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Abstract Wedevelop ageneral, unified theory of splines for awide collection of spline
spaces, including trigonometric splines, hyperbolic splines, and special Müntz spaces
of splines by invoking anovel variant of the homogeneous polar formwherewealter the
diagonal property. Using this polar form, we derive de Boor type recursive algorithms
for evaluation anddifferentiation.Wealso show that standard knot insertion procedures
such as Boehm’s algorithm and the Oslo algorithm readily extend to these general
spline spaces. In addition, for these spaces we construct compactly supported B-spline
basis functionswith simple two term recurrences for evaluation and differentiation, and
we show that these B-spline basis functions form a partition of unity, have curvilinear
precision, and satisfy a dual functional property and a Marsden identity.
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1 Introduction

Polar forms are one of the most powerful methods for developing the theory of Bézier
and B-spline curves and surfaces not only in polynomial and piecewise polynomial
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spaces [24] but also in non polynomial and non piecewise polynomial spaces such as
Q-splines [14], exponential splines [12], hyperbolic splines [15], trigonometric splines
[16] and Chebyshev splines [23].

Classical polar forms satisfy three axioms; symmetry, multi-affinity, and a sim-
ple diagonal property. Replacing the standard multi-affine property of polar forms
by the trigonometric multi-barycentric property defines polar forms for trigonomet-
ric polynomials [11]. This trigonometric multi-barycentric property can be used to
develop circular analogues of Bernstein Bézier polynomials [2] and trigonometric
B-splines [16]. The geometric properties of trigonometric splines can be investigated
by introducing control curves [13]. The same class of trigonometric spaces can also
be investigated by means of control polygons instead of control curves [18]. Using
this approach it can be shown that this class of trigonometric spaces has optimal shape
preserving properties [18].

Chebyshev B-splines are investigated extensively in the literature [4,19,21–23].
Barry [4] uses an extension of the de Boor-Fix dual functionals to construct gen-
eralizations of algorithms for piecewise polynomial B-spline curves to Chebyshev
B-spline curves. Algorithms for and shape preserving properties of the polynomial
Bernstein–Bézier and B-spline bases can also be generalized to Chebyshev spaces
by using the notion of polar forms; see, for example [19,21–23] and references
therein. The existence of polar forms guarantees the existence of Bernstein–Bézier and
B-spline bases in Chebyshev spaces. For example, in [22], the existence of B-spline
bases in 4-dimensional extended Chebyshev spaces is derived from the existence of
polar forms constructed by intersecting appropriate osculating flats.

Conditions for the existence of B-splines for piecewise exponential spline spaces
are given in [17] by studying null spaces of linear differential operators with con-
stant coefficients and no complex roots. Since hyperbolic spaces are special cases
of piecewise exponential spaces and exponential spaces are extended Chebyshev
spaces (see [17]), polar forms for Chebyshev spaces can also be applied to exponential
B-splines and hyperbolic B-splines. Polar forms for Q-splines and the corresponding
non-affine subdivision algorithm are derived in [14] using pseudo Bézier points. For
more information about these generalizations see [12,14–16,20,21,23] and references
therein.

Polar forms for Chebyshev spaces have been constructed by replacing the multi-
affine property by a pseudo-affine property (see [1,20,23]). These polar forms can be
used to construct Bernstein Bézier bases for Chebyshev spaces and B-spline bases for
Chebyshev splines. In contrast, in [8], we construct polar forms for non-polynomial
Bernstein Bézier curves by keeping the multi-linear property and changing instead
the diagonal property. The advantage of our approach is that the computations and
proofs are still simple, since we retain the simple multi-linear property. By altering
the diagonal property of the polar form for homogeneous polynomials, we developed
a unified theory of Bézier curves for infinitely many diverse type of spaces, including
trigonometric polynomials, hyperbolic polynomials and special Müntz spaces. In this
paper, as a sequel to [8], we develop a unified theory of B-splines for the corresponding
spline spaces.

This paper is organized in the following fashion. In Sect. 2, we review a variant of
the homogeneous polar form where we alter the diagonal property. This variant will
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play a central role in our construction and analysis of spline spaces and B-spline basis
functions. A variant of the local de Boor algorithm is presented in Sect. 3 and a global
de Boor type algorithm is derived in Sect. 4 where we prove that B-splines of degree n
with nomultiple knots areCn−1 continuous. In Sect. 5 we show that every spline curve
is a B-spline curve and we also analyse the effect of multiple knots on smoothness.
Section 6 deals with knot insertion algorithms and a proof of the variation diminishing
property. Finally in Sect. 7 we construct B-spline basis functions and study properties
and identities for these basis functions such as the dual functional property, Marsden’s
identity, partition of unity, curvilinear precision, interpolation, and differentiation.

2 Functional polar forms

We begin by reviewing the notion of homogeneous polar forms, which play a central
role in our construction and analysis of B-splines.

Let γ1 and γ2 be two differentiable, locally linearly independent functions. By
locally linearly independent we mean that there is an open interval I ⊆ supp(γ1) ∩
supp(γ2) such that γ1 and γ2 are linearly independent on I. Set

πn(γ1, γ2) = span
{
γ n−k
1 γ k

2

}n
k=0

. (1)

Thus πn(γ1, γ2) is the space of homogeneous polynomials of degree n in the functions
γ1, γ2.

Dişibüyük and Goldman [8] introduce the notion of a polar form for functions
G ∈ πn(γ1, γ2). The homogeneous polar form or homogeneous blossom of G(x) is
the unique symmetric, multi-linear function g((u1, w1), . . . , (un, wn)) that reduces
to G(x) along the (γ1, γ2) diagonal. That is, g((u1, w1), . . . , (un, wn)) is the unique
function that satisfies the following three axioms:

(a) Symmetry property: for every permutation [σ1, . . . , σn] of [1, . . . , n]

g((uσ1, wσ1), . . . , (uσn , wσn )) = g((u1, w1), . . . , (un, wn))

(b) Multi-linear property: for i = 1, . . . , n,

g((u1, w1), . . . , a(ui , wi ) + b(vi , yi ), . . . , (un, wn))

= ag((u1, w1), . . . , (ui , wi ), . . . , (un, wn))

+ bg((u1, w1), . . . , (vi , yi ), . . . , (un, wn))

(c) Diagonal Property: g is equal to G on the (γ1, γ2) diagonal i.e.

g((γ1(x), γ2(x)), . . . , (γ1(x), γ2(x))) = G(x).

The existence and uniqueness of this polar form are established in [8].
Consider the planar parametric curve �(t) = (γ1(t), γ2(t)), a � t � b. The

barycentric coordinates of a point �(x) = (γ1(x), γ2(x)), a � x � b, on this curve
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relative to the end points of the arc of �(t) from �(a) = (γ1(a), γ2(a)) to �(b) =
(γ1(b), γ2(b)) are the solutions α(x, a, b), β(x, a, b) of the linear system

αγ1(a) + βγ1(b) = γ1(x)

αγ2(a) + βγ2(b) = γ2(x). (2)

Solving these equations gives α(x, a, b) = d(x,b)
d(a,b) and β(x, a, b) = d(a,x)

d(a,b) , where
d(u, v) = γ1(u)γ2(v) − γ2(u)γ1(v). Now the following multi-barycentric property is
an immediate consequence of (2) and the multi-linear property of the polar form.

Multi-barycentric property:
Let g be the polar form of G ∈ πn(γ1, γ2). Then

g(. . . , (γ1(x), γ2(x)), . . .) = d(x, b)

d(a, b)
g(. . . , (γ1(a), γ2(a)), . . .)

+ d(a, x)

d(a, b)
g(. . . , (γ1(b), γ2(b)), . . .) (3)

Just like the homogeneous polar form for homogeneous polynomials in two vari-
ables, this homogeneous polar form can be used to compute the derivatives of functions
G ∈ πn(γ1, γ2).Let g be the polar form ofG.Then by the chain rule and the symmetry
of the polar form, the first derivative of G(x) is given by [8]

G ′(x) = ng((γ ′
1(x), γ

′
2(x)), (γ1(x), γ2(x)), . . . , (γ1(x), γ2(x))) (4)

In order to compute the kth derivative of G(x) in terms of the polar form, we need to
invoke the notion of integer partitions.

An integer partition of a positive integer k is a set of positive integers
l = {l1, l2, . . . , lr } such that

∑r
i=1 li = k. For example, all the integer partitions

of 4 are {4}, {3, 1}, {2, 2}, {2, 1, 1} and {1, 1, 1, 1}. For detailed information about
integer partitions, see [3]. We denote the set of all the integer partitions of k by λ(k)
and we denote the set of the integer partitions that have at most n elements by λn(k).
For example,

λ(4) = {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}
λ2(4) = {{4}, {3, 1}, {2, 2}},
λ3(4) = {{4}, {3, 1}, {2, 2}, {2, 1, 1}}.

Finally, let δ(l) be the set of all permutations of the elements of l.Denote the number of
elements of δ(l) by |δ(l)| and the number of elements of l by |l|. For example, for l =
{2, 1, 1} ∈ λ(4), the set of permutations is δ({2, 1, 1}) = {{2, 1, 1}, {1, 2, 1}{1, 1, 2}}.
Hence we have |δ({2, 1, 1})| = 3 = |l|.

Let g be the polar form of G ∈ πn(γ1, γ2). To simplify our notation, we define

g(a) = g

((
da1γ1
dxa1

,
da1γ2
dxa1

)
, . . . ,

(
danγ1
dxan

,
danγ2
dxan

))
,
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where a = (a1, a2, . . . , an) is amulti-index.We also define a+b = (a1+b1, . . . , an+
bn) and the elementary unit multi-index e j by

e j =
⎛
⎝0, . . . , 0, 1︸︷︷︸

j th term

, 0, . . . , 0

⎞
⎠ .

For example, we write

g(ek) = g

⎛
⎜⎜⎜⎝(γ1(x), γ2(x)), . . . ,

(
dγ1

dx
,
dγ2

dx

)

︸ ︷︷ ︸
kth term

, . . . , (γ1(x), γ2(x))

⎞
⎟⎟⎟⎠ .

Since the polar form g is multi-linear, it follows by the chain rule that

dg

dx
=

n∑
k=1

g(ek).

Theorem 1 kth derivative of G :
Let g be the polar form of G ∈ πn(γ1, γ2). Then

G(k)(x) =
∑

l∈λn(k)

(
n

|l|
)(

k

l1 · · · l|l|
)

|δ(l)|g
(
l̃
)
, (5)

where li , i = 1 . . . |l| are the elements of l and l̃ = (l1, . . . l|l|, 0, . . . , 0︸ ︷︷ ︸
n−|l| terms

).

Proof By the diagonal property of the polar form

G(x) = g(γ1(x), γ2(x), . . . , (γ1(x), γ2(x))).

Nowdifferentiating both sides k timeswith respect to x and using the chain and product
rules, we have

G(k)(x) =
n∑

j1=1

· · ·
n∑

jk=1

g(e j1+···+e jk ).

Since ji , i = 1, . . . , k may be repeated, there exist l ∈ λn(k) such that (e j1 +· · ·+e jk )
can be generated by changing exactly |l| zeros of (0, . . . , 0︸ ︷︷ ︸

n zeroes

) to li , i = 1 . . . |l|. The

number of ways of choosing |l| zeros from n zeros is

(
n

|l|
)

, and for l = {l1, . . . , l|l|}
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there are

(
k

l1 · · · l|l|
)
ways of distributing k elements into the |l| distinct positions

such that each position i = 1 . . . , |l| includes exactly li elements. Finally, since the
number of permutations of l is |δ(l)|, by the symmetry property both of the polar form
and of the multinomial coefficients we obtain

G(k)(x) =
∑

l∈λn(k)

(
n

|l|
)(

k

l1 · · · l|l|
)

|δ(l)|g
(
l̃
)
,

where l̃ = {l1, . . . , l|l|, 0, . . . , 0︸ ︷︷ ︸
n−|l| zeroes

}. ��

Remark 1 For classical homogeneous polynomials γ1 = t and γ2 = w. Therefore for
classical polynomials the only partition l ∈ λn(k) for which g(l) �= 0 is l = (1, . . . , 1︸ ︷︷ ︸

k times

).

Thus for classical polynomials after dehomogenization the summation on the right-
hand side of Eq. (5) reduces to the single term:

n!
(n − k)!g

⎛
⎝(1, 0), . . . , (1, 0)︸ ︷︷ ︸

k terms

, (t, 1), . . . , (t, 1)︸ ︷︷ ︸
n − k terms

⎞
⎠ .

The many terms on the right-hand side of Eq. (5) are what distinguishes polynomials
in (γ1, γ2) from classical polynomials and makes the proofs of differentiability much
harder for spline functions with segments in πn(γ1, γ2). See, for example, the proofs
presented below of Theorem 2 and Lemma 1.

Remark 2 If γ1 and γ2 are continuous and non-negative functions on an interval I
such that γ2

γ1
is increasing on I and satisfies

inf
x∈I

{
γ2

γ1

}
= 0, sup

x∈I

{
γ2

γ1

}
= +∞,

then the basis in (1) is a B-basis and has optimal shape preserving properties [18].
Note that if γ1 and γ2 are non-negative functions and

γ2
γ1

is an increasing function
then d(u, v) > 0 for all u < v. Thus for any x0 < · · · < xn, the determinant of the
collocation matrix [7] is

det

((
γ n−i
1 (x j )γ

i
2(x j )

)n
i, j=0

)
=

n∏
j<i

d(x j , xi ) > 0.

Using the positivity of γ1 and γ2, it can be shown that every submatrix of this colloca-
tion matrix has a positive determinant, which is the requirement for totally positivity
of the basis in (1).
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3 The local de Boor algorithm

We will now construct B-spline curves by introducing a variant of the de Boor algo-
rithm.Wewill begin with a local version of this de Boor algorithm specifically adapted
to πn(γ1, γ2). But before we can construct this local de Boor algorithm, we first need
the notion of a progressive sequence.

Definition 1 Let γ1 and γ2 be two locally linearly independent functions and let
d(a, b) = γ1(a)γ2(b)−γ1(b)γ2(a).A sequence {xi }2ni=1 of 2n real numbers satisfying
the constraints d(x j , xi+n) �= 0 for all i � j � n is called a d-progressive sequence
or more simply just a progressive sequence.

The local de Boor algorithm evaluates recursively a function G ∈ πn(γ1, γ2) start-
ing from n + 1 values of the polar form of G evaluated at a progressive sequence.
To generate the local de Boor algorithm, we first construct a recursive evaluation
algorithm for the polar form of G.

Recursive evaluation algorithm for polar forms:

Let {xi }2ni=1 be a progressive sequence and let G ∈ πn(γ1, γ2). Set

b0k = g((γ1(xk+1), γ2(xk+1)), . . . , (γ1(xk+n), γ2(xk+n))), k = 0, 1, . . . , n

and

brk = d(ur , xk+n+1)

d(xk+r , xk+n+1)
br−1
k + d(xk+r , ur )

d(xk+r , xk+n+1)
br−1
k+1, k = 0, 1, . . . , n − r (6)

and r = 1, . . . , n. Then it follows easily by induction on r and the symmetry and
multi-barycentric properties of the polar form that

brk = g((γ1(xk+r+1), γ2(xk+r+1)), . . . , (γ1(xk+n), γ2(xk+n)),

(γ1(u1), γ2(u1)), . . . , (γ1(ur ), γ2(ur )))

for k = 0, 1, . . . , n − r, and r = 0, 1, . . . , n. In particular

bn0 = g((γ1(u1), γ2(u1)), . . . , (γ1(un), γ2(un))).

Note that this evaluation algorithm is well defined since the denominators in (6) never
vanish because {xi }2ni=1 is a progressive sequence. This algorithm is illustrated for the
case n = 3 in Fig. 1.

Since g reduces to G on the (γ1, γ2) diagonal, setting ui = x provides a recursive
evaluation algorithm for a curve G ∈ πn(γ1, γ2). In analogy with classical B-splines,
we call this recursive evaluation algorithm the local de Boor algorithm.

The local de Boor algorithm:

Let {xi }2ni=1 be a progressive sequence and let G ∈ πn(γ1, γ2). Set

P0
k = g(γ1(xk+1), γ2(xk+1)), . . . , (γ1(xk+n), γ2(xk+n)), k = 0, . . . , n,
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u1u2u3

x3u1u2 x4u1u2

x2x3u1 x3x4u1 x4x5u1

x1x2x3 x2x3x4 x3x4x5 x4x5x6

d(u3,x4)
d(x3,x4)

d(x3,u3)
d(x3,x4)

d(u2,x4)
d(x2,x4)

d(x2,u2)
d(x2,x4)

d(u2,x5)
d(x3,x5)

d(x3,u2)
d(x3,x5)

d(u1,x4)
d(x1,x4)

d(x1,u1)
d(x1,x4)

d(u1,x5)
d(x2,x5)

d(x2,u1)
d(x2,x5)

d(u1,x6)
d(x3,x6)

d(x3,u1)
d(x3,x6)

Fig. 1 The recursive evaluation algorithm (6) for polar forms. Here xi , i = 1, . . . 6 is a progressive
sequence and uvw denotes g((γ1(u), γ2(u)), (γ1(v), γ2(v)), (γ1(w), γ2(w)))

and define Pr
k recursively by

Pr
k = d(x, xk+n+1)

d(xk+r , xk+n+1)
Pr−1
k + d(xk+r , x)

d(xk+r , xk+n+1)
Pr−1
k+1 (7)

for k = 1, . . . , n − r and r = 1, . . . , n. In this case

Pr
k =g((γ1(xk+r+1), γ2(xk+r+1)), . . . , (γ1(xk+n), γ2(xk+n)),

(γ1(x), γ2(x)), . . . , (γ1(x), γ2(x)))

for k = 0, 1, . . . , n − r, and r = 0, 1, . . . , n. In particular,

Pn
0 = g((γ1(x), γ2(x)), . . . , (γ1(x), γ2(x))) = G(x).

In Fig. 2 the local de Boor algorithm is illustrated for the case n = 3.
Let Bj,n be the function generated by the local de Boor algorithm for a fixed

progressive sequence {xi }2ni=1 with the initial values b0k = δ jk . That is, Bj,n(x) is the
sum of the products along all paths from the j th position at the base to the apex of the
local de Boor algorithm. Then since every function G ∈ πn(γ1, γ2) has a polar form,
it follows by linearity that

G(x) =
n∑

k=0

Bk,n(x)g((γ1(xk+1), γ2(xk+1)), . . . , (γ1(xk+n), γ2(xk+n))). (8)

Thus the functions B0,n, . . . Bn,n span the space πn(γ1, γ2). Since dim πn(γ1, γ2) =
n + 1 (see [8]), we conclude that the functions B0,n, . . . Bn,n form a basis for the
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xxx

x3xx x4xx

x2x3x x3x4x x4x5x

x1x2x3 x2x3x4 x3x4x5 x4x5x6

d(x,x4)
d(x3,x4)

d(x3,x)
d(x3,x4)

d(x,x4)
d(x2,x4)

d(x2,x)
d(x2,x4)

d(x,x5)
d(x3,x5)

d(x3,x)
d(x3,x5)

d(x,x4)
d(x1,x4)

d(x1,x)
d(x1,x4)

d(x,x5)
d(x2,x5)

d(x2,x)
d(x2,x5)

d(x,x6)
d(x3,x6)

d(x3,x)
d(x3,x6)

Fig. 2 The local de Boor evaluation algorithm (7). Here xi , i = 1, . . . 6 is a progressive sequence and
uvw denotes g((γ1(u), γ2(u)), (γ1(v), γ2(v)), (γ1(w), γ2(w)))

space πn(γ1, γ2). Therefore the coefficients of G relative to the basis B0,n, . . . Bn,n

are unique. Hence from (8), we have the following dual functional property.
Dual functional property:

Let G(x) = ∑n
k=0 Pk Bk,n(x) and let g be the polar form of G. Then

Pk = g((γ1(xk+1), γ2(xk+1)), . . . , (γ1(xk+n), γ2(xk+n))).

The special progressive sequence xi = a, i = 1, 2, . . . n and xs = b, s = n + 1,
n + 2, . . . , 2n with the control points Pk = δ jk generates the Bernstein-Bézier basis
functions

Bk,n(x) =
(
n

k

)(
d(a, x)

d(a, b)

)k (d(x, b)

d(a, b)

)n−k

, k = 0, 1, . . . , n (9)

defined on the interval [a, b] (see [8]). In this case the local de Boor algorithm reduces
to the de Casteljau evaluation algorithm for Bernstein–Bézier curves in πn(γ1, γ2).
For the special properties of these Bernstein–Bézier curves, see [8].

4 The global de Boor algorithm

The local de Boor evaluation algorithm computes points along a single segment in
πn(γ1, γ2). As in the case of classical B-splines, for a given set of control points
{Pj } and an increasing knot sequence {xi }, where each consecutive set of 2n knots
form a progressive sequence, the global de Boor algorithm produces smooth piecewise
curves, where each segment lies in πn(γ1, γ2). In analogy with the classical piecewise
polynomial theory we call these curves B-spline curves (In this section we are restrict-
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xxx

x4xx x5xx

x3x4x x4x5x x5x6x

x2x3x4 x3x4x5 x4x5x6 x5x6x7

d(x,x5)
d(x4,x5)

d(x4,x)
d(x4,x5)

d(x,x5)
d(x3,x5)

d(x3,x)
d(x3,x5)

d(x,x6)
d(x4,x6)

d(x4,x)
d(x4,x6)

d(x,x5)
d(x2,x5)

d(x2,x)
d(x2,x5)

d(x,x6)
d(x3,x6)

d(x3,x)
d(x3,x6)

d(x,x7)
d(x4,x7)

d(x4,x)
d(x4,x7)

Fig. 3 Evaluating a new segment by shifting all the indices in the local de Boor algorithm by 1

xxx xxx

x3xx x4xx x5xx

x2x3x x3x4x x4x5x x5x6x

x1x2x3 x2x3x4 x3x4x5 x4x5x6 x5x6x7

d(x,x4)
d(x3,x4)

d(x3,x)
d(x3,x4)

d(x,x5)
d(x4,x5)

d(x4,x)
d(x4,x5)

d(x,x4)
d(x2,x4)

d(x2,x)
d(x2,x4)

d(x,x5)
d(x3,x5)

d(x3,x)
d(x3,x5)

d(x,x6)
d(x4,x6)

d(x4,x)
d(x4,x6)

d(x,x4)
d(x1,x4)

d(x1,x)
d(x1,x4)

d(x,x5)
d(x2,x5)

d(x2,x)
d(x2,x5)

d(x,x6)
d(x3,x6)

d(x3,x)
d(x3,x6)

d(x,x7)
d(x4,x7)

d(x4,x)
d(x4,x7)

Fig. 4 The global de Boor algorithm for two segments of a cubic B-spline curve

ing to the case of simple knots; multiple knots will be discussed in Sect. 5). A B-spline
segment of degree n is defined by 2n progressive knots {xi }2ni=1 and n + 1 arbitrary
control points {Pj }nj=0 by placing the control points at the base of the local de Boor
algorithm and the knots as parameters in the function d along the edges (Fig. 2). If we
are given one additional knot x2n+1 and one additional control point Pn+1, then we
can evaluate a new segment by shifting all the indices in the local de Boor algorithm
by 1. The case where n = 3 is illustrated in Fig. 3.

Since these two segments share common control points, as well as nodes and edges
with common labels, we may overlap the diagrams in Figs. 2 and 3. We illustrate this
overlap in Fig. 4.

Notice that the symbols xxx at the apexes represent the values of distinct curves in
πn(γ1, γ2) over distinct parameter intervals with distinct knot sequences,
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G1(x) = g1((γ1(x), γ2(x)), (γ1(x), γ2(x)), (γ1(x), γ2(x)))

and

G2(x) = g2((γ1(x), γ2(x)), (γ1(x), γ2(x)), (γ1(x), γ2(x))).

In order to investigate the continuity of two adjacent segments, we will start with the
case n = 3 as an illustration before we launch into a formal proof of the general case.
Note that the diagrams also overlap in the general case.

As in the case of classical B-splines (see [10]), the first apex in Fig. 4 represents
the curve segment for x3 � x � x4 and the second apex represents the curve segment
for x4 � x � x5. Since d(x, x) = 0, if we evaluate G1 and G2 at x = x4, then the
left arrow of the top level of the first segment and the right arrow of the top level of
the second segment both evaluate to zero and their adjacent arrows evaluate to one.
Hence evaluating both segments at x = x4 gives the same result denoted in Fig. 4 by
x4xx . Therefore these two curve segments meet continuously at x = x4.

To show thatG1 andG2 meet withC1-continuity at x = x4,wewill use the formula
for the derivative in terms of the polar form. By (4)

G ′
1(x) = 3g1((γ

′
1(x), γ

′
2(x)), (γ1(x), γ2(x)), (γ1(x), γ2(x))).

Similarly,

G ′
2(x) = 3g2((γ

′
1(x), γ

′
2(x)), (γ1(x), γ2(x)), (γ1(x), γ2(x))).

Differentiating (2) with a = xk and b = x j yields

α′(γ1(xk), γ2(xk)) + β ′(γ1(x j ), γ2(x j )) = (γ ′
1(x), γ

′
2(x)).

Solving this equation gives

α′ = γ ′
1(x)γ2(x j ) − γ1(x j )γ ′

2(x)

γ1(xk)γ2(x j ) − γ1(x j )γ2(xk)
= d

dx

(
d(x, x j )

d(xk, x j )

)

and

β ′ = γ1(xk)γ ′
2(x) − γ ′

1(x)γ2(xk)

γ1(xk)γ2(x j ) − γ1(x j )γ2(xk)
= d

dx

(
d(xk, x)

d(xk, x j )

)

which are the barycentric coordinates of (γ ′
1(x), γ

′
2(x)) with respect to the points

(γ1(xk), γ2(xk)) and (γ1(x j ), γ2(x j )).
Therefore by (4) to compute G ′

1(x) and G
′
2(x) using polar forms, we may differen-

tiate the first level of the algorithm and multiply the result by 3. (see Fig. 5). Thus to
compute G ′

1 and G
′
2 from the diagram, we need to replace the labels along the arrows

of the first level
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x xx x xx

x3x x x4x x x5x x

x2x3x x3x4x x4x5x x5x6x

x1x2x3 x2x3x4 x3x4x5 x4x5x6 x5x6x7

d(x,x4)
d(x3,x4)

d(x3,x)
d(x3,x4)

d(x,x5)
d(x4,x5)

d(x4,x)
d(x4,x5)

d(x,x4)
d(x2,x4)

d(x2,x)
d(x2,x4)

d(x,x5)
d(x3,x5)

d(x3,x)
d(x3,x5)

d(x,x6)
d(x4,x6)

d(x4,x)
d(x4,x6)

d (x,x4)
d(x1,x4)

d (x1,x)
d(x1,x4)

d (x,x5)
d(x2,x5)

d (x2,x)
d(x2,x5)

d (x,x6)
d(x3,x6)

d (x3,x)
d(x3,x6)

d (x,x7)
d(x4,x7)

d (x4,x)
d(x4,x7)

Fig. 5 Derivative of two adjacent segments of a cubic B-spline curve. Here x ′ denotes the homogeneous
polar form evaluated at (γ ′

1(x), γ
′
2(x))

d(x,xj)
d(xk,xj)

d(xk,x)
d(xk,xj)

by

α′ β′

Since the labels along the arrows entering the two apexes in the Fig. 4 do not change,
we see that G1 and G2 meet with C1-continuity because once again when x = x4 the
left arrow entering the first apex and the right arrow entering the second apex are zero
and their adjacent arrows evaluate to 1.

Thus we can see from the diagram that Ck-continuity holds as long as the top level
in the diagram does not change. From Theorem 1, since λ3(2) = {{2}, {1, 1}} , the
second derivative of G1 and G2 can be evaluated from the diagram by differentiating
the first level twice (corresponding to l = {2}) and by differentiating the first two levels
once (corresponding to l = {1, 1}). These derivatives do not affect the top level of the
algorithm; hence by the same reasoning as for C1-continuity, G1 and G2 meet with
C2-continuity. But for the third derivative we have λ3(3) = {{3}, {2, 1}, {1, 1, 1}} and
all three levels of the diagram corresponding to l = {1, 1, 1} are differentiated. In this
case we do not have C3-continuity, since the expressions on the left arrow entering
the first apex and the right arrow entering the second apex are no longer zero.

In general, a similar argument shows that two B-spline curve segments of degree
n joined at x = x j meet with Cs-continuity as long as the sth derivative of the two
adjacent segments does not change the top level of the algorithm. Since our diagrams
are just graphical realizations of the algorithm, in the following discussion we shall
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speak of the diagram and the algorithm interchangeably; levels in the diagram corre-
spond to levels in the algorithm, and labels along the edges of the diagram correspond
to coefficients in the algorithm. The diagrams, however, are easier to visualize and
therefore help to simplify our understanding and analysis of the algorithm.

Consider the de Boor evaluation algorithm for a degree n B-spline curve, where
the nodes are represented by values of the polar form. To replace the i th component
(γ1(x), γ2(x)) of the polar form by (γ

(r)
1 (x), γ (r)

2 (x)) in the diagram, we can differ-
entiate the functions along the edges at the i th level of the diagram r times, since by
differentiating r times we solve the equation

α(r)(γ1(xk), γ2(xk)) + β(r)(γ1(x j ), γ2(x j )) = (γ
(r)
1 (x), γ (r)

2 (x)).

Thus there is a recursive algorithm for each term in the derivative formula (5). A term

g

(
l̃
)
has a recursive evaluation algorithmwith the functions

dl j

dxl j

(
d(x, xk+n+1)

d(xk+ j , xk+n+1)

)

and
dl j

dxl j

(
d(xk+ j , x)

d(xk+ j , xk+n+1)

)
on level j, j = 1, . . . , |l|, and the functions

d(x, xk+n+1)

d(xk+r , xk+n+1)
and

d(xk+r , x)

d(xk+r , xk+n+1)
on the remaining n−|l| levels from r = |l|+1

to r = n. Since the functions
d(x, xk+n+1)

d(xk+n, xk+n+1)
and

d(xk+n, x)

d(xk+n, xk+n+1)
appear on level

n, when evaluated at the join x = xk+n+1, the segments agree for this term and this
agreement holds for every term. This agreement holds until |l| = n or equivalently
until the partition {1, . . . , 1}, when the last level must be differentiated.

The main point here is that, for the sth derivative of B-spline curve, if s � n, then
there will be a term in the formula for the derivative where every element inside the
polar form is differentiated. In this case the coefficients on all the levels including the
top level are differentiated and the argument for continuity breaks down. But if s < n,

then we never need to differentiate the top level of the diagram; all the derivatives can
be distributed to lower levels of the algorithm.

Note that the i th level of the diagram is associated with the i th component of the
polar form. Therefore by Theorem 1 two adjacent segments of a degree n B-spline
curve meet with Cs-continuity as long as every element l of λn(s) satisfies |l| < n.

Since |l| cannot exceed s, Cs-continuity holds for every s < n; that is, two adjacent
segments of a degree n B-spline curve meet with Cn−1-continuity. Hence we have
proved the following theorem:

Theorem 2 B-spline curves of degree n with no multiple knots are Cn−1-continuous
at the knots.

5 All splines are B-splines

A spline is a piecewise function whose segments Gk ∈ πn(γ1, γ2) meet smoothly
up to some order at the joins. A B-spline curve is a spline generated by the de Boor
algorithm. For a fixed progressive knot sequence, let σn(γ1, γ2) denotes the spaces of
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splines whose segments lie in πn(γ1, γ2) where γ1, γ2 are two differentiable, locally
linearly independent functions. The goal of this section is to prove that all splines from
the space σn(γ1, γ2) can be generated by the de Boor algorithm. To begin, we need to
prove the following analogue of [10, pp. 364, Lemma 7.2].

Lemma 1 Let F and G be two functions in πn(γ1, γ2) and let f and g be the polar
forms of F and G. If γ1(ξ)γ ′

2(ξ)− γ ′
1(ξ)γ2(ξ) �= 0, then the following statements are

equivalent.

1. F ( j)(ξ) = G( j)(ξ), 0 � j � k � n.

2. f ((u1, w1), . . . , (u j , w j ), (γ1(ξ), γ2(ξ))n− j )

= g((u1, w1), . . . , (u j , w j ), (γ1(ξ), γ2(ξ))n− j )

for any parameters u1, . . . , u j , w1, . . . , w j , 0 � j � k � n, where

(γ1(ξ), γ2(ξ))n− j = (γ1(ξ), γ2(ξ)), . . . , (γ1(ξ), γ2(ξ))︸ ︷︷ ︸
n− j times

Proof 1 ⇒ 2. Suppose that F ( j)(ξ) = G( j)(ξ), 0 � j � k � n. By Theorem 1

F ( j)(ξ) =
∑

l∈λn( j)

(
n

|l|
)(

j

l1 · · · l|l|
)

|δ(l)| f
(
l̃
)
(ξ)

and

G( j)(ξ) =
∑

l∈λn( j)

(
n

|l|
)(

j

l1 · · · l|l|
)

|δ(l)|g
(
l̃
)
(ξ).

Now we will use strong induction on k. Clearly, if F(ξ) = G(ξ), then by the diagonal
property

f ((γ1(ξ), γ2(ξ))n) = g((γ1(ξ), γ2(ξ))n). (10)

Hence, statement 2 is true for k = 0. For k = 1 by (4), F ′(ξ) = G ′(ξ) implies

n f ((γ ′
1(ξ), γ ′

2(ξ)), (γ1(ξ), γ2(ξ))n−1) = n g((γ ′
1(ξ), γ ′

2(ξ)), (γ1(ξ), γ2(ξ))n−1).

(11)

Now for the solutions α(u1, w1, ξ) = u1γ ′
2(ξ) − γ ′

1(ξ)u2
γ1(ξ)γ ′

2(ξ) − γ ′
1(ξ)γ2(ξ)

and β(u1, w1, ξ) =
γ1(ξ)u2 − u1γ2(ξ)

γ1(ξ)γ ′
2(ξ) − γ ′

1(ξ)γ2(ξ)
of the system

α(u1, w1, ξ)(γ1(ξ), γ2(ξ)) + β(u1, w1, ξ)(γ ′
1(ξ), γ ′

2(ξ)) = (u1, w1),
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the multilinear property of polar forms implies

α(u1, w1, ξ) f ((γ1(ξ), γ2(ξ))n) + β(u1, w1, ξ) f ((γ ′
1(ξ), γ ′

2(ξ)), (γ1(ξ), γ2(ξ))n−1)

= f ((u1, w1), (γ1(ξ), γ2(ξ))n−1).

Similarly,

α(u1, w1, ξ)g((γ1(ξ), γ2(ξ))n) + β(u1, w1, ξ)g((γ ′
1(ξ), γ ′

2(ξ)), (γ1(ξ), γ2(ξ))n−1)

= g((u1, w1), (γ1(ξ), γ2(ξ))n−1).

Hence for k = 0, 1, statement 2 is true by (10) and (11). Now assume that statement
2 is true for 0 � j � k − 1 < n. We need to show that if F ( j)(ξ) = G( j)(ξ), 0 � j �
k � n, then

f ((u1, w1), . . . , (u j , w j ), (γ1(ξ), γ2(ξ))n− j )

= g((u1, w1), . . . , (u j , w j ), (γ1(ξ), γ2(ξ))n− j ) (12)

for 0 � j � k � n. But certainly if F ( j)(ξ) = G( j)(ξ), for 0 � j � k � n, then
F ( j)(ξ) = G( j)(ξ), for 0 � j � k − 1 < n. Therefore by the inductive hypothesis

f ((u1, w1), . . . , (u j , w j ), (γ1(ξ), γ2(ξ))n− j )

= g((u1, w1), . . . , (u j , w j ), (γ1(ξ), γ2(ξ))n− j ), 0 � j � k − 1 < n. (13)

On the other hand since F (k)(ξ) = G(k)(ξ), by Theorem 1 we have

∑
l∈λn(k)

(
n

|l|
)(

k

l1 · · · l|l|
)

|δ(l)| f
(
l̃
)
(ξ) =

∑
l∈λn(k)

(
n

|l|
)(

k

l1 · · · l|l|
)

|δ(l)|g
(
l̃
)
(ξ).

(14)

The left hand side of (14) can be written as

∑
l∈λn(k)|l|<k

(
n

|l|
)(

k

l1 · · · l|l|
)

|δ(l)| f
(
l̃
)
(ξ)

+
(
n

k

)(
k

1 · · · 1
)

|δ({1, . . . , 1})| f ((γ ′
1(ξ), γ ′

2(ξ))k, (γ1(ξ), γ2(ξ))n−k). (15)

Similarly the right hand side of (14) is

∑
l∈λn(k)|l|<k

(
n

|l|
)(

k

l1 · · · l|l|
)

|δ(l)|g
(
l̃
)
(ξ)

+
(
n

k

)(
k

1 · · · 1
)

|δ({1, . . . , 1})|g((γ ′
1(ξ), γ ′

2(ξ))k, (γ1(ξ), γ2(ξ))n−k). (16)
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The terms with |l| < k in the summations of the Eqs. (15) and (16) are identical by
Eq. (13). That is

∑
l∈λn(k)|l|<k

(
n

|l|
)(

k

l1 · · · l|l|
)

|δ(l)| f
(
l̃
)
(ξ) =

∑
l∈λn(k)|l|<k

(
n

|l|
)(

k

l1 · · · l|l|
)

δ(l)|g
(
l̃
)
(ξ).

(17)

Thus from (14) and (17), we conclude that

(
n

k

)
k! f ((γ ′

1(ξ), γ ′
2(ξ))k, (γ1(ξ), γ2(ξ))n−k)

=
(
n

k

)
k!g((γ ′

1(ξ), γ ′
2(ξ))k, (γ1(ξ), γ2(ξ))n−k).

Therefore we have

f ((γ ′
1(ξ), γ ′

2(ξ)) j , (γ1(ξ), γ2(ξ))n− j )

= g((γ ′
1(ξ), γ ′

2(ξ)) j , (γ1(ξ), γ2(ξ))n− j ), j = 0, . . . , k,

where (γ ′
1(ξ), γ ′

2(ξ)) j = (γ ′
1(ξ), γ ′

2(ξ)), . . . , (γ ′
1(ξ), γ ′

2(ξ))︸ ︷︷ ︸
j times

. Now starting with k+1

polar form values

f 0j = f ((γ ′
1(ξ), γ ′

2(ξ)) j , (γ1(ξ), γ2(ξ))n− j ), j = 0, . . . , k,

define

f rj = α(ur , wr , ξ) f r−1
j + β(ur , wr , ξ) f r−1

j+1

for r = 1, . . . , k and j = 0, . . . , n − r, where α(ur , wr , ξ) and β(ur , wr , ξ) are the
solutions of the system

α(ur , wr , ξ)(γ1(ξ), γ2(ξ)) + β(ur , wr , ξ)(γ ′
1(ξ), γ ′

2(ξ)) = (ur , wr ).

As a consequence of the multilinear property of the polar form, it follows by induction
on r that

f rj = f ((u1, w1), . . . , (ur , wr ), (γ
′
1(ξ), γ ′

2(ξ)) j , (γ1(ξ), γ2(ξ))n−r− j )

for r = 1, . . . , k, and j = 0, . . . , k − r. Similarly, the same algorithm, starting with
the k + 1 values of the polar form

g0j = g((γ ′
1(ξ), γ ′

2(ξ)) j , (γ1(ξ), γ2(ξ))n− j ), j = 0, . . . , k,
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generates the values of the polar form

grj = g((u1, w1), . . . , (ur , wr ), (γ
′
1(ξ), γ ′

2(ξ)) j , (γ1(ξ), γ2(ξ))n−r− j )

for r = 1, . . . , k, and j = 0, . . . , k − r. Since the input to these two algorithms is the
same, the output must also be the same. Therefore

f j
0 = f ((u1, w1), . . . , (u j , w j ), (γ1(ξ), γ2(ξ))n− j )

= g((u1, w1), . . . , (u j , w j ), (γ1(ξ), γ2(ξ))n− j ) = g j
0

for any parameters u1, . . . , u j , w1, . . . , w j , 0 � j � k � n.

2 ⇒ 1. For any parameters u1, . . . , u j , w1, . . . , w j , 0 � j � k � n suppose that

f ((u1, w1), . . . , (u j , w j ), (γ1(ξ), γ2(ξ))n− j )

= g((u1, w1), . . . , (u j , w j ), (γ1(ξ), γ2(ξ))n− j ).

Then for any 0 � j � k � n one may write

∑
l∈λn( j)

(
n

|l|
)(

j

l1 · · · l|l|
)

|δ(l)| f ((ul1, wl1), . . . (ul|l| , wl|l|), (γ1(ξ), γ2(ξ))n−|l|)

=
∑

l∈λn( j)

(
n

|l|
)(

j

l1 · · · l|l|
)

|δ(l)|g((ul1, wl1), . . . (ul|l| , wl|l|),

(γ1(ξ), γ2(ξ))n−|l|)

Setting (uli , wli ) = (γ
(li )
1 (ξ), γ

(li )
2 (ξ)) and applying Theorem 1 gives F ( j)(ξ) =

G( j)(ξ), 0 � j � k � n. ��
Theorem 3 Every spline curve is a B-spline curve.

Proof Let S ∈ σn(γ1, γ2) be a spline curve defined over the knot intervals [xk, xk+1]
by functions Sk ∈ πn(γ1, γ2), with polar forms sk, k = n, n + 1, . . . ,m. Suppose
further that for each k,

S( j)
k (xk+1) = S( j)

k+1(xk+1), j = 0, 1, . . . , n − 1.

We need to find a collection of points {Pk} such that the B-spline curve in σn(γ1, γ2)

generated by the knot sequence {xk} and by the control points {Pk} is S. Consider the
first segment Sn over the interval [xn, xn+1]. Let

Pj = sn((γ1(x j+1), γ2(x j+1)), . . . (γ1(x j+n), γ2(x j+n))), j = 0, 1 . . . , n.

Then by (8), the local de Boor algorithm for the knots x1, x2, . . . , x2n and the control
points P0, P1, . . . , Pn generates the function Sn(x). Similarly, if we set

Q j = sn+1((γ1(x j+2), γ2(x j+2)), . . . (γ1(x j+n+1), γ2(x j+n+1))), j = 0, 1 . . . , n,
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then the local de Boor algorithm for the knots x2, x3, . . . , x2n+1 and the control points
Q0, Q1, . . . , Qn generates the function Sn+1(x). It remains to show that Pj = Q j−1
or equivalently,

sn((γ1(x j+1), γ2(x j+1)), . . . (γ1(x j+n), γ2(x j+n)))

= sn+1((γ1(x j+1), γ2(x j+1)), . . . (γ1(x j+n), γ2(x j+n)))

for j = 1, 2, . . . , n. But by assumption

S( j)
n (xn+1) = S( j)

n+1(xn+1), j = 0, 1, . . . , n − 1.

Therefore by Lemma 1

sn((u1w1), . . . , (un−1, wn−1), (γ1(xn+1), γ2(xn+1)))

= sn+1((u1, w1), . . . , (un−1, wn−1), (γ1(xn+1), γ2(xn+1))).

But notice that

(γ1(xn+1), γ2(xn+1)) ∈ {(γ1(x j+1), γ2(x j+1)), . . . , (γ1(x j+n), γ2(x j+n))}

for all j = 1, 2, . . . , n. Hence for a fixed j and i = 1, 2, . . . , n − 1, setting

(ui , wi ) =
⎧⎨
⎩

(γ1(xi+ j ), γ2(xi+ j )), if i + j < n + 1

(γ1(xi+ j+1), γ2(xi+ j+1)), if i + j � n + 1

gives

sn((γ1(x j+1), γ2(x j+1)), . . . , (γ1(x j+n), γ2(x j+n)))

= sn+1((γ1(x j+1), γ2(x j+1)), . . . , (γ1(x j+n), γ2(x j+n)))

for j = 1, 2, . . . , n. Thus these two segments form a B-spline curve. In the same
manner using the local de Boor algorithm, we can generate more segments that match
the segments of the given spline S. By the same argument, these new segments share
common control points; therefore, they form a B-spline curve. Since the entire curve
is generated by the global de Boor algorithm, it follows that every spline curve is a
B-spline curve. ��

5.1 Multiple Knots

Consider a B-spline curve of degree n for an increasing sequence of knots, x1 < x2 <

x3 < · · · . The first segment on the interval [xn, xn+1] is generated from the knots
{xi }2ni=1. Similarly the second segment over the interval [xn+1, xn+2] is generated from
the knots {xi }2n+1

i=2 . In Sect. 4we showed that these two curve segmentsmeet with order
n − 1 continuity at x = xn+1. What happens if xn+1 = xn+2? In this case, the knot
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interval [xn+1, xn+2] collapses to a single point. Hence to investigate continuity, we
must examine the first and third segments. The third curve segment is generated from
the knots {xi }2n+2

i=3 . Consider the diagram generated by the global de Boor algorithm
that corresponds to the intervals [xn, xn+1] and [xn+2, xn+3] (see Fig. 6).

In Fig. 6 we illustrate the final two levels of these algorithms. When x = xn+1 and
xn+1 = xn+2, then since all the functions along the leftmost arrows in the left triangle
and all the functions along the rightmost arrows in the right triangle evaluate to zero,
the only nonzero paths from the base to the apexes are through the right edge of the
first apex and the left edge of the second apex. Moreover the values of the functions
along these nonzero arrows are 1. Therefore both segments meet continuously at
x = xn+1. Using the same arguments as in Sect. 4, we conclude that if xn+1 = xn+2,

then by Theorem 1 the two adjacent segments that meet at x = xn+1 meet with
Cn−2-continuity. We can generalize this result as follows:

Theorem 4 At a knot of multiplicity μ, a B-spline curve from the space σn(γ1, γ2)

has n − μ continuous derivatives.

Proof This proof is modelled on the proof of [25, Theorem 6.2]. Let {xi } be a non-
decreasing knot sequence where each consecutive set of 2n knots form a progressive
sequence and let S be a spline defined by the de Boor algorithm over the intervals
[xi , xi+1] by functions Si ∈ πn(γ1, γ2), i = n, n + 1, . . . with the control points
Pi−n, . . . , Pi . Suppose that xk+1 = xk+2 = · · · = xk+μ and xk+μ+1 �= xk+μ for
some μ � n. We need to show that for every m = 0, . . . , n − μ,

S(m)
k (xk+1) = S(m)

k+μ(xk+1). (18)

The curves Sk and Sk+μ have n + 1 − μ common control points Pk−n+μ, . . . , Pk
and 2n − μ common knots xk−n+μ+1, . . . xk+n . Now let s j denote the polar form of
S j , j = n, n + 1, . . . . Then by the dual functional property

Pi = sk ((γ1(xi+1), γ2(xi+1)), . . . , (γ1(xi+n), γ2(xi+n)))

= sk+μ ((γ1(xi+1), γ2(xi+1)), . . . , (γ1(xi+n), γ2(xi+n))) (19)

for i = k − n + μ, . . . , k. The common knots that appear as common parameters in
the polar forms of these common control points are {xk+1, . . . , xk+μ}. Now consider
the symmetric, multilinear functions

s̃k((u1, w1), . . . , (un−μ,wn−μ))

= sk((γ1(xk+1), γ2(xk+1)), . . . , (γ1(xk+μ), γ2(xk+μ)), (u1, w1), . . . , (un−μ,wn−μ))

and

s̃k+μ((u1, w1), . . . , (un−μ,wn−μ))

= sk+μ((γ1(xk+1), γ2(xk+1)), . . . , (γ1(xk+μ), γ2(xk+μ)), (u1, w1), . . . , (un−μ,wn−μ)).
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From (19) it follows that

s̃k((γ1(xk−n+μ+1), γ2(xk−n+μ+1)), . . . , (γ1(xk), γ2(xk)))

= s̃k+μ((γ1(xk−n+μ+1), γ2(xk−n+μ+1)), . . . , (γ1(xk), γ2(xk))),

s̃k((γ1(xk−n+μ+2), γ2(xk−n+μ+2)), . . . , (γ1(xk), γ2(xk)), (γ1(xk+μ+1), γ2(xk+μ+1)))

= s̃k+μ((γ1(xk−n+μ+2), γ2(xk−n+μ+2)), . . . , (γ1(xk), γ2(xk)), (γ1(xk+μ+1),

γ2(xk+μ+1))),

...

s̃k((γ1(xk+μ+1), γ2(xk+μ+1)), . . . , (γ1(xk+n), γ2(xk+n)))

= s̃k+μ((γ1(xk+μ+1), γ2(xk+μ+1)), . . . , (γ1(xk+n), γ2(xk+n))).

That is, for the knot vector (xk−n+μ+1, . . . , xk, xk+μ+1, . . . , xk+n) of size 2(n−μ),

the functions s̃k and s̃k+μ agree at each sequence of n−μ consecutive knots. Therefore
by the recursive evaluation algorithm for symmetric multilinear functions, it follows
that

s̃k((u1, w1), . . . , (un−μ,wn−μ)) = s̃k+μ((u1, w1), . . . , (un−μ,wn−μ))

or equivalently

sk((γ1(xk+1), γ2(xk+1)), . . . , (γ1(xk+μ), γ2(xk+μ)), (u1, w1), . . . , (un−μ,wn−μ))

= sk+μ((γ1(xk+1), γ2(xk+1)), . . . , (γ1(xk+μ), γ2(xk+μ)), (u1, w1), . . . , (un−μ,wn−μ)).

But by assumption xi = xk+1, i = k+1, . . . , k+μ.Therefore for any0 � m � n−μ,

and any l ∈ λn(m), setting

(ur , wr ) =
{

(γ1(xk+1), γ2(xk+1)), r > |l|(
γ

(lr )
1 (xk+1), γ

(lr )
2 (xk+1)

)
, r � |l|

we conclude that

sk
((

γ
(l1)
1 (xk+1) , γ

(l1)
2 (xk+1)

)
, . . .

(
γ

(l|l|)
1 (xk+1), γ

(l|l|)
2 (xk+1)

)
, (γ1(xk+1),

γ2(xk+1))
n−|l|)

= sk+μ

((
γ

(l1)
1 (xk+1), γ

(l1)
2 (xk+1)

)
, . . .

(
γ

(l|l|)
1 (xk+1), γ

(l|l|)
2 (xk+1)

)
, (γ1(xk+1),

γ2(xk+1))
n−|l|) , (20)

for all l ∈ λn(m). Thus (18) follows from Theorem 1 and (20). ��
Theorem 5 Let S ∈ σn(γ1, γ2) be defined over the knot sequence {ξi }li=1 with C

n−μi

continuity at the knot ξi , i = 2, . . . , l − 1. Then S is a B-spline curve.
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Proof Let Si denotes the curve segment of S over the interval [ξi , ξi+1] and let si be
the polar form of Si . By assumption

S(m)
i−1(ξi ) = S(m)

i (ξi ), (21)

m = 0, . . . , n −μi , i = 2, . . . , l − 1. Set k1 = n, k2 = n + 1 and define recursively

ki+1 = ki + μi , i = 2, . . . , l − 1.

Now set xki = ξi , i = 1, . . . , l and xk = xki , k = ki + 1, . . . , ki+1 − 1, i =
2, . . . , l − 1. Then the rest of the proof is similar to the proof of [25, Theorem 6.3]
and follows from (21) and Theorem 1. ��

6 Knot insertion

For classical splines, knot insertion is a powerfulmethod for analyzingB-spline curves.
There are two standard knot insertion algorithms: Boehm’s knot insertion algorithm
and the Oslo algorithm. Boehm’s knot insertion algorithm inserts one new knot at a
time [5]; in contrast, the Oslo algorithm inserts many distinct knots simultaneously
[6].

In Boehm’s knot insertion algorithm if we wish to insert a knot t into the interval
[xi , xi+1], then the new knot splits the original polynomial that corresponds to the
interval [xi , xi+1] into two new polynomial segments. Using the polar form of the
control points for the two new segments, Goldman [9] shows that Boehm’s knot
insertion algorithm is a subset of the de Boor algorithm. That is, the new control
points of the new segments are exactly the values computed in the first level of the
polar form algorithm for the original B-spline curve.

Using the same point of view, Goldman [9] also shows that the values of the polar
form for each new control point generated from the Oslo algorithm can be evaluated
by the recursive evaluation algorithm for the polar form of the original B-spline curve.
That is, theOslo algorithm is the polar form evaluation algorithm.An improved version
of the Oslo algorithm is also given in [9].

Since we define the de Boor evaluation algorithm using the recursive evaluation
algorithm for homogeneous polar forms, we also have analogous knot insertion algo-
rithms for non polynomial B-spline curves. Similar to classical B-splines to find new
control points using Boehm’s knot insertion algorithm, we run the de Boor evaluation
algorithm one level and read the new control points from the polar forms on the first
level of the algorithm. For Goldman’s improved Oslo algorithm the new control points
can be computed by running the polar form evaluation algorithm twice and reading
the new control points off the left and right lateral edges of the algorithm. For details
see [9].

Naturally, one may ask under what conditions the control polygons generated by
knot insertion for splines in σn(γ1, γ2) converge to the original spline curve? For two
differentiable, locally linearly independent functions γ1 and γ2 the control polygons
generated by knot insertion algorithms converge to the original B-spline curve if the
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function d(a, b) = γ1(a)γ2(b) − γ1(b)γ2(a) never vanishes for arbitrary values of
a and b. Convergence is guaranteed by the diagonal property; that is, the control poly-
gons generated by knot insertion converge to the B-spline curve for the original control
polygon as the knot spacing approaches zero. The proof is identical to the proof for
classical B-splines [10]; simply replace the classical polar form by the homogeneous
polar form.

6.1 Conversion to piecewise Bernstein Bézier form

By applying knot insertion algorithms to a B-spline curve, we can express the same
B-spline curve with respect to another knot sequence.We can also apply knot insertion
algorithms to convert fromB-spline to piecewiseBernstein-Bézier form.This approach
allows us to analyse B-spline curves, simply by analysing the corresponding Bernstein
Bézier curve segments.

Consider a B-spline curve segment G j of degree n defined over a knot sequence
x j+1, x j+2, . . . , x j+2n and let g j bt the polar form of G j .Here, we are interested only
in the interval [x j+n, x j+n+1]. By the dual functional property, the B-spline control
points of G j are

g j ((γ1(x j+1+k), γ2(x j+1+k)), . . . , (γ1(x j+n+k), γ2(x j+n+k))), k = 0, 1, . . . , n.

It is shown in [8] that the Bernstein Bézier control points of G j are

g j

(
(γ1(x j+n), γ2(x j+n))

n−k, (γ1(x j+n+1), γ2(x j+n+1))
k
)

, k = 0, 1, . . . , n.

Thus, we can get the Bernstein Bézier control points from the B-spline control points
by inserting the knots x j+n, . . . , x j+n︸ ︷︷ ︸

n−1 times

, x j+n+1, . . . , x j+n+1︸ ︷︷ ︸
n−1 times

between the knots x j+n

and x j+n+1.

Next, we are going to use the Bernstein Bézier representation of B-spline curves
to establish necessary conditions for the variation diminishing property to hold for
B-spline curves. A curve S(x) with control points {P0, P1, . . . , Pm} is said to be
variation diminishing if for anyhyper-plane h the number of intersections of h and S(x)
is bounded by the number of intersections of h with the control polygon generated by
the control points {P0, P1, . . . , Pm}. The following result on the variation diminishing
property for Bernstein Bézier curves is proved in [8].

Proposition 1 If d
dx

(
d(a,x)
d(a,b)

)
> 0, and d

dx

(
d(x,b)
d(a,b)

)
< 0 on [a, b], and the Bernstein

basis functions on [a, b] form a partition of unity, then the corresponding Bernstein
Bézier curves are variation diminishing.

Theorem 6 If 1 ∈ span{γ1, γ2}, d(x, xk+n+1)

d(xk+r , xk+n+1)
and

d(xk+r , x)

d(xk+r , xk+n+1)
, k = 1, . . . ,

n−r, r = 1, . . . , n are positive and
d

dx

(
d(xi , x)

d(xi , xi+1)

)
> 0,

d

dx

(
d(x, xi+1)

d(xi , xi+1)

)
< 0,

for all i, then the corresponding B-spline curves are variation diminishing.
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Proof If 1 ∈ span{γ1, γ2}, then for any a, b with d(a, b) �= 0,
d(x, b)

d(a, b)
and

d(a, x)

d(a, b)
sum to one (see [8]). Hence the Bernstein basis functions Bn

k (x) on [a, b] form a
partition of unity since by [8]

n∑
k=0

Bn
k (x) =

(
d(x, b)

d(a, b)
+ d(a, x)

d(a, b)

)n

= 1.

On the other hand, since
d(x, xk+n+1)

d(xk+r , xk+n+1)
and

d(xk+r , x)

d(xk+r , xk+n+1)
are positive and sum

to one, the de Boor algorithm is a corner-cutting procedure. Since knot insertion is
the polar form interpretation of the de Boor algorithm, knot insertion is also a corner-
cutting procedure. Therefore, the control polygon for the piecewise Bernstein Bézier
representation of the original B-spline curve is variation diminishing with respect to
the original B-spline control polygon. But by Proposition 1 each Bernstein Bézier
segment is variation diminishing with respect to its Bernstein Bézier control polygon

whenever
d

dx

(
d(xi , x)

d(xi , xi+1)

)
> 0,

d

dx

(
d(x, xi+1)

d(xi , xi+1)

)
< 0, for all i . Hence the

entire curve must be variation diminishing with respect to the original B-spline control
polygon. ��

For example if γ1(x) = sinh2(x) and γ2(x) = cosh2(x), then by Theorem 6 the B-
spline curve of degree n with an increasing knot sequence x1 < x2 < · · · < x2n < · · ·
is variation diminishing whenever xi > 0 for all i or xi < 0 for all i.

7 B-spline basis functions

Just like classical B-spline curves, B-spline curves in σn(γ1, γ2) can be represented in
terms of compactly supported basis functions. For any B-spline curve S ∈ σn(γ1, γ2)

with control points Pk and knot sequence {xk}, we seek functions {Nk,n ∈ σn(γ1, γ2)}
such that

S(x) =
∑
k

Nk,n(x)Pk . (22)

The basis functions Nk,n can be computed from the global deBoor algorithmby setting

Pj =
{
0, j �= k
1, j = k.

Now (22) follows by linearity.
As in the classical case the functions {Nk,n} are called the B-spline basis functions.

Also as in the classical case (see [10]), the B-spline basis functions can be computed
by placing 1 at each apex and reversing all the arrows in the global de Boor algorithm.
In this case, the B-spline basis functions emerge at the base of the diagram. It follows
that the B-spline basis functions satisfy the following recurrence.
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Nk,0(x) =
{
1, if xk � x < xk+1
0, otherwise.

Nk,n(x) = d(xk, x)

d(xk, xk+n)
Nk,n−1(x) + d(x, xk+n+1)

d(xk+1, xk+n+1)
Nk+1,n−1(x). (23)

Thus it follows easily by induction on n that supp{Nk,n} = [xk, xk+n+1].
Example 1 If γ1(x) = 1, γ2(x) = x, then πn(γ1, γ2) is the space of polynomials of
degree n and d(a, b) = b − a. Thus

Nk,n(x) = x − xk
xk+n − xk

Nk,n−1(x) + xk+n+1 − x

xk+n+1 − xk+1
Nk+1,n−1(x)

are the classical B-spline basis functions.

Example 2 If γ1(x) = sin(x), γ2(x) = cos(x), thenπn(γ1, γ2) is the space of trigono-
metric polynomials of degree n (see [11]). In this case d(a, b) = sin(a − b) and

Nk,n(x) = sin(xk − x)

sin(xk − xk+n)
Nk,n−1(x) + sin(x − xk+n+1)

sin(xk+1 − xk+n+1)
Nk+1,n−1(x)

are the trigonometric B-spline basis functions (see [16]).

Example 3 If γ1(x) = sin2(x), γ2(x) = cos2(x), then d(a, b) = 1
2

(
cos(2b) −

cos(2a)
)
. Thus,

Nk,n(x) = cos(2x) − cos(2xk)

cos(2xk+n) − cos(2xk)
Nk,n−1(x) + cos(2xk+n+1) − cos(2x)

cos(2xk+n+1) − cos(2xk+1)
Nk+1,n−1(x).

Example 4 If γ1(x) = sinh(x), γ2(x) = cosh(x), then d(a, b) = sinh(a − b) and

Nk,n(x) = sinh(xk − x)

sinh(xk − xk+n)
Nk,n−1(x) + sinh(x − xk+n+1)

sinh(xk+1 − xk+n+1)
Nk+1,n−1(x)

are the hyperbolic B-spline basis functions.

Example 5 If γ1(x) = sinh2(x), γ2(x) = cosh2(x), then d(a, b) = 1
2

(
cosh(2a) −

cosh(2b)
)
. Thus,

Nk,n(x) = cosh(2x) − cosh(2xk)

cosh(2xk+n) − cosh(2xk)
Nk,n−1(x)

+ cosh(2xk+n+1) − cosh(2x)

cos(2xk+n+1) − cos(2xk+1)
Nk+1,n−1(x).

Example 6 If γ1(x) = xi and γ2(x) = x j , then πn(γ1, γ2) is aMüntz space generated
by {x (n−k)i+k j }nk=0. In this case d(a, b) = aib j − a jbi and
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Fig. 7 B-splines in σ3(γ1, γ2) for γ1(x) = cos2(x) and γ2(x) = sin2(x)

Nk,n(x) = (xk)i x j − (xk) j x i

(xk)i (xk+n) j − (xk) j (xk+n)i
Nk,n−1(x)

+ xi (xk+n+1)
j − x j (xk+n+1)

i

(xk+1)i (xk+n+1) j − (xk+1) j (xk+n+1)i
Nk+1,n−1(x).

Notice here that i and j may be either positive or negative numbers.

Example 7 If γ1(x) =
{−x4, x < 3

2 ,

x − 105
16 , x � 3

2
and γ2(x) = x, then for any u < v we

have

d(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

−u4v + v4u, v < 3
2 ,

−u4v −
(
v − 105

16

)
u, u < 3

2 � v,(
u − 105

16

)
v −

(
v − 105

16

)
u, 3

2 � u.

In this case; if the support of the B-spline basis functions contains the value 3
2 , then

the B-splines are not differentiable at that point.

By changing the functions γ1(x) and γ2(x) it is possible to generate infinitely many
distinct B-spline bases. Some illustrations of B-splines are given in Figs. 7, 8, 9, 10.
In each case the knot sequence is {1.2, 1.3, . . . , 1.8}.

7.1 Properties and identities for B-spline basis functions

In this section we study properties and identities for the B-spline basis functions,
including the dual functional property, Marsden’s identity, partition of unity, curvilin-
ear precision, interpolation and differentiation.
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Fig. 8 B-splines in σ3(γ1, γ2) for γ1(x) = x−0.5 and γ2(x) = x2

Fig. 9 B-splines in σ3(γ1, γ2) for γ1(x) = cosh2 x and γ2(x) = sinh2 x

Fig. 10 B-splines in σ3(γ1, γ2) for γ1(x) = (−x4, x < 3/2, x − 105/16, x � 3/2) and γ2(x) = x
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Proposition 2 (Dual functional property) Let G(x) = ∑
k Pk Nk,n(x) be a B-spline

curve with knots {xi }. Then

Pk = g((γ1(xk+1), γ2(xk+1)), . . . , (γ1(xk+n), γ2(xk+n))). (24)

Proof This result follows easily from (8). ��
Theorem 7 (Marsden Identity)

(d(x, t))n =
∑
k

[
n∏

i=1

d(xk+i , t)

]
Nk,n(x). (25)

Proof Since d(x, t) = γ1(x)γ2(t) − γ1(t)γ2(x) is a linear combination of γ1(x) and
γ2(x), (d(x, t))n ∈ πn(γ1, γ2). The polar form of G(x) = (d(x, t))n is

g((u1, w1), . . . , (un, wn)) =
n∏

i=1

(uiγ2(t) − γ1(t)wi )

since the right-hand side is symmetric, multi-linear, and reduces G(x) along the
(γ1, γ2) diagonal. Thus by the dual functional property (24)

(d(x, t))n =
∑
k

g((γ1(xk+1), γ2(xk+1)), . . . , (γ1(xk+n), γ2(xk+n)))Nk,n(x)

=
∑
k

[
n∏

i=1

d(xk+i , t)

]
Nk,n(x).

��
Theorem 8 (Partition of unity) If 1 ∈ πn(γ1, γ2), then

∑
k Nk,n(x) = 1.

Proof The polar form of the function G(x) = 1 is g((u1, w1), . . . , (un, wn)) = 1.
Therefore this result follows immediately from the dual functional property. ��
For curves the variation diminishing property (Theorem 6) is important for design.
Another essential property for curves, weaker than the variation diminishing property,
is the convex hull property. The following theorem presents a convex hull property for
B-spline curves.

Theorem 9 If 1 ∈ πn(γ1, γ2) and the functions d(xk ,x)
d(xk ,xk+n)

,
d(x,xk+n+1)

d(xk+1,xk+n+1)
in (23) are

positive then the basis functions form a convex partition of unity. Therefore in this
case the corresponding B-spline curves lie in the convex hull of their control points.

Proof Clearly since the coefficients in (23) are positive, the basis functions are positive.
Thus this result follows form Theorem 8. ��
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For example if γ2
γ1

is an increasing function, then since d(u, v) > 0 for all u < v, the

functions d(xk ,x)
d(xk ,xk+n)

, and d(x,xk+n+1)
d(xk+1,xk+n+1)

are positive in the support of Nk,n . Hence any
B-spline curve of the form

∑
k Pk Nk,n lies in the convex hull of the control points

{Pk}.
Theorem 10 (Curvilinear precision) If 1 ∈ span{γ1, γ2}, then for any c1, c2 ∈ R

c1γ1(x) + c2γ2(x) =
∑
k

[
n∑

i=1

c1γ1(xk+i ) + c2γ2(xk+i )

n

]
Nk,n(x). (26)

Proof If 1 ∈ span{γ1, γ2}, then 1 ∈ πn−1(γ1, γ2) so γ1, γ2 ∈ πn(γ1, γ2). More-

over the polar forms of the functions γ1(x) and γ2(x) are
u1 + · · · + un

n
and

w1 + · · · + wn

n
. Hence this result follows from the dual functional property of B-

spline curves and the linearity of the polar forms. ��

Theorem 11 Let xk+1 = xk+2 = · · · = xk+n . Then the B-spline curve interpolates
the control point Pk .

Proof Suppose that xk+1 = xk+2 = · · · = xk+n and consider the B-spline segment
Sk+n over the knot interval [xk+n, xk+n+1].Then by dual functional property the initial
control point of this segment is

Pk = sk+n((γ1(xk+1), γ2(xk+1)), . . . , (γ1(xk+n), γ2(xk+n)))

= sk+n((γ1(xk+n), γ2(xk+n)), . . . , (γ1(xk+n), γ2(xk+n)))

= Sk+n(xk+n).

��

We close with a recurrence for the derivatives of the B-spline basis functions. But first
we need some preliminary results.

Theorem 12 (Recurrence for the polar form of the B-spline basis functions) Let ñk,n
denote the polar form of the B-spline basis function Nk,n . Then

ñk,n((γ1(u1), γ2(u1)), . . . , (γ1(un), γ2(un)))

= d(xk, u1)

d(xk, xk+n)
ñk,n−1((γ1(u2), γ2(u2)), . . . , (γ1(un), γ2(un)))

+ d(u1, xk+n+1)

d(xk+1, xk+n+1)
ñk+1,n−1((γ1(u2), γ2(u2)), . . . , (γ1(un), γ2(un))) (27)
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Proof By the recursive evaluation algorithm for polar forms (6), the polar form of a
B-spline curve G ∈ σn(γ1, γ2) with control points {P0

j } satisfies

g((γ1(u1), γ2(u1)), . . . , (γ1(un), γ2(un)))

=
∑
i

P0
i ñi,n((γ1(u1), γ2(u1)), . . . , (γ1(un), γ2(un)))

=
∑
i

P1
i ñi+1,n−1((γ1(u2), γ2(u2)), . . . , (γ1(un), γ2(un))), (28)

where

P1
i = d(u1, xi+n+1)

d(xi+1, xi+n+1)
P0
i + d(xi+1, u1)

d(xi+1, xi+n+1)
P0
i+1.

Now setting P0
i = δi,k gives (27). ��

Consider the recursive evaluation algorithm (6) for the polar form of a function
G ∈ πn(γ1, γ2). What happens if we modify the recurrence by differentiating the
recurrence at level r = 1 with respect to u1 and do not change the recurrence for the
subsequent levels r � 2? In this case the coefficients in the first level of the algorithm
turn into the solutions of the system

a(γ1(xk+1), γ2(xk+1)) + b(γ1(xk+n+1), γ2(xk+n+1)) =
(

∂

∂u1
γ1(u1),

∂

∂u1
γ2(u1)

)
.

(29)

Hence the function b̃n0 that emerges at the apex of the modified algorithm is

b̃n0(u1, . . . , un) = g

((
∂

∂u1
γ1(u1),

∂

∂u1
γ2(u1)

)
, (γ1(u2), γ2(u2)), . . . ,

(γ1(un), γ2(un))

)
. (30)

Setting ui = x, for i = 1, . . . , n in (30) gives

b̃n0(x, . . . , x) = g((γ ′
1(x), γ

′
2(x)), (γ1(x), γ2(x))

n−1). (31)

Theorem 13

d

dx
Nk,n(x) = n

[(
d

dx

d(xk, x)

d(xk, xk+n)

)
Nk,n−1(x)

+
(

d

dx

d(x, xk+n+1)

d(xk+1, xk+n+1)

)
Nk+1,n−1(x)

]
(32)

Proof This result follows immediately from (27), (31) and (4). ��
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