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Abstract This paper is concerned with high-order numerical methods for a class of
fractional mobile/immobile convection–diffusion equations. The convection coeffi-
cient of the equation may be spatially variable. In order to overcome the difficulty
caused by variable coefficient problems, we first transform the original equation into
a special and equivalent form, which is then discretized by a fourth-order compact
finite difference approximation for the spatial derivative and a second-order difference
approximation for the time first derivative and the Caputo time fractional derivative.
The local truncation error and the solvability of the resulting scheme are discussed
in detail. The (almost) unconditional stability and convergence of the method are
proved using a discrete energy analysis method. A Richardson extrapolation algo-
rithm is presented to enhance the temporal accuracy of the computed solution from the
second-order to the third-order. Applications using two model problems give numer-
ical results that demonstrate the accuracy of the new method and the high efficiency
of the Richardson extrapolation algorithm.
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1 Introduction

The mobile/immobile model has been applied successfully to unsaturated transports
through homogeneous media (see [2,5,11,24,30]). The main objective of this model
is to account for mass exchanges between themoving fluid and zones where the fluid is
assumed to be immobile (see [13]). It was shown in [6,27] that the continuous time ran-
dom walk is equivalent to the continuum mobile/immobile equation in the same way
that Brownianmotion is equivalent to the diffusion equation.Moreover, the continuous
time random walk converges toward a limit that corresponds to an mobile/immobile
continuum model. This convergence property is useful for making long-term predic-
tions. To distinguish explicitly the mobile and immobile status using the fractional
dynamics, Schumer et al. [28] developed the following fractional mobile/immobile
convection–diffusion model for the total concentration:

∂v

∂t
(x, t) + β

∂αv

∂tα
(x, t) = D

∂2v

∂x2
(x, t) − V

∂v

∂x
(x, t), (1.1)

where v denotes the solute concentration in the total (mobile and immobile) phase,
β > 0 is the fractional capacity coefficient, and V and D are the convection and
diffusion coefficients for the mobile phase (and hence may be directly measured)
with D > 0. The time drift term ∂v/∂t describes the motion time and thus helps to
distinguish the status of particles conveniently (also see the discussion in [1]). The
term ∂αv/∂tα represents the Caputo fractional derivative of order α, which is defined
by

∂αv

∂tα
(x, t) = 1

Γ (1 − α)

∫ t

0

∂v

∂s
(x, s)(t − s)−αds, 0 < α < 1. (1.2)

In recent years, many works have been devoted to the investigation on the appli-
cations of the fractional mobile/immobile equation. Goltz et al. [12] and Harvey et
al. [15] found that the mobile/immobile equation predicts an exponential approach
to an asymptotic state where the mobile mass remains a constant positive fraction
of the injected mass. The work in [28] by Schumer et al. shows that the fractional
mobile/immobile convection–diffusion Eq. (1.1) is equivalent to the previous model
of mobile/immobile transport with power law memory function and is the limit-
ing equation that governs continuous time random walks with heavy tailed random
waiting times. Zhang et al. [39] developed a time Langevin approach to solve a
fractional mobile/immobile transport model combined with multiscaling superdif-
fusion. Zhang et al. [38] extended and tested the applicability of the fractional
mobile/immobile convection–diffusion Eq. (1.1) by applying the approach developed
in [39]. Meerschaert et al. [22] used a grid-free particle tracking approach to solve a
multi-dimensional fractional mobile/immobile equation. The similarity between the
fractional mobile/immobile convection–diffusion Eq. (1.1) and the multiple-rate mass
transfer model (see [14]) was discussed by Schumer et al. [28] and Benson and Meer-
schaert [1]. Itwas proved that the fractionalmobile/immobile convection–diffusionEq.
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(1.1) is identical to themultiple-rate mass transfer model with infinite mean power-law
memories.

With the rapid development of the applications of the fractional mobile/immobile
equation, numericalmethods have become important to compute its solution.Anumer-
ical treatment of the fractional mobile/immobile convection–diffusion Eq. (1.1) with a
non-homogeneous source term was given in [20]. The main purpose there is to present
a stable implicit numerical method by the basic finite difference discretization, and
the accuracy of the proposed method is only of order O(τ + h), where τ is the time
step and h is the spatial step. In [21], a meshless approach based on radial basis func-
tions (RBFs) for the spatial discretization and a semi-discrete scheme for the temporal
discretizationwere developed for a two-dimensional fractionalmobile/immobile trans-
port model. Since the backward Euler method was adopted to discretize the time first
derivative, the developed meshless approach in that paper is only first-order accurate
in time. Recently, Zhang et al. [37] treated numerically a fractional mobile/immobile
convection–diffusion equation with the time fractional derivative of Coimbra variable
order. The proposed method there possesses only the first-order accuracy in both time
and space, and is identical to the one presented in [20] when the variable fractional
order is reduced to a constant fractional order. In the above works, the L1 approx-
imation formula (see [4,23,29]) was used for the discretization of the Caputo time
fractional derivative ∂αv/∂tα and the backward Euler method was applied to dis-
cretize the time first derivative. Consequently, the numerical accuracy of the resulting
approximation formula to the Caputo time fractional derivative is only of order 2−α,
which is less than two, and the total temporal accuracy has only the first-order. This
motivated us to look for a more accurate approximation to the Caputo time fractional
derivative ∂αv/∂tα and construct a high-order numerical method for solving the frac-
tional mobile/immobile convection–diffusion Eq. (1.1).

In order to clarify the success of our method and enlarge its applications, we here
consider a class of more general fractional mobile/immobile convection–diffusion
equations where the convection coefficient V is spatially variable, i.e., V = V (x).
This class of equations combined with its boundary and initial conditions is given in
the form

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
(x, t) + β

∂αv

∂tα
(x, t) = D

∂2v

∂x2
(x, t) − V (x)

∂v

∂x
(x, t) + f (x, t),

(x, t) ∈ (0, L) × (0, T ],
v(0, t) = φ0(t), v(L , t) = φL(t), t ∈ (0, T ],
v(x, 0) = 0, x ∈ [0, L],

(1.3)

where the given functions V (x), f (x, t), φ0(t) and φL(t) are sufficiently smooth in
their respective domains. The very recent work in [33] proposed a compact finite
difference method for the problem (1.3), but the temporal accuracy of the proposed
method is still only of order 2−α. In this paper, we shall present a high-order compact
finite difference method that possesses the second-order temporal accuracy and can be
efficiently used to solve the fractional mobile/immobile problem (1.3) with the general
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736 Y.-M. Wang

convection coefficient V (x). Some of the related numerical aspects will be rigorously
investigated as well.

A common technique to design high-order numerical methods with the second-
order temporal accuracy for the Caputo-type time fractional differential equation is
to transform the corresponding differential equation into its equivalent integral or
integro-differential form (cf. [3,9,17,18,32,35]). However, it is difficult to extend
this technique with a rigorous theoretical analysis to the present time fractional
mobile/immobile problem (1.3) because the governing equation involves both the
time first derivative ∂v/∂t and the Caputo time fractional derivative ∂αv/∂tα . A direct
method without any transformation was given in [10], where a modified L1 approxi-
mation formula was used to directly discretize the Caputo time fractional derivative,
but the rigorous convergence analysis for the corresponding difference scheme has
not been available. Dimitrov [8] presented a second-order implicit difference scheme
for a one-dimensional Caputo-type time fractional subdiffusion equation by using the
Grünwald formula to directly approximate the weighted averages of the Caputo deriv-
atives. However, the difference scheme derived there makes the error analysis much
more complex, and it is unclear whether the main idea in that paper can be generalized
to a high-order compact finite difference scheme.

Here, we shall show a new technique to design a high-order compact finite differ-
ence method with the second-order temporal accuracy for the problem (1.3) by using
the weighted and shifted Grünwald formula to directly discretize the Caputo time frac-
tional derivative ∂αv/∂tα . The high-order scheme derived in this way is very simple
and effective for the problem (1.3). It is also very convenient for us to use a tech-
nique of discrete energy analysis to carry out the stability and convergence analysis
of the derived scheme. The similar technique was used in [16] to derive a third-order
approximation formula for the Caputo time fractional derivative ∂αv/∂tα . However,
our derivation in this paper is essentially different from that in [16]. Firstly, it is only
assumed in this paper that the function v(·, t) is C3-continuous and ∂kv/∂tk(·, 0) = 0
for k = 1, 2, whereas a stronger condition that the function v(·, t) is C5-continuous and
∂kv/∂tk(·, 0) = 0 for k = 1, 2, . . . , 5 is required in [16]. Secondly, since we obtain
a detailed asymptotic expansion for the truncation error of the Grünwald approxima-
tion it is easy to apply a Richardson extrapolation to further enhance the temporal
accuracy of the computed solution from the second-order to the third-order, with
only the requirement that the function v(·, t) is C4-continuous and ∂kv/∂tk(·, 0) = 0
for k = 1, 2, 3. As a result, we obtain an extrapolation algorithm that possesses the
third-order temporal accuracy under a weaker condition than that in [16]. It should be
mentioned that because of the first time derivative term ∂v/∂t , it is difficult to apply the
approach given in [16] to the present problem (1.3) to achieve the third-order temporal
accuracy with a rigorous convergence proof.

The outline of the paper is as follows. In Sect. 2, we derive a second-order approxi-
mation to the Caputo time fractional derivative ∂αv/∂tα by introducing an asymptotic
expansion for the truncation error of the Grünwald approximation. Then we discretize
the fractional mobile/immobile problem (1.3) into a compact finite difference sys-
tem. The local truncation error and the solvability of the resulting finite difference
scheme are discussed in Sect. 3. In Sect. 4, we use a technique of discrete energy
analysis to prove the stability and convergence of the method and to obtain an explicit
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error estimate of the numerical solution. The error estimate shows that the proposed
method has the second-order temporal accuracy and the fourth-order spatial accuracy.
Improvement of the temporal accuracy based on a Richardson extrapolation is pre-
sented in Sect. 5, where a Richardson extrapolation algorithm is developed to enhance
the temporal accuracy of the computed solution to the third-order. In Sect. 6, we give
some applications to two model problems. Numerical results are included to demon-
strate the accuracy of the compact finite difference method and the high efficiency of
the Richardson extrapolation algorithm. The final section contains some concluding
remarks.

2 Compact finite difference method

Without loss of generality, we have assumed the homogeneous initial condition
v(x, 0) = 0 in the problem (1.3). When the problem is given with the nonhomo-
geneous initial condition, the substitution z(x, t) = v(x, t) − v(x, 0) will transform
the problem to the problemwhich has the same form and the homogeneous initial con-
dition. Hence, our investigation is directly applicable to the above nonhomogeneous
initial condition without any complication.

In general, a direct discretization of the problem (1.3) by a high-order compact dif-
ference approximation is much more complicated because of the dependence of V (x)
on the spatial variable x . We here use an indirect approach by transforming (1.3) into a
special and equivalent form. Themain advantage behind this approach is that it yields a
very simple and effective high-order scheme for the variable coefficient problem (1.3).
This approach is similar to that used in [19,36] to treat the other convection–diffusion
problems with constant coefficients. Let

k(x) = exp

(
− 1

2D

∫ x

0
V (s)ds

)
, u(x, t) = k(x)v(x, t).

We transform the problem (1.3) into

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(x, t) + β

∂αu

∂tα
(x, t) = D

∂2u

∂x2
(x, t) + q(x)u(x, t) + g(x, t),

(x, t) ∈ (0, L) × (0, T ],
u(0, t) = φ∗

0 (t), u(L , t) = φ∗
L(t), t ∈ (0, T ],

u(x, 0) = 0, x ∈ [0, L],

(2.1)

where

q(x) = 1

2

(
dV

dx
(x) − V 2(x)

2D

)
, g(x, t) = k(x) f (x, t),

φ∗
0 (t) = φ0(t), φ∗

L(t) = k(L)φL(t). (2.2)
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738 Y.-M. Wang

It is clear that v(x, t) is a solution of the original problem (1.3) if and only if u(x, t)
is a solution of the transformed problem (2.1). Our compact finite difference method
for the problem (1.3) is based on the above equivalent form (2.1).

For a positive integer N , we let τ = T/N be the time step.Denote tn = nτ (0 ≤ n ≤
N ) and tn− 1

2
= (n− 1

2 )τ (1 ≤ n ≤ N ). Given a grid functionw = {wn | 0 ≤ n ≤ N },
we define

wn− 1
2 = 1

2

(
wn + wn−1

)
, δtw

n− 1
2 = 1

τ

(
wn − wn−1

)
. (2.3)

Let h = L/M be the spatial step, where M is a positive integer. We partition [0, L]
into a mesh by the mesh points xi = ih (0 ≤ i ≤ M). For any grid function w =
{wi | 0 ≤ i ≤ M}, we define spatial difference operators

δxwi− 1
2

= 1

h
(wi − wi−1) , δ2xwi = 1

h2
(wi+1 − 2wi + wi−1) ,

Hxwi =
(
I + h2

12
δ2x

)
wi ,

where I denotes the identical operator.

2.1 A second-order approximation to the Caputo time fractional derivative

For any α ∈ (0, 1) and any nonnegative integer l, the (l + α)th-order Caputo and
Riemann–Liouville time fractional derivatives of the function y(t)on [0, T ] are defined
as

C
0Dl+α

t y(t) = 1

Γ (1 − α)

∫ t

0

dl+1y

dt l+1 (s)(t − s)−αds,

RL
0 Dl+α

t y(t) = 1

Γ (1 − α)

dl+1

dt l+1

∫ t

0
y(s)(t − s)−αds. (2.4)

Also we introduce the shifted Grünwald difference operator with the step τ for the
function y(t):

δα
τ,p y(t) = τ−α

[ t
τ

]+p∑
k=0

w
(α)
k y(t − (k − p)τ ), (2.5)

where p is a integer andw
(α)
k , called the Grünwald weight, is defined by the coefficient

of the binomial series (1 − z)α = ∑∞
k=0 w

(α)
k zk as follows:

w
(α)
0 = 1, w

(α)
k = (−1)k

(
α

k

)
(k ≥ 1). (2.6)
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It is clear that the Grünwald weights w
(α)
k can be computed recursively by

w
(α)
0 = 1, w

(α)
k =

(
1 − α + 1

k

)
w

(α)
k−1, (2.7)

and they have the following properties

w
(α)
0 > 0, w

(α)
1 < w

(α)
2 < · · · < w

(α)
k < · · · < 0,

∞∑
k=0

w
(α)
k = 0. (2.8)

Lemma 2.1 Let α ∈ (0, 1), and let r be a positive integer. Suppose that y(t) ∈
Cr [0, T ], y(r+1)(t) ∈ L1[0, T ] and y(k)(0) = 0 (k = 0, 1, . . . , r). Then

δα
τ,p y(t) = C

0Dα
t y(t) +

r−1∑
k=0

ak,p
C
0Dk+α

t y(t)τ k + O(τ r ),

t ∈ [−pτ, T ], p = −1, 0,

(2.9)

where ak,p are the coefficients of the power series of the function ωα,p =(
1−e−z

z

)α

epz − 1, i.e., ωα,p = ∑∞
k=0 ak,pz

k , and in particular,

a0,p = 0, a1,p = p − α

2
, a2,p = α

24
+ 1

2

(
p − α

2

)2
. (2.10)

Proof Firstly, the coefficients in (2.10) follow from (38) in [41]. Under the condition
of the lemma, we have from Theorem 1 in [41] that

δα
τ,p y(t) = RL

0 Dα
t y(t) +

r−1∑
k=0

ak,p
RL
0 Dk+α

t y(t)τ k + O(τ r ),

t ∈ [−pτ, T ], p = 0,−1. (2.11)

The Riemann–Liouville and Caputo fractional derivatives are related as (see [7], Page
53)

RL
0 Dk+α

t y(t) = C
0Dk+α

t y(t) +
k∑

l=0

y(l)(0)

Γ (l − α − k + 1)
t l−α−k .

We have from y(k)(0) = 0 (k = 0, 1, . . . , r) that

RL
0 Dk+α

t y(t) = C
0Dk+α

t y(t), k = 0, 1, . . . , r − 1. (2.12)

Substituting this relation into (2.11) leads to the desired result (2.9). ��
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Based on Lemma 2.1, we immediately obtain the following approximation to the
αth-order Caputo time fractional derivative C

0Dα
t y(t).

Theorem 2.1 Let α ∈ (0, 1), and define

a(α)
0 =

(
1 + α

2

)
w

(α)
0 , a(α)

k =
(
1 + α

2

)
w

(α)
k − α

2
w

(α)
k−1 (k ≥ 1). (2.13)

Suppose that y(t) ∈ Cr [0, T ], y(r+1)(t) ∈ L1[0, T ]and y(k)(0) = 0 (k = 0, 1, . . . , r),
where r = 1, 2 or 3. Then we have

C
0Dα

t y(tn) = τ−α
n∑

k=0

a(α)
k y(tn − kτ) + Rn

r (τ ), 1 ≤ n ≤ N , (2.14)

where

Rn
r (τ ) =

{O(τ r ), if r = 1 or 2,
(5 + 3α)α

24
C
0D2+α

t y(tn)τ
2 + O(τ 3), if r = 3.

(2.15)

Proof By the definition of a(α)
k ,

τ−α
n∑

k=0

a(α)
k y(tn − kτ) =

(
1 + α

2

)
δα
τ,0y(tn) − α

2
δα
τ,−1y(tn), 1 ≤ n ≤ N .

We have from (2.9) with r = 1 that

(
1 + α

2

)
δα
τ,0y(tn) − α

2
δα
τ,−1y(tn) = C

0Dα
t y(tn) + O(τ ), 1 ≤ n ≤ N .

When r = 2 or 3, we have also from (2.9) that

(
1 + α

2

)
δα
τ,0y(tn) − α

2
δα
τ,−1y(tn)

= C
0Dα

t y(tn) +
r−1∑
k=0

((
1 + α

2

)
ak,0 − α

2
ak,−1

)
C
0Dk+α

t y(tn)τ
k + O(τ r ),

1 ≤ n ≤ N .

It follows from (2.10) that

(
1 + α

2

)
δα
τ,0y(tn) − α

2
δα
τ,−1y(tn) = C

0Dα
t y(tn) + O(τ 2), 1 ≤ n ≤ N

if r = 2, and
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(
1 + α

2

)
δα
τ,0y(tn) − α

2
δα
τ,−1y(tn) = C

0Dα
t y(tn)

− (5 + 3α)α

24
C
0D2+α

t y(tn)τ
2 + O(τ 3),

1 ≤ n ≤ N

if r = 3. This proves (2.14) and (2.15). ��

2.2 The derivation of the compact finite difference scheme

Now we derive a high-order compact finite difference scheme for solving problem
(2.1). Assume that the solution u(x, t) of (2.1) is in C6,3([0, L] × [0, T ]). Define the
grid functions

Un
i = u(xi , tn), Wn

i = ∂u

∂t
(xi , tn), Zn

i = ∂2u

∂x2
(xi , tn), qi = q(xi ),

gni = g(xi , tn), φ
∗,n
0 = φ∗

0 (tn), φ
∗,n
L = φ∗

L(tn).

In view of the definitions in (1.2) and (2.4), we have

∂αu

∂tα
(x, t) = C

0Dα
t u(x, t). (2.16)

An application of the approximation (2.14) yields that

∂αu

∂tα
(xi , tn) = τ−α

n∑
k=0

a(α)
k Un−k

i + (RG
t )ni , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N ,

(2.17)

where (RG
t )ni is the corresponding local truncation error. Substituting (2.17) into the

governing equation of (2.1), we obtain

Wn
i + βτ−α

n∑
k=0

a(α)
k Un−k

i = DZn
i + qiU

n
i + gni − β(RG

t )ni ,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N . (2.18)

Similarly, on the time level n − 1, we have

Wn−1
i + βτ−α

n−1∑
k=0

a(α)
k Un−k−1

i = DZn−1
i + qiU

n−1
i + gn−1

i − β(RG
t )n−1

i ,

1 ≤ i ≤ M − 1, 2 ≤ n ≤ N . (2.19)

Since ∂αu
∂tα (x, 0) = 0 (see [8]), we have from (2.1) thatW 0

i = DZ0
i + qiU 0

i + g0i . This
equality and U 0

i = 0 imply that (2.19) holds true also for n = 1 with (RG
t )0i = 0.
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742 Y.-M. Wang

Taking the arithmetic mean of (2.18) and (2.19), we conclude that

W
n− 1

2
i + βτ−α

n−1∑
k=0

a(α)
k U

n−k− 1
2

i = DZ
n− 1

2
i + qiU

n− 1
2

i + g
n− 1

2
i − β(RG

t )
n− 1

2
i ,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N . (2.20)

An application of the Crank–Nicolson technique (see, e.g., [40]) gives

W
n− 1

2
i = δtU

n− 1
2

i + (Rc
t )

n− 1
2

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (2.21)

where

(Rc
t )

n− 1
2

i = τ 2

16

∫ 1

0

(
∂3u

∂t3

(
xi , tn− 1

2
+ sτ

2

)
+ ∂3u

∂t3

(
xi , tn− 1

2
− sτ

2

))
(1 − s2)ds.

(2.22)

This implies that

δtU
n− 1

2
i + βτ−α

n−1∑
k=0

a(α)
k U

n−k− 1
2

i = DZ
n− 1

2
i + qiU

n− 1
2

i + g
n− 1

2
i + (Rt )

n− 1
2

i ,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (2.23)

where

(Rt )
n− 1

2
i = −

(
β(RG

t )
n− 1

2
i + (Rc

t )
n− 1

2
i

)
. (2.24)

For the spatial second-order derivative Zn
i , we adopt the following fourth-order com-

pact approximation (see, e.g., [40]):

Hx Z
n
i = δ2xU

n
i + (Rx )

n
i , (2.25)

where

(Rx )
n
i = h4

360

∫ 1

0

(
∂6u

∂x6
(xi − sh, tn) + ∂6u

∂x6
(xi + sh, tn)

)
ζ(s)ds (2.26)

with ζ(s) = 5(1 − s)3 − 3(1 − s)5. Applying Hx to both sides of (2.23) yields

HxδtU
n− 1

2
i + βτ−α

n−1∑
k=0

a(α)
k HxU

n−k− 1
2

i

= Dδ2xU
n− 1

2
i + Hx

(
qiU

n− 1
2

i

)
+ Hx g

n− 1
2

i

+ (Rxt )
n− 1

2
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (2.27)
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where

(Rxt )
n− 1

2
i = Hx (Rt )

n− 1
2

i + D(Rx )
n− 1

2
i . (2.28)

Omitting the small term (Rxt )
n− 1

2
i in (2.27), we obtain the following compact finite

difference scheme:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Hx δt u
n− 1

2
i + βτ−α

n−1∑
k=0

a(α)
k Hxu

n−k− 1
2

i = Dδ2xu
n− 1

2
i + Hx

(
qi u

n− 1
2

i

)
+ Hx g

n− 1
2

i ,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N ,

un0 = φ
∗,n
0 , unM = φ

∗,n
L , 1 ≤ n ≤ N ,

u0i = 0, 0 ≤ i ≤ M,

(2.29)

where uni denotes the finite difference approximation to Un
i .

3 Truncation error and solvability

Firstly, we estimate the truncation error (Rxt )
n− 1

2
i of the compact scheme (2.29).

Theorem 3.1 Assume that the solution u(x, t) of the problem (2.1) is in C6,3([0, L]×
[0, T ]) and ∂ku

∂tk
(x, 0) = 0 for k = 1, 2. Then the truncation error (Rxt )

n− 1
2

i of the
compact scheme (2.29) satisfies

∣∣∣∣(Rxt )
n− 1

2
i

∣∣∣∣ ≤ C∗ (
τ 2 + h4

)
, 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (3.1)

where C∗ is a positive constant independent of the time step τ , the spatial step h and
the time level n. ��
Proof Under the condition of the theorem,wehave from (2.15) that the local truncation

error (RG
t )

n− 1
2

i in (2.20) satisfies

(RG
t )

n− 1
2

i = O(τ 2), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N . (3.2)

By (2.22), we obtain

(Rc
t )

n− 1
2

i = O(τ 2), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N . (3.3)

Then we have from (2.24), (3.2) and (3.3) that

(Rt )
n− 1

2
i = O(τ 2), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N . (3.4)
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SinceHxwi = 1
12 (wi−1+10wi +wi+1) for any grid functionw = {wi | 0 ≤ i ≤ M},

we apply the estimates (2.26) and (3.4) in (2.28) to get the desired estimate (3.1)
immediately. ��

For implementing the compact scheme (2.29), it is more convenient to consider its
matrix form. To do this, we define the following column vectors:

un = (
un1, u

n
2, . . . , u

n
M−1

)T
, gn− 1

2 =
(
g
n− 1

2
1 , g

n− 1
2

2 , . . . , g
n− 1

2
M−1

)T

,

ûn−1,∗ =
(
ûn−1,∗
1 , ûn−1,∗

2 , . . . , ûn−1,∗
M−1

)T
,

where

ûn−1,∗
i = −τ−α

n−1∑
k=1

a(α)
k u

n−k− 1
2

i , 1 ≤ i ≤ M − 1. (3.5)

We also define the following (M − 1)-order tridiagonal or diagonal matrices:

A = tridiag (−1, 2, −1) , B = 1

12
tridiag (1, 10, 1) , Q = diag

(
q1, q2, . . . , qM−1

)
.

A simple process shows that the compact scheme (2.29) can be expressed in the matrix
form as

((
1 + β(α + 2)

4
τ 1−α

)
B + D

2

τ

h2
A − τ

2
BQ

)
un

=
((

1 − β(α + 2)

4
τ 1−α

)
B − D

2

τ

h2
A + τ

2
BQ

)
un−1

+ τ B
(
βûn−1,∗ + gn− 1

2

)
+ rn, (3.6)

where rn absorbs the boundary values of the solution vector and the source term.

Theorem 3.2 The compact scheme (2.29) is uniquely solvable if and only if thematrix

Q∗ ≡
(
1 + β(α + 2)

4
τ 1−α

)
B + D

2

τ

h2
A − τ

2
BQ (3.7)

is nonsingular.

Define

q = max
x∈[0,L] q(x), q = min

x∈[0,L] q(x). (3.8)
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A sufficient condition for the matrix Q∗ to be nonsingular is given by

τ max

{
q,

5q − q

4

}
≤ β(α + 2)

2
τ 1−α + 2. (3.9)

Corollary 3.1 The compact scheme (2.29) is uniquely solvable if the condition (3.9)
holds true.

Proof In fact, Q∗ = tridiag(p∗
i−1, q

∗
i , p∗

i+1), where p∗
0 = p∗

M = 0 and for each
1 ≤ i ≤ M − 1,

p∗
i = 1

12

(
1 + β(α + 2)

4
τ 1−α

)
− D

2

τ

h2
− qi

24
τ,

q∗
i = 5

6

(
1 + β(α + 2)

4
τ 1−α

)
+ D

τ

h2
− 5qi

12
τ.

The condition (3.9) implies that q∗
i > 0 for each 1 ≤ i ≤ M − 1.

Case 1. Assume that p∗
i 
= 0 for all 1 ≤ i ≤ M − 1. In this case, the matrix Q∗ is

irreducible. By the condition (3.9), we have that for 2 ≤ i ≤ M − 2,

|p∗
i−1| + |p∗

i+1| ≤ 1

6

(
1 + β(α + 2)

4
τ 1−α

)
+ D

τ

h2
− qi−1 + qi+1

24
τ

≤ 1

6

(
1 + β(α + 2)

4
τ 1−α

)
+ D

τ

h2
− τ

12
q

≤ 5

6

(
1 + β(α + 2)

4
τ 1−α

)
+ D

τ

h2
− 5qi

12
τ = |q∗

i |.

Similarly,

|p∗
2 | ≤ 1

12

(
1 + β(α + 2)

4
τ 1−α

)
+ D

2

τ

h2
− q2

24
τ < q∗

1 = |q∗
1 |,

|p∗
M−2| ≤ 1

12

(
1 + β(α + 2)

4
τ 1−α

)
+ D

2

τ

h2
− qM−2

24
τ < q∗

M−1 = |q∗
M−1|.

This proves that Q∗ is irreducibly diagonally dominant, and thus nonsingular (see
[31]).

Case 2. Assume that p∗
i0

= 0 for some 1 ≤ i0 ≤ M − 1. In this case, we complete
the proof by partitioning Q∗ and considering the submatrices of Q∗. ��
Corollary 3.2 The compact scheme (2.29) is uniquely solvable if the function q(x) is
nonpositive and convex in [0, L].
Proof We write Q∗ = tridiag(p∗

i−1, q
∗
i , p∗

i+1) as in Corollary 3.1. Since the function
q(x) is nonpositive and convex, we have that for 2 ≤ i ≤ M − 2,
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|p∗
i−1| + |p∗

i+1| ≤ 1

6

(
1 + β(α + 2)

4
τ 1−α

)
+ D

τ

h2
− qi−1 + qi+1

12
τ

<
5

6

(
1 + β(α + 2)

4
τ 1−α

)
+ D

τ

h2
− 5qi

6
τ = |q∗

i |,

and

|p∗
2 | ≤ 1

12

(
1 + β(α + 2)

4
τ 1−α

)
+ D

τ

h2
− q2

12
τ < q∗

1 = |q∗
1 |,

|p∗
M−2| ≤ 1

12

(
1 + β(α + 2)

4
τ 1−α

)
+ D

τ

h2
− qM−2

12
τ < q∗

M−1 = |q∗
M−1|.

This shows that the matrix Q∗ is strictly diagonally dominant, and thus nonsingular
(see [31]). ��
Remark 3.1 When q(x) ≡ q is independent of x and q ≤ 0, the conditions in Corol-
laries 3.1 and 3.2 are trivially satisfied. We notice that if the convection coefficient
V (x) in the original problem (1.3) is independent of x , i.e., V (x) ≡ V , we must
have q(x) ≡ − V 2

4D ≤ 0. Therefore, for the fractional mobile/immobile convection–
diffusion problem (1.3) with constant coefficients, the corresponding compact scheme
(2.29) is always uniquely solvable without any additional constraints.

4 Stability and convergence

We now carry out the stability and convergence analysis of the compact scheme
(2.29) using a technique of discrete energy analysis. Let Sh = {w | w =
(w0, w1, . . . , wM ), w0 = wM = 0} be the space of the grid functions defined on
the spatial mesh and vanishing on two boundary points. For grid functions w, z ∈ Sh ,
we define the inner product (w, z), L2 norm ‖w‖ and L∞ norm ‖w‖∞ by

(w, z) = h
M−1∑
i=1

wi zi , ‖w‖ = (w,w)
1
2 , ‖w‖∞ = max

0≤i≤M
|wi |.

We also define

(δxw, δx z] = h
M∑
i=1

δxwi− 1
2
δx zi− 1

2
, |w|1 = (δxw, δxw] 12 .

The inverse estimate h‖δ2xw‖ ≤ 2|w|1 (e.g., see [26]) implies that |w|21− h2
12‖δ2xw‖2 ≥

2
3 |w|21. For convenience, we introduce the following notation:

‖w‖∗ =
(

|w|21 − h2

12
‖δ2xw‖2

) 1
2

.
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Then we have the following lemma from [33,34].

Lemma 4.1 Let ρ(x) be a function in C[0, L]. For any grid functionw ∈ Sh, we have

(
Hxw, δ2xw

)
= −‖w‖2∗, ‖Hxw‖2 ≤ 3L2

16
‖w‖2∗, ‖Hx (ρw)‖ ≤ ‖ρ‖∞‖w‖.

Lemma 4.2 For any grid function w ∈ Sh, we have

1

3
‖w‖2 ≤ ‖Hxw‖2 ≤ ‖w‖2. (4.1)

Proof Since (w, δ2xw) = −(δxw, δxw] = −|w|21, we have ‖Hxw‖2 = ‖w‖2 −
h2
6 |w|21 + h4

144‖δ2xw‖2. The inverse estimates h|w|1 ≤ 2‖w‖ and h‖δ2xw‖ ≤ 2|w|1
(e.g., see [26]) imply that

‖Hxw‖2 ≥ ‖w‖2 − h2

6
|w|21 ≥ 1

3
‖w‖2, ‖Hxw‖2 ≤ ‖w‖2 − 5h2

36
|w|21 ≤ ‖w‖2.

This proves the lemma. ��
Lemma 4.3 Let a(α)

k (k ≥ 0) be defined by (2.13). Then for any positive integer m
and wn ∈ Sh (n ≥ 1), it holds that

m∑
n=1

n−1∑
k=0

a(α)
k (wn−k, wn) ≥ 0. (4.2)

Proof In view of the definition of the inner product (wn−k, wn),

m∑
n=1

n−1∑
k=0

a(α)
k (wn−k, wn) = h

M−1∑
i=1

m∑
n=1

n−1∑
k=0

a(α)
k wn−k

i wn
i .

By Lemma 3.2 in [35], we have that for each i ,

m∑
n=1

n−1∑
k=0

a(α)
k wn−k

i wn
i ≥ 0.

The proof is completed. ��
Lemma 4.4 (Discrete Gronwall lemma [25]) Assume that {kn} and {sn} are nonneg-
ative sequences, and that the sequence {φn} satisfies

φ0 ≤ g0, φn ≤ g0 +
n−1∑
l=0

sl +
n−1∑
l=0

klφl , n ≥ 1,

123



748 Y.-M. Wang

where g0 ≥ 0. Then the sequence {φn} satisfies

φn ≤
(
g0 +

n−1∑
l=0

sl

)
exp

(
n−1∑
l=0

kl

)
, n ≥ 1.

Based on the above lemmas, we now discuss the stability of the compact scheme
(2.29) with respect to the initial value u0i and the source term g.

Theorem 4.1 Let un = (un0, u
n
1, . . . , u

n
M ) be the solution of the compact scheme

(2.29) with the initial value u0i and the boundary values un0 = unM = 0. Then when
τ‖q‖2∞ ≤ 10D

3L2 , we have that for 1 ≤ n ≤ N,

∥∥un∥∥2 ≤
(
48

∥∥∥Hxu
0
∥∥∥2 + 9L2τ

2D

(
‖q‖2∞

∥∥∥u0
∥∥∥2 + 2

n∑
k=1

∥∥∥Hx g
k− 1

2

∥∥∥2
))

× exp

(
9L2‖q‖2∞T

D

)
. (4.3)

Proof Taking the inner product of (2.29) withHxun− 1
2 gives

(
Hxδt u

n− 1
2 ,Hxu

n− 1
2

)
+ βτ−α

n−1∑
k=0

a(α)
k

(
Hxu

n−k− 1
2 ,Hxu

n− 1
2

)

= D
(
δ2xu

n− 1
2 ,Hxu

n− 1
2

)
+

(
Hx (qu

n− 1
2 ),Hxu

n− 1
2

)
+

(
Hx g

n− 1
2 ,Hxu

n− 1
2

)
.

(4.4)

It is clear that(
Hxδt u

n− 1
2 ,Hxu

n− 1
2

)
= 1

2τ

(∥∥Hxu
n
∥∥2 −

∥∥∥Hxu
n−1

∥∥∥2
)

. (4.5)

By Lemma 4.1, (δ2xu
n− 1

2 ,Hxun− 1
2 ) = −‖un− 1

2 ‖2∗ and ‖un− 1
2 ‖2∗ ≥ 16

3L2 ‖Hxun− 1
2 ‖2.

Therefore, we have

D
(
δ2xu

n− 1
2 ,Hxu

n− 1
2

)
= −D

∥∥∥un− 1
2

∥∥∥2∗ ≤ −16D

3L2

∥∥∥Hxu
n− 1

2

∥∥∥2 . (4.6)

On the other hand, by the Cauchy–Schwarz inequality, i.e., (w, z) ≤ ε‖w‖2 + 1
4ε‖z‖2

for all w, z ∈ Sh and ε > 0, we obtain

(
Hx g

n− 1
2 ,Hxu

n− 1
2

)
≤ 3L2

32D

∥∥∥Hx g
n− 1

2

∥∥∥2 + 8D

3L2

∥∥∥Hxu
n− 1

2

∥∥∥2 ,

(
Hx (qu

n− 1
2 ),Hxu

n− 1
2

)
≤ 3L2

32D

∥∥∥Hx (qu
n− 1

2 )

∥∥∥2 + 8D

3L2

∥∥∥Hxu
n− 1

2

∥∥∥2

≤ 3L2‖q‖2∞
32D

∥∥∥un− 1
2

∥∥∥2 + 8D

3L2

∥∥∥Hxu
n− 1

2

∥∥∥2 . (4.7)
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The above last inequality follows from Lemma 4.1. Substituting (4.5)–(4.7) into (4.4)
leads to

∥∥Hxu
n
∥∥2 + 2βτ 1−α

n−1∑
k=0

a(α)
k

(
Hxu

n−k− 1
2 ,Hxu

n− 1
2

)

≤
∥∥∥Hxu

n−1
∥∥∥2 + 3L2‖q‖2∞τ

16D

∥∥∥un− 1
2

∥∥∥2 + 3L2τ

16D

∥∥∥Hx g
n− 1

2

∥∥∥2 .

Replacing n by m and summing up for m from 1 to n on both sides of the above
inequality, we have

∥∥Hxu
n
∥∥2 + 2βτ 1−α

n∑
m=1

m−1∑
k=0

a(α)
k

(
Hxu

m−k− 1
2 ,Hxu

m− 1
2

)

≤
∥∥∥Hxu

0
∥∥∥2 + 3L2‖q‖2∞τ

16D

n∑
m=1

∥∥∥um− 1
2

∥∥∥2 + 3L2τ

16D

n∑
m=1

∥∥∥Hx g
m− 1

2

∥∥∥2 .

Then applying Lemma 4.3 and then replacing m by k, we obtain

∥∥Hxu
n
∥∥2 ≤

∥∥∥Hxu
0
∥∥∥2 + 3L2‖q‖2∞τ

16D

n∑
k=1

∥∥∥uk− 1
2

∥∥∥2 + 3L2τ

16D

n∑
k=1

∥∥∥Hx g
k− 1

2

∥∥∥2 .

Furthermore, by the relation ‖uk− 1
2 ‖2 ≤ 1

2 (‖uk‖2 + ‖uk−1‖2), we have

∥∥Hxu
n
∥∥2 ≤

∥∥∥Hxu
0
∥∥∥2 + 3L2‖q‖2∞τ

32D

(∥∥un∥∥2 +
∥∥∥u0

∥∥∥2
)

+3L2‖q‖2∞τ

16D

n−1∑
k=1

∥∥∥uk
∥∥∥2 + 3L2τ

16D

n∑
k=1

∥∥∥Hx g
k− 1

2

∥∥∥2 . (4.8)

An application of Lemma 4.2 gives

(
1

3
− 3L2‖q‖2∞τ

32D

) ∥∥un∥∥2 ≤
∥∥∥Hxu

0
∥∥∥2 + 3L2‖q‖2∞τ

32D

∥∥∥u0
∥∥∥2

+3L2‖q‖2∞τ

16D

n−1∑
k=1

∥∥∥uk
∥∥∥2 + 3L2τ

16D

n∑
k=1

∥∥∥Hx g
k− 1

2

∥∥∥2 . (4.9)
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When τ‖q‖2∞ ≤ 10D
3L2 , we have

∥∥un∥∥2 ≤48
∥∥∥Hxu

0
∥∥∥2

+9L2τ

2D

(
‖q‖2∞

∥∥∥u0
∥∥∥2+2‖q‖2∞

n−1∑
k=1

∥∥∥uk
∥∥∥2+2

n∑
k=1

∥∥∥Hx g
k− 1

2

∥∥∥2
)

. (4.10)

The estimate (4.3) follows immediately from Lemma 4.4 (Discrete Gronwall lemma).
��

Theorem 4.1 shows that the compact scheme (2.29) is almost unconditionally stable
to the initial value u0i and the source term g, ormore precisely, it is stable for the general
q(x) under the mild assumption τ‖q‖2∞ ≤ 10D

3L2 . For the special case when q(x) ≡ q

is independent of x and q < 16D
3L2 , this mild assumption can be removed to obtain

the unconditional stability of the compact scheme (2.29). Specifically, we have the
following result.

Theorem 4.2 Let un = (un0, u
n
1, . . . , u

n
M ) be the solution of the compact scheme

(2.29) with the initial value u0i and the boundary values un0 = unM = 0. Assume that
q(x) ≡ q is independent of x and that q < 16D

3L2 . Then we have

∥∥un∥∥2 ≤ 3
∥∥∥Hxu

0
∥∥∥2 + 3τ

2C1

n∑
k=1

∥∥∥Hx g
k− 1

2

∥∥∥2 , (4.11)

where C1 = 16D
3L2 − q.

Proof Theproof follows from the similar argument as that used in theproof ofTheorem
4.1. When q(x) ≡ q is independent of x and q < 16D

3L2 , we have

(
Hx (qu

n− 1
2 ),Hxu

n− 1
2

)
= q

∥∥∥Hxu
n− 1

2

∥∥∥2 =
(
16D

3L2 − C1

) ∥∥∥Hxu
n− 1

2

∥∥∥2 , (4.12)

where C1 = 16D
3L2 − q > 0. In this case, we replace the second estimate in (4.6) by

(
Hx g

n− 1
2 ,Hxu

n− 1
2

)
≤ 1

4C1

∥∥∥Hx g
n− 1

2

∥∥∥2 + C1

∥∥∥Hxu
n− 1

2

∥∥∥2 . (4.13)

Using (4.4) (with q(x) ≡ q), (4.5), the first estimate of (4.6), (4.12) and (4.13), we
obtain

∥∥Hxu
n
∥∥2 + 2βτ 1−α

n−1∑
k=0

a(α)
k

(
Hxu

n−k− 1
2 ,Hxu

n− 1
2

)

≤
∥∥∥Hxu

n−1
∥∥∥2 + τ

2C1

∥∥∥Hx g
n− 1

2

∥∥∥2 .
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By Lemma 4.3,

∥∥Hxu
n
∥∥2 ≤

∥∥∥Hxu
0
∥∥∥2 + τ

2C1

n∑
k=1

∥∥∥Hx g
k− 1

2

∥∥∥2 . (4.14)

An application of Lemma 4.2 shows that the estimate (4.11) holds. ��
Remark 4.1 The condition q < 16D

3L2 is automatically satisfied if q ≤ 0. The latter is
certainly satisfied if the convection coefficient V (x) in the original problem (1.3) is
independent of x , i.e., V (x) ≡ V . This implies that for the fractional mobile/immobile
convection–diffusion problem (1.3)with constant coefficients, the corresponding com-
pact scheme (2.29) is always unconditionally stable.

We now consider the convergence of the compact scheme (2.29). Let eni = Un
i −uni .

From (2.27) and (2.29), we get the following error equation:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Hx δt e
n− 1

2
i +βτ−α

n−1∑
k=0

a(α)
k Hx e

n−k− 1
2

i =Dδ2x e
n− 1

2
i + Hx

(
qi e

n− 1
2

i

)
+ (Rxt )

n− 1
2

i ,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N ,

en0 = enM = 0, 1 ≤ n ≤ N ,

e0i = 0, 0 ≤ i ≤ M.

(4.15)

Based on this error equation, we have the following convergence results.

Theorem 4.3 Assume that the condition in Theorem 3.1 is satisfied. Let Un
i denote

the value of the solution u(x, t) of (2.1) at the mesh point (xi , tn) and let Un =
(Un

0 ,Un
1 , . . . ,Un

M ). Also let un = (un0, u
n
1, . . . , u

n
M ) be the solution of the compact

scheme (2.29). Then when τ‖q‖2∞ ≤ 10D
3L2 , we have

∥∥Un − un
∥∥ ≤

(
9L3T

D
exp

(
9L2‖q‖2∞T

D

)) 1
2

C∗ (
τ 2 + h4

)
, 1 ≤ n ≤ N ,

(4.16)

where the positive constant C∗ is the same as that in (3.1).

Proof It follows from (4.15) and Theorem 4.1 that

∥∥en∥∥2 ≤ 9L2τ

D
exp

(
9L2‖q‖2∞T

D

) n∑
k=1

∥∥∥(Rxt )
k− 1

2

∥∥∥2 .

Applying Theorem 3.1, we get

∥∥en∥∥2 ≤ 9L3T

D
exp

(
9L2‖q‖2∞T

D

)
C∗2 (

τ 2 + h4
)2

.

The estimate (4.16) is proved. ��
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Theorem 4.4 Assume that the condition in Theorem 3.1 is satisfied. Let Un
i denote

the value of the solution u(x, t) of (2.1) at the mesh point (xi , tn) and let Un =
(Un

0 ,Un
1 , . . . ,Un

M ). Also let un = (un0, u
n
1, . . . , u

n
M ) be the solution of the compact

scheme (2.29). If q(x) ≡ q is independent of x and q < 16D
3L2 , we have

∥∥Un − un
∥∥ ≤

(
3LT

2C1

) 1
2

C∗ (
τ 2 + h4

)
, 1 ≤ n ≤ N , (4.17)

where the positive constants C∗ and C1 are the same as those in (3.1) and (4.11).

Proof The proof follows from (4.15) and Theorems 3.1 and 4.2. ��
Theorems 4.3 and 4.4 show that the compact scheme (2.29) converges with the

convergence order O(τ 2 + h4), regardless of the order α of the fractional derivative.

Remark 4.2 In Theorem4.3, the optimal error estimate (i.e., the error estimatewith the
same order as the truncation error) of the compact scheme (2.29) are obtained under the
mild condition τ‖q‖2∞ ≤ 10D

3L2 for the general q(x). Theorem 4.4 shows that this mild
condition is no longer required to obtain the same optimal error estimate if q(x) ≡ q
is independent of x and q < 16D

3L2 . In particular, this is the case for the fractional
mobile/immobile convection–diffusion problem (1.3) with constant coefficients.

Remark 4.3 The constraint condition q < 16D
3L2 in Theorems 4.2 and 4.4 is easily

verifiable for practical problems. If it does not hold we have the estimates (4.3) and
(4.16) instead of the estimates (4.11) and (4.17), respectively, for the sufficiently small
τ .WhenC1 is very small, the estimates (4.11) and (4.17) are poor. In this case, it is also
better to use the estimates (4.3) and (4.16) for the sufficiently small τ . The restriction
condition on τ in Theorems 4.1 and 4.3 is only for the analysis of the stability and
convergence of the compact scheme (2.29) with the general q(x). One of the numerical
experiments in Sect. 6 shows that it is only a sufficient condition. Improvement of this
condition can be interesting both theoretically and computationally.

Once we have the error estimate between the solution Un
i = u(xi , tn) of the trans-

formed problem (2.1) and the solution uni of the compact scheme (2.29), it is very
straightforward to obtain the error estimate between the solutions of the original
problem (1.3) and the compact scheme (2.29). Let V n

i = v(xi , tn) be the value of
the solution v(x, t) of the original problem (1.3) at the mesh point (xi , tn), and let
vni = uni /ki , where ki = k(xi ). Since V n

i = Un
i /ki , we have from (4.16) or (4.17)

that

‖V n − vn‖ ≤ C2

(
τ 2 + h4

)
, 1 ≤ n ≤ N , (4.18)

where C2 is a positive constant independent of the time step τ , the spatial step h and
the time level n. The estimate (4.18) will be used in our numerical experiments in
Sect. 6.
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5 Richardson extrapolation of the compact finite difference method

The asymptotic expansion of the truncation error in (2.15) allows us to develop a
Richardson extrapolation algorithm for further enhancing the temporal accuracy of
the computed solution by the compact scheme (2.29).

Assume that the solution u(x, t) of the problem (2.1) is in C6,4([0, L]×[0, T ]) and
∂ku
∂tk

(x, 0) = 0 for k = 1, 2, 3. Then we have from (2.14) and (2.15) with r = 3 that

the truncation error (RG
t )

n− 1
2

i in (2.20) or (3.2) can be written as

(RG
t )

n− 1
2

i = (5 + 3α)α

48

(
C
0D2+α

t u(xi , tn) + C
0D2+α

t u(xi , tn−1)
)

τ 2 + O(τ 3).

(5.1)

By Taylor expansion, the truncation error (Rc
t )

n− 1
2

i in (2.22) or (3.3) has the form

(Rc
t )

n− 1
2

i = τ 2

24

(
∂3u

∂t3
(xi , tn) + ∂3u

∂t3
(xi , tn−1)

)
+ O(τ 4),

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N . (5.2)

Define

g∗(x, t) = − (5 + 3α)αβ

24
C
0D2+α

t u(x, t) − 1

12

∂3u

∂t3
(x, t),

g
∗,n− 1

2
i = 1

2

(
g∗(xi , tn) + g∗(xi , tn−1)

)
. (5.3)

By (5.1) and (5.2), the truncation error (Rt )
n− 1

2
i in (2.24) or (3.4) can be written as

(Rt )
n− 1

2
i = g

∗,n− 1
2

i τ 2 + O(τ 3), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N . (5.4)

Let u∗(x, t) be the solution of the following problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u∗

∂t
(x, t) + β

∂αu∗

∂tα
(x, t) = D

∂2u∗

∂x2
(x, t) + q(x)u∗(x, t) + g∗(x, t),

(x, t) ∈ (0, L) × (0, T ],
u∗(0, t) = u∗(L , t) = 0, t ∈ (0, T ],
u∗(x, 0) = 0, x ∈ [0, L],

(5.5)

where the source term g∗(x, t) is defined in (5.3). Assume u∗(x, t) ∈ C6,3([0, L] ×
[0, T ]). Since the above problem has the same form as the problem (2.1), the same
argument for (2.27) with the source term g being replaced by g∗ shows that U∗,n

i =
u∗(xi , tn) satisfies
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HxδtU
∗,n− 1

2
i + βτ−α

n−1∑
k=0

a(α)
k HxU

∗,n−k− 1
2

i

= Dδ2xU
∗,n− 1

2
i + Hx

(
qiU

∗,n− 1
2

i

)
+ Hx g

∗,n− 1
2

i + (R∗
xt )

n− 1
2

i ,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (5.6)

where

(R∗
xt )

n− 1
2

i = Hx (R
∗
t )

n− 1
2

i + D(R∗
x )

n− 1
2

i . (5.7)

The truncation errors (R∗
t )

n− 1
2

i and (R∗
x )

n− 1
2

i in (5.7) are analogously defined by (2.24)
and (2.26) with u being replaced by u∗.

We now estimate the truncation error (R∗
xt )

n− 1
2

i . In view of ∂3u
∂t3

(x, 0) = 0, we have

g∗(x, 0) = − (5 + 3α)αβ

24
C
0D2+α

t u(x, 0) − 1

12

∂3u

∂t3
(x, 0) = 0. (5.8)

Further, by u∗(x, 0) = 0 for all x ∈ [0, L],

∂u∗

∂t
(x, 0) = −β

∂αu∗

∂tα
(x, 0) + D

∂2u∗

∂x2
(x, 0)

+ q(x)u∗(x, 0) + g∗(x, 0) = 0, x ∈ [0, L]. (5.9)

Consequently, a similar argument as that for Theorem 3.1 gives

∣∣∣∣(R∗
xt )

n− 1
2

i

∣∣∣∣ ≤ C∗∗ (
τ + h4

)
, 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (5.10)

where C∗∗ is a positive constant independent of the time step τ , the spatial step h and
the time level n.

Multiplying (5.6) by −τ 2 and adding the resulting equation to (2.27) lead to the
following equation for the function Wn

i = Un
i − τ 2U∗,n

i :

HxδtW
n− 1

2
i + βτ−α

n−1∑
k=0

a(α)
k HxW

n−k− 1
2

i

= Dδ2xW
n− 1

2
i + Hx

(
qiW

n− 1
2

i

)
+ Hx g

n− 1
2

i + (R̃xt )
n− 1

2
i ,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (5.11)

where

(R̃xt )
n− 1

2
i = (Rxt )

n− 1
2

i − τ 2Hx g
∗,n− 1

2
i − τ 2(R∗

xt )
n− 1

2
i .

123



High-order compact method for fractional... 755

Clearly, by (2.28), (5.4) and (5.10),

∣∣∣∣(R̃xt )
n− 1

2
i

∣∣∣∣ ≤ C̃
(
τ 3 + h4

)
, 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (5.12)

where C̃ is a positive constant independent of the time step τ , the spatial step h and
the time level n.

Let eni = Wn
i − uni , where u

n
i is the solution of the compact scheme (2.29). We get

from (2.29) and (5.11) that
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Hx δt e
n− 1

2
i + βτ−α

n−1∑
k=0

a(α)
k Hx e

n−k− 1
2

i = Dδ2x e
n− 1

2
i + Hx

(
qi e

n− 1
2

i

)
+ (R̃xt )

n− 1
2

i ,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N ,

en0 = enM = 0, 1 ≤ n ≤ N ,

e0i = 0, 0 ≤ i ≤ M.

(5.13)

In view of this relation, we have the following estimates.

Theorem 5.1 Assume that the solution u(x, t) of the problem (2.1) is in C6,4([0, L]×
[0, T ]) and that ∂ku

∂tk
(x, 0) = 0 for k = 1, 2, 3. Also assume that the solution u∗(x, t)

of the problem (5.5) is in C6,3([0, L] × [0, T ]). Let Un = (Un
0 ,Un

1 , . . . ,Un
M ) and

U∗,n = (U∗,n
0 ,U∗,n

1 , . . . ,U∗,n
M ), where Un

i = u(xi , tn) and U∗,n
i = u∗(xi , tn). Also

let un = (un0, u
n
1, . . . , u

n
M ) be the solution of the compact scheme (2.29). Then when

τ‖q‖2∞ ≤ 10D
3L2 , we have

∥∥∥Un − τ 2U∗,n − un
∥∥∥ ≤

(
9L3T

D
exp

(
9L2‖q‖2∞T

D

)) 1
2

C̃
(
τ 3 + h4

)
,

1 ≤ n ≤ N , (5.14)

where the positive constant C̃ is the same as that in (5.12).

Proof The proof follows from the same argument as that in the proof of Theorem 4.3
by replacing (4.15) and (3.1) by (5.13) and (5.12), respectively. ��
Theorem 5.2 Assume that the solution u(x, t) of the problem (2.1) is in C6,4([0, L]×
[0, T ]) and that ∂ku

∂tk
(x, 0) = 0 for k = 1, 2, 3. Also assume that the solution u∗(x, t)

of the problem (5.5) is in C6,3([0, L] × [0, T ]). Let Un = (Un
0 ,Un

1 , . . . ,Un
M ) and

U∗,n = (U∗,n
0 ,U∗,n

1 , . . . ,U∗,n
M ), where Un

i = u(xi , tn) and U∗,n
i = u∗(xi , tn). Also

let un = (un0, u
n
1, . . . , u

n
M ) be the solution of the compact scheme (2.29). If q(x) ≡ q

is independent of x and q < 16D
3L2 , we have

∥∥∥Un − τ 2U∗,n − un
∥∥∥ ≤

(
3LT

2C1

) 1
2

C̃
(
τ 3 + h4

)
, 1 ≤ n ≤ N , (5.15)

where the positive constants C̃ and C1 are the same as those in (5.12) and (4.11).
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Proof The proof is completed by using the same argument as that in the proof of
Theorem 4.4 with (4.15) and (3.1) being replaced by (5.13) and (5.12), respectively.

��

An important application of Theorems 5.1 and 5.2 is to construct a Richard-
son extrapolation algorithm for enhancing the temporal accuracy of the computed
solution by the compact scheme (2.29). To do this, we denote by un(τ ) =(
un0(τ ), un1(τ ), . . . , unM (τ )

)
the solution of the compact scheme (2.29) with the time

step τ . We now construct a Richardson extrapolation algorithm as follows.

Richardson extrapolation algorithm:

Step 1. Compute un(τ ) and u2n(τ/2) by the compact scheme (2.29).
Step 2. Compute the extrapolation solution ue,n(τ )=(ue,n0 (τ ), ue,n1 (τ ), . . . , ue,nM (τ ))

by

ue,ni (τ ) = −1

3
uni (τ ) + 4

3
u2ni (τ/2), 0 ≤ i ≤ M. (5.16)

For the extrapolation solution ue,n(τ ), we have the following error estimates.

Theorem 5.3 Assume that the condition in Theorem 5.1 is satisfied. Let Un
i (τ ) be the

value of the solution u(x, t) of the problem (2.1) at the mesh point (xi , tn) with the
time step τ , and let Un(τ ) = (Un

0 (τ ),Un
1 (τ ), . . . ,Un

M (τ )). Also let ue,n(τ ) be the
extrapolation solution from the Richardson extrapolation algorithm. Then we have

∥∥Un(τ ) − ue,n(τ )
∥∥ ≤

(
34L3T

D
exp

(
9L2‖q‖2∞T

D

)) 1
2

C̃
(
τ 3 + h4

)
,

1 ≤ n ≤ N , (5.17)

where the positive constant C̃ is the same as that in (5.12).

Proof Let U∗,n
i (τ ) be the value of the solution u∗(x, t) of the problem (5.5) at the

mesh point (xi , tn) with the time step τ , and let Wn
i (τ ) = Un

i (τ ) − τ 2U∗,n
i (τ ). Since

Un
i (τ ) = U 2n

i (τ/2) and U∗,n
i (τ ) = U∗,2n

i (τ/2), we have that

−1

3
Wn

i (τ ) + 4

3
W 2n

i (τ/2) = Un
i (τ ), 0 ≤ i ≤ M.

By this equality and (5.16),

Un
i (τ ) − ue,ni (τ ) = −1

3

(
Wn

i (τ ) − uni (τ )
) + 4

3

(
W 2n

i (τ/2) − u2ni (τ/2)
)

.

Thus, the estimate (5.17) follows immediately from the estimate (5.14). ��
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Theorem 5.4 Assume that the condition in Theorem 5.2 is satisfied. Let Un
i (τ ) be the

value of the solution u(x, t) of the problem (2.1) at the mesh point (xi , tn) with the
time step τ , and let Un(τ ) = (Un

0 (τ ),Un
1 (τ ), . . . ,Un

M (τ )). Also let ue,n(τ ) be the
extrapolation solution from the Richardson extrapolation algorithm. Then we have

∥∥Un(τ ) − ue,n(τ )
∥∥ ≤

(
17LT

3C1

) 1
2

C̃
(
τ 3 + h4

)
, 1 ≤ n ≤ N , (5.18)

where the positive constants C̃ and C1 are the same as those in (5.12) and (4.11).

Proof The proof is similar as that of Theorem 5.3 by using the estimate (5.15) instead
of the estimate (5.14). ��

Theorems 5.3 and 5.4 show that the extrapolation solution ue,ni from the Richardson
extrapolation algorithm converges to the solution of the problem (2.1) with the order
O (

τ 3 + h4
)
. This implies that the Richardson extrapolation algorithm enhances the

temporal accuracy of the computed solution by the compact scheme (2.29) from the
second-order to the third-order. It is worth noticing that our extrapolation algorithm
requires a weaker condition on the solution u(x, t) than that in [16] to achieve the
third-order temporal accuracy.

Remark 5.1 With the same discretization parameters, the Richardson extrapolation
algorithm requires more arithmetic operations than the compact scheme (2.29) itself.
But its high-order temporal accuracy allows the use of much larger time step in order
to obtain satisfactory numerical results and thus much computational work is saved
(see the numerical results in the next section).

Remark 5.2 The same remark as given in Remark 4.3 for Theorems 4.3 and 4.4 holds
true for Theorems 5.3 and 5.4.

We end this section by giving a simple comment on the derivative conditions at the
initial time used in Theorems 3.1, 5.1 and 5.2. In Theorems 3.1, 5.1 and 5.2, we have
assumed the derivative conditions ∂ku

∂tk
(x, 0) = 0 for k = 1, 2 and ∂ku

∂tk
(x, 0) = 0 for

k = 1, 2, 3, respectively. If the above derivative conditions are not satisfied, one may
consider the problem (2.1) for

z(x, t) = u(x, t) −
2∑

k=1

1

k!
∂ku

∂tk
(x, 0)tk or z(x, t) = u(x, t) −

3∑
k=1

1

k!
∂ku

∂tk
(x, 0)tk

instead, where the coefficients ∂ku
∂tk

(x, 0) (k = 1, 2, 3) can be computed from the
known function g(x, t) as given in the following propositions.

Proposition 5.1 Assume that the solution u(x, t) of the problem (2.1) is in C2,1([0, L]
× [0, T ]). Then

∂u

∂t
(x, 0) = g(x, 0). (5.19)
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Proposition 5.2 Assume that the solution u(x, t) of the problem (2.1) is in C2,2([0, L]
× [0, T ]). Let

F(x, t) = g(x, t) − βg(x, 0)

Γ (1 − α)
t1−α. (5.20)

Then the limit limt→0
∂F
∂t (x, t) exists and

∂2u

∂t2
(x, 0) = lim

t→0

∂F

∂t
(x, t) + D

∂2g

∂x2
(x, 0) + q(x)g(x, 0). (5.21)

Proposition 5.3 Assume that the solution u(x, t) of the problem (2.1) is in C2,3([0, L]
× [0, T ]). Let

G(x, t) = g(x, t) − βg(x, 0)

Γ (2 − α)
t1−α − β

Γ (3 − α)

∂2u

∂t2
(x, 0)t2−α. (5.22)

Then the limit limt→0
∂2G
∂t2

(x, t) exists and

∂3u

∂t3
(x, 0) = lim

t→0

∂2G

∂t2
(x, t) + D

∂2

∂x2

(
∂2u

∂t2
(x, 0)

)
+ q(x)

∂2u

∂t2
(x, 0), (5.23)

where ∂2u
∂t2

(x, 0) is computed from (5.21).

The proofs of the above propositions will be given in Appendix.

6 Applications and numerical results

In this section,we apply the proposed compact finite differencemethod andRichardson
extrapolation algorithm to two fractionalmobile/immobile convection–diffusion prob-
lems in the form (1.3). The exact analytical solutionv(x, t)of eachproblem is explicitly
known and is mainly used to compare with the computed solution vni = uni /ki and
the extrapolation solution v

e,n
i = ue,ni /ki to check the accuracy of the compact finite

difference method and the high efficiency of the Richardson extrapolation algorithm,
where uni and u

e,n
i are the solutions of the compact scheme (2.29) and the Richardson

extrapolation algorithm, respectively, and ki = k(xi ). In order to demonstrate high-
order temporal accuracy of the compact scheme (2.29), we also make some numerical
comparisons of it with the compact scheme (2.17) given in [33].

To demonstrate the accuracy of the computed solution vni and the extrapolation
solution v

e,n
i , we compute their errors by

e(τ, h) = max
0≤n≤N

∥∥V n − zn
∥∥ , (6.1)

where V n
i = v(xi , tn) and zni represents the computed solution vni or the extrapolation

solution v
e,n
i . The temporal and spatial convergence orders are computed, respectively,

by
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ordert(τ, h) = log2

(
e(2τ, h)

e(τ, h)

)
, orders(τ, h) = log2

(
e(τ, 2h)

e(τ, h)

)
. (6.2)

All computations are carried out by using a MATLAB subroutine on a computer with
Xeon X5650 CPU and 96GB memory.

Example 6.1 We first consider the problem (1.3) in the domain [0, π ] × [0, 1] with
β = D = 1, V (x) = − sin x and

f (x, t) = t2+α

(
3 + α + t + Γ (4 + α)

6
t1−α

)
cos x + t3+α sin2 x . (6.3)

The boundary functions are given by

φ0(t) = t3+α, φL(t) = −t3+α. (6.4)

It is easy to check that v(x, t) = t3+α cos x is the solution of this problem and the
function q(x) in the problem (2.1) is given by q(x) = − 1

4

(
2 cos x + sin2 x

)
.

We first test the temporal convergence order of the compact scheme (2.29) and the
Richardson extrapolation algorithm for different α. Let the spatial step h = π/400.
Table 1 gives the error e(τ, h) and the temporal convergence order ordert(τ, h) of the
computed solution vni forα = 1/4, 1/2, 3/4 and different time step τ . The correspond-
ing error and temporal convergence order of the extrapolation solution v

e,n
i are given

in Table 2. As expected from our theoretical analysis, the computed solution vni has
the second-order temporal accuracy while the extrapolation solution v

e,n
i possesses

the third-order temporal accuracy. For comparison, the error e(τ, h) and the temporal
convergence order ordert(τ, h) of the computed solution vni by the compact scheme
(2.17) given in [33] are also listed in Table 1. It is seen that this scheme has only the
temporal accuracy of order 2−α, which is less than two, and thus it is far less accurate
than the compact scheme (2.29) given in this paper.

We next compute the spatial convergence order of the compact scheme (2.29).
Table 3 presents the error e(τ, h) and the spatial convergence order orders(τ, h)

of the computed solution vni for α = 1/4, 1/2, 3/4 and different spatial step h,
where the time step τ = 1/5000. The data in this table demonstrate that the com-
puted solution vni is of the fourth-order spatial accuracy. This coincides well with the
analysis.

In order to demonstrate the effectiveness of using larger time step in the Richardson
extrapolation algorithm, we compare it with the compact scheme (2.29) by taking
a given spatial step h = π/800 and different time step. Tables 4 and 5 give the
error e(τ, h) and the corresponding computational cost (CPU time in seconds) of
the computed solution vni and the extrapolation solution v

e,n
i , respectively, for α =

1/4, 1/2, 3/4. We see that in order to obtain a computed solution vni by the compact
scheme (2.29) for α = 1/4 with the error around 2.252 × 10−9, we need to take τ =
1/10240, and so cost 110.260 CPU seconds. In contrast, a more accurate computed
solution is provided by theRichardson extrapolation algorithmwith τ = 1/160. In this
case, the error is 2.142×10−9, and the corresponding cost is only 0.375 CPU seconds.
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Table 1 The error and the temporal convergence order of the computed solution vni for Example 6.1
(h = π/400)

α τ Scheme (2.29) Scheme (2.17) in [33]

e(τ, h) ordert(τ, h) e(τ, h) ordert(τ, h)

1/4 1/20 5.842e–04 9.846e–04

1/40 1.469e–04 1.992 2.891e–04 1.768

1/80 3.682e–05 1.996 8.495e–05 1.767

1/160 9.217e–06 1.998 2.500e–05 1.765

1/320 2.306e–06 1.999 7.366e–06 1.763

1/640 5.766e–07 2.000 2.173e–06 1.761

1/2 1/20 1.121e–03 3.429e–03

1/40 2.834e–04 1.984 1.207e–03 1.507

1/80 7.125e–05 1.992 4.249e–04 1.506

1/160 1.786e–05 1.996 1.497e–04 1.505

1/320 4.471e–06 1.998 5.279e–05 1.504

1/640 1.119e–06 1.999 1.862e–05 1.503

3/4 1/20 2.048e–03 1.134e–02

1/40 5.208e–04 1.976 4.778e–03 1.246

1/80 1.313e–04 1.988 2.012e–03 1.248

1/160 3.296e–05 1.994 8.462e–04 1.249

1/320 8.257e–06 1.997 3.559e–04 1.250

1/640 2.066e–06 1.999 1.496e–04 1.250

Table 2 The error and the temporal convergence order of the extrapolation solution v
e,n
i for Example 6.1

(h = π/400)

τ α = 1/4 α = 1/2 α = 3/4

e(τ, h) ordert(τ, h) e(τ, h) ordert(τ, h) e(τ, h) ordert(τ, h)

1/20 1.081e–06 4.151e–06 1.168e–05

1/40 1.362e–07 2.989 5.206e–07 2.995 1.464e–06 2.997

1/80 1.708e–08 2.996 6.517e–08 2.998 1.832e–07 2.998

1/160 2.117e–09 3.012 8.133e–09 3.002 2.289e–08 3.000

1/320 2.480e–10 3.094 9.973e–10 3.028 2.845e–09 3.008

1/640 2.739e–11 3.178 1.124e–10 3.150 3.383e–10 3.072

Similar comparisons can be made with other data. These comparisons demonstrate
the high efficiency of using larger time step in the Richardson extrapolation algorithm
and justify our efforts to develop this extrapolation algorithm.
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Table 3 The error and the spatial convergence order of the computed solution vni for Example 6.1 (τ =
1/5000)

h α = 1/4 α = 1/2 α = 3/4

e(τ, h) orders(τ, h) e(τ, h) orders(τ, h) e(τ, h) orders(τ, h)

π/4 3.657e–03 3.261e–03 2.831e–03

π/8 2.169e–04 4.076 1.962e–04 4.055 1.737e–04 4.027

π/16 1.323e–05 4.035 1.197e–05 4.034 1.060e–05 4.034

π/32 8.144e–07 4.022 7.309e–07 4.034 6.364e–07 4.058

π/64 4.465e–08 4.189 3.560e–08 4.360 3.001e–08 4.407

Table 4 The error and the computational cost of the computed solution vni for Example 6.1 (h = π/800)

τ α = 1/4 α = 1/2 α = 3/4

e(τ, h) CPU time (s) e(τ, h) CPU time (s) e(τ, h) CPU time (s)

1/160 9.217e–06 0.095 1.786e–05 0.094 3.296e–05 0.095

1/320 2.306e–06 0.222 4.471e–06 0.220 8.257e–06 0.221

1/640 5.766e–07 0.618 1.119e–06 0.612 2.066e–06 0.613

1/1280 1.442e–07 1.970 2.797e–07 1.946 5.168e–07 1.953

1/2560 3.605e–08 7.289 6.994e–08 7.140 1.292e–07 7.173

1/5120 9.010e–09 28.401 1.749e–08 27.849 3.231e–08 28.111

1/10240 2.252e–09 110.260 4.371e–09 108.044 8.078e–09 108.876

Table 5 The error and the computational cost of the extrapolation solution v
e,n
i for Example 6.1 (h =

π/800)

τ α = 1/4 α = 1/2 α = 3/4

e(τ, h) CPU time (s) e(τ, h) CPU time (s) e(τ, h) CPU time (s)

1/20 1.081e–06 0.102 4.151e–06 0.102 1.168e–05 0.102

1/40 1.363e–07 0.134 5.206e–07 0.134 1.464e–06 0.133

1/80 1.710e–08 0.199 6.519e–08 0.200 1.832e–07 0.199

1/160 2.142e–09 0.375 8.156e–09 0.376 2.291e–08 0.375

1/320 2.663e–10 0.900 1.019e–09 0.904 2.864e–09 0.902

1/640 3.198e–11 2.655 1.260e–10 2.651 3.579e–10 2.652

1/1280 3.758e–12 9.351 1.447e–11 9.350 4.356e–11 9.377

Example 6.2 In this example, we consider the problem (1.3) in the domain [0, 100]×
[0, 1] with β = D = 1, V (x) = cos(πx) and

f (x, t) =
(
Γ (4 + α)t3 + 24

Γ (4 − α)
t3−α + 6

Γ (3 − α)
t2−α + 2

Γ (2 − α)
t1−α

+ η(t)
)
cos(πx), (6.5)
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Table 6 The error and the temporal convergence order of the computed solution vni for Example 6.2
(h = 1/400)

τ α = 1/4 α = 1/2 α = 3/4

e(τ, h) ordert(τ, h) e(τ, h) ordert(τ, h) e(τ, h) ordert(τ, h)

1/20 1.733e–02 3.244e–02 5.699e–02

1/40 4.352e–03 1.994 8.161e–03 1.991 2.185e–02 1.383

1/80 1.090e–03 1.997 2.043e–03 1.998 1.105e–02 0.983

1/160 2.727e–04 1.999 8.531e–04 1.260 5.178e–03 1.093

1/320 6.818e–05 2.000 3.442e–04 1.309 2.335e–03 1.149

1/640 1.704e–05 2.000 1.348e–04 1.352 1.046e–03 1.159

where η(t) = ς ′(t) + π(π − sin πx)ς(t) with ς(t) = 6t3+α + 4t3 + 3t2 + 2t . The
boundary functions are chosen as

φ0(t) = φL(t) = ς(t). (6.6)

This choice implies that v(x, t) = ς(t) cos(πx) is the solution of this problem.
Clearly, the function q(x) in the problem (2.1) is given by q(x) = − 1

4 (2π sin(πx)
+ cos2(πx)

)
.

For this example, the problem (2.1) has the solution u(x, t) = ς(t)k(x) cos(πx),
where k(x) = exp (−sin(πx)/2π). One can find that the zero derivative conditions
∂ku
∂tk

(x, 0) = 0 (k = 1, 2) in Theorem 3.1 are not satisfied any longer. Now we would
like to test the efficiency of the compact scheme (2.29) for this case. Let the spatial
step h = 1/400. Table 6 lists the error e(τ, h) and the temporal convergence order
ordert(τ, h) of the computed solution vni for α = 1/4, 1/2, 3/4 and different time step
τ . It is seen that the second-order temporal accuracy of the computed solution vni is
still achieved for α = 1/4, but it cannot be achieved when α = 1/2 and α = 3/4.
This suggests us that the zero derivative conditions in Theorem 3.1 are only sufficient
but not necessary, and certain zero derivative conditions are indispensable to ensure
the second-order temporal accuracy of the compact scheme (2.29).

According to Propositions 5.1–5.3, we know that

∂u

∂t
(x, 0) = 2k(x) cos(πx),

∂2u

∂t2
(x, 0) = 6k(x) cos(πx),

∂3u

∂t3
(x, 0) = 24k(x) cos(πx).

We now transform the problem (2.1) of this example by letting

z(x, t) = u(x, t) − k(x)(4t3 + 3t2 + 2t) cos(πx), (6.7)

123



High-order compact method for fractional... 763

Table 7 The error and the temporal convergence order of the computed solution vni for the transformed
problem of Example 6.2 (h = 1/400)

α τ Scheme (2.29) Scheme (2.17) in [33]

e(τ, h) ordert(τ, h) e(τ, h) ordert(τ, h)

1/4 1/20 1.141e–02 3.428e–03

1/40 2.868e–03 1.993 1.010e–03 1.764

1/80 7.187e–04 1.996 2.976e–04 1.763

1/160 1.799e–04 1.998 8.777e–05 1.761

1/320 4.501e–05 1.999 2.591e–05 1.760

1/640 1.126e–05 2.000 7.668e–06 1.757

1/2 1/20 2.315e–02 1.246e–02

1/40 5.844e–03 1.986 4.394e–03 1.504

1/80 1.468e–03 1.993 1.549e–03 1.504

1/160 3.679e–04 1.997 5.461e–04 1.504

1/320 9.208e–05 1.998 1.927e–04 1.503

1/640 2.303e–05 1.999 6.801e–05 1.502

3/4 1/20 4.414e–02 4.265e–02

1/40 1.120e–02 1.979 1.800e–02 1.245

1/80 2.819e–03 1.990 7.580e–03 1.248

1/160 7.072e–04 1.995 3.189e–03 1.249

1/320 1.771e–04 1.997 1.341e–03 1.250

1/640 4.432e–05 1.999 5.640e–04 1.250

so that the zero derivative conditions ∂ku
∂tk

(x, 0) = 0 (k = 1, 2, 3) in Theorems
3.1, 5.1 and 5.2 are satisfied by the transformed problem. Now we use the com-
pact scheme (2.29) and the Richardson extrapolation algorithm to solve the above
transformed problem. In Table 7, we give the error e(τ, h) and the temporal conver-
gence order ordert(τ, h) of the computed solution vni by the compact scheme (2.29)
for α = 1/4, 1/2, 3/4 and different time step τ , where the spatial step h = 1/400.
The corresponding error and the temporal convergence order of the extrapolation solu-
tion v

e,n
i are given in Table 8, where the spatial step h = 1/1000. It is seen that the

computed solution vni has the second-order temporal accuracy while the extrapolation
solution v

e,n
i possesses the third-order temporal accuracy. This is in accord with our

explanations given at the end of Sect. 5. In Table 7, we also list the error e(τ, h) and the
temporal convergence order ordert(τ, h) of the computed solution vni by the compact
scheme (2.17) in [33]. It is seen that the compact scheme (2.17) in [33] has only the
temporal accuracy of order 2 − α.

Since L = 100, D = 1 and ‖q‖∞ = π
2 , the restriction condition on τ in Theorems

4.1, 4.3 and 5.3 for the present problem is reduced to τ ≤ 1
750π2 . Clearly, this condition

is not satisfied for all τ in Tables 7 and 8. However, the corresponding numerical results
in these tables show that the compact scheme (2.29) and the Richardson extrapolation
algorithm are still stable and convergent. This implies that the restriction condition
on τ in those theorems is only a sufficient condition for the stability and convergence
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Table 8 The error and the temporal convergence order of the extrapolation solution v
e,n
i for the transformed

problem of Example 6.2 (h = 1/1000)

τ α = 1/4 α = 1/2 α = 3/4

e(τ, h) ordert(τ, h) e(τ, h) ordert(τ, h) e(τ, h) ordert(τ, h)

1/20 1.966e–05 7.537e–05 2.129e–04

1/40 2.468e–06 2.994 9.437e–06 2.997 2.661e–05 3.000

1/80 3.095e–07 2.995 1.181e–06 2.998 3.327e–06 3.000

1/160 3.904e–08 2.987 1.476e–07 3.000 4.157e–07 3.000

1/320 4.855e–09 3.007 1.834e–08 3.009 5.213e–08 2.995

1/640 5.650e–10 3.103 2.267e–09 3.016 6.537e–09 2.995

Table 9 The error and the spatial convergence order of the computed solution vni for the transformed
problem of Example 6.2 (τ = 1/20000)

h α = 1/4 α = 1/2 α = 3/4

e(τ, h) orders(τ, h) e(τ, h) orders(τ, h) e(τ, h) orders(τ, h)

1/4 9.262e–02 9.002e–02 8.680e–02

1/8 5.428e–03 4.093 5.273e–03 4.094 5.081e–03 4.095

1/16 3.340e–04 4.023 3.244e–04 4.023 3.125e–04 4.023

1/32 2.080e–05 4.005 2.020e–05 4.005 1.947e–05 4.004

1/64 1.304e–06 3.996 1.272e–06 3.990 1.234e–06 3.979

of the compact scheme (2.29) and the Richardson extrapolation algorithm with the
general q(x).

The numerical results in Table 9 give the error e(τ, h) and the spatial convergence
order orders(τ, h) of the computed solution vni by the compact scheme (2.29) for
α = 1/4, 1/2, 3/4 and different spatial step h, where the time step τ = 1/20000.
These results show that the compact scheme (2.29) generates the fourth-order spatial
accuracy.

In Tables 10 and 11, we compare the Richardson extrapolation algorithm with the
compact scheme (2.29) in terms of the accuracy and the computational cost (CPU
time in seconds). It is seen that the Richardson extrapolation algorithm allows the use
of much larger time step in order to obtain the more accurate computed solution than
the compact scheme (2.29), and thus much computational work is saved. This again
demonstrates the effectiveness of the Richardson extrapolation algorithm.

7 Concluding remarks

In this work, we have presented and analyzed a high-order compact finite difference
method for a class of fractional mobile/immobile convection–diffusion equations.
The convection coefficient of the equation may be spatially variable. In our method, a
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Table 10 The error and the computational cost of the computed solution vni for the transformed problem
of Example 6.2 (h = 1/1000)

τ α = 1/4 α = 1/2 α = 3/4

e(τ, h) CPU time (s) e(τ, h) CPU time (s) e(τ, h) CPU time (s)

1/160 1.799e–04 3.277 3.679e–04 3.405 7.072e–04 3.330

1/320 4.501e–05 8.250 9.208e–05 8.347 1.771e–04 8.092

1/640 1.126e–05 26.272 2.303e–05 26.035 4.432e–05 24.573

1/1280 2.814e–06 90.586 5.760e–06 84.602 1.108e–05 85.383

1/2560 7.040e–07 310.215 1.440e–06 301.986 2.771e–06 301.683

1/5120 1.757e–07 1189.578 3.600e–07 1153.678 6.927e–07 1128.815

Table 11 The error and the computational cost of the extrapolation solution v
e,n
i for the transformed

problem of Example 6.2 (h = 1/1000)

τ α = 1/4 α = 1/2 α = 3/4

e(τ, h) CPU time (s) e(τ, h) CPU time (s) e(τ, h) CPU time (s)

1/20 1.966e–05 1.010 7.537e–05 1.061 2.129e–04 0.997

1/40 2.468e–06 1.947 9.437e–06 1.951 2.661e–05 1.989

1/80 3.095e–07 4.476 1.181e–06 4.275 3.327e–06 4.469

1/160 3.904e–08 11.685 1.476e–07 11.486 4.157e–07 11.636

1/320 4.855e–09 34.616 1.834e–08 34.614 5.213e–08 35.566

1/640 5.650e–10 120.307 2.267e–09 116.752 6.537e–09 117.042

fourth-order compact finite difference approximation is used for the spatial derivative
and a second-order difference approximation is applied for the time first derivative
and the Caputo time fractional derivative. We have proved that the resulting scheme
is uniquely solvable and (almost) unconditionally stable and convergent. The error
estimate we have provided shows that the proposed method has the second-order
temporal accuracy and the fourth-order spatial accuracy, regardless of the order of
the fractional derivative. A Richardson extrapolation algorithm has been developed
to enhance the temporal accuracy of the final computed solution (or the extrapolation
solution) to the third-order. Numerical results coincide with the analysis very well,
and show that the Richardson extrapolation algorithm is particularly attractive due to
its improved temporal accuracy, compared to the original compact difference scheme.

Another important feature of the proposed method is that it yields a very simple
and effective high-order scheme for the time fractional convection–diffusion equations
with spatially variable convection coefficients. The related theoretical analysis is also
quite transparent. In the future, we plan to make further investigations and extend this
method to the other fractional differential equations.

Acknowledgements The author would like to thank the referees for their valuable comments and sugges-
tions which improved the presentation of the paper.
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8 Appendix

In this appendix, we prove Propositions 5.1–5.3.

Proof of Proposition 5.1 When ∂u
∂t (x, t) is bounded,

∂αu
∂tα (x, 0) = 0 (see [8]). Also,

we have ∂2u
∂x2

(x, 0) = 0 since u(x, 0) = 0 for all x ∈ [0, L]. Thus, by the governing
equation of (2.1),

∂u

∂t
(x, 0) = −β

∂αu

∂tα
(x, 0) + D

∂2u

∂x2
(x, 0) + q(x)u(x, 0) + g(x, 0) = g(x, 0).

This proves (5.19). ��
Proof of of Proposition 5.2 By integrating by parts and by (5.19),

∂αu

∂tα
(x, t) = g(x, 0)

Γ (2 − α)
t1−α + 1

Γ (2 − α)

∫ t

0

∂2u

∂s2
(x, s)(t − s)1−αds.

This implies that the governing equation of (2.1) can be written as

∂u

∂t
(x, t) + β

Γ (2 − α)

∫ t

0

∂2u

∂s2
(x, s)(t − s)1−αds = D

∂2u

∂x2
(x, t)

+ q(x)u(x, t) + F(x, t).

Since u(x, t) ∈ C2,2([0, L] × [0, T ]), we have

∂F

∂t
(x, t) = ∂2u

∂t2
(x, t) + βC

0D1+α
t u(x, t) − D

∂3u

∂t∂x2
(x, t)

− q(x)
∂u

∂t
(x, t)

and

lim
t→0

∂F

∂t
(x, t) = ∂2u

∂t2
(x, 0) + βC

0D1+α
t u(x, 0) − D

∂3u

∂t∂x2
(x, 0) − q(x)

∂u

∂t
(x, 0)

= ∂2u

∂t2
(x, 0) − D

∂2

∂x2

(
∂u

∂t
(x, 0)

)
− q(x)

∂u

∂t
(x, 0).

This together with (5.19) proves (5.21). ��
Proof of of Proposition 5.3 By integrating by parts twice and by (5.19),

∂αu

∂tα
(x, t) = g(x, 0)

Γ (2 − α)
t1−α + 1

Γ (3 − α)

∂2u

∂t2
(x, 0)t2−α

+ 1

Γ (3 − α)

∫ t

0

∂3u

∂s3
(x, s)(t − s)2−αds.
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We therefore have from the governing equation of (2.1) that

∂u

∂t
(x, t) + β

Γ (3 − α)

∫ t

0

∂3u

∂s3
(x, s)(t − s)2−αds

= D
∂2u

∂x2
(x, t) + q(x)u(x, t) + G(x, t).

Since u(x, t) ∈ C2,3([0, L] × [0, T ]), we have
∂2G

∂t2
(x, t) = ∂3u

∂t3
(x, t) + βC

0D
2+α
t u(x, t) − D

∂4u

∂t2∂x2
(x, t) − q(x)

∂2u

∂t2
(x, t)

and

lim
t→0

∂2G

∂t2
(x, t) = ∂3u

∂t3
(x, 0) + βC

0D2+α
t u(x, 0) − D

∂4u

∂t2∂x2
(x, 0) − q(x)

∂2u

∂t2
(x, 0)

= ∂3u

∂t3
(x, 0) − D

∂2

∂x2

(
∂2u

∂t2
(x, 0)

)
− q(x)

∂2u

∂t2
(x, 0).

This proves that the limit limt→0
∂2G
∂t2

(x, t) exists and (5.23) holds true. ��
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