
Calcolo (2016) 53:559–583
DOI 10.1007/s10092-015-0162-z

Multi-step Chebyshev spectral collocation method
for Volterra integro-differential equations

Zhendong Gu1

Received: 28 May 2015 / Accepted: 16 October 2015 / Published online: 26 October 2015
© Springer-Verlag Italia 2015

Abstract We investigate multi-step Chebyshev spectral collocation method for
Volterra integro-differential equations.We obtain numerical solution Y (t) and Y ′(t) to
approximate unknown function y(t) and its derivative y′(t)while Y (t) and Y ′(t) keep
the relation that Y ′(t) is the derivative of Y (t). We discuss existence and uniqueness
of the solution to corresponding discrete system. We provide convergence analysis
for proposed method. Numerical experiments are carried out to confirm theoretical
results.
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1 Introduction

Volterra integro-differential equations (VIDEs) arise in many problems such as mod-
elling of heredity effects and population dynamics. Due to this, many numerical
methods are developed to solve these equations. Linz [13] generalized standard mul-
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tistep methods to solved VIDEs. Brunner [2] studied implicit Runge–Kutta methods
for VIDEs. Makroglou [14] proposed a block-by-block method for nonlinear VIDEs.
Lin et al. [12] investigated Petrov–Galerkin Methods for Linear VIDEs. Zhang and
Vandewalle [20] developed a numerical method based on the combination of general
linear methods with compound quadrature rules for VIDEs with memory. Yi [19]
investigated an h–p version of the continuous Petrov–Galerkin finite element method
for nonlinear VIDEs. In his monograph, Brunner [3] provided basic principles and the
analysis of collocationmethods forVolterra integral and integro-differential equations.

Spectral methods are well known for their high precision in differential equations.
The monograph [8] by Guo presents the basic algorithms, the main theoretical results,
and some applications of spectral methods. In [9], Guo and Wang investigated Jacobi
approximations in non-uniformly Jacobi-weighted Sobolev spaces. Some results serve
as an important tool in the analysis of numerous quadratures and numericalmethods for
differential and integral equations. Canuto et al. [4] provided fundamentals of spectral
methods on simple domains. In [15], Shen et al. provided a detailed presentation of
basic spectral algorithms, a systematical presentation of basic convergence theory
and error analysis for spectral methods. Global spectral methods were developed to
solve Volterra type integral equations. Tang and his coworkers [16] proposed Legendre
spectral collocation method to solve VIEs (Volterra integral equations). Subsequently,
Chen and Tang [5–7] proposed Jacobi spectral collocation method to solve weakly
singular VIEs. In [11], Li et al. proposed a parallel spectral method to solve VIEs. In
[1,10,17,18], global spectral methods were developed to solve VIDEs.

In this paper, we investigate multi-step Chebyshev spectral collocation method for
the following VIDEs

y′(t) = g(t) + a(t)y(t) +
∫ t

0
K (t, s)y(s)ds, t ∈ (0, T ],

y(0) = y0.

(1)

We assume that functions describing the above equation all possess continuous
derivatives of at least order m ≥ 1 on their respective domains, i.e.,

g(t), a(t) ∈ Cm([0, T ]), K (t, s) ∈ Cm(Ω),Ω := {(t, s) : 0 ≤ s ≤ t ≤ T }, (2)

where Cm([a, b]) is the space of functions possessing continuous derivatives of at
least order m ≥ 1 on their domain [a, b].

We divide the interval [0, T ] into several subintervals [ημ, ημ+1], μ = 0, 1, . . . , M ,
η0 = 0, ηM+1 = T . In each subinterval [ημ, ημ+1], we set N + 1 Chebyshev Gauss–
Lobatta points as collocation points. We approximate y′(t) at these collocations points
by a continuous piecewise polynomial Y ′(t) of degree N . Then we define Y (t) :=
y0 + ∫ t

0 Y
′(s)ds to approximate y(t). Our method is to find Y ′(t) and Y (t). It is worth

noting that d
dt Y (t) = Y ′(t). We discuss existence and uniqueness of the solution to

the discrete systems. We provide convergence analysis to show that numerical errors
decay at the rate hmN (1/2)−m in space L∞(0, T ), where h := max{(ημ+1 − ημ)/2 :
μ = 0, 1, . . . , M}. This result implies that employing more collocation points (N
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is larger), and dividing the interval [0, T ] into more subintervals (h is smaller), the
numerical solution will be more accurate. If given functions possess more regularity
(m is larger), numerical errors decay faster. We carry our numerical experiments to
confirm these theoretical results.

For the long interval [0, T ] (T becomes larger), in order to obtain high precision
numerical solution to (1), people using the global spectral collocation method (see
[10]) will encounter the difficulty that finding the inverse of a large dimension matrix
costs many time on computation.We avoid this problem by dividing the global interval
[0, T ] into several subintervals. The provided convergence analysis show that dividing
the interval [0, T ] does notmake errors accumulate but even decay faster at the rate hm .
We carry out numerical experiment to confirm this result (see Example 3). Numerical
experiment shows that multi-step method is more efficient than global method. We
also investigate the availability of the proposed method for nonlinear VIDEs.

We choose Chebyshev Gauss–Lobatto points as collocation points because we note
that the discrete Chebyshev transforms and the inverse discrete Chebyshev transforms
are based on these points (see [4, page 495]). This two transforms enable one to
transform freely between physical space and transform space. Fast Fourier transforms
can be applied in computing this two transforms to significantly reduce computation.
Legendre points are involved in the quadrature formulas in this paper because Gauss
quadrature formulas with Legendre points are the best way to approximate the integral
terms with smooth kernel.

This paper is organized as follows. InSect. 2,we introduce themulti-stepChebyshev
spectral-collocationmethod forVIDE (1). The existence anduniqueness of the solution
to the discrete system is discussed in Sect. 3. Some useful lemmas for the convergence
analysis will be provided in Sect. 4, and the convergence analysis in space L∞ will be
given in Sect. 5. Numerical experiments are carried out in Sect. 6. Finally, in Sect. 7,
we end with the conclusion and the future work.

2 Multi-step Chebyshev spectral-collocation method

In this section, we introduce the multi-step Chebyshev spectral collocation method for
(1).

Divide the interval [0, T ] into M + 1 sub intervals δμ := [ημ, ημ+1],
μ = 0, 1, . . . , M , where η0 = 0, ημ < ημ+1, ηM+1 = T . In each subinterval δμ,
we set N + 1 collocation points

tμi := hμx + ημ+1 + ημ

2
, i = 0, 1, . . . , N ,

where hμ := ημ+1−ημ

2 , {xi }Ni=0 is the set of Chebyshev Gauss–Lobatto points in the
standard interval [−1, 1].

Use y′μ
i to approximate y′(tμi ), and

Y ′
μ(t) :=

N∑
j=0

y′μ
i Lμ

j (t), t ∈ [ημ, ημ+1]
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to approximate y′|δμ(t), i.e., the restriction of y′(t) to [ημ, ημ+1]. Lμ
j (t) is the j th

Lagrange interpolation basic function, i.e.,

Lμ
j (t) :=

⎛
⎝ N∏

i=0,i �= j

(t − tμi )

⎞
⎠

/⎛
⎝ N∏

i=0,i �= j

(tμj − tμi )

⎞
⎠ .

Then y′(t) can be approximated by a function Y ′(t) defined on [−1, 1], i.e.,

Y ′(t) := Y ′
μ(t), if t ∈ [ημ, ημ+1],

which is a continuous functionswhose restriction to [ημ, ημ+1] is polynomial of degree
N . Define

Y (t) := y0 +
∫ t

0
Y ′(s)ds, t ∈ [0, T ], (3)

which implies that
d

dt
Y (t) = Y ′(t). (4)

We use Y (t) to approximate y(t).
Discrete (1) as

y′(tμi ) = g(tμi ) + a(tμi )y(tμi ) +
∫ tμi

0
K (tμi , s)y(s)ds,

y(0) = y0,

i = 0, 1, . . . , N ; μ = 0, 1, . . . , M. (5)

Replace y(t) and y′(t) with Y (t) and Y ′(t) respectively,

y′μ
i ≈ g(tμi ) + a(tμi )Y (tμi ) +

∫ tμi

0
K (tμi , s)Y (s)ds, (6)

which can be rewritten as

y′μ
i ≈ g(tμi ) + a(tμi )Y (tμi ) +

μ−1∑
r=0

∫ ηr+1

ηr

K (tμi , s)Y (s)ds

+
∫ tμi

ημ

K (tμi , s)Y (s)ds.

(7)
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Approximate integral terms by Gauss quadrature formula,

y′μ
i = g(tμi ) + a(tμi )Y (tμi ) +

μ−1∑
r=0

hr

N∑
k=0

K (tμi , sr (vk))Y (sr (vk))wk

+ xi + 1

2
hμ

N∑
k=0

K (tμi , sμ(s(xi , vk)))Y (sμ(s(xi , vk)))wk,

(8)

where {vk, wk}Nk=0 is the set of LegendreGauss–Lobatto points andweights in standard
interval [−1, 1], and

sr (v) := hrv + ηr+1 + ηr

2
, s(xi , v) := xi + 1

2
v + xi − 1

2
. (9)

On the other hand, from (3),

Y (t) = y(0) +
μ−1∑
r=0

∫ ηr+1

ηr

Y ′
r (s)ds +

∫ t

ημ

Y ′
μ(s)ds. (10)

Note that Y ′
r (s), r = 0, 1, . . . , M are polynomials of degree N . Then integral terms

in (10) can be exactly approximated by Gauss quadrature formula,

Y (t)= y(0)+
μ−1∑
r=0

hr

N∑
k=0

Y ′
r (sr (vk))wk+

s−1
μ (t)+1

2
hμ

N∑
k=0

Y ′
μ(sμ(s(s−1

μ (t), vk)))wk,

which can be written as

Y (t) = y(0) +
μ−1∑
r=0

hr

N∑
j=0

y′r
j

N∑
k=0

Lr
j (sr (vk))wk

+ s−1
μ (t) + 1

2
hμ

N∑
j=0

y′μ
j

N∑
k=0

Lμ
j (sμ(s(s−1

μ (t), vk))wk . (11)

where

s−1
μ (t) := 2

ημ+1 − ημ

(
t − ημ+1 + ημ

2

)
, t ∈ [ημ, ημ+1]. (12)

Note that Lr
j (sr (v)) = Fj (v), where Fj (v) is the j th Lagrange interpolation basic

functions associated with Chebyshev Gauss–Lobatto points {xi }Ni=0 in standard inter-
val [−1, 1]. Then (11) can be written as
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Y (t) = y(0) +
μ−1∑
r=0

hr

N∑
j=0

y′r
j

N∑
k=0

Fj (vk)wk

+ s−1
μ (t) + 1

2
hμ

N∑
j=0

y′μ
j

N∑
k=0

Fj (s(s
−1
μ (t), vk))wk . (13)

Combining (8) and (13) we obtain the numerical scheme for the proposed method in
this paper,

y′μ
i = g(tμi ) + a(tμi )Y (tμi ) +

μ−1∑
r=0

hr

N∑
k=0

K (tμi , sr (vk))Y (sr (vk))wk

+ xi + 1

2
hμ

N∑
k=0

K (tμi , sμ(s(xi , vk)))Y (sμ(s(xi , vk)))wk, (14)

Y (t) = y(0) +
μ−1∑
r=0

hr

N∑
j=0

y′r
j

N∑
k=0

Fj (vk)wk

+ s−1
μ (t) + 1

2
hμ

N∑
j=0

y′μ
j

N∑
k=0

Fj (s(s
−1
μ (t), vk))wk,

i = 0, 1, . . . , N ;μ = 0, 1, . . . , M. (15)

where y′μ
i , i = 0, 1, . . . , N ;μ = 0, 1, . . . , M are unknown elements which are used

to construct Y ′(t) and Y (t) approximated to y′(t) and y(t) respectively.

3 The existence and uniqueness of the solution to discrete system

In this section, we investigate the existence and uniqueness of discrete system (14)
and (15). In order to implement the numerical scheme (14) and (15) by computer, we
write it in matrix form. From (15),

Y (t) = y(0) + F0

μ−1∑
j=0

h jU
j + hμF(s−1

μ (t))Uμ, t ∈ [ημ, ημ+1], (16)

where

U
μ := [y′μ

0 , y′μ
1 , . . . , y′μ

N ]′, μ = 0, 1, . . . , M,

F0 :=
[

N∑
k=0

F0(vk)wk,

N∑
k=0

F1(vk)wk, . . . ,

N∑
k=0

FN (vk)wk

]
,

Ĝμ := y(0) + F0

μ−1∑
j=0

h jU
j ,
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F(x) := x + 1

2

[ N∑
k=0

F0 (s(x, vk)) wk,

N∑
k=0

F1(s(x, vk))wk, . . . ,

N∑
k=0

FN (s(x, vk)) wk

]
. (17)

Then
a(tμi )Y (tμi ) = a(tμi )Ĝμ + hμa(tμi )F(xi )U

μ. (18)

Note that
Y (sr (vk)) = Ĝr + hrF(s−1

r (sr (vk)))U
r

= Ĝr + hrF(vk)U
r .

(19)

Then
μ−1∑
r=0

hr

N∑
k=0

K (tμi , sr (vk))Y (sr (vk))wk

=
μ−1∑
r=0

hr

N∑
k=0

K (tμi , sr (vk))wk[Ĝr + hrF(vk)U
r ].

(20)

Note that
Y (sμ(s(xi , vk))) = Ĝμ + hμF(s−1

μ (sμ(s(xi , vk))))U
μ

= Ĝμ + hμF(s(xi , vk))U
μ.

(21)

Then

xi + 1

2
hμ

N∑
k=0

K (tμi , sμ(s(xi , vk)))Y (sμ(s(xi , vk)))wk

= xi + 1

2
hμ

N∑
k=0

K (tμi , sμ(s(xi , vk)))wk[Ĝμ + hμF(s(xi , vk)U
μ]

= hμĜ
μ xi + 1

2

N∑
k=0

K (tμi , sμ(s(xi , vk)))wk

+ hμ

[
hμ

xi + 1

2

N∑
k=0

K (tμi , sμ(s(xi , vk)))wkF(s(xi , vk))

]
U

μ.

(22)

From (14) we have

g(tμi ) + a(tμi )Y (tμi ) +
μ−1∑
r=0

hr

N∑
k=0

K (tμi , sr (vk))Y (sr (vk))wk

+ xi + 1

2
hμ

N∑
k=0

K (tμi , sμ(s(xi , vk)))Y (sμ(s(xi , vk)))wk
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= g(tμi ) + a(tμi )Ĝμ +
μ−1∑
r=0

hr

N∑
k=0

K (tμi , sr (vk))wk[Ĝr + hrF(vk)U
r ]

+hμĜ
μ xi + 1

2

N∑
k=0

K (tμi , sμ(s(xi , vk)))wk

+hμ

[
a(tμi )F(xi ) + hμ

xi + 1

2

N∑
k=0

K (tμi , sμ(s(xi , vk)))wkF(s(xi , vk))

]
U

μ.

(23)

Let

Gμ
i := g(tμi ) + a(tμi )Ĝμ +

μ−1∑
r=0

hr

N∑
k=0

K (tμi , sr (vk))wk[Ĝr + hrF(vk)U
r ]

+hμĜ
μ xi + 1

2

N∑
k=0

K (tμi , sμ(s(xi , vk)))wk,

G
μ := [Gμ

0 ,Gμ
1 , . . . ,Gμ

N ]′,

A
μ(i, :) := a(tμi )F(xi ) + hμ

xi + 1

2

N∑
k=0

K (tμi , sμ(s(xi , vk)))wkF(s(xi , vk)).

(24)

Then the matrix form corresponding to (14) is

U
μ = G

μ + hμA
μ
U

μ, μ = 0, 1, . . . , M, (25)

which is equal to

(I − hμA
μ)Uμ = G

μ, μ = 0, 1, . . . , M. (26)

Since a(t), K (t, s), Fj (s) are continuous on their definition domain, then elements of
matrix Aμ are all uniformly bounded no matter what μ is. The Neumann Lemma ([3,
page 87]) then shows that the inverse of the matrix

B
(μ) := I − hμA

μ

exists whenever

‖hμA
μ‖ < 1

for somematrix norm.This clearly holdswheneverhμ,μ = 0, 1, . . . , M are uniformly
sufficient small. Then the matrix equation (26) possesses a unique solution which
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implies that so does for discrete system (14) and (15). We conclude this result as the
following theorem.

Theorem 1 If hμ(μ = 0, 1, . . . , M) are uniformly sufficient small, then the discrete
system (14) and (15) possess unique solution.

4 Useful lemmas

In this section, we give some lemmas which will be used in Sect. 5. For simplicity, let

∂kx u(x) := dku
dxk

(x). Before giving lemmas, we introduce some spaces.
Let (a, b) be a bounded interval in real line, ω(x) is the Chebyshev weight function

on (a, b). Set L2
ω(a, b) be the measurable functions space equipped with the norm

‖u‖L2
ω(a,b) :=

(∫ b

a
|u(x)|2ω(x)dx

)1/2

.

Assume that m ≥ 1 is an integer. Hm
ω (a, b) is a Sobolev space defined by

Hm
ω (a, b) := {u ∈ L2

ω(a, b) : for 0 ≤ k ≤ m, ∂kx u(x) ∈ L2
ω(a, b)},

Denote by L∞(a, b) the measurable functions space with the norm

‖u‖L∞(a,b) := ess sup
x∈(a,b)

|u(x)|.

L2(a, b) is a space satisfying

‖u‖L2(a,b) :=
∫ b

a
u2(x)dx < ∞.

Hm(a, b) is a Sobolev space defined by

Hm(a, b) := {u ∈ L2(a, b) : for 0 ≤ k ≤ m, ∂kx u(x) ∈ L2(a, b)}.

Let C([a, b]) be the continuous functions space on [a, b].
For y ∈ C([0, T ]), define an interpolation operator IN as

IN y(t) := Iμ
N (y|δμ)(t), if t ∈ [ημ, ημ+1], 0 ≤ μ ≤ M, (27)

where y|δμ(t) is the restriction of y(t) to δμ := [ημ, ημ+1], Iμ
N is the interpolation

operator associated the collocation points tμi , i = 0, 1, . . . , N in [ημ, ημ+1], i.e.,

Iμ
N (y|δμ)(t) :=

N∑
j=0

y|δμ(tμj )Lμ
j (t), t ∈ [ημ, ημ+1].
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Hereafter, C denotes a constant which is independent of N .

Lemma 1 [4] Assume that u ∈ Hm
ω (−1, 1)(m is a positive integer), then

‖u − JNu‖L∞(−1,1) ≤ CN (1/2)−m‖∂mx u‖L2
ω(−1,1), (28)

‖JNu‖L∞(−1,1) ≤ C(log N )‖u‖L∞(−1,1), (29)

where JN is the interpolation operator associated with Chebyshev Gauss–Lobatto
points {xi }Ni=0 in standard interval [−1, 1].
Lemma 2 Assume that y(s) ∈ Cm([0, T ])(m is a positive integer), then

‖y − IN y‖L∞(0,T ) ≤ ChmN (1/2)−m‖∂ms y‖L∞(0,T ), (30)

‖IN y‖L∞(0,T ) ≤ C(log N )‖y‖L∞(0,T ), (31)

where h := max{hμ : μ = 0, 1, . . . , M}.
Proof By the definition of Iμ

N , (I
μ
N (y|δμ))(t) is a function defined on [ημ, ημ+1]. The

variable transformation sμ(x) defined by (9) changes it to be a new function defined
on [−1, 1],

(Iμ
N (y|δμ))(sμ(x)) =

N∑
j=0

y|δμ(tμj )Lμ
j (sμ(x)) =

N∑
j=0

y|δμ(tμj )Fj (x), x ∈ [−1, 1].
(32)

In the other hand, y|δμ(sμ(x)) is a function defined on [−1, 1]. Its Lagrange
interpolation polynomial associated with the Chebyshev Gauss–Lobatto points x j ,
j = 0, 1, . . . , N in [−1, 1] is

JN (y|δμ(sμ(x))) =
N∑
j=0

y|δμ(sμ(x j ))Fj (x), x ∈ [−1, 1]. (33)

Note that

sμ(x j ) = tμj , j = 0, 1, . . . , N .

Inserting this into (33) yields

JN (y|δμ(sμ(x))) =
N∑
j=0

y|δμ(tμj )Fj (x), x ∈ [−1, 1]. (34)

Combing (32) with (34) yields

(Iμ
N (y|δμ))(sμ(x)) = JN (y|δμ(sμ(x))), x ∈ [−1, 1]. (35)
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By (28)

‖y − IN y‖L∞(0,T ) = max
0≤μ≤M

{‖y|δμ(sμ(·)) − JN (y|δμ(sμ(·)))‖L∞(−1,1)}

≤ CN
1
2−m max

0≤μ≤M
{‖∂mv (y|δμ(sμ(·)))‖L2

ω(−1,1)}

= CN
1
2−m max

0≤μ≤M
{hmμ‖∂ms (y|δμ)(sμ(·))‖L2

ω(−1,1)}

≤ CN
1
2−m max

0≤μ≤M
{hmμ‖∂ms (y|δμ)(sμ(·))‖L∞(−1,1)}

= CN
1
2−m max

0≤μ≤M
{hmμ‖∂ms (y|δμ)(·)‖L∞(δμ)}

≤ ChmN
1
2−m‖∂ms y‖L∞(0,T ).

(36)

This is (30).
Now we prove (31). It is obviously that

‖IN y‖L∞(0,T ) = max
0≤μ≤M

‖Iμ
N (y|δμ)‖L∞(δμ). (37)

By (29),

‖Iμ
N (y|δμ)‖L∞(δμ) = ‖(Iμ

N (y|δμ))(sμ(·))‖L∞(−1,1) = ‖JN (y|δμ(sμ(·)))‖L∞(−1,1)

≤ C(log N )‖y|δμ(sμ(·))‖L∞(−1,1) = C(log N )‖y|δμ‖L∞(δμ)

≤ C(log N )‖y‖L∞(0,T ),

(38)
which together with (37) yields

‖IN y‖L∞(0,T ) ≤ C(log N )‖y‖L∞(0,T ).

This leads to (31). 
�

Lemma 3 [4] Assume that u(x) ∈ Hm(−1, 1)(m is a positive integer), PN (x) is a
polynomial of degree not exceeding N. Then

∣∣∣∣∣
∫ 1

−1
u(x)PN (x)dx −

N∑
k=0

u(vk)PN (vk)wk

∣∣∣∣∣ ≤ CN−m‖∂mx u‖L2(−1,1)‖PN‖L2(−1,1).

Lemma 4 Assume that y(t) ∈ Hm(0, T )(m is a positive integer), QN (t) is func-
tion whose restriction to δμ := [ημ, ημ+1], QN |δμ(t), is a polynomial of degree not
exceeding N. Then for t ∈ [ημ, ημ+1],
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∣∣∣∣∣∣
∫ t

0
y(s)QN (s)ds −

μ−1∑
r=0

hr

N∑
k=0

y(sr (vk))QN |δr (sr (vk))wk

−hμ

s−1
μ (t) + 1

2

N∑
k=0

y(sμ(s(x(t), vk))QN |δμ(sμ(s(x(t), vk))wk

∣∣∣∣∣
≤ ChmN−m‖∂ms y‖L2(0,t)‖QN‖L2(0,t), (39)

where s−1
μ (t) is defined by (12).

Proof Note that

∫ t

0
y(s)QN (s)ds =

μ−1∑
r=0

∫ ηr+1

ηr

y(s)QN |δr (s)ds +
∫ t

ημ

y(s)QN |δμ(s)ds.

Use the variable transformation sr (v) to change the integration interval [ηr , ηr+1] to
standard interval [−1, 1],

∫ ηr+1

ηr

y(s)QN |δr (s)ds = hr

∫ 1

−1
y(sr (v))QN |δr (sr (v))dv.

By Lemma 3,

∣∣∣∣∣hr
∫ 1

−1
y(sr (v))QN |δr (sr (v))dv − hr

N∑
k=0

y(sr (vk))QN |δr (sr (vk))wk

∣∣∣∣∣
≤ Chr N

−m‖∂mv y(sr (·))‖L2(−1,1)‖QN |δr (sr (·))‖L2(−1,1)

= Chm+1
r N−m‖∂ms y(sr (·))‖L2(−1,1)‖QN |δr (sr (·))‖L2(−1,1)

= ChmN−m‖∂ms y(·)‖L2(ηr ,ηr+1)
‖QN |δr (·)‖L2(ηr ,ηr+1)

.

(40)

Therefore

∣∣∣∣∣
∫ ηr+1

ηr

y(s)QN |δr (s)ds − hr

N∑
k=0

y(sr (vk))QN |δr (sr (vk))wk

∣∣∣∣∣
≤ ChmN−m‖∂ms y(·)‖L2(ηr ,ηr+1)

‖QN |δr (·)‖L2(ηr ,ηr+1)
.

(41)

Similarly,

∣∣∣∣∣
∫ t

ημ

y(s)QN |δr (s)ds − hμ

s−1
μ (t) + 1

2

N∑
k=0

y(sμ(s(s−1
μ (t), vk))QN |δμ(sμ(s(s−1

μ (t), vk))wk

∣∣∣∣∣
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≤ ChmN−m‖∂ms y(·)‖L2(ημ,t)‖QN |δμ(·)‖L2(ημ,t). (42)

Then
∣∣∣∣∣∣
∫ t

0
y(s)QN (s)ds −

μ−1∑
r=0

hr

N∑
k=0

y(sr (vk))QN |δr (sr (vk))wk

−hμ

s−1
μ (t) + 1

2

N∑
k=0

y(sμ(s(x(t), vk))QN |δμ(sμ(s(x(t), vk))wk

∣∣∣∣∣

≤ ChmN−m
[ μ−1∑

r=0

‖∂ms y(·)‖L2(ηr ,ηr+1)
‖QN |δr (·)‖L2(ηr ,ηr+1)

+ ‖∂ms y(·)‖L2(ημ,t)‖QN |δμ(·)‖L2(ημ,t)

]
.

(43)

By Cauch’s inequality which is stated as

μ∑
r=0

arbr ≤
(

μ∑
r=0

a2r

) 1
2
(

μ∑
r=0

b2r

) 1
2

,

we have
μ−1∑
r=0

‖∂ms y(·)‖L2(ηr ,ηr+1)
‖QN |δr (·)‖L2(ηr ,ηr+1)

+ ‖∂ms y(·)‖L2(ημ,t)‖QN |δμ(·)‖L2(ημ,t)

≤
⎡
⎣μ−1∑

r=0

‖∂ms y(·)‖2L2(ηr ,ηr+1)
+ ‖∂ms y(·)‖2L2(ημ,t)

⎤
⎦

1
2

∗
⎡
⎣μ−1∑

r=0

‖QN |δr (·)‖2L2(ηr ,ηr+1)
+ ‖QN |δμ(·)‖2L2(ημ,t)

⎤
⎦

1
2

= ‖∂ms y(·)‖L2(0,t)‖QN (·)‖L2(0,t),

(44)

which together with (43) yields (39). 
�
Lemma 5 [16] Assume that e(t) ∈ C([0, T ]) satisfying

e(t) ≤ u(t) + c
∫ t

0
e(s)ds, t ∈ [0, T ], (45)

where u ∈ L∞(0, T ), 0 < c < +∞. Then there exist a constant C independent of
e(t) and u(t) such that

‖e‖L∞(0,T ) ≤ C‖u‖L∞(0,T ). (46)
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5 Convergence analysis

Theorem 2 Assume that Y (t) and Y ′(t) obtained by scheme (14) and (15) are approx-
imations to y(t) and y′(t) which lie in (1) with given functions possessing continuous
derivatives of at least m order. Then

‖ei‖L∞(0,T ) ≤ ChmN (1/2)−m[K̂‖y‖L∞(0,T ) + ‖∂m+1
t y‖L∞(0,T )], (47)

where e0(t) := y(t) − Y (t), e1(t) := y′(t) − Y ′(t), K̂ := max{‖∂ms K (t, ·)‖L2(0,t) :
t ∈ [0, T ]}.

The error estimation result (47) implies that the delay of errors dependent of
N , h,m. Employing more collocation points (N is larger), and dividing the interval
[0, T ] into more subintervals (h is smaller), the numerical solution will be more accu-
rate. If given functions possess more regularity (m is larger), numerical errors decay
faster. It is worth noting that N , h,m are independent of each other.We carry numerical
experiments in Sect. 6 to confirm these theoretical results. Note that K̂ , ‖y‖L∞(0,T )

and ‖∂m+1
t y‖L∞(0,T ) will become larger if T becomes larger. This implies that for

fixed N and h, a large T is not good for us to obtain high precision numerical solution.
We carry out numerical experiment to investigate the effect of T on the decay of errors.
For a large T , we investigate the difference between the global spectral collocation
method and multi-step spectral collocation method. Numerical result show that multi-
step spectral collocation method perform better. All of these numerical experiments
will be carried out in Sect. 6.

Proof Subtract (14) from (5),

y′(tμi ) − y′μ
i = a(tμi )(y(tμi ) − Y (tμi )) +

∫ tμi

0
K (tμi , s)y(s)ds − S(tμi ), (48)

where

S(tμi ) :=
μ−1∑
r=0

hr

N∑
k=0

K (tμi , sr (vk))Y (sr (vk))wk

+ xi + 1

2
hμ

N∑
k=0

K (tμi , sμ(s(xi , vk)))Y (sμ(s(xi , vk)))wk .

Multiply Lμ
j (t) to both side of (5) and sum up from i = 0 to N ,

Iμ
N y

′(t) − Y ′
μ(t) = Iμ

N [a(t)(y(t) − Y (t))]
+ Iμ

N

[∫ t

0
K (t, s)y(s)ds − S(t)

]
, t ∈ [ημ, ημ+1].

(49)
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By the definition of IN ,

IN y
′(t) − Y ′(t) = IN [a(t)(y(t) − Y (t))] + IN [

∫ t

0
K (t, s)y(s)ds − S(t)], (50)

which can be rewritten as

e1(t) =
4∑

i=1

Ei (t) + a(t)e0(t) +
∫ t

0
K (t, s)e0(s)ds, (51)

where
E1(t) := y′(t) − IN y

′(t),
E2(t) := IN [a(t)e0(t)] − a(t)e0(t),

E3(t) := IN

[∫ t

0
K (t, s)e0(s)ds

]
−

∫ t

0
K (t, s)e0(s)ds,

E4(t) := IN

[∫ t

0
K (t, s)Y (s)ds − S(t)

]
.

(52)

By Lemma 2,

‖E1‖L∞(0,T ) = ‖y′ − IN y
′‖L∞(0,T ) ≤ ChmN (1/2)−m‖∂m+1

t y‖L∞(0,T ). (53)

From (4) we know that d
dt e0(t) = e1(t) or e0(t) = ∫ t

0 e1(s)ds which implies that
‖e0‖L∞(0,T ) ≤ T ‖e1‖L∞(0,T ). Then by Lemma 2 with m = 1,

‖E2‖L∞(0,T ) = ‖IN [a(t)e0(t)] − a(t)e0(t)‖L∞(0,T )

≤ ChN−1/2‖∂1t [a(t)e0(t)]‖L∞(0,T )

= ChN−1/2‖a′(t)e0(t) + a(t)e1(t)‖L∞(0,T )

≤ ChN−1/2(T ‖a′‖L∞(0,T ) + ‖a‖L∞(0,T ))‖e1‖L∞(0,T ).

(54)

Similarly,

‖E3‖L∞(0,T ) ≤ ChN−1/2‖∂1t
[∫ t

0
K (t, s)e0(s)ds

]
‖L∞(0,T )

≤ ChN−1/2‖K (t, t)e0(t) +
∫ t

0
∂1t K (t, s)e0(s)ds‖L∞(0,T )

≤ ChN−1/2[T ‖K‖L∞(Ω) + T 2‖∂1t K‖L∞(Ω)]‖e1‖L∞(0,T ).

(55)

By Lemma 4,

‖E4‖L∞(0,T ) ≤ ChmN−m max
t∈[0,T ] ‖∂

m
s K (t, ·)‖L2(0,t)‖Y‖L∞(0,T )

≤ ChmN−m K̂ [‖y‖L∞(0,T ) + ‖e0‖L∞(0,T )]
≤ ChmN−m K̂ [‖y‖L∞(0,T ) + T ‖e1‖L∞(0,T )].

(56)
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Combine (54), (55) and (56),

4∑
i=2

‖Ei‖L∞(0,T ) ≤ C[hN−1/2(T ‖a′‖L∞(0,T ) + ‖a‖L∞(0,T ) + T ‖K‖L∞(Ω)

+ T 2‖∂1t K‖L∞(Ω)) + hmN−mT K̂ ]‖e1‖L∞(0,T ) + ChmN−m K̂‖y‖L∞(0,T ). (57)

Let
Ĉ(h, N ) := CT [hN−1/2(‖a′‖L∞(0,T ) + ‖a‖L∞(0,T )

+ ‖K‖L∞(Ω) + T ‖∂1t K‖L∞(Ω)) + hmN−m K̂ ], (58)

which implies that

lim
h→0

or N→+∞
Ĉ(h, N ) = 0.

We have

4∑
i=2

‖Ei‖L∞(0,T ) ≤Ĉ(h, N )‖e1‖L∞(0,T ) + ChmN−m K̂‖y‖L∞(0,T ), (59)

which together with (51) and (53) yields

|e1(t)| ≤ Ĉ(h, N )‖e1‖L∞(0,T ) + ChmN−m K̂‖y‖L∞(0,T )

+ ChmN (1/2)−m‖∂m+1
t y‖L∞(0,T ) + |a(t)e0(t)| +

∫ t

0
|K (t, s)e0(s)|ds.

(60)
Let

u(h, N , ‖e1‖L∞(0,T )) := Ĉ(h, N )‖e1‖L∞(0,T ) + ChmN−m K̂‖y‖L∞(0,T )

+ ChmN (1/2)−m‖∂m+1
t y‖L∞(0,T ).

(61)

Then (60) becomes

|e1(t)| ≤ u(h, N , ‖e1‖L∞(0,T )) + |a(t)e0(t)| +
∫ t

0
|K (t, s)e0(s)|ds, (62)

which can be rewritten as

|e1(t)|≤ u(h, N , ‖e1‖L∞(0,T ))+|a(t)|
∫ t

0
|e1(s)|ds+

∫ t

0
|K (t, s)|

∫ s

0
|e1(v)|dvds.

(63)
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By Dirichlet formula,

|e1(t)|≤u(h, N , ‖e1‖L∞(0,T ))+|a(t)|
∫ t

0
|e1(s)|ds+

∫ t

0

[∫ t

v

|K (t, s)|ds
]
|e1(v)|dv.

(64)

Then there exist constants c independent of e1(t), N and h such that

|e1(t)| ≤ u(h, N , ‖e1‖L∞(0,T )) + c
∫ t

0
|e1(s)|ds. (65)

Note that e1(t) is a function dependent of h, N . At this points, ‖e1‖L∞(0,T ) is a
constant dependent of h and N . Fix h and N . Then (65) is a fixed inequality which
implies that the relation between e1 and u(h, N , ‖e1‖L∞(0,T )) is fixed. By Lemma 5,
there exist constant C0 independent of e1(t), u(h, N , ‖e1‖L∞(0,T )), N and h such that

‖e1‖L∞(0,T ) ≤ C0u(h, N , ‖e1‖L∞(0,T )). (66)

We can choose sufficiently small h and sufficiently large N such that

C0Ĉ(h, N ) <
1

2
.

Then
‖e1‖L∞(0,T ) ≤ C0u(h, N , ‖e1‖L∞(0,T ))

<
1

2
‖e1‖L∞(0,T ) + C0h

mN−m K̂‖y‖L∞(0,T )

+ C0h
mN (1/2)−m‖∂m+1

t y‖L∞(0,T ),

(67)

which leads to that

‖e1‖L∞(0,T ) ≤ ChmN (1/2)−m[K̂‖y‖L∞(0,T ) + ‖∂m+1
t y‖L∞(0,T )]. (68)

This is (47) for e1. By the relation ‖e0‖L∞(0,T ) ≤ T ‖e1‖L∞(0,T ) we obtain (47) for
e0. 
�

6 Numerical experiments

In this section we carry out numerical experiments to confirm theoretical results
obtained in Sect. 5.

Example 1 Consider VIDEs

y′(t) = et (1 − sin t − t) + (sin t)y(t) +
∫ t

0
et−s y(s)ds, t ∈ [0, 2],

y(0) = 1.
(69)
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Table 1 Example 1: errors versus N with h = 1

N 2 4 6 8 10 12

‖e0‖L∞ 5.86e−01 3.20e−03 4.22e−06 8.65e−09 1.37e−11 2.04e−14

‖e1‖L∞ 1.17e−00 6.16e−03 8.44e−06 8.79e−09 1.43e−11 1.95e−14

Table 2 Example 1: errors versus 1/h with N = 3

1/h 10 50 100 150 200

‖e0‖L∞ 3.19e−06 5.13e−09 3.20e−10 6.33e−11 2.01e−11

‖e1‖L∞ 5.29e−06 8.52e−09 5.33e−10 1.05e−10 3.33e−11

2 4 6 8 10 12
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∞

||e
1
||

L
∞

Fig. 1 Example 1: error versus N with h = 1

The corresponding solution is y(t) = et , t ∈ [0, 2].

This example is provided to investigate effect of N and 1/h on the delay of errors.
Tables 1 and 2 list errors versus N and h. Figures 1 and 2 plot the behavior of decay-
ing errors. We can see from Figs. 1 and 2 that refining mesh and employing more
collocation points will enhance the precision of the numerical solution. This confirms
theoretical results.

The following numerical example is provided to underline the role of m in the
performance of decaying errors.
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Fig. 2 Example 1: errors versus 1/h with N = 3

Table 3 Example 2: errors versus N with h = 1

N 2 10 20 30 35

‖e0‖L∞(m = 1) 9.08e−01 4.14e−03 5.13e−04 1.52e−04 9.54e−05

‖e0‖L∞(m = 3) 1.79e−00 9.67e−06 7.29e−08 4.24e−09 1.44e−09

‖e1‖L∞(m = 1) 1.83e−00 8.07e−03 1.00e−03 2.96e−04 1.86e−04

‖e1‖L∞(m = 3) 3.30e−00 3.21e−05 2.41e−07 1.4e−08 4.76e−09

Example 2 Consider VIDEs

y′(t) =
(
m + 1

2

)
tm− 1

2 − tm+ 1
2 sin t − 1

2m + 2
t2m+2 + sin t y(t)

+
∫ t

0
sm+ 1

2 y(s)ds, t ∈ [0, 2],
y(0) = 0.

(70)

The corresponding solution is y(t) = tm+ 1
2 , t ∈ [0, 2]

It is worth noting that the kernel function is K (t, s) = sm+ 1
2 whose derivative of

m + 1 order is singular at s = 0. Tables 3 and 4 display errors versus N and 1/h for
m = 1, 3. The corresponding performance of errors are plotted in Figs. 3 and 4 from
which we can see that errors decay faster if m is larger. This result is consistent with
theoretical results.
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Table 4 Example 2: errors versus 1/h with N = 3

1/h 10 50 100 150 200

‖e0‖L∞ (m = 1) 4.74e−03 4.22e−04 1.49e−04 8.12e−05 5.27e−05

‖e0‖L∞ (m = 3) 5.05e−05 2.01e−07 1.83e−08 4.47e−09 1.65e−09

‖e1‖L∞ (m = 1) 9.26e−03 8.24e−04 2.91e−04 1.58e−04 1.03e−04

‖e1‖L∞ (m = 3) 1.67e−04 6.65e−07 6.04e−08 1.48e−08 5.44e−09
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Fig. 3 Example 2: errors versus N with h = 1

Example 3 Consider VIDEs

y′(t) = cos t − 1

2
sin 2t + sin t

4
(cos 2t − 1) − cos t

2

(
t − 1

2
sin 2t

)

+ cos t y(t) +
∫ t

0
sin(t + s)y(s)ds, t ∈ [0, T ],

y(0) = 0.

(71)

The corresponding solution is y(t) = sin t, t ∈ [0, T ]
From (47) we know that K̂ , ‖y‖L∞(0,T ) and ‖∂m+1

t y‖L∞(0,T ) will become larger
if T becomes larger. This implies that a large T goes against the decay of errors.
Example 3 is provide to investigate the effect of T on the decay of errors. By the way,
we compare themulti-step spectral collocationmethodwith global spectral collocation
method provided that T changes from 1 to 20. For the global method (h = T/2), we let
the number of collocation points in interval [0, T ] be 11T . For the multi-step method
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Fig. 4 Example 2: errors versus 1/h with N = 3

Table 5 Example 3: errors and time cost (seconds) versus T

T 2 5 10 15 20

‖e0‖L∞ (h = T/2) 8.88e−16 2.34e−14 2.68e−14 2.58e−12 2.50e−11

‖e1‖L∞ (h = T/2) 9.44e−16 1.28e−14 3.48e−14 3.81e−12 2.67e−11

Time cost (s) 0.048427 0.72875 10.143 48.434 157.56

‖e0‖L∞ (h = 1/2) 3.11e−15 6.88e−15 5.13e−14 7.53e−13 8.60e−12

‖e1‖L∞ (h = 1/2) 1.72e−15 4.08e−15 7.05e−14 1.11e−12 9.20e−12

Time cost (s) 0.03992 0.12153 0.45439 0.94863 1.6775

(h = 1/2), we let the number of collocation points in subinterval [μ,μ + 1] be 11,
which implies that the number of collocation points on interval [0, T ] is 11T . Our
goal in doing so is to maintain the same number (11T) of collocation points in interval
[0, T ] for both methods. The errors and time cost versus T are listed in Table 5. The
performance of errors along with the change of T is plotted in Fig. 5 which shows
that for both methods errors increase as T increases. This agrees with the theoretical
result (47) in which K̂ and ‖∂m+1

t y‖L∞(0,T ) increase as T increases. The behavior of
time costs versus T for both method is plotted in Fig. 6 from which we can see that
the multi-step method performs better than global method including global Legendre
spectral collocation method.

For nonlinear VIDEs of the following form

y′(t) = G(t, y(t)) +
∫ t

0
K (t, s, y(s))ds,

y(0) = y0.

(72)

123



580 Z. Gu

0 5 10 15 20
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

1≤ T ≤ 20

||e
0
||

L
∞(h=T/2)

||e
1
||

L
∞(h=T/2)

||e
0
||

L
∞(h=1/2)

||e
1
||

L
∞(h=1/2)

Fig. 5 Example 3: errors versus T
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Fig. 6 Example 3: time cost versus T

we can also design a numerical scheme similar to the linear case

y′μ
i = G(tμi ,Y (tμi )) +

μ−1∑
r=0

hr

N∑
k=0

K (tμi , sr (vk),Y (sr (vk)))wk
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Table 6 Example 4: errors versus N with h = 1

N 2 4 6 8 10 12

‖e0‖L∞ 3.22e−01 4.41e−04 9.67e−07 2.13e−09 3.91e−12 5.33e−15

‖e1‖L∞ 3.84e−01 8.61e−04 7.89e−07 1.98e−09 3.98e−12 5.33e−15

Table 7 Example 4: errors versus 1/h with N = 3

1/h 10 50 100 150 200

‖e0‖L∞ 4.38e−07 7.04e−10 4.40e−11 8.69e−12 2.75e−12

‖e1‖L∞ 4.87e−07 7.86e−10 4.92e−11 9.71e−12 3.07e−12

+ xi + 1

2
hμ

N∑
k=0

K (tμi , sμ(s(xi , vk)),Y (sμ(s(xi , vk))))wk,

Y (t) = y(0) +
μ−1∑
r=0

hr

N∑
j=0

y′r
j

N∑
k=0

Fj (vk)wk

+ x(t) + 1

2
hμ

N∑
j=0

y′μ
j

N∑
k=0

Fj (s(x(t), vk))wk,

i = 0, 1, . . . , N ;μ = 0, 1, . . . , M.

Example 4 Consider nonlinear VIDEs

y′(t) = −2

3
cos t + cos2 t + cos3 t − 1

3
(cos4 t + sin4 t)

+ cos t y2(t) +
∫ t

0
sin(t + s)y2(s)ds, t ∈ [0, 2],

y(0) = 0.

(73)

The corresponding solution is y(t) = sin t, t ∈ [0, 2]
Errors versus N and 1/h are listed in Tables 6 and 7. The behavior of decay errors

is plotted in Figs. 7 and 8 from which we can see that errors decay at power type. This
shows that our method can handle the nonlinear VIDEs.

7 Conclusion and future work

We investigate multi-step Chebyshev spectral collocation method for Volterra integro-
differential equations. We discuss existence and uniqueness of corresponding discrete
system. We provide convergence analysis for proposed method. Numerical experi-
ments are carried out to confirm theoretical results.
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Fig. 7 Example 4: errors versus N with h = 1
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Fig. 8 Example 4: errors versus 1/h with N = 3

Our future work will focus on multi-step Chebyshev spectral collocation method
for Volterra type integral equations with non-vanishing delay and partial Volterra
integro-differential equations.
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