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Abstract In this paper we propose and analyze a new fully-mixed finite element
method for the stationary Boussinesq problem. More precisely, we reformulate a pre-
vious primal-mixed scheme for the respective model by holding the same modified
pseudostress tensor depending on the pressure, and the diffusive and convective terms
of the Navier–Stokes equations for the fluid; and in contrast, we now introduce a new
auxiliary vector unknown involving the temperature, its gradient and the velocity for
the heat equation. As a consequence, a mixed approach is carried out in heat as well
as fluid equation, and differently from the previous scheme, no boundary unknowns
are needed, which leads to an improvement of the method from both the theoretical
and computational point of view. In fact, the pressure is eliminated and as a result
the unknowns are given by the aforementioned auxiliary variables, the velocity and
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the temperature of the fluid. In addition, for reasons of suitable regularity conditions,
the scheme is augmented by using the constitutive and equilibrium equations, and the
Dirichlet boundary conditions. Then, the resulting formulation is rewritten as a fixed
point problem and its well-posedness is guaranteed by the classical Banach theorem
combined with the Lax–Milgram theorem. As for the associated Galerkin scheme, the
Brouwer and the Banach fixed point theorems are utilized to establish existence and
uniqueness of discrete solution, respectively. In particular, Raviart–Thomas spaces of
order k for the auxiliary unknowns and continuous piecewise polynomials of degree
≤ k + 1 for the velocity and the temperature become feasible choices. Finally, we
derive optimal a priori error estimates and provide several numerical results illus-
trating the good performance of the scheme and confirming the theoretical rates of
convergence.

Keywords Boussinesq equations · Augmented fully-mixed formulation · Fixed point
theory · Finite element methods · A priori error analysis

Mathematics Subject Classification 65N30 · 65N12 · 65N15 · 35Q79 · 80A20 ·
76R05 · 76D07

1 Introduction

In engineering and industry, natural convection is a largely studied phenomenon due to
its presence in different applications. For instance, electrical and electronic industries
use it for the thermal regulation of components and devices of industrial equipments,
and the agricultural sector utilizes this model for drying applications and storage.
This phenomenon can also be found in aeronautics, nuclear energy, solar collectors
and environmental engineering, to name a few. In simple words, it refers to a fluid
motion generated by density differences due to temperature gradients.Mathematically,
it is modelled by the Navier–Stokes equations coupled to the convection–diffusion
equation through the Boussinesq approximation (variations in density are neglected
everywhere except in the buoyancy term), reason why it is often called the Boussinesq
model.

Due its relevance, in the last decades the numerical analysis community has been
vividly focused on developing accurate and efficient numerical methods for simulat-
ing this phenomenon (see, e.g. [2,4,6,7,10,11,13,14,18,20,21,24], and the references
therein). The above list includes temperature-dependent parameters problems and
time-dependent problems. In particular, a conforming finite element method for the
Boussinesq model is introduced and analized in [4]. The approach there, which corre-
sponds to one of the first works in this direction, employs the primal method in both
Navier–Stokes and heat equations, yielding the fluid velocity, the fluid pressure and
the fluid temperature as the main unknowns of the system. Later, a dual-mixed formu-
lation for the two-dimensional Boussinesq model has been proposed in [13]. Here, the
gradient of the velocity and the gradient of the temperature are introduced as further
unknowns (besides the velocity, pressure and temperature). The corresponding mixed
finite element scheme employs Raviart–Thomas elements of lowest order for the gra-

123



An augmented fully-mixed finite element method… 169

dients and piecewise constants for the velocity, temperature and pressure. Existence
of solution and convergence of the numerical scheme are proved near a nonsingular
solution and quasi-optimal error estimates are provided.

Recently, a new augmented primal-mixed variational formulation for the stationary
Boussinesq model has been proposed and analyzed in [10]. This approach employs a
technique previously applied to the Navier–Stokes equations (see [8]), which consists
of the introduction of a modified nonlinear pseudostress tensor involving the gradient
of the velocity, the convective term and the pressure. By using an equivalent statement
suggested by the incompressibility condition, the pressure is eliminated. Furthermore,
since the convective term forces the velocity to live in a smaller space than usual, the
variational formulation for the fluid flow equations are augmented by incorporating
suitable Galerkin type expressions arising from the constitutive and equilibrium equa-
tions, and the Dirichlet boundary condition. The resulting augmented formulation for
the fluid flow is coupled with a primal-mixed scheme for the convection–diffusion
equation, yielding the so called augmented primal-mixed coupled system, where the
main unknowns are given by the aforementioned nonlinear pseudostress, the velocity,
the temperature and the normal derivative of the latter on the boundary. The pressure
can be easily recovered in terms of the nonlinear pseudostress and the velocity through
a simple post-processing procedure. An equivalent fixed-point setting that resembles
the approach from [3] is then employed to develop the continuous and discrete analyses
in [10].

In this paper, we extend the results obtained in [10], and propose and analyze a new
augmented fully-mixed finite element method for the stationary Boussinesq problem.
Similarly to [10], we adopt the augmented mixed formulation from [8] for the fluid
flow equations, whereas, in contrast to [10], we also propose an augmented mixed
formulation for the convection–diffusion equation modelling the temperature. More
precisely, we introduce a new auxiliary vector unknown involving the temperature,
its gradient and the velocity, and derive a new mixed formulation for the convection–
diffusion equation, which is also augmented by using the constitutive and equilibrium
temperature equations, and the temperature boundary condition. In this way, the afore-
mentioned auxiliary variable, together with the nonlinear pseudostress, the velocity
and the temperature of the fluid, are themain unknown of the resulting coupled system.
As a consequence,we obtain a newaugmented fully-mixed formulation for the coupled
problem, which allows the utilization of the same family of finite element subspaces
for approximating the unknowns of both, the Navier–Stokes and convection–diffusion
equations. This property constitutes a significative advantage from a practical point
of view since it permits to unify and simplify the computational implementation of
the resulting discrete scheme. In addition, we emphasize in advance that, differently
from the scheme in [10], no boundary unknowns are needed here, which leads to an
improvement of themethod from both the theoretical and computational point of view.
Concerning the solvability analysis, we proceed as in [3,10], and introduce an equiv-
alent fixed-point setting. In this way, assuming that the data is sufficiently small, we
establish existence and uniqueness of solution of the continuous problem by means of
the classical Banach fixed-point theorem, combined with the Lax–Milgram theorem.
In turn, the Brouwer and the Banach fixed-point theorems are utilized to establish
existence and uniqueness of solution, respectively, of the associated Galerkin scheme.
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We remark that no discrete inf-sup conditions are required for the discrete analysis,
and therefore arbitrary finite element subspaces can be employed, which is another
interesting feature of the present approach. In particular, Raviart–Thomas spaces of
order k for the auxiliary unknowns and continuous piecewise polynomials of degree
≤ k + 1 for the velocity and the temperature become feasible choices. Finally, we
point out that an additional advantage of approximating the solution of the coupled
system through this new approach is that, besides the possibility of recovering the
pressure in terms of the nonlinear pseudostress and the velocity, one can compute
other variables of physical relevance, such as the vorticity, the shear–stress tensor, the
velocity gradient and the temperature gradient, as simple post-processing formulae of
the solution. Whether this is utilized or not and, in case it is, the corresponding choice
of variables to be postprocessed, strictly depend on the particular interests of the user.

1.1 Outline

We have organized the contents of this paper as follows. The remainder of this section
introduces some standard notations and functional spaces. In Sect. 2 we introduce the
model problem, which for our purposes, is rewritten as an equivalent first-order set of
equations. Next, in Sect. 3, we derive the augmented mixed variational formulation
and, by assuming sufficiently small data, we establish its well-posedness by means of
a fixed-point strategy and the Banach fixed-point theorem. The associated Galerkin
scheme is introduced and analyzed in Sect. 4. Its well-posedness is attained by adapt-
ing the fixed-point strategy developed for the continuous problem. In Sect. 5 we apply
a suitable Strang-type lemma to derive the corresponding Céa estimate under a similar
assumption on the size of the data. Finally, in Sect. 6 we present several numeri-
cal examples illustrating the good performance of the augmented fully-mixed finite
element method and confirming the theoretical rates of convergence.

1.2 Preliminaries

Let us denote by � ⊆ Rn , n ∈ {2, 3}, a given bounded domain with polyhedral
boundary �, and denote by ν the outward unit normal vector on �. Standard notation
will be adopted for Lebesgue spaces Lp(�) and Sobolev spaces Hs(�) with norm
‖·‖s,� and seminorm |·|s,�. In particular, H1/2(�) is the space of traces of functions of
H1(�) and H−1/2(�) denotes its dual. ByM andMwe will denote the corresponding
vectorial and tensorial counterparts of the generic scalar functional space M, and
‖ · ‖, with no subscripts, will stand for the natural norm of either an element or an
operator in any product functional space. Furthermore, as usual I stands for the identity
tensor in Rn×n , and | · | denotes the Euclidean norm in Rn . Also, for any vector fields
v = (vi )i=1,n and w = (wi )i=1,n we set the gradient, divergence, and tensor product
operators, as

∇v :=
(

∂vi

∂x j

)
i, j=1,n

, div v :=
n∑
j=1

∂v j

∂x j
, and v ⊗ w := (vi w j )i, j=1,n .
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In addition, for any tensor fields τ = (τi j )i, j=1,n and ζ = (ζi j )i, j=1,n , we let div τ be
the divergence operator div acting along the rows of τ , and define the transpose, the
trace, the tensor inner product, and the deviatoric tensor, respectively, as

τt := (τ j i )i, j=1,n, tr(τ ) :=
n∑

i=1

τi i , τ : ζ :=
n∑

i, j=1

τi jζi j , and

τd := τ − 1

n
tr(τ ) I.

Then, we recall that the spaces

H(div;�) := {q ∈ L2(�) : div q ∈ L2(�)},

and

H(div;�) := {τ ∈ L
2(�) : div τ ∈ L2(�)},

equipped with the usual norms

‖q‖2div;� := ‖q‖20,� + ‖div q‖20,� ∀q ∈ H(div;�),

and

‖τ‖2div;� := ‖τ‖20,� + ‖div τ‖20,� ∀τ ∈ H(div;�),

are both Hilbert spaces.

2 The model problem

The stationary Boussinesq problem consists of a system of equations where the
incompressible Navier–Stokes equation is coupled with the heat equation through
a convective term and a buoyancy term typically acting in direction opposite to grav-
ity. More precisely, given an external force per unit mass g ∈ L∞(�), and assuming
that the boundary velocity and temperature are prescribed by uD ∈ H1/2(�) and
ϕD ∈ H1/2(�), respectively, the aforementioned system of equations is given by

− μ�u + (∇u) u + ∇ p − g ϕ = 0 in �,

div u = 0 in �,

− div(K∇ϕ) + u · ∇ϕ = 0 in �,

u = uD on �,

ϕ = ϕD on �, (2.1)

where the unknowns are the velocity u, the pressure p and the temperature ϕ of a
fluid occupying the region �. Here, μ > 0 is the fluid viscosity and K ∈ L

∞(�)
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is a uniformly positive definite tensor describing the thermal conductivity, which are
assumed to be known. In particular, we denote by κ0 the positive constant satisfying

K
−1 c · c ≥ κ0 |c|2 ∀c ∈ Rn . (2.2)

As usual, the Dirichlet datum uD must satisfy the compatibility condition

∫
�

uD · ν = 0. (2.3)

In addition, it is well known that uniqueness of a pressure solution of (2.1) (see e.g.
[21]) is ensured in the space L2

0(�) = {q ∈ L2(�) : ∫
�
q = 0

}
.

Now, in order to derive our augmented fully-mixed formulation we first need to
rewrite (2.1) as a first-order system of equations. To this end, we first introduce the
nonlinear pseudostress

σ := μ∇u − (u ⊗ u) − p I in �, (2.4)

and then, proceeding as in [8] (see also [10]), in particular utilizing the incompress-
ibility condition div u = tr(∇u) = 0, we find that the equations modelling the fluid
can be rewritten, equivalently, as

σd + (u ⊗ u)d = μ∇u in �, −div σ − g ϕ = 0 in �, u = uD on �,

p = −1

n
tr(σ + u ⊗ u) in �,

∫
�

tr(σ + u ⊗ u) = 0. (2.5)

Note that the fourth equation in (2.5) allows us to eliminate the pressure p from
the system and compute it as a simple post-process of the solution, whereas the last
equation takes care of the requirement that p ∈ L2

0(�).
Similarly, for the convection–diffusion equation modelling the temperature of the

fluid, we now introduce the further unknown,

p := K∇ϕ − ϕ u in �,

so that, utilizing again the incompressibility condition div u = 0 in �, and after
simple computations, the remaining equations in the system (2.1) can be rewritten,
equivalently, as

K
−1 p + K

−1 ϕ u = ∇ϕ in �, div p = 0 in �, ϕ = ϕD on �. (2.6)

In this way, we arrive at the full first-order system of equations given by (2.5) and
(2.6), where, after eliminating the pressure, we find that the new auxiliary variables σ

and p, the velocity u, and the temperature ϕ become themain unknowns of the coupled
problem. In addition, we emphasize that one of the main advantages of approximating
the solution of the coupled system (2.5) and (2.6) is that, besides the possibility of
recovering the pressure in terms of the nonlinear pseudostress and the velocity, one
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can compute further variables of interest, such as the vorticity ω, the shear–stress σ̃ ,
the velocity gradient ∇u, and the temperature gradient ∇ϕ, as simple post-processes
of the solution, that is

ω = 1

2μ
(σ − σt), σ̃ = σd + (u ⊗ u)d + σt + u ⊗ u,

∇u = 1

μ
(σd + (u ⊗ u)d), ∇ϕ = K

−1 p + K
−1 ϕ u. (2.7)

Furthermore, since the set of equations modelling the fluid (cf. (2.5)) are the same
of the mixed-primal formulation utilized in [10], we remark in advance that in what
follows we make use of some results already available in [10], and also adapt several
arguments utilized in [10] to derive and analyze the augmented fully-mixed scheme
to be proposed in the present paper.

3 The continuous problem

3.1 The augmented fully-mixed formulation

In this sectionwederive theweak formulation of the coupled system (2.5) and (2.6).We
begin recalling that, in accordancewith the last equation of (2.5) and the decomposition
(see e.g. [5,16])

H(div;�) = H0(div;�) ⊕ R I, (3.1)

where

H0(div;�) :=
{
ζ ∈ H(div;�) :

∫
�

tr(ζ ) = 0

}
, (3.2)

the eventual solution σ ∈ H(div;�) of this system is given by σ = σ 0 + c I, where
σ 0 ∈ H0(div;�) and (see e.g., [10, Section 3.1]):

c := − 1

n |�|
∫

�

tr(u ⊗ u). (3.3)

As a consequence, and noting that σd = σd
0 and div σd = div σd

0 , we can rewrite
equations (2.5) in terms of σ 0 without modifying them. Nevertheless, for the sake of
simplicity of notation, in what follows we name the unknown in H0(div;�) simply
as σ . Taking this into account, we test the constitutive equation for the fluid (first
equation of (2.5)) by a function τ ∈ H(div;�), integrate by parts and utilize the
Dirichlet boundary condition for u to find the variational equation

∫
�

σd : τd + μ

∫
�

u · div τ +
∫

�

(u⊗ u)d : τd = μ 〈 τν, uD 〉� ∀τ ∈ H0(div;�),

(3.4)
where hereafter 〈 ·, · 〉� stands for the duality betweenH−1/2(�) [resp. H−1/2(�)] and
H1/2(�) [resp. H1/2(�)], and the test space has been reduced to H0(div;�) due to
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the decomposition (3.2) and the compatibility condition (2.3). In turn, the equilibrium
equation for the fluid (second equation of (2.5)) is imposed weakly as

−μ

∫
�

v · div σ − μ

∫
�

ϕ g · v = 0 ∀v ∈ L2(�). (3.5)

Next, for Eq. (2.6) we proceed similarly. We first multiply the constitutive equation
for the temperature (first equation of (2.6)) by a function q ∈ H(div;�), integrate by
parts, and use the Dirichlet boundary condition for ϕ to obtain

∫
�

K
−1 p · q +

∫
�

ϕ div q +
∫

�

K
−1 ϕ u · q = 〈q · ν, ϕD 〉� ∀q ∈ H(div;�).

(3.6)
In addition, the equilibrium equation for the temperature (second equation of (2.6)),
is imposed weakly as

−
∫

�

ψ div p = 0 ∀ψ ∈ L2(�). (3.7)

At this point, we realize from the third terms at the left-hand side of (3.4) and (3.6) that
a suitable regularity is required for both unknowns u and ϕ. Indeed, it follows from
Cauchy–Schwarz and Hölder inequalities, and then from the continuous embedding
of H1(�) into L4(�) (see [1, Theorem 4.12], [22, Theorem 1.3.4]), that there exist
positive constants c1(�) and c2(�), such that

∣∣∣∣
∫

�

(u ⊗ w)d : τd

∣∣∣∣
≤ c1(�) ‖u‖1,� ‖w‖1,� ‖τ‖0,� ∀u, w ∈ H1(�) ∀τ ∈ L

2(�), (3.8)

and

∣∣∣∣
∫

�

ϕ u · q
∣∣∣∣

≤ c2(�) ‖ϕ‖1,� ‖u‖1,� ‖q‖0,� ∀ϕ ∈ H1(�) ∀u ∈ H1(�) ∀q ∈ L2(�).

(3.9)

Pursuant to the above, and for the sake of analyzing the present variational formulation
of the coupled problem (2.5) and (2.6), we propose to seek u ∈ H1(�) andϕ ∈ H1(�).
In this way, similarly as in [10, Section 3.1] (see also [15, Section 3]), we augment
(3.4)–(3.7) through the following redundant terms arising from the constitutive and
equilibrium equations, and from both Dirichlet boundary conditions

κ1

∫
�

(μ∇u − σd − (u ⊗ u)d) : ∇v = 0 ∀v ∈ H1(�),

κ2

∫
�

div σ · div τ + κ2

∫
�

ϕ g · div τ = 0 ∀τ ∈ H0(div;�),
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κ3

∫
�

u · v = κ3

∫
�

uD · v ∀v ∈ H1(�), (3.10)

and

κ4

∫
�

(∇ϕ − K
−1 p − K

−1ϕ u) · ∇ψ = 0 ∀ψ ∈ H1(�),

κ5

∫
�

div p div q = 0 ∀q ∈ H(div;�),

κ6

∫
�

ϕ ψ = κ6

∫
�

ϕD ψ ∀ψ ∈ H1(�), (3.11)

where (κ1, . . . , κ6) is a vector of positive parameters to be specified later.
Consequently, we arrive at the following augmented fully-mixed formulation for

the stationary Boussinesq problem: Find (σ , u, p, ϕ) ∈ H0(div;�) × H1(�) ×
H(div;�) × H1(�) such that

A((σ , u), (τ , v)) + Bu((σ , u), (τ , v)) = (Fϕ + FD)(τ , v)

∀(τ , v) ∈ H0(div;�) × H1(�),

Ã((p, ϕ), (q, ψ)) + B̃u((p, ϕ), (q, ψ)) = F̃D(q, ψ)

∀(q, ψ) ∈ H(div;�) × H1(�),

(3.12)

where the forms A, Bw, Ã, and B̃w are defined, respectively, as

A((σ , u), (τ , v)) :=
∫

�

σd : (τd − κ1 ∇v) +
∫

�

(μ u + κ2 div σ ) · div τ

−μ

∫
�

v · div σ + μκ1

∫
�

∇u : ∇v + κ3

∫
�

u · v, (3.13)

Bw((σ , u), (τ , v)) :=
∫

�

(u ⊗ w)d : ( τd − κ1 ∇v), (3.14)

Ã((p, ϕ), (q, ψ)) :=
∫

�

K
−1 p · (q − κ4 ∇ψ) +

∫
�

(ϕ + κ5 div p) div q

−
∫

�

ψ div p + κ4

∫
�

∇ϕ · ∇ψ + κ6

∫
�

ϕ ψ, (3.15)

and

B̃w((p, ϕ), (q, ψ)) :=
∫

�

K
−1 ϕ w · (q − κ4∇ψ). (3.16)

for all (σ , u), (τ , v) ∈ H0(div;�) × H1(�), for all (p, ϕ), (q, ψ) ∈ H(div;�) ×
H1(�), and for all w ∈ H1(�). Note that A and Ã are bilinear as well as Bw and B̃w
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[for a fixed w ∈ H1(�)]. In turn, given ϕ ∈ H1(�), Fϕ , FD, and F̃D are the bounded
linear functionals given by

Fϕ(τ , v) :=
∫

�

ϕ g · (μ v − κ2 div τ ) ∀(τ , v) ∈ H0(div;�) × H1(�), (3.17)

FD(τ , v) := κ3

∫
�

uD · v + μ 〈 τν, uD 〉� ∀(τ , v) ∈ H0(div;�) × H1(�),

(3.18)

and

F̃D(q, ψ) := κ6

∫
�

ϕD ψ + 〈q · ν, ϕD 〉� ∀(q, ψ) ∈ H(div;�) × H1(�).

(3.19)
In the Sects. 3.2–3.4 below we proceed similarly as in [10] and utilize a fixed point

strategy to prove that problem (3.12) is well posed. More precisely, in Sect. 3.2 we
rewrite (3.12) as an equivalent fixed point equation in terms of an operator T. Next in
Sect. 3.3 we show that T is well defined, and finally in Sect. 3.4 we apply the classical
Banach’s theorem to conclude that T has a unique fixed point.

3.2 The fixed point approach

We first set H := H1(�) ×H1(�), and define the operator S : H −→ H0(div;�) ×
H1(�) as

S(w, φ) := (S1(w, φ),S2(w, φ)) = (σ , u) ∀(w, φ) ∈ H, (3.20)

where (σ , u) is the unique pair in (σ , u) ∈ H0(div;�) × H1(�) such that

A((σ , u), (τ , v)) + Bw((σ , u), (τ , v))

= (Fφ + FD
)
(τ , v) ∀(τ , v) ∈ H0(div;�) × H1(�). (3.21)

Note here that the linear functional Fφ is given exactly as in (3.17) but with φ instead
of ϕ. In turn, we let S̃ : H1(�) −→ H(div;�) × H1(�) be the operator given by

S̃(w) := (̃S1(w), S̃2(w)) = (p, ϕ) ∀w ∈ H1(�), (3.22)

where (p, ϕ) is the pair in (p, ϕ) ∈ H(div;�) × H1(�) such that

Ã((p, ϕ), (q, ψ))+B̃w((p, ϕ), (q, ψ)) = F̃D(q, ψ) ∀(q, ψ) ∈ H(div;�)×H1(�).

(3.23)
Having introduced the auxiliary mappings S and S̃, we now define T : H −→ H as

T(w, φ) := (S2(w, φ), S̃2(S2(w, φ))) ∀(w, φ) ∈ H, (3.24)
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and realize that solving (3.12) is equivalent to seeking a fixed point of T, that is: Find
(u, ϕ) ∈ H such that

T(u, ϕ) = (u, ϕ).

In this way, in what follows we focus on analyzing that T has a unique fixed point.
Before doing this, we certainly need to verify that T is well defined. The next section
is devoted to this matter.

3.3 Well-definiteness of the fixed point operator

In this section we show that T is well defined. For this purpose, we first notice that
it suffices to prove that the uncoupled problems (3.21) and (3.23) defining S and S̃,
respectively, are well posed. In this way, in the sequel we focus on the solvability
analysis of (3.21) and (3.23). In this regard, we first point out that a distinctive fea-
ture of the results obtained below is that, differently from the analysis in [10] where
the introduction of a boundary unknown leads to a mixed-primal formulation, in our
present case both uncoupled problems (3.21) and (3.23) yield strongly elliptic bilinear
forms. In addition, clearly the operator S is exactly defined as in [10, Section 3.2], and
therefore throughout this work we omit most of the corresponding proofs and recall
only the key properties, and results, concerning this operator, but without compromis-
ing the clarity of our reasoning. Hence, the core of our analysis will be mainly devoted
to the uncoupled problem (3.23) and its influence on T.

Now, concerning thewell-posedness of (3.21), we first recall the stability properties
of the forms A and Bw and the functional Fφ + FD (cf. (3.13), (3.14), (3.17) and
(3.18), respectively). In what follows, and according to a notational comment in
Sect. 1 (cf. Preliminaries), ‖(τ , v)‖ denotes the product norm of a given (τ , v) ∈
H0(div;�) × H1(�), that is

‖(τ , v)‖ := {‖τ‖2div;� + ‖v‖21,�}1/2. (3.25)

Then, we begin by establishing the boundedness of the forms A and Bw, where w ∈
H1(�) is given (see [10, Lemma 3.3] for details):

|Bw((σ , u), (τ , v))| ≤ c1(�) (κ2
1 + 1)1/2 ‖w‖1,� ‖u‖1,� ‖(τ , v)‖ (3.26)

and
|A((σ , u), (τ , v))| ≤ ‖A‖ ‖(σ , u)‖ ‖(τ , v)‖, (3.27)

for all (σ , u), (τ , v) ∈ H0(div;�) × H1(�). In (3.26) the constant c1(�) depends
only on �, whereas in (3.27) the constant ‖A‖ depends on �, the viscosity μ, and the
parameters κ1, κ2 and κ3.

As a consequence of the estimates (3.26) and (3.27) we obtain that the bilinear
formA+Bw is bounded, that is there exists a positive constant ‖A+Bw‖, depending
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on μ, �, the stabilization parameters, and ‖w‖1,�, such that for all (σ , u), (τ , v) ∈
H0(div;�) × H1(�), there holds

|A((σ , u), (τ , v)) + Bw((σ , u), (τ , v))| ≤ ‖A + Bw‖ ‖(σ , u)‖ ‖(τ , v)‖. (3.28)

Furthermore, it is not difficult to see that A is strongly elliptic. In fact, using similar
arguments as in [15] we deduce that for each κ1 ∈ (0, 2 δ), with δ ∈ (0, 2μ), and
κ2, κ3 > 0, there exists a positive constant α(�), depending only on μ, κ1, κ2, κ3,

and �, such that (see [10, Lemma 3.3] for details)

A((τ , v), (τ , v)) ≥ α(�) ‖(τ , v)‖2 ∀(τ , v) ∈ H0(div;�) × H1(�). (3.29)

Then, combining (3.26) and (3.29), and proceeding as in [10, Lemma 3.3], we now
define

r0 := α(�)

2 (κ2
1 + 1)1/2 c1(�)

, (3.30)

and find that for each r ∈ (0, r0), and for each w ∈ H1(�) such that ‖w‖1,� ≤ r, the
bilinear form A + Bw is strongly elliptic with constant α(�)

2 , that is

(A + Bw )((τ , v), (τ , v)) ≥ α(�)

2
‖(τ , v)‖2 ∀(τ , v) ∈ H0(div;�) × H1(�).

(3.31)
Finally, from the Cauchy–Schwarz inequality and the trace theorems inH(div;�) and
H1(�)with constants 1 and c0(�), respectively, we conclude with MS := max{(μ2+
κ2
2 )1/2, κ3 c0(�)}, that

‖Fφ + FD‖ ≤ MS {‖g‖∞,� ‖φ‖0,� + ‖uD‖0,� + ‖uD‖1/2,�}. (3.32)

The foregoing analysis confirms that the uncoupled problem (3.21) is well-posed
(equivalently, the operator S is well-defined), which is summarized in the following
Lemma.

Lemma 3.1 Let r0 > 0 given by (3.30) and let r ∈ (0, r0). Assume that κ1 ∈ (0, 2 δ),
with δ ∈ (0, 2μ), and κ2, κ3 > 0. Then, for each (w, φ) ∈ H such that ‖w‖1,� ≤ r ,
the problem (3.21) has a unique solution (σ , u) = S(w, φ) ∈ H0(div;�) × H1(�).
Moreover, there exists a constant cS > 0, independent of (w, φ), such that

‖S(w, φ)‖ = ‖(σ , u)‖ ≤ cS {‖g‖∞,� ‖φ‖0,� + ‖uD‖0,� + ‖uD‖1/2,�}. (3.33)

Proof The result follows from estimates (3.28) and (3.31), and a straightforward appli-
cation of the Lax–Milgram Theorem (see for instance [16, Theorem 1.1]). We refer to
[10, Lemma 3.3] for further details. ��

Next, we concentrate in proving that problem (3.23) is well posed. Before address-
ing this, we recall the following preliminary result.
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Lemma 3.2 There exists c3(�) > 0 such that

|v|21,� + ‖v‖20,� ≥ c3(�) ‖v‖21,� ∀v ∈ H1(�).

Proof See [15, Lemma 3.3]. ��
In addition, analogously to the definition of the product norm (3.25), we now set

‖(q, ψ)‖ := {‖q‖2div;� + ‖ψ‖21,�}1/2 ∀(q, ψ) ∈ H(div;�) × H1(�).

The following lemma establishes the well-posedness of problem (3.23), or equiv-
alently, that the operator S̃ (cf. (3.22)) is well-defined.

Lemma 3.3 Assume that κ4 ∈
(
0,

2 κ0 δ̃

‖K−1‖∞,�

)
, with δ̃ ∈

(
0,

2

‖K−1‖∞,�

)
, and

κ5, κ6 > 0. Then, there exists r̃0 > 0 such that for each r̃ ∈ (0, r̃0), problem (3.23)
has a unique solution (p, ϕ) := S̃(w) ∈ H(div;�) × H1(�) for each w ∈ H1(�)

such that ‖w‖1,� ≤ r̃ . Moreover, there exists a constant c̃S > 0, independent of w,
such that there holds

‖̃S(w)‖ = ‖(p, ϕ)‖ ≤ c̃S {‖ϕD‖0,� + ‖ϕD‖1/2,�}. (3.34)

Proof For a given w ∈ H1(�), we observe from (3.15) and (3.16) that Ã + B̃w

is clearly a bilinear form. Now, applying the Cauchy–Schwarz inequality, the trace
theorem in H1(�) with constant c0(�), and the estimate (3.9), we deduce that

|Ã((p, ϕ), (q, ψ))|
≤ ‖K−1‖∞,� ‖p‖0,� ‖q‖0,�+ κ4 ‖K−1‖∞,� ‖p‖0,� |ψ |1,�+‖ϕ‖0,� ‖div q‖0,�

+ κ5 ‖div p‖0,� ‖div q‖0,� + κ4 |ϕ|1,� |ψ |1,� + ‖ψ‖0,� ‖div p‖0,�
+ κ6 c0(�) ‖ϕ‖0,� ‖ψ‖0,�

and

|B̃w((p, ϕ), (q, ψ))| ≤ (κ2
4 + 1)1/2 ‖K−1‖∞,� c2(�) ‖w‖1,� ‖ϕ‖1,� ‖(q, ψ)‖,

(3.35)
for all (p, ϕ), (q, ψ) ∈ H(div;�)×H1(�). Then, by gathering the foregoing inequal-
ities, we find that there exists a positive constant, which we denote by ‖Ã + B̃w‖,
depending on κ4, κ5, κ6, c0(�), c2(�), ‖K−1‖∞,� and ‖w‖1,�, such that

|(Ã + B̃w

)
((p, ϕ), (q, ψ))|

≤ ‖Ã + B̃w‖ ‖(p, ϕ)‖ ‖(q, ψ)‖ ∀(p, ϕ), (q, ψ) ∈ H(div;�) × H1(�).
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In turn, from (3.15) we have that

Ã((q, ψ), (q, ψ)) =
∫

�

K
−1 q · q − κ4

∫
�

K
−1 q · ∇ψ + κ5 ‖div q‖20,�

+ κ4 |ψ |21,� + κ6 ‖ψ‖20,�,

and then, using the uniform positiveness of the tensor K−1 given by (2.2), and the
Cauchy–Schwarz and Young inequalities, we obtain that for all (q, ψ) ∈ H(div;�)×
H1(�) and for any δ̃ > 0, there holds

Ã((q, ψ), (q, ψ)) ≥ κ0 ‖q‖20,� − κ4 ‖K−1‖∞,�‖q‖20,� |ψ |1,� + κ5 ‖div q‖20,�
+ κ4 |ψ |21,� + κ6 ‖ψ‖20,�

≥
(
κ0 − κ4 ‖K−1‖∞,�

2 δ̃

)
‖q‖20,� + κ5 ‖div q‖20,�

+ κ4

(
1 − δ̃ ‖K−1‖∞,�

2

)
|ψ |21,� + κ6 ‖ψ‖20,�.

Then, defining the constants

c4 := min

{
κ0 − κ4 ‖K−1‖∞,�

2 δ̃
, κ5

}
, and

c5 := min

{
κ4

(
1 − δ̃ ‖K−1‖∞,�

2

)
, κ6

}
,

which are positive thanks to the hypotheses on δ̃ and κ4, and applying Lemma 3.2, it
follows that

Ã((q, ψ), (q, ψ)) ≥ c4 ‖q‖2div;� + c5 {|ψ |21,� + ‖ψ‖20,�} ≥ α̃(�) ‖(q, ψ)‖2,
(3.36)

with α̃(�) := min{c4, c5 c3(�)}, which shows that Ã is elliptic. In this way, com-
bining now (3.35) and (3.36), we deduce that for all (q, ψ) ∈ H(div;�) × H1(�),
there holds

(Ã + B̃w)((q, ψ), (q, ψ))

≥ (̃α(�) − (κ2
4 + 1)1/2‖K−1‖∞,� c2(�)‖w‖1,�)‖(q, ψ)‖2

≥ α̃(�)

2
‖(q, ψ)‖2, (3.37)

provided (κ2
4 + 1)1/2 ‖K−1‖∞,� c2(�) ‖w‖1,� ≤ α̃(�)

2
. Therefore, the ellipticity of

Ã+B̃w,with constant
α̃(�)

2
, independent ofw, is ensured by requiring ‖w‖1,� ≤ r̃0,
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with

r̃0 := α̃(�)

2 (κ2
4 + 1)1/2 ‖K−1‖∞,� c2(�)

. (3.38)

Next, it is easy to see from (3.19) that the functional F̃D is bounded with

‖F̃D ‖ ≤ MS̃ {‖ϕD‖0,� + ‖ϕD‖1/2,�}, (3.39)

whereMS̃ := max
{
κ6 c0(�), 1

}
and c0(�) is the norm of the trace operator in H1(�).

Summing up, and owing to the hypotheses on κ4, κ5 and κ6, we have proved that for any
sufficiently small w ∈ H1(�), the bilinear form Ã+ B̃w and the functional F̃D satisfy
the hypotheses of the Lax–Milgram theorem (see e.g. [16, Theorem 1.1]), which guar-
antees the well-posedness of (3.23) and the continuous dependence estimate (3.34)

with c̃S := 2MS̃

α̃(�)
. ��

As a consequence ofLemmas 3.1 and 3.3we can shownow thatT is alsowell-posed.

Lemma 3.4 Let κ1 ∈ (0, 2 δ), with δ ∈ (0, 2μ), κ4 ∈
(
0,

2 κ0 δ̃

‖K−1‖∞,�

)
, with

δ̃ ∈
(
0,

2

‖K−1‖∞,�

)
, and κ2, κ3, κ5, κ6 > 0. Assume that, given r ∈ (0, r0), the

data g and uD satisfy

cS {r ‖g‖∞,� + ‖uD‖0,� + ‖uD‖1/2,�} < r̃0, (3.40)

with cS defined in (3.33). Then, T(w, φ) is well defined for each (w, φ) ∈ H such that
‖(w, φ)‖ ≤ r . Moreover, in that case there holds

‖T(w, φ)‖ ≤ cS {r ‖g‖∞,� + ‖uD‖0,� + ‖uD‖1/2,�} + c̃S {‖ϕD‖0,� + ‖ϕD‖1/2,�}.
(3.41)

Proof We first observe, in virtue of Lemma 3.1, that given (w, φ) ∈ H such that
‖(w, φ)‖ ≤ r , S2(w, φ) is well-defined and its norm is bounded by the left hand side
of (3.40). It follows, according to Lemma 3.3, that S̃2(S(w, φ)) is also well-defined
and its norm is bounded by the expression c̃S {‖ϕD‖0,� + ‖ϕD‖1/2,�}. In this way,
T(w, φ) is well-defined and (3.41) is obtained thanks to (3.24) and the aforementioned
bounds. ��

3.4 Solvability analysis of the fixed-point equation

In this section we address the existence and uniqueness of a fixed-point of T (cf.
(3.24)) bymeans of the classical Banach fixed-point theorem.Webegin by establishing
suitable conditions under which T maps a ball into itself.

123



182 E. Colmenares et al.

Lemma 3.5 Assume that the stabilization parameters satisfy the hypotheses of
Lemma 3.4. In addition, given r ∈ (0,min{r0, r̃0}), let Wr := {(w, φ) ∈
H : ‖(w, φ)‖ ≤ r }, and assume that the data satisfy

cS {r ‖g‖∞,� +‖uD‖0,� +‖uD‖1/2,�}+ c̃S {‖ϕD‖0,� +‖ϕD‖1/2,�} ≤ r (3.42)

where cS and c̃S are the positive constants in (3.33) and (3.34), respectively. Then
T(Wr ) ⊆ Wr .

Proof Given r ∈ (0,min{r0, r̃0}), it is clear from (3.42) that (3.40) is satisfied, and
hence T(w, φ) is well defined for each (w, φ) ∈ Wr . In addition, the same hypothesis
(3.42) and the upper bound (3.41) guarantee thatT(w, φ) ∈ Wr , which ends the proof.

��
Let us now recall that the Banach fixed-point theorem requires the operator T to

be a contractive mapping, which, as we will see later on, is indeed true under suitable
assumptions on the data uD , g, and ϕD . To this end, we first need to show that the
operator T is Lipschitz continuous, for which, according to (3.24), it suffices to show
that both S and S̃ satisfy this property. We begin next with the corresponding result
for S. We omit details on its proof and refer to [10, Lemma 3.6].

Lemma 3.6 Let r ∈ (0, r0), with r0 given by (3.30). Then there exists a positive
constant CS, depending on the viscosity μ, the stabilization parameters κ1 and κ2,

the constant c1(�) (cf. (3.8)), and the ellipticity constant α(�) of the bilinear form A
(cf. (3.29)), such that

‖S(w, φ) − S(w̃, φ̃)‖ ≤ CS {‖g‖∞,� ‖φ − φ̃‖0,� + ‖S2(w, φ)‖1,� ‖w − w̃‖1,� },
(3.43)

for all (w, φ), (w̃, φ̃) ∈ H such that ‖w‖1,�, ‖w̃‖1,� ≤ r .

In turn, the result for the operator S̃ is established as follows.

Lemma 3.7 Let r ∈ (0, r̃0), with r̃0 given by (3.38). Then there exists a positive
constant CS̃ depending on ‖K−1‖∞,�, the parameter κ4, the ellipticity constant α̃(�)

of the bilinear form Ã (cf. (3.36)), and the constant c2(�) (cf. (3.9)), such that

‖̃S(w) − S̃(w̃)‖ ≤ CS̃ ‖̃S2(w)‖1,� ‖w − w̃‖1,� (3.44)

for all w, w̃ ∈ H1(�) such that ‖w‖1,�, ‖w̃‖1,� ≤ r.

Proof Given r ∈ (0, r̃0) and w, w̃ ∈ H1(�) , such that ‖w‖1,�, ‖w̃‖1,� ≤ r , we let
(p, ϕ), (̃p, ϕ̃) ∈ H(div;�) × H1(�), such that (p, ϕ) := S̃(w) and (̃p, ϕ̃) := S̃(w̃).
From the definition of S̃ (cf. (3.22) and (3.23)) and the bilinearity of Ã, it readily
follows that

Ã((p, ϕ) − (̃p, ϕ̃), (q, ψ)) + B̃w((p, ϕ), (q, ψ)) − B̃w̃((̃p, ϕ̃), (q, ψ)) = 0,
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for all (q, ψ) ∈ H(div;�) × H1(�). Then, taking (q, ψ) = (p, ϕ) − (̃p, ϕ̃) in the
previous identity, utilizing the bilinearity of B̃w, and adding and subtracting suitable
terms, we arrive at

(Ã + B̃w̃ ) ((p, ϕ) − (̃p, ϕ̃), (p, ϕ) − (̃p, ϕ̃)) = − B̃w−w̃((p, ϕ), (p, ϕ) − (̃p, ϕ̃)).

In this way, we proceed as in the proof of [10, Lemma 3.6], and use the ellipticity
property of the bilinear form Ã+ B̃w̃ (cf. (3.37)), and the continuity of B̃w (cf. (3.35)),
to obtain

α̃(�)

2
‖(p, ϕ) − (̃p, ϕ̃)‖2 ≤ −B̃w−w̃((p, ϕ), (p, ϕ) − (̃p, ϕ̃))

≤ (κ2
4 + 1)1/2 ‖K−1‖∞,� c2(�) ‖ϕ‖1,� ‖w − w̃‖1,� ‖(p, ϕ) − (̃p, ϕ̃)‖,

which, denoting CS̃ := 2

α̃(�)
(κ2

4 + 1)1/2 ‖K−1‖∞,� c2(�), and recalling that ϕ =
S̃2(w), yields (3.44) and completes the proof. ��

As a consequence of Lemmas 3.6 and 3.7 we establish next the Lipschitz-continuity
of T.

Lemma 3.8 Given r ∈ (0,min{r0, r̃0}), with r0 and r̃0 given by (3.30) and (3.38),
respectively, let Wr := {(w, φ) ∈ H : ‖(w, φ)‖ ≤ r }, and assume that the data g,

uD, and ϕD satisfy (3.42).
Then, there holds

‖T(w, φ) − T(w̃, φ̃)‖
≤ CT (‖g‖∞,� + cS {r ‖g‖∞,� + ‖uD‖0,� + ‖uD‖1/2,�}) ‖(w, φ) − (w̃, φ̃)‖,

(3.45)

for all (w, φ), (w̃, φ̃) ∈ Wr , where CT := CS {1 + r CS̃}, and the constants CS and
CS̃ are given by (3.43) and (3.44), respectively.

Proof Firstly, we realize from Lemmas 3.4 and 3.5 that the stipulated assumptions
on r and the data g, uD, and ϕD, guarantee that T is well defined in Wr and that
T(Wr ) ⊆ Wr . Now, let (u, ϕ), (̃u, ϕ̃), (w, φ), (w̃, φ̃) ∈ Wr , such that (u, ϕ) =
T(w, φ) and (̃u, ϕ̃) = T(w̃, φ̃), that is

u = S2(w, φ), ũ = S2(w̃, φ̃), ϕ = S̃2(u) and ϕ̃ = S̃2(̃u).

It follows, thanks to the Lipschitz continuity of S̃ (cf. (3.44)) and the a priori estimate
(3.34), that

‖ϕ − ϕ̃‖1,� ≤ ‖̃S(u) − S̃(̃u)‖ ≤ CS̃ ‖̃S2(u)‖1,� ‖u − ũ‖1,�
≤ CS̃ c̃S

{
‖ϕD‖0,� + ‖ϕD‖1/2,�

}
‖u − ũ‖1,�,
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which, using from (3.42) that c̃S {‖ϕD‖0,� + ‖ϕD‖1/2,�} ≤ r , yields

‖T(w, φ) − T(w̃, φ̃)‖ ≤ ‖u − ũ‖1,� + ‖ϕ − ϕ̃‖1,� ≤ {1 + r CS̃} ‖u − ũ‖1,�.

Then, combining the foregoing inequality with the fact that

‖u − ũ‖1,� = ‖S2(w, φ) − S2(w̃, φ̃)‖1,� ≤ ‖S(w, φ) − S(w̃, φ̃)‖,

and then employing the Lipschitz continuity of S (cf. (3.43)) and the estimate (3.33),
we deduce that

‖T(w, φ) − T(w̃, φ̃)‖
≤ CS {1 + r CS̃} {‖g‖∞,� + ‖S2(w, φ)‖1,� } ‖(w, φ) − (w̃, φ̃)‖,
≤ CS {1 + r CS̃}

×(‖g‖∞,� + cS {r ‖g‖∞,� + ‖uD‖0,� + ‖uD‖1/2,�}) ‖(w, φ) − (w̃, φ̃)‖,

which completes the proof. ��
We now observe from (3.45) that T becomes a contraction mapping if we assume

additionally that

CT (‖g‖∞,� + cS {r ‖g‖∞,� + ‖uD‖0,� + ‖uD‖1/2,�}) < 1. (3.46)

We remark here that, while the derivation of (3.45) makes use of the fact that the
second term on the left hand side of (3.42) is bounded by r , we do not apply the
same upper bound to the first term in (3.42) since in that case the resulting inequality
(3.46) would impose a further and unnecessary restriction on r . In other words, the
idea of employing (3.42) only to bound the second term there is in order to obtain a
linear combination of the data being bounded as the new restriction insuring that T is
a contraction. Then, as suggested by (3.46), the existence and uniqueness of a fixed-
point of T, which corresponds to the unique solution of problem (3.12), follows from
a straightforward application of the corresponding Banach theorem. More precisely,
we have proved the following result.

Theorem 3.9 Let κ1 ∈ (0, 2 δ), with δ ∈ (0, 2μ), κ4 ∈
(
0,

2 κ0 δ̃

‖K−1‖∞,�

)
, with δ̃ ∈

(
0,

2

‖K−1‖∞,�

)
, and κ2, κ3, κ5, κ6 > 0. Given r ∈ (0,min{r0, r̃0}), with r0 and

r̃0 given by (3.30) and (3.38), respectively, let Wr := {(w, φ) ∈ H : ‖(w, φ)‖ ≤ r },
and assume that the data g, uD, and ϕD satisfy (3.42) and (3.46). Then, there exists a
unique (σ , u,p, ϕ) ∈ H0(div;�) ×H1(�) ×H(div;�) ×H1(�) solution to (3.12),
with (u, ϕ) ∈ Wr . Moreover, there holds

‖(σ , u)‖ ≤ cS {r ‖g‖∞,� + ‖uD‖0,� + ‖uD‖1/2,�}, (3.47)
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and
‖(p, ϕ)‖ ≤ c̃S {‖ϕD‖0,� + ‖ϕD‖1/2,�}. (3.48)

Proof It suffices to apply the Banach fixed-point Theorem and then employ the a priori
estimates (3.33) and (3.34). We omit further details. ��

4 The Galerkin scheme

In this section, we introduce and analyze the Galerkin scheme of the augmented fully-
mixed formulation (3.12). As we will see in the forthcoming sections, the analysis of
the corresponding discrete problem follows straightforwardly by adapting the fixed-
point strategy introduced and analyzed in Sects. 3.2 and 3.3.

4.1 Preliminaries

We start by considering the generic finite dimensional subspaces

H
σ
h ⊆ H0(div;�), Hu

h ⊆ H1(�), Hp
h ⊆ H(div;�), and Hϕ

h ⊆ H1(�),

(4.1)
which shall be specified later in Sect. 4.3. Hereafter, h stands for the size of a regular
triangulation Th of � made up of triangles K (when d = 2) or tetrahedra K (when
d = 3) of diameter hK , defined as h := max {hK : K ∈ Th}. In this way, the Galerkin
scheme of (3.12) reads: find (σ h, uh, ph, ϕh) ∈ H

σ
h × Hu

h × Hp
h × Hϕ

h such that

A((σ h, uh), (τ h, vh)) + Buh ((σ h, uh), (τ h, vh)) = Fϕh ((τ h, vh)) + FD((τ h, vh))

Ã((ph, ϕh), (qh, ψh)) + B̃uh ((ph, ϕh), (qh, ψh)) = F̃D((qh, ψh)), (4.2)

for all (τ h, vh, qh, ψh) ∈ H
σ
h × Hu

h × Hp
h × Hϕ

h .
Similarly to the continuous context, in order to analyze problem (4.2) we rewrite

it equivalently as a fixed-point problem. Indeed, we firstly let Hh := Hu
h × Hϕ

h and
define Sh : Hh −→ H

σ
h × Hu

h by

Sh(wh, φh) := (S1,h(wh, φh),S2,h(wh, φh)) = (σ h, uh) ∀(wh, φh) ∈ Hh,

(4.3)
where (σ h, uh) is the unique solution of the discrete version of problem (3.21): find
(σ h, uh) ∈ H

σ
h × Hu

h , such that

A((σ h, uh), (τ h, vh)) + Bwh ((σ h, uh), (τ h, vh))

= (Fφh + FD)(τ h, vh) ∀(τ h, vh) ∈ H
σ
h × Hu

h , (4.4)

where the formA and the functional FD are defined as in (3.13) and (3.18), respectively.
In turn, with wh and φh given, the bilinear form Bwh and the linear functional Fφh are
the ones defined in (3.14) and (3.17) withwh and φh in place ofw and ϕ, respectively.
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Secondly, we define the operator S̃h : Hu
h −→ Hp

h × Hϕ
h as

S̃h(wh) := (̃S1,h(wh), S̃2,h(wh)) = (ph, ϕh) ∀wh ∈ Hu
h , (4.5)

where (ph, ϕh) is the unique element in Hp
h × Hϕ

h satisfying the discrete version of
(3.23), namely

Ã((ph, ϕh), (qh, ψh))+B̃wh ((ph, ϕh), (qh, ψh))= F̃D(qh, ψh) ∀(qh, ψh)∈Hp
h×Hϕ

h ,

(4.6)
where the bilinear form Ã and the functional F̃D are defined as in (3.15) and (3.19),
respectively, whereas B̃wh is the bilinear form given by (3.16) with wh instead of w.
Finally, introducing the operator Th : Hh −→ Hh given by

Th(wh, φh) := (S2,h(w, φ), S̃2,h(S2,h(wh, φh))) ∀(wh, φh) ∈ Hh, (4.7)

we realize that solving (4.2) is equivalent to seeking a fixed-point of the operator Th ,
that is: Find (uh, ϕh) ∈ Hh such that

Th(uh, ϕh) = (uh, ϕh). (4.8)

4.2 Solvability analysis

Now we establish the well-posedness of problem (4.2) by studying the equivalent
fixed-point problem (4.8). Before proceeding with the analysis we observe that, since
in this case the operator Th is defined on a finite dimensional space, the existence
of solution can be addressed by using the well-known Brouwer fixed-point Theorem
(see e.g. [9, Theorem 9.9-2]) in the following form: let W be a compact and convex
subset of a finite dimensional Banach space X and let T : W −→ W be a continuous
mapping. Then, T has at least one fixed-point in W . As a consequence, the existence
of solution can be attained with less restrictions, namely without requiring assumption
(3.46). This conditionwill be required only to achieve uniqueness of solution bymeans
of the Banach fixed-point theorem.

Analogously to the continuous case, we firstly study the well-definiteness of opera-
torTh by establishing first the well-posedness of the two discrete uncoupled problems
(4.4) and (4.6). This is addressed in the following three lemmas. Their proofs follow
straightforwardly by applying the same arguments utilized in Lemmas 3.1, 3.3 and
3.4, respectively, reason why most of the details are omitted.

Lemma 4.1 Assume that κ1 ∈ (0, 2 δ) with δ ∈ (0, 2μ), and κ2, κ3 > 0. Then,
for each r ∈ (0, r0), with r0 given by (3.30), and for each (wh, φh) ∈ Hh, such that
‖wh‖1,� ≤ r , the problem (4.4) has a unique solution (σ h, uh) =: Sh(wh, φh) ∈
H

σ
h × Hu

h . Moreover, with the same constant cS > 0 from Lemma 3.3, which is
independent of (wh, φh), there holds

‖Sh(wh, φh)‖ = ‖(σ h, uh)‖ ≤ cS {‖g‖∞,� ‖φh‖0,� + ‖uD‖0,� + ‖uD‖1/2,�}.
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Proof It is a straightforward consequence of the Lax–Milgram theorem and [10,
Lemma 3]. ��

Lemma 4.2 Assume that κ4 ∈
(
0,

2 κ0 δ̃

‖K−1‖∞,�

)
, with δ̃ ∈

(
0,

2

‖K−1‖∞,�

)
, and

κ5, κ6 > 0. Then, for each r ∈ (0, r̃0), with r̃0 given by (3.38), and for each wh ∈ Hu
h

such that ‖wh‖1,� ≤ r , the problem (4.6) has a unique solution (ph, ϕh) =: S̃h(wh) ∈
Hp

h ×Hϕ
h . Moreover, with the same constant c̃S > 0 from (3.34), which is independent

of wh, there holds

‖̃Sh(wh)‖ = ‖(ph, ϕh)‖ ≤ c̃S {‖ϕD‖0,� + ‖ϕD‖1/2,�}.

Proof By using the same arguments as in the proof of Lemma 3.3, we find that for any
wh ∈ Hu

h given, the form Ã+ B̃wh is bilinear and continuous with continuity constant
‖Ã + B̃wh‖, depending on the parameters κ4, κ5, κ6, |�|, ‖K−1‖ and r. Besides, we
have that Ã + B̃wh is elliptic on Hp

h × Hϕ
h with the same constant α̃(�) provided the

conditions already established on the constants κ4, δ̃, κ5, κ6, r and the given function
wh (in place of w) are held, as in Lemma 3.3. In addition, F̃D is clearly a linear and
bounded functional as in (3.39). Then, the result is a straightforward consequence of
the Lax–Milgram Theorem applied to the discrete problem (4.6). ��

Lemma 4.3 Let κ1 ∈ (0, 2 δ), with δ ∈ (0, 2μ), κ4 ∈
(
0,

2 κ0 δ̃

‖K−1‖∞,�

)
, with

δ̃ ∈
(
0,

2

‖K−1‖∞,�

)
, and κ2, κ3, κ5, κ6 > 0. Assume that, given r ∈ (0, r0), the

data g and uD satisfy (3.40).
Then,Th(wh, φh) iswell-defined for each (wh, φh) ∈ Hh such that‖(wh, φh)‖ ≤ r .

Moreover, there holds

‖Th(wh, φh)‖≤cS {r ‖g‖∞,�+‖uD‖0,�+‖uD‖1/2,�}+c̃S {‖ϕD‖0,� + ‖ϕD‖1/2,�}.

Proof By combining Lemmas 4.1 and 4.2 the result follows exactly as the proof of
Lemma 3.4. ��

The discrete analogue of Lemma 3.5 is stated next. Its proof, being a simple trans-
lation of the arguments proving that lemma, is omitted.

Lemma 4.4 Given r ∈ (0,min{r0, r̃0}), let Wr,h := {(wh, φh) ∈ Hh : ‖(wh, φh)‖ ≤
r}, and assume that the data satisfy (3.42). Then T(Wr,h) ⊆ Wr,h.

Next, we address the Lipschitz continuity of Th , which, analogously to the con-
tinuous case, follows from the Lipschitz continuity of Sh and S̃h . These results are
established next in Lemmas 4.5–4.7. Their proofs are omitted since they are almost
verbatim as those of the corresponding continuous estimates provided byLemmas 3.6–
3.8, respectively.

123



188 E. Colmenares et al.

Lemma 4.5 Let r ∈ (0, r0), with r0 given by (3.30). Then, there holds

‖Sh(wh, φh) − Sh(w̃h, φ̃h)‖
≤ CS {‖g‖∞,� ‖φh − φ̃h‖0,� + ‖S2,h(wh, φh)‖1,� ‖wh − w̃h‖1,�}

for all (wh, φh), (w̃h, φ̃h) ∈ Hh such that ‖wh‖1,�, ‖w̃h‖1,� ≤ r , where CS is the
constant from Lemma 3.6.

Lemma 4.6 Let r ∈ (0, r̃0), with r̃0 given by (3.38). Then, there holds

‖̃Sh(wh) − S̃h(w̃h)‖ ≤ CS̃ ‖̃S2,h(wh)‖1,� ‖wh − w̃h‖1,�
for all wh, w̃h ∈ Hu

h such that ‖wh‖1,�, ‖w̃h‖1,� ≤ r , where CS̃ is the constant from
Lemma 3.7.

Lemma 4.7 Given r ∈ (0,min{r0, r̃0}), with r0 and r̃0 given by (3.30) and (3.38),
respectively, letWr,h := {(wh, φh) ∈ Hh : ‖(wh, φh)‖ ≤ r}, and assume that the data
g, uD, and ϕD satisfy (3.42). Then, there holds

‖Th(wh, φh) − Th(w̃h, φ̃h)‖
≤ CT (‖g‖∞,� + cS {r ‖g‖∞,� + ‖uD‖0,� + ‖uD‖1/2,�}) ‖(w, φ) − (w̃, φ̃)‖,

for all (wh, φh), (w̃h, φ̃h) ∈ Wr,h, where CT is the constant provided by Lemma 3.8.

As a consequence of the previous lemmas, and owing to the equivalence between
(4.2) and (4.8),we conclude that problem (4.2) has at least one solution.More precisely,
we have the following theorem.

Theorem 4.8 Let κ1 ∈ (0, 2 δ), with δ ∈ (0, 2μ), κ4 ∈
(
0,

2 κ0 δ̃

‖K−1‖∞,�

)
, with δ̃ ∈

(
0,

2

‖K−1‖∞,�

)
, and κ2, κ3, κ5, κ6 > 0. Given r ∈ (0,min{r0, r̃0}

)
, with r0 and r̃0

given by (3.30) and (3.38), respectively, let Wr,h := {(wh, φh) ∈ Hh : ‖(wh, φh)‖ ≤
r}, and assume that the data g, uD, and ϕD satisfy (3.42). Then, the Galerkin scheme
(4.2) has at least one solution (σ h, uh,ph, ϕh) ∈ H

σ
h ×Hu

h ×Hp
h×Hϕ

h , with (uh, ϕh) ∈
Wr,h, and there hold

‖(σ h, uh)‖ ≤ cS {r ‖g‖∞,� + ‖uD‖0,� + ‖uD‖1/2,�}, (4.9)

and
‖(ph, ϕh)‖ ≤ c̃S {‖ϕD‖0,� + ‖ϕD‖1/2,�}. (4.10)

Proof Bearing in mind Lemmas 4.4 and 4.7, and the fact that Wr,h is a convex and
compact subset of Hh , the proof follows from a straightforward application of the
Brouwer fixed-point theorem. ��

Finally, as already announced at the beginning of this section, we now provide the
following existence and uniqueness result.
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Theorem 4.9 In addition to the hypothesis of Theorem 4.8, assume that the data g
and uD are sufficiently small so that (3.46) is satisfied. Then, the problem (4.2) has
an unique solution (σ h, uh,ph, ϕh) ∈ H

σ
h × Hu

h × Hp
h × Hϕ

h , with (uh, ϕh) ∈ Wr,h,
and the a priori estimates (4.9) and (4.10) hold.

Proof It follows similarly to the proof of Theorem 3.9 by a direct application of the
Banach fixed-point Theorem. ��

We end this section by emphasizing that the solvability analysis of the Galerkin
scheme does not require any discrete inf-sup conditions among H

σ
h , Hu

h , Hp
h , and

Hϕ
h , and hence they can be chosen freely as arbitrary finite element subspaces of

H0(div;�), H1(�), H(div;�), and H1(�), respectively. This flexibility is certainly
another feature of practical interest of our method. A particular choice of the discrete
spaces, which is actually the canonical one, is described in the following section.

4.3 Specific finite element subspaces

Given an integer k ≥ 0 and a subset S ⊆ Rn , we let as usual Pk(S) [resp. P̃k(S)] be
the space of polynomial functions on S of degree ≤ k (resp. of degree = k), and with
the same notation and definitions introduced in Sect. 4.1 concerning the triangulation
Th of �, we start defining the corresponding local Raviart–Thomas space of order k,
for each K ∈ Th, as

RTk(K ) := Pk(K ) ⊕ P̃k(K ) x,

where, according to the notations described in the Sect. 1, Pk(K ) := [Pk(K ) ]n , and
x is the generic vector in Rn . Similarly, C(�) = [C(�)]n . Then, we introduce the
finite element subspaces approximating the unknowns σ and u as the global Raviart–
Thomas space of order k, and the corresponding Lagrange space given by continuous
piecewise polynomials of degree ≤ k + 1, respectively, that is

H
σ
h := {τ h ∈ H0(div;�) : ct τ h |K ∈ RTk(K ) ∀c ∈ Rn ∀K ∈ Th}, (4.11)

and
Hu

h := {vh ∈ C(�) : vh |K ∈ Pk+1(K ) ∀K ∈ Th}. (4.12)

In turn, we define the approximating spaces for p and the temperature ϕ as the
global Raviart–Thomas space of order k, and the corresponding Lagrange space given
by continuous piecewise polynomials of degree ≤ k + 1, respectively, as follows

Hp
h := {qh ∈ H(div;�) : qh |K ∈ RTk(K ) ∀K ∈ Th} (4.13)

and
Hϕ
h := {ψh ∈ C(�) : ψh |K ∈ Pk+1(K ) ∀K ∈ Th}. (4.14)

We end this section by recalling from [16], the approximation properties of the
specific finite element subspaces introduced above.
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(APσ
h ) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and

for each σ ∈ H
s(�) ∩ H0(div;�) with div σ ∈ Hs(�), there holds

dist(σ ,Hσ
h ) := inf

τ h∈Hσ
h

‖σ − τ h‖div;� ≤ C hs {‖σ‖s,� + ‖div σ‖s,�}.

(APu
h ) There exists C > 0, independent of h, such that for each such that for each

s ∈ (0, k + 1], and for each u ∈ Hs+1(�), there holds

dist(u,Hu
h ) := inf

vh∈Hu
h

‖u − vh‖1,� ≤ C hs ‖u‖s+1,�.

(APp
h) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and

for each p ∈ Hs(�) ∩ H(div;�) with div p ∈ Hs(�), there holds

dist(p,Hp
h) := inf

qh∈Hp
h

‖p − qh‖div;� ≤ C hs {‖p‖s,� + ‖div p‖s,�}.

(APϕ
h ) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and

for each ϕ ∈ Hs+1(�), there holds

dist(ϕ,Hϕ
h ) := inf

ψh∈Hϕ
h

‖ϕ − ψh‖1,� ≤ C hs ‖ϕ‖s+1,�.

5 A priori error analysis

In this section, we carry out the error analysis for our Galerkin scheme (4.2). We first
deduce the corresponding Céa estimate by considering the generic finite dimensional
subspaces (4.1), and then we apply it to derive the theoretical rates of convergence
when using the specific discrete spaces provided in Sect. 4.3. As we will see later,
the a priori error estimate can be easily obtained by applying the well-known Strang
Lemma for elliptic variational problems (see e.g.[23, Theorem 11.1]). This auxiliary
result is stated first.

Lemma 5.1 Let V be aHilbert space, F ∈ V ′, and A : V×V → R be a bounded and
V−elliptic bilinear form. In addition, let {Vh}h>0 be a sequence of finite dimensional
subspaces of V , and for each h > 0 consider a bounded bilinear form Ah : Vh×Vh →
R and a functional Fh ∈ V ′

h. Assume that the family {Ah}h>0 is uniformly elliptic, that
is, there exists a constant α̃ > 0, independent of h, such that

Ah(vh, vh) ≥ α̃ ‖vh‖2V ∀vh ∈ Vh, ∀h > 0.

In turn, let u ∈ V and uh ∈ Vh such that

A(u, v) = F(v) ∀v ∈ V and Ah(uh, vh) = Fh(vh) ∀vh ∈ Vh .

123



An augmented fully-mixed finite element method… 191

Then, for each h > 0 there holds

‖u − uh‖V ≤ CST

⎧⎪⎨
⎪⎩ sup

wh∈Vh
wh �=0

|F(wh) − Fh(wh)|
‖wh‖V

+ inf
vh∈Vh
vh �=0

⎛
⎜⎝‖u − vh‖V + sup

wh∈Vh
wh �=0

|A(vh, wh) − Ah(vh, wh)|
‖wh‖V

⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

where CST := α̃−1 max{1, ‖A‖}.
Now, let (σ , u, p, ϕ) ∈ H0(div;�) × H1(�) × H(div;�) × H1(�) and

(σ h, uh, ph, ϕh) ∈ H
σ
h × Hu

h × Hp
h × Hϕ

h be the solutions of problems (3.12) and
(4.2), respectively, with (u, ϕ) ∈ Wr and (uh, ϕh) ∈ Wr,h . Then we are interested in
finding an upper bound for

‖(σ , u, p, ϕ) − (σ h, uh, ph, ϕh)‖,
forwhichwe plan to estimate ‖(σ , u)−(σ h, uh)‖ and ‖(p, ϕ)−(ph, ϕh)‖, separately.

In the sequel, for the sake of simplicity, we denote as usual

dist((σ , u),Hσ
h × Hu

h ) = inf
(τ h ,vh)∈Hσ

h ×Hu
h

‖ (σ , u) − (τ h, vh) ‖

and

dist((p, ϕ),Hp
h × Hϕ

h ) = inf
(qh ,ψh)∈Hp

h×Hψ
h

‖ (p, ϕ) − (qh, ψh) ‖.

In order to derive the upper bound for ‖(σ , u)−(σ h, uh)‖, we first notice that, accord-
ing to the first equations of (3.12) and (4.2), (σ , u) and (σ h, uh) satisfy, respectively,

A((σ , u), (τ , v)) + Bu((σ , u), (τ , v))

= (Fϕ + FD
)
(τ , v) ∀(τ , v) ∈ H0(div;�) × H1(�),

and

A((σ h, uh), (τ h, vh)) + Buh ((σ h, uh), (τ h, vh))

= (Fϕh + FD
)
(τ h, vh) ∀(τ h, vh) ∈ H

σ
h × Hu

h .

Then, applying Lemma 5.1, we can obtain the desired estimate for ‖(σ , u) − (σ h‖ as
follows.
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Lemma 5.2 Let CST := 2

α(�)
max{1, ‖A+Bu ‖}, where α(�) is the constant yield-

ing the ellipticity of both A and A + Bw for any w ∈ H1(�) (cf. (3.29) and (3.31)).
Then, there holds

‖(σ , u) − (σ h, uh)‖
≤ CST {(1 + c1(�) (κ2

1 + 1)1/2 ‖u − uh‖1,�) dist((σ , u),Hσ
h × Hu

h )

+ c1(�) (κ2
1 +1)1/2 ‖u − uh‖1,� ‖u‖1,�+(μ2 + κ2

2 )1/2 ‖g‖∞,� ‖ϕ−ϕh‖0,�}.
(5.1)

Proof Observe that, according to the previous continuous and discrete analyses in
Sects. 3 and 4, respectively, we readily obtain that the bilinear forms A := A + Bu,
Ah := A + Buh , and the functionals F = Fϕ + FD and Fh = Fϕh + FD satisfy
the hypotheses of Lemma 5.1. Then, after simple algebraic computations the result
follows from the aforementioned lemma. We omit further details and refer to [10,
Lemma 5.3] for details. ��

Next, for ‖(p, ϕ) − (ph, ϕh)‖, we proceed similarly to the previous analysis and
firstly observe from the second equations of (3.12) and (4.2), that (p, ϕ) and (ph, ϕh)

satisfy, respectively

Ã((p, ϕ), (q, ψ)) + B̃u((p, ϕ), (q, ψ)) = F̃D(q, ψ)

∀(q, ψ) ∈ H(div;�) × H1(�),

(5.2)

and

Ã((ph, ϕh), (qh, ψh)) + B̃uh ((ph, ϕh), (qh, ψh)) = F̃D(qh, ψh)

∀(qh, ψh) ∈ Hp
h × Hϕ

h .

(5.3)

Then, applying again Lemma 5.1 we derive the upper bound for ‖(p, ϕ) − (ph, ϕh)‖
as follows.

Lemma 5.3 Let CST := 2

α̃(�)
max{1, ‖ Ã + B̃u ‖}, where α̃(�) is the constant

yielding the ellipticity of both Ã and Ã + B̃w, for any w ∈ H1(�) (cf. (3.36) and
(3.37) in the proof of Lemma 3.3). Then, there holds

‖(p, ϕ) − (ph, ϕh)‖
≤ C̃ST {(κ2

4 + 1)1/2 ‖K−1‖∞,� c2(�) ‖ u − uh ‖1,� ‖ (p, ϕ) ‖
+(1 + (κ2

4 + 1)1/2 ‖K−1‖∞,� c2(�) ‖ u − uh ‖1,� )

×dist( (p, ϕ),Hp
h × Hϕ

h )}. (5.4)
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Proof We proceed similarly as in proof of Lemma 5.3 in [10]. In fact, from Lemmas
3.3 and 4.1, we have that the bilinear forms Ã + B̃u and Ã + B̃uh are both bounded
and elliptic with the same constant α̃(�)/2,which is clearly independent of h on their
respective spaces. In addition, F̃D is a linear and bounded functional in H(div;�) ×
H1(�) and, in particular, inHp

h×Hϕ
h . Then, a straightforward application ofLemma5.1

to the context given by (5.2)–(5.3) provides the existence of a positive constant C̃ST :=
2

α̃(�)
max{1, ‖ Ã + B̃u ‖}, such that

‖(p, ϕ) − (ph, ϕh)‖ ≤ C̃ST

⎧⎪⎪⎨
⎪⎪⎩

inf
(qh ,ψh)∈Hp

h×Hϕ
h

(qh ,ψh) �=0

(
‖(p, ϕ) − (qh, ψh)‖

+ sup
(rh ,φh)∈Hp

h×Hϕ
h

(rh ,φh) �=0

|B̃u−uh ((qh, ψh), (rh, φh))|
‖ (rh, φh) ‖

)
⎫⎪⎪⎬
⎪⎪⎭

. (5.5)

Now, we observe that the expression B̃u−uh ((qh, ψh), (rh, φh)) in the second term of
(5.5) can be bounded by using the estimate (3.35) with u− uh , (qh, ψh) and (rh, φh)

instead of w, (p, ϕ) and (q, ψ), respectively. Then, adding and subtracting ϕ, and
then bounding ‖ϕ − ψh‖ by ‖(p, ϕ) − (qh, ψh)‖, we obtain

|B̃u−uh ((qh, ψh), (rh, φh))| ≤ c2(�) (κ2
4 + 1)1/2 ‖K−1‖∞,� ‖ u

−uh ‖1,� ‖ψh‖1,� ‖ (rh, φh) ‖
≤ c2(�) (κ2

4 + 1)1/2 ‖K−1‖∞,� ‖ u − uh ‖1,� ‖ϕ‖1,� ‖ (rh, φh) ‖
+c2(�) (κ2

4 + 1)1/2‖K−1‖∞,�‖ u − uh ‖1,� ‖ (p, ϕ) − (qh, ψh) ‖ ‖ (rh, φh) ‖,

which yields

sup
(rh ,φh)∈Hp

h×Hϕ
h

(rh ,φh) �=0

|B̃u−uh ((qh, ψh), (rh, φh))|
‖ (rh, φh) ‖

≤ c2(�) (κ2
4 + 1)1/2 ‖K−1‖∞,� ‖u − uh‖1,� ‖ϕ‖1,�

+c2(�) (κ2
4 + 1)1/2 ‖K−1‖∞,� ‖ u − uh ‖1,� ‖(p, ϕ) − (qh, ψh)‖. (5.6)

Therefore, Eq. (5.4) follows by replacing (5.6) in (5.5), and then using the definition
of dist((p, ϕ),Hp

h × Hϕ
h ). ��

We now combine the inequalities provided by Lemmas 4.4 and 4.5 to derive the a
priori estimate for the total error ‖(σ , u,p, ϕ) − (σ h, uh,ph, ϕh)‖. Indeed, by gath-
ering together the estimates (5.1) and (5.4), it follows that
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‖(σ , u) − (σ h, uh)‖ + ‖(p, ϕ) − (ph, ϕh)‖
≤ CST (μ2 + κ2

2 )1/2 ‖g‖∞,� ‖ϕ − ϕh‖
+{CST c1(�) (κ2

1 + 1)1/2 ‖u‖1,� + C̃ST c2(�) (κ2
4 + 1)1/2 ‖ϕ‖1,� } ‖u − uh‖

+CST (1 + c1(�) (κ2
1 + 1)1/2 ‖u − uh‖1,� ) dist( (σ , u),Hσ

h × Hu
h )

+C̃ST(1 + c2(�) (κ2
4 + 1)1/2 ‖K−1‖∞,� ‖ u − uh ‖1,�) dist((p, ϕ),Hp

h × Hϕ
h ).

Then, using the estimates (3.47) and (3.48) to bound ‖u‖1,� and ‖ϕ‖1,�, respectively,
and then performing some algebraic manipulations, from the latter inequality we find
that

‖(σ , u) − (σ h, uh)‖ + ‖(p, ϕ) − (ph, ϕh)‖
≤ C(g, uD, ϕD) {‖(σ , u) − (σ h, uh)‖ + ‖(p, ϕ) − (ph, ϕh)‖}

+CST (1 + c1(�) (κ2
1 + 1)1/2 ‖u − uh‖1,�) dist( (σ , u),Hσ

h × Hu
h )

+C̃ST(1 + c2(�) (κ2
4 + 1)1/2 ‖K−1‖∞,� ‖ u − uh ‖1,�) dist( (p, ϕ),Hp

hH
ϕ
h )

(5.7)

where

C(g, uD, ϕD) := max{C1(g, uD, ϕD), C2(g, uD, ϕD)},
with

C1(g, uD, ϕD) := CST (μ2 + κ2
2 ) ‖g‖∞,�,

C2(g, uD, ϕD) := C1(r‖g‖∞,� + ‖uD‖0,� + ‖uD‖1/2,� ) + C2 (‖ϕD‖0,�
+‖ϕD‖1/2,�)

and

C1 := cS CST c1(�) (κ2
1 + 1)1/2 and C2 := c̃S C̃ST c2(�) (κ2

4 + 1)1/2 ‖K−1‖∞,�.

Notice that the constants multiplying the distances dist((p, ϕ),Hp
h × Hϕ

h ) and
dist((σ , u),Hσ

h × Hu
h ) are both controlled by constants, parameters, and data only

since ‖u − uh‖ can be controlled by (3.47) and (4.9). Also, clearly the constants
Ci (g, uD, ϕD), i ∈ {1, 2}, depend linearly on g, uD, and ϕD .

As a consequence of the above, we are now in position of establishing the main
result of this section providing the requested Cea estimate.

Theorem 5.4 Assume that the data g, uD and ϕD satisfy:

Ci (g, uD, ϕD) ≤ 1

2
∀i ∈ {1, 2}. (5.8)

Then, there exists a positive constant C3, depending only on parameters, data and
other constants, all of them independent of h, such that

‖(σ , u) − (σ h, uh)‖ + ‖(p, ϕ) − (ph, ϕh)‖
≤ C3 {dist((σ , u),Hσ

h × Hu
h ) + dist((p, ϕ),Hp

h × Hϕ
h )}. (5.9)
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Proof From (5.8) and (5.7), it follows that

‖(σ , u) − (σ h, uh)‖ + ‖(p, ϕ) − (ph, ϕh)‖
≤ 2CST (1 + c1(�) (κ2

1 + 1)1/2 ‖u − uh‖1,� ) dist( (σ , u),Hσ
h × Hu

h )

+2 C̃ST(1 +c2(�) (κ2
4 +1)1/2 ‖K−1‖∞,� ‖ u−uh ‖1,�)dist( (p, ϕ),Hp

h×Hϕ
h ),

and then, the rest of the proof reduces to employ the upper bounds for ‖u‖1,� and
‖uh‖1,� given in (3.47) and (4.9), respectively, and the triangle inequality. ��

Finally, we complete our a priori error analysis with the following result which
provides the corresponding rate of convergence of our Galerkin scheme with the
specific finite element subspaces Hσ

h , Hu
h , Hp

h , and Hϕ
h introduced in Sect. 4.3.

Theorem 5.5 In addition to the hypotheses of Theorems 3.9, 4.8 and 5.4, assume that
there exists s > 0 such that σ ∈ H

s(�), div σ ∈ Hs(�), u ∈ Hs+1(�), p ∈ Hs(�),

div p ∈ Hs(�), and ϕ ∈ Hs+1(�), and that the finite element subspaces are defined
by (4.11)–(4.14). Then, there exist C > 0, independent of h, such that there holds

‖(σ , u) − (σ h, uh)‖ + ‖(p, ϕ) − (ph, ϕh)‖
≤ C hmin{s,k+1}{‖σ‖s,� + ‖div σ‖s,� + ‖u‖s+1,� + ‖p‖s,� + ‖div p‖s,�

+‖ϕ‖s+1,�}. (5.10)

Proof It follows from the Cea estimate (5.9) and the approximation properties (APσ
h ),

(APu
h ), (AP

p
h) and (APϕ

h ) specified in Sect. 4.3. ��

6 Numerical results

In this section we present two examples illustrating the performance of our augmented
fully-mixed finite element scheme (4.2) on a set of quasi-uniform triangulations of the
corresponding domains and considering the finite element spaces introduced in Sect.
4.3. Our implementation is based on a FreeFem++ code (see [17]), in conjunction
with the direct linear solver UMFPACK (see [12]). A Picard algorithm with a fixed
tolerance tol = 1e− 8 has been used for the corresponding fixed-point problem (4.8)
and the iterations are terminated once the relative error of the entire coefficient vectors
between two consecutive iterates is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖
‖coeffm+1‖ ≤ tol,

where ‖ · ‖ stands for the usual euclidean norm in R
N , with N denoting the total

number of degrees of freedom defining the finite element subspaces Hσ
h , H

u
h , H

p
h and

Hϕ
h . For each example shown below we simply take (u0h, ϕ

0
h) = (0, 0) as initial guess,

and the stabilization parameters are chosen according to Lemmas 3.1 and 3.3 to be
specified below on each example.
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We now introduce some additional notation. The individual and total errors are
denoted by:

e(σ ) := ‖σ − σ h‖div;�, e(u) := ‖u − uh‖1,�, e(p) := ‖p − ph‖0,�,

e(p) := ‖p − ph‖div;�, e(ϕ) := ‖ϕ − ϕh‖1,�,

and

e(σ , u,p, ϕ) := {e(σ )2 + e(u)2 + e(p)2 + e(ϕ)2}1/2,

where p is the exact pressure of the fluid and ph is the postprocessed discrete pressure
suggested by the formulae given in (2.5) and (3.3), namely,

ph = −1

n
tr{σ h + chI + (uh ⊗ uh)}, with ch := − 1

n|�|
∫

�

tr(uh ⊗ uh).

Similarly as in [8], we also compute further variables of interest such as the velocity
gradient∇uh , the shear stress tensor σ̃ h , the vorticity ωh and the temperature gradient
∇ϕh according to (2.7) in Sect. 2. Besides, it is not difficult to show that there exist
C, C̃ > 0, independents of h, such that the following a priori estimates are satisfied:

‖p − ph‖0,� + ‖σ̃ − σ̃ h‖0,� + ‖∇u − ∇uh‖0,� + ‖ω − ωh‖0,�
≤ C {‖σ − σ h‖div;� + ‖u − uh‖1,�},

‖∇ϕ − ∇ϕh‖0,� ≤ C̃ {‖p − ph‖div;� + ‖ϕ − ϕh‖1,� + ‖u − uh‖1,�},

which says that the rates of convergence of the postprocessed variables coincide with
those provided by (5.10) (cf. Theorem 5.5).

Next, as usual we let r(·) be the experimental rate of convergence given by

r(·) := log(e(·)/e′(·))
log(h/h′)

where h and h′ denote two consecutive meshsizes with errors e and e′.

Example 1 In our first example we illustrate the accuracy of our method in 2D by
considering a manufactured exact solution defined on � := (−1/2, 3/2)× (0, 2). We
initially take the viscosity μ = 1, the thermal conductivity K = ex1+x2I ∀(x1, x2) ∈
�, which yields κ0 = e−1/2 and ‖K−1‖∞,� = e1/2, and the external force g =
(0,−1)t. Later on, further numerical results with μ ∈ {0.1, 0.05} are also reported
when the behavior of the iterativemethodwith respect to small values of the viscosity is
illustrated. In turn, as for the stabilizationparameters, they are chosen either as themean
values of the corresponding feasible ranges, or such that the intermediate constants
defining the ellipticity constants α(�)/2 and α̃(�)/2 of the uncoupled problems (cf.
Lemmas 3.1, 3.3) are maximized. In particular, for this example we take

123



An augmented fully-mixed finite element method… 197

κ1 = μ κ2 = 1, κ3 = μ2/2,

κ4 = κ0

‖K−1‖2∞,�

≈ 0.224, κ5 = κ0

2
≈ 0.303, κ6 = κ0

2‖K−1‖∞,�

≈ 0.1848.

(6.1)

In turn, the terms on the right-hand sides are adjusted so that the exact solution is
given by the functions

ϕ(x1, x2) = x21 (x
2
2 + 1), u(x1, x2) =

(
1 − eϑx1 cos(2πx2)

ϑ
2π e

ϑx1 sin(2πx2)

)
, and

p(x1, x2) = −1

2
e2ϑx1 + p̄,

where

ϑ := −8π2

μ−1 +√μ−2 + 16π2
.

and the constant p̄ is such that
∫
�
p = 0.Notice that (u, p) is thewell known analytical

solution for the Navier–Stokes problem obtained by Kovasznay [19], which presents
a boundary layer at {−1/2} × (0, 2).

In Table 1 we summarize the convergence history for a sequence of quasi-
uniform triangulations, considering the finite element spaces introduced in Sect. 4.3
with k = 0 and k = 1. We observe there that the rate of convergence O(hk+1)

predicted by Theorem 5.5 (when s = k + 1) is attained in all the cases for
unknowns and postprocessed variables. In turn, we also notice that r(ϕ) is larger
than expected, which we believe is due to the smoothness of ϕ (a polynomial
function of degree 2 in each one of its variables x1 and x2). Next, in Fig. 1 we
display the approximate velocity magnitude, horizontal and vertical components of
the velocity with streamlines, the approximate temperature and magnitud of its gra-
dient, the approximate pressure, and some components of the stress and vorticity
tensors of the fluid. All the figures were built using the RT1 − P2 − RT1 − P2
approximation with N = 173,571 degrees of freedom. In all the cases we observe
that the finite element subspaces employed provide very accurate approximations
to all the unknowns, thus confirming a good behaviour on the boundary layer as
well.

Next, we aim to study the robustness and the stability of our method with respect to
the stabilization parameters and considering a fixed mesh with h = 0.0968. We start
by analyzing the convergence of the scheme by varying the parameters corresponding
to the fluid equation. In this case, we take μ = 1 and observe the total error behavior
considering κ1 = δ = μ/(1 × 10n), for n = 0, . . . , 4. The parameters κ2 and κ3 are
computed in function of κ1 and δ, and meanwhile the parameters κ4, κ5 and κ6 are
taken as in (6.1). Next, we study the error behaviour by varying now the parameters
associated to the heat equation by considering each κi as κi/(1× 10n) for i = 4, 5, 6,
respectively, and n = 0, . . . , 4, where κi (i = 1, . . . , 6) as in (6.1). In Tables 2 and
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Table 1 Example 1: degrees of freedom, meshsizes, errors, rates of convergence, and number of iterations
for the fully-mixed RT0 − P1 −RT0 − P1 and RT1 − P2 −RT1 − P2 approximations of the Boussinesq
equations

N e(σ ) r(σ ) e(u) r(u) e(p) r(p) e(ϕ) r(ϕ) Iter

(a) Errors and rates of convergence for the fully-mixed RT0 − P1 − RT0 − P1 approximation

867 88.7618 – 40.8532 – 69.5536 – 35.5436 – 11

3267 64.5295 0.4600 24.0418 0.7649 35.0087 0.9904 9.9357 1.8789 11

12,675 39.5952 0.7046 12.3771 0.9579 17.5356 0.9974 2.5725 1.9494 11

49,923 22.0107 0.8471 6.0483 1.0331 8.7717 0.9994 0.6693 1.9424 10

198,147 11.5404 0.9315 2.9650 1.0285 4.3864 0.9998 0.1873 1.8370 9

789,507 5.8941 0.9693 1.4720 1.0102 2.1933 1.0000 0.0628 1.5775 9

e(p) r(p) e(∇u) r(∇u) e(σ̃ ) r(σ̃ ) e(ω) r(ω) e(∇ϕ) r(∇ϕ)

Postprocessed variables

30.5513 – 63.4570 – 131.57 – 12.8857 – 3.6332 –

18.9784 0.6869 54.3622 0.2232 109.33 0.2670 12.1139 0.0891 1.6242 1.1615

10.9393 0.7948 36,5156 0.5741 72.6503 0.5915 8.7736 0.4654 0.8210 0.9843

5.2620 1.0559 20.0170 0.8038 41.0159 0.8300 5.5490 0.6609 0.4252 0.9242

2.3842 1.1412 11.1138 0.9123 21.5738 0.9629 3.1624 0.8112 0.2173 0.9685

1.1043 1.1110 5.7066 0.9616 11.0152 0.9697 1.6854 0.9080 0.1099 0.9837

N e(σ ) r(σ ) e(u) r(u) e(p) r(p) e(ϕ) r(ϕ) Iter

(b) Errors and rates of convergence for the fully-mixed RT1 − P2 − RT1 − P2 approximation

2883 44.3881 – 13.0828 – 6.4122 – 7.7156 – 12

11,139 11.7833 1.9134 3.7376 1.8075 1.6421 1.9653 1.0949 2.8170 10

43,779 3.0083 1.9697 0.8879 2.0736 0.4139 1.9883 0.1422 2.9448 9

173,571 0.7650 1.9754 0.2076 2.0968 0.1038 1.9960 0.0180 2.9833 9

691,203 0.1943 1.9774 0.0494 2.0704 0.0260 1.9985 0.0023 2.9889 9

e(p) r(p) e(∇u) r(∇u) e(σ̃ ) r(σ̃ ) e(ω) r(ω) e(∇ϕ) r(∇ϕ)

Postprocessed variables

19.4699 – 39.2769 – 82.0895 – 6.8949 – 0.5839 –

3.4853 2.4819 11.6307 1.7557 22.8368 1.8458 3.3118 1.0579 0.1355 2.1072

0.8027 2.1183 2.8783 2.0147 5.5263 2.0470 0.9857 1.7483 0.0330 2.0385

0.2018 1.9921 0.7615 2.0062 1.3560 2.0270 0.2721 1.8571 0.0083 1.9888

0.0511 1.9814 0.1807 1.9869 0.3391 1.9993 0.0723 1.9129 0.0021 1.9805

3 we display the corresponding results for each case and observe, similarly as in our
previous mixed-primal scheme [10], that there is a sufficiently large range for the
parameters yielding a stable Galerkin scheme in the sense that the corresponding total
error remains bounded. This fact certainly confirms the robustness of the fully-mixed
method with respect to the stabilization parameters.
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Fig. 1 Example 1: velocity vector field, horizontal and vertical velocity with streamlines (top left, middle
and right, resp), approximate temperature, magnitude of its gradient and pressure (left, middle and right of
center row, resp), components σ̃ 11,h , σ̃ 12,h of the stress (left and middle of bottom row, resp) and vorticity
component ω12,h obtained with N = 173571 for the family RT1 − P2 − RT1 − P2

In turn, in Table 4 we show the behaviour of the iterative method as a function of
the viscosity number and the meshsize h. We consider both RT0 − P1 − RT0 − P1
and RT1 − P2 − RT1 − P2 approximations, and the stabilization parameters are
chosen as before. We observe here that the smaller the parameter μ the higher the
number of resulting iterations. In particular, we notice that when μ = 0.01 the iter-
ative method does not converge, reason why this information is not reported in those
cases. However, it is also important to remark that for viscosities not smaller than
0.05 the number of iterations remains reasonably bounded. In addition, as shown in
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Table 2 Example 1: κ1 vs.e(σ , u, ϕ, λ) for themixedRT0−P1−RT0−P1 (top) andRT1−P2−RT1−P2
(bottom) approximations of the Boussinesq equations with h = 0.0968 and μ = 1

κ1 μ μ/10 μ/100 μ/1000 μ/10000

RT0 − P1 − RT0 − P1
e(σ , u, p, ϕ) 45.1889 45.1939 45.2195 45.3705 45.5515

RT1 − P2 − RT1 − P2
e(σ , u, p, ϕ) 3.1672 3.1672 3.1673 4.3676 4.3679

Table 3 Example 1: (κ4, κ5, κ6) vs. e(σ , u, ϕ, λ) for the mixed RT0 − P1 −RT0 − P1 (top) and RT1 −
P2 − RT1 − P2 (bottom) approximations of the Boussinesq equations with h = 0.0968 and μ = 1

κi (i = 4, 5, 6) κi κi /10 κi /100 κi /1000 κi /10000

RT0 − P1 − RT0 − P1
e(σ , u, p, ϕ) 45.1225 46.2923 45.6740 51.4876 276.9853

RT1 − P2 − RT1 − P2
e(σ , u, p, ϕ) 3.1670 3.4082 9.2709 58.6682 584.3266

Table 4 Example 1: convergence behaviour of the iterative method for the mixed RT0 − P1 −RT0 − P1
(top) and RT1 −P2 −RT1 −P2 (bottom) approximations with respect to the viscosity μ and the meshsize
h

μ h = 0.3536 h = 0.1768 h = 0.0884 h = 0.0442 h = 0.0221

RT0 − P1 − RT0 − P1
1 11 11 11 10 9

0.1 16 18 19 19 19

0.05 37 21 20 20 20

0.01 – – – – –

RT1 − P2 − RT1 − P2
1 12 10 9 9 9

0.1 13 13 13 13 14

0.05 14 14 15 15 15

0.01 – – – – –

Tables 5 and 6, the rates of convergence for μ ∈ {0.1, 0.05} are still as predicted by
the theory.

Therefore, for simulating problems with small viscosity, the foregoing discussion
and results suggest to decrease gradually this physical parameter, using meshes with
small enough size and high order approximation k, along with alternative techniques
such as continuation method on the viscosity. We plan to report on these issues in a
separate work.
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Table 5 Example 1 (with μ = 0.1): degrees of freedom, meshsizes, errors, rates of convergence, and
number of iterations for the fully-mixedRT0 −P1 −RT0 −P1 andRT1 −P2 −RT1 −P2 approximations
of the Boussinesq equations

N e(σ ) r(σ ) e(u) r(u) e(p) r(p) e(ϕ) r(ϕ) Iter

(a) Errors and rates of convergence for the fully-mixed RT0 − P1 − RT0 − P1 approximation

867 6.3450 – 10.1411 – 69.0946 – 10.8022 – 16

3267 4.4033 0.5266 6.7868 0.5789 34.8084 0.7629 2.8645 1.9134 18

12,675 2.3224 0.8588 3.0072 1.0928 17.4404 0.9278 0.7956 1.7197 19

49,923 1.1275 1.1270 1.2277 1.3972 8.7250 1.0802 0.2600 1.7444 19

198,147 0.5610 1.0074 0.5451 1.1716 4.3632 1.0001 0.1058 1.2970 19

789,507 0.2819 0.9925 0.2614 1.0601 2.1816 0.9998 0.0494 1.0981 19

e(p) r(p) e(∇u) r(∇u) e(σ̃ ) r(σ̃ ) e(ω) r(ω) e(∇ϕ) r(∇ϕ)

Postprocessed variables

2.3577 – 30.7968 – 6.7258 – 9.7708 – 2.1354 –

1.6821 0.4867 27.1240 0.1830 5.6657 0.2472 8.6406 0.1771 1.0835 0.9779

0.8028 0.9930 18.1318 0.5407 3.6455 0.5920 5.3617 0.6406 0.5476 0.8516

0.3348 1.3639 10.1052 0.9118 1.9949 0.9403 2.8681 0.9758 0.2754 1.1467

0.1483 1.1745 5.2489 0.9453 1.0284 0.9561 1.4863 0.9486 0.1382 0.9953

0.0701 1.0801 2.6603 0.9802 0.5196 0.9848 0.7575 0.9722 0.0692 0.9971

N e(σ ) r(σ ) e(u) r(u) e(p) r(p) e(ϕ) r(ϕ) Iter

(b) Errors and rates of convergence for the fully-mixed RT1 − P2 − RT1 − P2 approximation

2883 2.2517 – 4.1172 – 6.1105 – 0.7241 – 13

11,139 0.1520 2.1012 0.8838 2.2197 1.1551 2.4031 0.0919 2.9775 13

43,779 0.1231 2.0780 0.1858 2.2493 0.3897 1.5675 0.0120 2.9371 13

173,571 0.0305 2.0116 0.0391 2.2476 0.0975 1.9979 0.0017 2.7827 13

691,203 0.0076 1.9961 0.0085 2.1993 0.0244 1.9996 0.0003 2.4823 14

e(p) r(p) e(∇u) r(∇u) e(σ̃ ) r(σ̃ ) e(ω) r(ω) e(∇ϕ) r(∇ϕ)

Postprocessed variables

0.9512 – 16.5373 – 3.5021 – 3.4788 – 0.1752 –

0.1886 2.3322 4.5901 1.8475 0.9222 1.9234 1.2586 1.4655 0.0417 2.0683

0.0414 2.0336 1.1068 1.9097 0.2174 1.9401 0.3596 1.6817 0.0102 1.8956

0.0098 2.2285 0.2731 2.1823 0.0530 2.1997 0.0957 2.0644 0.0025 2.1752

0.0024 2.0171 0.06839 1.9985 0.0132 2.0062 0.0247 1.9515 0.0006 2.0039
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Table 6 Example 1 (with μ = 0.05): degrees of freedom, meshsizes, errors, rates of convergence, and
number of iterations for the fully-mixedRT0 −P1 −RT0 −P1 andRT1 −P2 −RT1 −P2 approximations
of the Boussinesq equations

N e(σ ) r(σ ) e(u) r(u) e(p) r(p) e(ϕ) r(ϕ) Iter

(a) Errors and rates of convergence for the fully-mixed RT0 − P1 − RT0 − P1 approximation

867 3.5205 – 6.2489 – 69.1952 – 10.8244 – 37

3267 2.0936 0.7997 3.9398 0.6654 34.8516 0.9894 2.8670 1.9166 21

12,675 1.0275 1.0268 1.7149 1.1999 17.4614 0.9970 0.7959 1.8487 20

49,923 0.4608 1.1569 0.6821 1.3300 8.7355 0.9992 0.2600 1.6136 20

198,147 0.2107 1.1285 0.2975 1.1973 4.3684 0.9999 0.1058 1.2971 20

e(p) r(p) e(∇u) r(∇u) e(σ̃ ) r(σ̃ ) e(ω) r(ω) e(∇ϕ) r(∇ϕ)

Postprocessed variables

1.0737 – 22.6883 – 2.5974 – 8.4067 – 2.1033 –

0.7028 0.6108 18.7625 0.2738 2.0235 0.3599 6.4302 0.3863 1.0637 0.9832

0.3576 0.9068 12.3117 0.5656 1.2782 0.6167 3.7112 0.7379 0.5371 0.9169

0.1688 1.1712 6.8043 0.9249 0.6958 0.9485 1.8913 1.0513 0.2701 1.0717

0.0815 1.0504 3.5073 0.9563 0.3568 0.9637 0.9464 0.9991 0.1355 0.9954

N e(σ ) r(σ ) e(u) r(u) e(p) r(p) e(ϕ) r(ϕ) Iter

(b) Errors and rates of convergence for the fully-mixed RT1 − P2 − RT1 − P2 approximation

2883 0.6945 – 1.8420 – 6.0995 – 0.7230 – 14

11,139 0.1761 1.9796 0.4249 2.1161 1.5486 1.9777 0.0918 2.9774 14

43,779 0.0390 2.1748 0.0879 2.2732 0.3889 1.9935 0.0120 2.9355 15

173,571 0.0095 2.0375 0.0189 2.2175 0.0974 1.9974 0.0017 2.8194 15

691,203 0.0024 2.0156 0.0043 2.1364 0.0244 1.9980 0.0030 2.5030 15

e(p) r(p) e(∇u) r(∇u) e(σ̃ ) r(σ̃ ) e(ω) r(ω) e(∇ϕ) r(∇ϕ)

Postprocessed variables

0.2567 – 8.7593 – 0.9255 – 2.0614 – 0.1573 –

0.0724 1.8245 2.6466 1.7253 0.2758 1.7452 0.6678 1.6248 0.0373 2.0746

0.0164 1.9936 0.6318 1.9232 0.0649 1.9425 0.1779 1.7609 0.0091 1.8940

0.0039 2.2403 0.1545 2.1967 0.0158 2.2037 0.0457 2.1373 0.0022 2.2146

0.0009 2.1162 0.0360 2.1022 0.0039 2.0227 0.0112 2.0294 0.0005 2.1382

Example 2 This example illustrates the performance of our method in 3D by consid-
ering a manufactured exact solution defined in the cube � := (0, 1)3, which is given
by

u(x1, x2, x3) =

⎛
⎜⎜⎝

4x1x2x3(x3 − 1)(x2 − 1)(x2 − x3)(x1 − 1)2

−4x1x22 x3(x2 − 1)2(x3 − 1)(x1 − 1)(x1 − x3)

4x1x2x23 (x3 − 1)2(x2 − 1)(x1 − 1)(x1 − x2)2

⎞
⎟⎟⎠ ,
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Table 7 Example 2: degrees of freedom, meshsizes, errors, rates of convergence, and number of iterations
for the fully-mixed RT0 − P1 − RT0 − P1 approximation of the Boussinesq equations

N e(σ ) r(σ ) e(u) r(u) e(p) r(p) e(ϕ) r(ϕ) Iter

Errors and rates of convergence for the fully-mixed RT0 − P1 − RT0 − P1 approximation

588 0.4486 – 0.0667 – 4.6874 – 3.4798 – 5

3956 0.1975 1.1838 0.0288 1.2119 2.3699 0.9842 2.1069 0.7240 5

29,028 0.0773 1.3533 0.0115 1.3244 1.1844 1.0007 1.1377 0.8890 4

222,404 0.0329 1.2324 0.0045 1.3536 0.5919 1.0007 0.5844 0.9611 4

1,741,188 0.0153 1.1046 0.0019 1.2439 0.2959 1.0002 0.2948 0.9872 4

e(p) r(p) e(∇u) r(∇u) e(σ̃ ) r(σ̃ ) e(ω) r(ω) e(∇ϕ) r(∇ϕ)

Postprocessed variables

0.1587 – 0.1280 – 0.3478 – 0.0711 – 2.7270 –

0.0808 0.9741 0.0795 0.6873 0.1949 0.8357 0.0416 0.7734 1.4602 0.9013

0.0350 1.2070 0.0448 0.8275 0.0983 0.9875 0.0226 0.8803 0.7318 0.9966

0.0151 1.2128 0.0236 0.9247 0.0486 1.0162 0.0117 0.9498 0.3628 1.0526

0.0070 1.1091 0.0121 0.9638 0.0242 1.0059 0.0060 0.9635 0.1801 0.9701

and

p(x1, x2, x3) = x1 − 1

2
and ϕ(x1, x2, x3) = ex1+x2+x3

We take the viscosity μ = 1, the thermal conductivity K = I, and the external force
g = (0, 0,−1)t. Again, the stabilization parameters are optimally chosen, i.e.,

κ1 = μ, κ2 = μ, κ3 = μ2/2,

κ4 = 1, κ5 = 1/2, and κ6 = 1/2.

For this example we consider the finite element spaces introduced in Sect. 4.3
with k = 0 on a sequence of quasi-uniform triangulations. In Table 7 the conver-
gence history is summarized and it is observed there that the rate of convergence
O(h) predicted by Theorem 5.5 is attained by all the unknowns and postprocessed
variables. Next, in Fig. 2 we display the approximate velocity magnitude, stream-
lines, the approximate temperature gradient field and its magnitude as well as some
components of the stress and vorticity tensors of the fluid. All the figures were built
using the RT0 − P1 − RT0 − P1 approximation with N = 1,741,188 degrees of
freedom.
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Fig. 2 Example 2: magnitude and streamlines of the approximate velocity, temperature magnitude and
vector field (top left, middle and right, resp), approximate components of the fluid stress σ̃ 13,h , σ̃ 23,h and
σ̃ 33,h (left, middle and right of center row, resp), approximate components of the fluid vorticity ω12,h ,
ω13,h and ω23,h (left, middle and right of bottom row, resp) obtained with N = 1,741,188 for the family
RT0 − P1 − RT0 − P1
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