}\Ak,

which are approximations of the active and inactive sets at a given solution x∗, defined
by

A∗ := {

i | x∗
i ∈ {li , ui }

}

and I∗ := {

i | x∗
i ∈ (li , ui )

}

,

respectively. In fact, it is easy to see that one always has the inclusionAk ⊆ A∗ for all
xk sufficiently close to x∗. Moreover, and more interestingly, if J (x∗) is nonsingular
(or ‖F(·)‖ provides a local error bound), then one can show that

Ak = A∗ and Ik = I∗, (52)

for all xk from a sufficiently small neighbourhood of x∗, see [27, Lemma 9.7] for
details. Hence the active set can, locally, be identified correctly, even without a strict
complementarity or related nondegeneracy condition.

Based on these index sets, we construct a direction vector dk = dk
AS (AS stands for

active set) in the following way: For each i ∈ Ak , we define

dk
i :=

{

li − xk
i , if xk

i − li ≤ δk,

ui − xk
i , if ui − xk

i ≤ δk,
(53)

(note that there is no ambiguity in this definition due to the choice of δ, δk in (50),
(51)), whereas for the inactive indices, we then compute dk

Ik
as a solution of the linear

system of equations

J (xk)IkIk dk
Ik

= −F(xk)Ik − J (xk)IkAk dk
Ak

. (54)

Note that this linear systemarises from thefirst block rowof the usualNewton equation

(

J (xk)IkIk J (xk)IkAk

J (xk)AkIk J (xk)AkAk

)

(

dk
Ik

dk
Ak

)

= −
(

F(xk)Ik

F(xk)Ak

)

, (55)

when replacing dk
Ak

by the expression from (53). Putting these pieces together, we
then define (possibly after a suitable permutation of the components)

dk
AS :=

(

dk
Ik

dk
Ak

)

. (56)
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Assuming also that the submatrix J (x∗)I∗I∗ is nonsingular, it follows that this vector is
a superlinearly convergent direction in the sense that

∥

∥xk +dk
AS −x∗∥

∥ = o(‖xk −x∗‖)
for any sequence {xk} converging to x∗, cf. [27, Lemma 9.13] for a proof. However,
dk

AS might not be feasible for the trust-region subproblem (8), hence we also define
its projection by

dk
P AS := PΩk (d

k
AS). (57)

The following is the variant of Algorithm 1 which includes the active-set Newton
method as a local search direction. It is identical to Algorithm 3 except that dk

P gets
replaced by dk

P AS everywhere.

Algorithm 4 (Nonmonotone Active-Set Newton-type Trust-Region Method)
Identical to Algorithm 1, except that (S.2) should be replaced by:

(S.2) Define lk, uk by (7). Compute dk
P AS from (57) and define

r̃ AS
k :=

˜Ck
λ − f (xk + dk

P AS)

qk(0) − qk(dk
P AS)

.

If r̃ AS
k ≥ ρ1, we set dk := dk

P AS, xk+1 := xk+dk, and call iteration k successful;
otherwise, or if dk

P AS cannot be calculated, we compute a vector dk satisfying
Assumption 1 (e.g., by using Algorithm 2) and define the ratio

r̃k :=
˜Ck

λ − f (xk + dk)

qk(0) − qk(dk)
.

If r̃k ≥ ρ1, we set xk+1 := xk + dk and still call iteration k successful. In all
other cases, we define xk+1 := xk and call iteration k unsuccessful.

To prove a local convergence theorem ofAlgorithm 4,we follow the technique of proof
from the previous section and first state the following result which is the counterpart
of Lemmas 9 and 10.

Lemma 11 Let x∗ be an accumulation point of a sequence {xk} generated by Algo-
rithm 4 such that x∗ is a solution of (1) with J (x∗) and J (x∗)I∗I∗ being nonsingular,
and suppose that Assumption 2 holds. Then, for every given θ ∈ (0, 1), there exists a
neighbourhood of x∗ such that for any xk from this neighbourhood where k − 1 is a
successful iteration, the following statements hold:

(a) ‖dk
P AS − dk

N ‖ ≤ η‖xk + dk
N − x∗‖ for some constant η > 0;

(b)
∣

∣qk(dk
P AS)

∣

∣ ≤ γ ‖F(xk)‖‖xk + dk
N − x∗‖ for some constant γ > 0;

(c) (1 − θ) f (xk) ≤ qk(0) − qk(dk
P AS) ≤ (1 + θ) f (xk).

(d) The direction dk
P AS satisfies Assumption 1.

Proof By the proofs given for Lemmas 9 and 10 and Lemma 9.8 in [27], we skip the
details. ��
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Using Lemma 11, we can also obtain the central local convergence theorem for Algo-
rithm 4. Its proof is similar to the one of Theorem 4, so we do not provide the details.

Theorem 5 Let x∗ be an accumulation point of a sequence {xk} generated by Algo-
rithm 4 such that x∗ is a solution of (1) with J (x∗) and J (x∗)I∗I∗ being nonsingular,
and suppose that Assumption 2 holds. Then the following statements hold:

(a) The entire sequence {xk} converges to x∗.
(b) Eventually, only active-set Newton steps dk = dk

P AS are taken.
(c) The sequence {xk} converges superlinearly to x∗.

Note that the assumptions of Theorem 5 are stronger than those of Theorem 4 since,
in addition to the nonsingularity of J (x∗), also the nonsingularity of the submatrix
J (x∗)I∗I∗ is required.

4.3 The exact Newton step

Themost natural choice is to compute the exact solution dk
E of the trust-region subprob-

lem (8). Numerically, this is more expensive than the projected or active-set Newton
direction since one has to compute a solution of a (convex) quadratic program as
opposed to a solution of a (possibly reduced) linear system of equations. On the other
hand, this approach might yield better numerical results, at least it is not clear a priori
why the exact solution might not be a good choice from a numerical point of view.
Moreover, it follows immediately from Lemma 4 that the exact solution dk

E satisfies
Assumption 1 (b) for all k ∈ N0 without any further (nonsingularity) assumption on the
problem. Of course, Assumption 1 (a) may not hold, but can be checked numerically
and will also be shown to be satisfied locally under suitable conditions.

For our local convergence analysis, we consider the following modification of
Algorithm 1 which simply replaces dk by dk

E . Recall that global convergence can also
be guaranteed if some care is taken regarding Assumption 1 (a), e.g., by switching to
a Cauchy-type step whenever necessary. Since our focus is on the local convergence
property, we do not consider such a modification here.

Algorithm 5 (Nonmonotone Exact Newton-type Trust-Region Method)
Identical to Algorithm 1, except that (S.2) should be replaced by:

(S.2) Define lk, uk by (7). Compute dk
E as the solution of the trust-region subproblem

(8). Let

r̃ E
k :=

˜Ck
λ − f (xk + dk

E )

qk(0) − qk(dk
E )

.

If r̃ E
k ≥ ρ1, we set dk := dk

E , xk+1 := xk + dk, and call iteration k successful;
otherwise, we set xk+1 := xk and call iteration k unsuccessful.

The convergence analysis is again along the lines of the previous two sections. First
we have the following result.
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Lemma 12 Let x∗ be an accumulation point of a sequence {xk} generated by Algo-
rithm 5 such that x∗ is a solution of (1) with J (x∗) being nonsingular, and suppose
that Assumption 2 holds. Then, for every given θ ∈ (0, 1), there exists a neighbour-
hood of x∗ such that for any xk from this neighbourhood where k − 1 is a successful
iteration, the following statements hold:

(a) ‖dk
E − dk

N ‖ ≤ η‖xk + dk
N − x∗‖ for some constant η > 0;

(b)
∣

∣qk(dk
E )
∣

∣ ≤ γ ‖F(xk)‖‖xk + dk
N − x∗‖ for some constant γ > 0;

(c) (1 − θ) f (xk) ≤ qk(0) − qk(dk
E ) ≤ (1 + θ) f (xk).

(d) The direction dk
E satisfies Assumption 1.

Proof Since J (x∗) is nonsingular by assumption, there exists a constant α > 0 such
that ‖J−1

k ‖ ≤ α for all xk sufficiently close to x∗. Together with Assumption 2, this
implies

∥

∥dk
E − dk

N

∥

∥ = ∥

∥J−1
k

(

Jkdk
E − Jkdk

N

)∥

∥

≤ α
∥

∥Jkdk
E − Jkdk

N

∥

∥

= α
∥

∥Jkdk
E + F(xk)

∥

∥ (Definition of dk
N )

≤ α
∥

∥Jkdk
P + F(xk)

∥

∥ (with dk
P from (43))

≤ α
∥

∥ F(xk) + Jkdk
N

︸ ︷︷ ︸

=F(xk )−F(xk)=0

∥

∥+ α
∥

∥Jkdk
P − Jkdk

N

∥

∥

= α
∥

∥Jkdk
P − Jkdk

N

∥

∥

≤ α�
∥

∥dk
P − dk

N

∥

∥

≤ α�
∥

∥xk + dk
N − x∗∥

∥,

where the second inequality uses the definition of dk
E together with the fact that dk

P
is feasible for the trust-region subproblem (8), and the last inequality follows from
Lemma 9 (a). This shows that statement (a) holds.

Furthermore, since J (x∗) is nonsingular, it follows that, locally, J T
k Jk is uniformly

positive definite, i.e., for all xk close enough to x∗, it holds that dT J T
k Jkd ≥ μ‖d‖2

for all d ∈ R
n with some constant μ > 0. Since the zero vector is always feasible for

the trust-region subproblem, we have qk(dk
E ) ≤ qk(0) by definition of dk

E . This can
be rewritten as

gT
k dk

E + 1

2
(dk

E )T J T
k Jkdk

E ≤ 0.

Using the Cauchy–Schwarz inequality, we therefore get

1

2
μ‖dk

E‖2 ≤ 1

2
(dk

E )T J T
k Jkdk

E ≤ −gT
k dk

E ≤ ‖gk‖‖dk
E‖.
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Together with Assumption 2, we then obtain

1

2
μ‖dk

E‖ ≤ ‖gk‖ = ‖J T
k F(xk)‖ ≤ �‖F(xk)‖. (58)

Exploiting once again the assumed nonsingularity of J (x∗), it follows from (58)
that there is a constant η1 > 0 such that ‖dk

E‖ ≤ η1‖dk
N ‖. Combining this with

statement (a), one can verify assertions (b) and (c) in essentially the same way as
the corresponding statements in Lemma 9. To this end, the only additional piece of
information needed is that dk

E is also a superlinearly convergent direction, but this is
an immediate consequence of part (a) since

‖xk + dk
E − x∗‖ ≤ ‖xk + dk

N − x∗‖ + ‖dk
E − dk

N ‖
≤ (1 + η1)‖xk + dk

N − x∗‖,

and the Newton direction is known to be superlinearly convergent.
It remains to prove assertion (d). This statement can be derived from (58) similar

to the proof of Lemma 10 (a), i.e., there exists a constant c > 0 such that ‖dk
E‖ ≤

c‖p(xk)‖. ��
Lemma 12 allows us to prove the following main local convergence result in a way
similar to the proof of Theorem 6, hence we skip the details.

Theorem 6 Let x∗ be an accumulation point of a sequence {xk} generated by Algo-
rithm 5 such that x∗ is a solution of (1) with J (x∗) being nonsingular, and suppose
that Assumption 2 holds. Then the following statements hold:

(a) The entire sequence {xk} converges to x∗.
(b) Eventually, the exact Newton step dk = dk

E is always successful.
(c) The sequence {xk} converges superlinearly to x∗.

5 Numerical results

We first describe our test examples in Sect. 5.1, then give some details of the imple-
mented algorithms in Sect. 5.2, and finally present the numerical results in Sect. 5.3.

5.1 Test problems

All test problems are taken from the literature, Table 1 provides the corresponding
details, namely the name of each test problem, at least one reference from which
the example is taken (this is not necessarily the original source of the corresponding
example), the dimension, and the box constraints. The dimension ranges from n = 2
to n = 1024; we decided not to take larger problems since some of our algorithms
have to solve a quadratic program at each iteration. The starting points, four for each
test example, are in the interior of the box Ω = [l, u] because this is required by
some of the interior-point-type solvers that will be used in our comparative study. For
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example, we take x0 := l + ν
5 (u − l) (ν = 1, 2, 3, 4) for all test problems which have

both finite lower and finite upper bounds. Altogether, we have 46 test problems.

5.2 Algorithms

In our next section, we compare eleven different solvers on the set of examples
described before. The first three solvers are our methods fromAlgorithms 3–5, respec-
tively:

• NMPNTRN: The nonmonotone projected Newton-type trust-region method from
Algorithm 3.

• NMASTRN: The nonmonotone active-set Newton-type trust-region method from
Algorithm 4.

• NMENTRN: The nonmonotone exact Newton-type trust-region method from
Algorithm 5.

Weuse the test‖F(xk)‖∞ < 10−6 as themain termination criterion. In all following
cases, we count the corresponding test run as a failure

• Failure (1): the number of (successful) iterations reaches the upper bound 200.
• Failure (2): the trust-region size reduces below

√
εm where εm denotes themachine

epsilon provided by the Matlab function eps.
• Failure (3): the scaling matrix Dk , generated by (1.5) in [6], cannot be computed
because an overflow would be generated (only for STRSCNE and CODOSOL).

All methods use the parameters

Δ0 := 1, Δmin := 10−5, Δmax := 105, ρ1 := 0.1, ρ2 := 0.9, σ1 := 0.5,

σ2 := 2, λ = 0.1,

as well as the nonmonotonicity number N := 10 and λk j is updated by (16); further-
more, the sequence {ηk} is generated by setting η0 := 0.85 and using the updating

ηk+1 :=
{

η0/2, if k = 0,
(ηk + ηk−1)/2, if k ≥ 1.

The (convex) quadratic programs arising within the NMENTRN algorithm are solved
using quadprog from the MATLAB optimization toolbox. All Jacobian matrices
J (xk) are approximated by using finite differences.

In order to get an idea of the effectiveness of our nonmonotonicity strategy, we also
implemented the following (monotone and nonmonotone) methods:

• PNTTR: This is the traditional (monotone) projected Newton-type trust-region
method based on the ratio rk defined in (9) and the standard updating of the trust-
region-radius

Δk+1 :=
⎧

⎨

⎩

σ1Δk, if rk < ρ1,

Δk, if rk ∈ [ρ1, ρ2),
σ2Δk, if rk ≥ ρ2.
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Table 1 List of test problems: Name of the example, reference(s), dimension, starting points (recall that
eT = (1, . . . , 1)), and box constraints

List of test functions
Problem name n Initial point Box

Himmelblau [22] 2 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [−5, 5]

Reactor R = 0.935 [40] 2 x0 = l + ν
5 (u − l), ν = 3.5, 4, 4.5, 5 [0, 1]

Merlet [40] 2 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [0, 2π ]

Effati-Grosan problem 1 [40] 2 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [−10, 10]

Effati-Grosan problem 2 [40] 2 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [−10, 10]

Combustion system (lean)
[22]

2 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [0, ∞]

Combustion system (rich)
[22]

2 x0 = l + ν
5 (u − l), ν = 1.5, 2.5, 3.5, 4.5 [0, ∞]

Series of CSTRs 0.935 [22] 2 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [0, 1]

Series of CSTRs 0.995 [22] 2 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [0, 1]

Bullard and Biegler [22] 2 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [5.49 × 10−6, 4.533]

[2.196 × 10−3, 18.21]
Ferrari and Tronconi [22] 2 x0 = l + ν

5 (u − l), ν = 1, 2, 3, 4 [0.25, 1.5]
[1.5, 2π ]

Equilibrium combustion [22] 5 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [0.0001, 100]

Brown almost linear [22,34] 5 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [−2, 2]

Seven diagonal system
[10,32]

7 x0 = l + 10ν−2eT , ν = 1.5, 2.5, 3.5, 4.5 [0, ∞]

Robot kinematics [22] 8 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [−1, 1]

Countercurrent reactors 2
[32]

8 x0 = l + ν
5 (u − l), ν = 2, 3, 3.5, 4 [−1, 10]

Chemical equilibrium λ = 3
[27]

10 x0 = l + 10ν−2eT , ν = 0, 1, 2, 3 [0, ∞]

Chemical equilibrium system
[33]

11 x0 = l + 10ν−2eT , ν = 0, 1, 2, 2.5 [0, ∞]

Convection-diffusion [32] 16 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [−100, 100]

Swiriling flow [32] 16 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [−100, 100]

Yamamutra [40] 100 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [−100, 100]

Extended Powell badly scaled
[32]

100 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [−5, 5]

Extended Freudenstein-Roth
[32]

100 x0 = l + ν
5 (u − l), ν = 3, 4, 4.5, 5 [−100, 100]

Porous medium [32] 100 x0 = l + ν
5 (u − l), ν = 3, 3.5, 4, 4.5 [−10, 10]

Discrete integral equation
[34]

100 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [−10, 10]

Triadiagonal system [32] 100 x0 = l + ν
5 (u − l), ν = 1, 2, 3.5, 4 [−5, 5]

Driven cavity [32] 100 x0 = l + ν
5 (u − l), ν = 0, 1, 2, 3 [−100, 100]
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Table 1 continued

List of test functions
Problem name n Initial point Box

Extended Wood [32] 100 x0 = l + ν
5 (u − l), ν = 1, 2, 3.5, 4 [−5, 5]

Singular Broyden [32] 100 x0 = −10ν−2eT , ν = 0, 1, 2, 3 [−∞, 1]
Extended Powell singular
[32]

100 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [−5, 5]

Trigonometric system [10,32] 100 x0 = l + ν
5 (u − l), ν = 1, 2, 3.5, 4 [π, 2π ]

Bratu NCP [10,15] 125 x0 = l + 10ν−2eT , ν = 0, 1, 2, 3 [0,∞]
Obstacle [10,15] 125 x0 = l + 10ν−2eT , ν = 0, 1, 2, 3 [0,∞]
Nonlinear biharmonic [32] 144 x0 = l + ν

5 (u − l), ν = 1, 2, 3, 4 [−100, 100]
Flow in a channel [32] 400 x0 = l + 10ν−2eT , ν = 0, 1, 2, 3 [0,∞]
Trigexp1 [10,32] 500 x0 = l + ν

5 (u − l), ν = 1, 2, 3, 4 [−100, 100]
Thorech [10,32] 500 x0 = l + ν

5 (u − l), ν = 1, 2, 3, 4 [−1, 1]
H-equation c = 0.999 [27] 500 x0 = l + 10ν−2eT , ν = 0, 1, 1.5, 2 [0,∞]
Discrete boundary value
[10,34]

500 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [−100, 100]

Broyden tridiagonal [10,34] 500 x0 = −10ν−2eT , ν = 0.5, 1, 1.5, 2 [−∞, 0]
Structured Jacobian [32] 500 x0 = −10ν−2eT , ν = 0.5, 1, 1.5, 2 [−∞, 0]
Brent [32] 500 x0 = l + ν

5 (u − l), ν = 1, 2, 3, 4 [−100, 100]
Five diagonal system [10,32] 1000 x0 = l + 10ν−2eT , ν = 0, 1, 2, 3 [1,∞]
Countercurrent reactors 1
[10,32]

1000 x0 = l + ν
5 (u − l), ν = 1, 2, 3, 4 [−1, 10]

Bratu [10,32] 1024 x0 = −10ν−2eT , ν = 0, 1, 2, 2.5 [−∞, 1.5]
Poisson [10,32] 1024 x0 = l + ν

5 (u − l), ν = 1, 2, 3, 4 [−5, 5]

The parameter settings and the termination criteria are the same as for the other
methods.

• NMPNTRG: This is the nonmonotone projected Newton-type trust-regionmethod
motivated by the line search approach in Grippo et al. [24]. It is identical to the
PNTTR except that the nonmonotone ratio test with rk from (10) is used.

• NMPNTRZ: This is the nonmonotone projected Newton-type trust-region method
motivated by the line search approach by Zhang andHager [44], using the ratio test
based on (12) and the same updating rule for the sequence {ηk} as in our methods.
The remaining parts are identical to methods PNTTR and NMPNTRG.

• NMPNTRA: This is the nonmonotone projected Newton-type trust-regionmethod
motivated by the nonmonotone approach in Ahookhosh et al. [1], using the same
updating rule for the sequence {ηk} as in our methods. The remaining parts are
identical to methods PNTTR, NMPNTRG and NMPNTRZ.

• NMPNTRU: This is the nonmonotone projected Newton-type trust-region method
motivated by the nonmonotone trust-region approach in Ulbrich [41], using the
ratio test rk obtained by steps 4.1–4.3 of Algorithm 3.4 in [41] and the updating
of the trust-region-radius
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Δk+1 :=
⎧

⎨

⎩

σ1Δk, if rk < ρ1,

min{Δk,Δmin}, if rk ∈ [ρ1, ρ2),
min{σ2Δk,Δmin}, if rk ≥ ρ2.

• APNTRE: This is the adaptive projected Newton-type trust-region method moti-
vated by the adaptive radius proposed in Esmaeili and Kimiaei [17], using the
same updating rule for Δk as in our methods.

Finally, we also use the two existing software packages STRSCNE and CoDoSol
developped by Bellavia et al. in [6,9], respectively. The corresponding source codes
are available on the following web pages: http://strscne.de.unifi.it and http://codosol.
de.unifi.it.
Thesemethods are affine-scaling interior-pointmethods, and, similar to our algorithms
NMPNTRN and NMASTRN, they only have to solve a linear system of equations per
iteration. Our implementation uses all the default values of these two solvers except
that our termination criterion is applied in order to get a fair comparative study.

5.3 Numerical results

Here we present a summary of the numerical results obtained for the eleven algorithms
applied to the set of 46 test problems with four different starting points each, so
altogether we have 184 test runs for each method.

Table 2 contains the number of failures for each algorithm using three different
choices of the initial trust-region radius Δ0. The standard choice Δ0 = 1 will be the
basis for the subsequent performance profiles, nevertheless, it is also interesting to
see the behaviour of the methods for varying Δ0. This table clearly indicates that our
NMPNTRN solver is by far the most robust method, followed by NMENTRN. The
performance of NMASTRN is the worst among ourmethods, but still comparable with
PNTTR, STRSCNE and CoDoSol. Table 2 also shows that all nonmonotone solvers
are superior to their monotone version PNTTR.

We next take a closer look at the numerical behaviour using different performance
profiles [16]. To this end, we first present a comparative study of our three different
methods NMPNTRN, NMASTRN, and NMENTRN, the corresponding performance
profiles with respect to the number of (successful) iterations (Ni ), number of function
evaluations (which is equal to the number of total iterations plus one) (N f ) and CPU-
times (Ct ) are shown in Subfigures (a)–(c) of Fig. 1. This figure indicates that both the
number of iterations and function evaluations for NMPNTRN and NMENTRN are,
more or less, comparable. Hence the exact solution of the trust-region subproblems
does not seem to help reducing the total number of iterations. Since NMPNTRN has
to solve only one linear system of equations, the CPU-time is much better than for
the QP-based solver NMENTRN. Since NMASTRN is worse than NMPNTRN with
respect to all three performance measures, and since NMPNTRN is also the most
robust solver, we view NMPNTRN as the best of our three algorithms and therefore
take this method for the subsequent comparative studies with the other methods.

We next compare our solver NMPNTRN with the other nonmonotone versions
NMPNTRG, NMPNTRZ, NMPNTRA and NMPNTRU. The corresponding perfor-
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Fig. 1 a–c A comparison among NMPNTRN, NMENTRN, and NMASTRN with the performance mea-
sures Ni , N f and Ct for Δ0 = 1, respectively. d–f A comparison among NMPNTRN, NMPNTRU,
NMPNTRA, NMPNTRZ and NMPNTRG with the performance measures Ni , N f and Ct for Δ0 = 1,
respectively. g–iA comparison among PGTTR, APGTRE, and NMASTRNwith the performance measures
Ni , N f andCt forΔ0 = 1, respectively. j–lAcomparison amongNMPNTRN, STRSCNE, andCODOSOL
with the performance measures Ni , N f and Ct for Δ0 = 1, respectively
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mance profiles, again using the number of (successful) iterations (Ni ), the number
of function evaluations (N f ) and the CPU-times (Ct ) as a measure, are shown in
Subfigures (d)–(f) of Fig. 1. Regarding the four measures, NMPNTRG, NMPNTRZ,
NMPNTRA and NMPNTRU have a very similar behaviour and NMPNTRN is supe-
rior to all the other solvers. In addition, we compare our solver NMPNTRN with
PNTTR and APNTRE. Subfigures (g)–(i) of Fig. 1 show that NMPNTRN is superior
to both the other solvers.

Finally, we present a comparison of our NMPNTRN method with the two soft-
ware packages STRSCNE and CoDoSol in Subfigures (j)–(l) of Fig. 1. Our method is
definitely superior in terms of robustness, number of (successful) iterations, number
of function evaluations and summation of triple of the number of (successful) itera-
tions and the number of function evaluations. Regarding CPU-times, the situation is
somewhat indefinite between NMPNTRN and CoDoSol. Here we should also say that
we did not push our implementation to be as efficient as possible, for example, we
produce some more output at each iteration than CoDoSol.

As a summary of the previous discussion, we can certainly say that NMPNTRN is
the best solver among those tested in this section. Since also the corresponding QP-
based solver NMENTRN behaves very well, this indicates that the new adaptive and
nonmonotone trust-region strategy introduced in this paper works very successfully
and seems to outperform existing strategies. Further improvements might be possible
by replacing the globalization scheme from Algorithm 2 by other (existing) Cauchy-
type steps. Corresponding tests have not been performed so far, also taking into account
that the current version is already quite successful.

6 Final remarks

This paper suggests a new nonmonotonicity strategy for nonlinear equations with
box constraints. Both the criterion for the acceptance of the current step and the
updating rules for the trust-region radius are different from existing approaches. The
numerical results indicate that these new techniques outperform existing and more
traditional ones, while the theoretical results guarantee that we still have global and
local fast convergence under suitable assumptions and for a variety of realizations of
our approach. The global convergence result is proved.

The current approach can be translated to optimization problems with box con-
straints. The idea is, in principle, straightforward, and the details will be carried out
as part of our future research.
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