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Abstract We present a three-step iterative method of convergence order five for solv-
ing systems of nonlinear equations. The methodology is based on Newton’s and
Newton-like iterations. Hence, the name Newton-like method. Computational effi-
ciency of the new method is considered and compared with well-known existing
methods. Numerical tests are performed on some problems of different nature, which
confirm robust and efficient convergence behavior of the proposed technique. More-
over, theoretical results concerning order of convergence and computational efficiency
are verified in the numerical problems. It is shown that, in general, the new method is
more efficient than the existing counterparts.
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1 Introduction

The construction of fixed point methods for solving nonlinear equations and systems
of nonlinear equations is an interesting and challenging task in numerical analysis
and many applied scientific branches. An immense importance of this topic has led
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to the development of many numerical methods, most frequently of iterative nature
(see [1,16,20,22,26]). With the advancement of computer hardware and software, the
problem of solving nonlinear equations by numericalmethods has gained an additional
importance. In this paper, we consider the problem of finding solution of the system
of nonlinear equations F(x) = 0 by iterative methods of a high order of convergence.
This problem can be precisely stated as to find a vector r = (r1, r2, . . . , rn)T such
that F(r) = 0, where F : D ⊆ R

n → R
n is the given nonlinear vector function

F(x) = ( f1(x), f2(x), . . . , fn(x))T and x = (x1, x2, . . . , xn)T . The solution vector r
of F(x) = 0 can be obtained as a fixed point of some function φ : Rn → R

n by means
of the fixed point iteration

x(k+1) = φ(x(k)), k = 0, 1, 2, . . . .

One of the basic procedures for solving systems of nonlinear equations is the quadrat-
ically convergent Newton’s method (see [16,20,26]), which is given as,

x(k+1) = φ
(2)
1 (x(k)) = x(k) − F′(x(k))−1F(x(k)), (1)

where F′(x)−1 is the inverse of first Fréchet derivative F′(x) of the function F(x).
From the computational point of view the Newton’s method requires the evaluations
of one F, one F′ and one matrix inversion (i.e. inverse Fréchet derivative) per iteration.
Throughout the paper, we use the abbreviation φ

(p)
i to denote an ith iterative function

of convergence order p.
To improve the order of convergence of Newton’s method, a number of higher order

methods have been proposed in literature. For example, Cordero and Torregrosa [2],
Frontini and Sormani [10], Grau et al. [11], Homeier [13], and Noor and Waseem
[19] have developed third order methods each requiring one F, two F′ and two matrix
inversions per iteration. Cordero and Torregrosa have also derived two third-order
methods in [3]. One of the methods requires one F and three F′ whereas other requires
one F and four F′ evaluations per iteration. Both the methods also require two matrix
inversions in each iteration. Darvishi and Barati in [7], and Potra and Pták in [23]
have proposed third order methods which use two F, one F ′ and one matrix inversion.
Cordero et al. developed a fourth order method in [4], which uses two F, two F′ and
one matrix inversion. Cordero et al. in [5] have implemented fourth order Jarratt’s
method [14] for scalar equations to systems of equations which requires one F, two
F′ and two matrix inversions. Darvishi and Barati [8] presented a fourth order method
requiring two F, three F′ and two matrix inversions per iteration. Grau et al. presented
a fourth order method in [11] utilizing three F, one F′ and one matrix inversion. Neta
[18] proposed a fourth order method using three F, one F′ and one matrix inversion.
Sharma et al. [24] developed a fourth order method requiring one F, two F′ and two
matrix inversions.

In quest ofmore fast algorithms, researchers have also proposed fifth and sixth order
methods in [4–6,11,25]. The fifth order methods by Cordero et al. [5,6] and Grau et
al. [11] require four evaluations namely, two F and two F′ per iteration. The fifth order
method by Cordero et al. [4] requires three F and two F′. In addition, the fifth order
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method in [4] requires one matrix inversion, in [5,6] three and in [11] two matrix
inversions. One sixth order method by Cordero et al. [5] uses two F and two F′ while
other sixth order method [6] uses three F and two F′. The sixth order methods, apart
from the mentioned evaluations, also require two matrix inversions per one iteration.
Sharma and Gupta [25] proposed a fifth order method requiring two F, two F′ and two
matrix inversions per one iteration.

The main goal of this paper is to develop iterative method of high computational
efficiency, which may assume a high convergence order and low computational cost.
To do so, we here propose a method with fifth order of convergence by employing the
iterative scheme that utilizes the number of function evaluations and inverse operators
as minimum as possible. In this way, we attain low computational cost and hence an
increased computational efficiency. Moreover, we show that the proposed methods are
efficient than existing methods in general.

Contents of the paper are summarized as follows. Some preliminary results are pre-
sented in Sect. 2. In Sect. 3, we describe the basic method for solving scalar equations.
The method developed in Sect. 3 is generalized for systems of equations in Sect. 4.
Here, the convergence behavior showing fifth order of convergence is also analyzed.
Computational efficiency of the new method is studied and then compared with some
well-known existing methods in Sect. 5. In Sect. 6, we present various numerical
examples to confirm the theoretical results and to compare convergence properties of
the proposed method with existing methods. Concluding remarks are given in Sect. 7.

2 Preliminary results

2.1 Order of convergence

Let {x(k)}k�0 be a sequence in R
n which converges to r. Then, convergence is called

of order p, p > 1, if there exists M , M > 0, and k0 such that

∣
∣
∣
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∣
∣ � M

∣
∣
∣

∣
∣
∣x(k) − r

∣
∣
∣

∣
∣
∣

p ∀ k � k0
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∣
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where e(k) = x(k) − r. The convergence is called linear if p = 1 and there exists M
such that 0 < M < 1.

2.2 Error equation

Let e(k) = x(k) − r be the error in the kth iteration, we call the relation

e(k+1) = L(e(k))p + O((e(k))p+1),
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as the error equation. Here, p is the order of convergence, L is a p-linear function, i.e.

L ∈ L(Rn× p−times· · · · ×R
n,Rn), L denotes the set of bounded linear functions.

2.3 Computational order of convergence

Let x(k−1), x(k) and x(k+1) be the three consecutive iterations close to the zero r of
F(x). Then, the computational order of convergence can be approximated using the
formula (see [15,21])

ρk = log
(∣
∣
∣
∣F(x(k))

∣
∣
∣
∣ /

∣
∣
∣
∣F(x(k−1))

∣
∣
∣
∣
)

log
(∣
∣
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∣F(x(k−1))

∣
∣
∣
∣ /

∣
∣
∣
∣F(x(k−2))

∣
∣
∣
∣
) .

2.4 Computational efficiency

Computational efficiency of an iterative method is measured by the efficiency index
E = p1/C (see [11]), where p is the order of convergence and C is the computational
cost given by

C(μ0, μ1, n) = P0(n)μ0 + P1(n)μ1 + P(n).

Here, P0(n) represents the number of evaluations of scalar functions ( f1, f2, . . . , fn)
used in the evaluations of F, P1(n) is the number of evaluations of scalar functions of
F′, i.e. ∂ fi

∂x j
, 1 � i, j � n, P(n) represents the number of products or quotients needed

per iteration, and μ0 and μ1 are ratios between products and evaluations required to
express the value of C(μ0, μ1, n) in terms of products.

In case of iterative methods for scalar equations f (x) = 0, the cost C is measured
as the number of new pieces of information required by the method per iterative step.
A ‘piece of information’ typically is any evaluation of the function f or one of its
derivatives.

3 Basic method

In what follows, we shall develop the scheme for solving scalar equation f (x) =
0, then based on this we shall state the generalized form for systems of nonlinear
equations. Let us consider the scheme

yk = xk − f (xk)

f ′(xk)
,

zk = yk − a
f (yk)

f ′(xk)
,

xk+1 = yk − b
f (yk)

f ′(xk)
− c

f (zk)

f ′(xk)
, (2)
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where a, b and c are parameters to be determined from the following convergence
theorem.

Theorem 1 Let the function f : I → R be a real valued function on I , where I is a
neighborhood of a simple zero r of f (x). Assume that f (x) is sufficiently differentiable
in I . If an initial approximation x0 is sufficiently close to r , then the local order of
convergence of method (2) is at least 5, if a = 5, b = 9/5 and c = 1/5.

Proof Let ek = xk −r , eyk = yk −r and ezk = zk −r be the errors in the kth iteration.
Using the fact that f (r) = 0, f ′(r) �= 0, we write the Taylor’s series expansions of
the functions f (xk), f ′(xk), f (yk) and f (zk) about r as follows

f (xk) = f ′(r)
(

ek + A2e
2
k + A3e

3
k + A4e

4
k + A5e

5
k + O(e6k )

)

, (3)

f ′(xk) = f ′(r)
(

1 + 2A2ek + 3A3e
2
k + 4A4e

3
k + 5A5e

4
k + 6A6e

5
k + O(e6k )

)

, (4)

f (yk) = f ′(r)
(

eyk + A2e
2
yk + A3e

3
yk + A4e

4
yk + A5e

5
yk + O(e6yk )

)

, (5)

f (zk) = f ′(r)
(

ezk + A2e
2
zk + A3e

3
zk + A4e

4
zk + A5e

5
zk + O(ezk )

6), (6)

where A j = (1/j !) f ( j)(r)/ f ′(r), j = 2, 3, 4, . . .
Let ek+1 = xk+1 − r be the error in the (k + 1)th iteration. Substituting equations

(4), (5) and (6) in the last step of (2) and then simplifying, we obtain the error equation
as

ek+1 = eyk − eyk zk − A2(be
2
yk + ce2zk ) + 2A2

(

eyk zk + A2(be
2
yk + ce2zk )

)

ek − eyk zk
(

(4A22 − 3A3)e
2
k

+ 4(2A32 − 3A2A3 + A4)e
3
k + O(e4k )

)

, (7)

where eyk zk = beyk + cezk .
Substitution of (3) and (4) in the first step of (2) yields

eyk = A2e
2
k + (−2A2

2 + 2A3)e
3
k + (4A3

2 − 7A2A3 + 3A4)e
4
k

− 2(4A4
2 − 10A2

2A3 + 3A2
3 + 5A2A4 − 2A5)e

5
k + O(ek)

6. (8)

Then using (4), (5) and (8) in the second step of (2), we get

ezk =K1A2e
2
k + 2(K2A

2
2 + K1A3)e

3
k + (K3A

3
2 + 7K2A2A3 + 3K1A4)e

4
k

+ 2(K4A
4
2 − K5A

2
2A3 + 3K2A

2
3 + 5K2A2A4 + 2K1A5)e

5
k + O(ek)

6, (9)

where K1 = −a+1, K2 = 2a−1, K3 = −13a+4, K4 = 19a−4, K5 = 32a−10.
Combining (7), (8) and (9), it follows that

ek+1 =L1A2e
2
k − 2(L2A

2
2 − L1A3)e

3
k + (L3A

3
2 − 7L2A2A3 + 3L1A4)e

4
k

+ 2(L4A
4
2 − 2L5A

2
2A3 − 3L2A

2
3 − 5L2A2A4 + 2L1A5)e

5
k + O(ek)

6,

(10)

where L1 = (a−1)c−b+1, L2 = (3a−2)c−2b+1, L3 = −(a2 −27a+13)c+
13b− 4, L4 = (5a2 − 52a + 19)c+ 19b− 4 and L5 = (a2 − 33a + 16)c+ 16b− 5.
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In order to find the parametersa, b and c it will be sufficient to equate the coefficients
of e2k , e

3
k and e4k to zero. Thus, we have the following system of equations:

(a − 1)c − b + 1 = 0,

(3a − 2)c − 2b + 1 = 0,

−(a2 − 27a + 13)c + 13b − 4 = 0.

Solving the above system of equations, we get a = 5, b = 9/5 and c = 1/5. Putting
these values of a, b and c in (10), the final error equation of the proposed scheme is
given as

ek+1 =
(

14A4
2 + 4A2

2A3

)

e5k + O (ek)
6 . (11)

This error equation shows that the order of convergence of method (2) is five, which
completes the proof of Theorem 1. �	

Remark 1 The proposed scheme is a multipoint method without memory, which is
based on four function evaluations (namely three f and one f ′) and possesses fifth
order convergence. Applying the Definition 2.4 of computational efficiency for scalar
case, we have E = 51/4 ≈ 1.495. So, the efficiency is better than Newton’s method
(E ≈ 1.414). However, according to Kung-Traub hypothesis [17] multipoint methods
without memory based on n function evaluations can achieve order of convergence
2n−1. For example, with four function evaluations a method of optimal eighth order
convergence can be developed. In this case the efficiency is, E ≈ 1.682. There-
fore, the presented scheme for finding zero of a univariate function is not an efficient
one.

4 Generalized method

The novel feature of the method (2) is its simple design which makes it easily imple-
mented to systems of nonlinear equations. Moreover, the method may prove to be
efficient for systems of equations. Solving a system of equations involves the compu-
tations such as evaluations of vector function, Fréchet derivative and its inverse, matrix
multiplication and so on. Each of these evaluations requires a different amount of com-
putational work. Among these the most expensive is the evaluation of inverse Fréchet
derivative. For systems, therefore, the computational efficiency can not be measured
by considering only the number of function and derivative evaluations. Keeping these
facts in view, here our motive is to generalize the scheme (2) for solving systems of
nonlinear equations.

Let us consider the problem of solving the system of equations F(x) = 0 by an
iterative method based on the scheme (2). Thus, writing the corresponding formula
with a = 5, b = 9/5 and c = 1/5 for system of equations
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y(k) = x(k) − F′ (x(k)
)−1

F
(

x(k)
)

,

z(k) = y(k) − 5F′ (x(k)
)−1

F
(

y(k)
)

,

x(k+1) = y(k) − 9

5
F′ (x(k)

)−1
F

(

y(k)
)

− 1

5
F′ (x(k)

)−1
F

(

z(k)
)

. (12)

This is a scheme which uses Newton’s iteration (1) in the first step and Newton-like
iterations in the subsequent steps. For this reason the scheme is called as Newton-like
method. From now on this method is denoted by φ

(5)
1 . It is clear that φ

(5)
1 uses three

F, one F′ and one matrix inversion per iteration. In order to analyze the convergence
properties, we recall the following result of Taylor’s expression on vector functions
(see [20]).

Lemma 1 Let the function F : D ⊆ R
n → R

n be p-times Fréchet differentiable in a
convex set D ⊆ R

n, then for any x,h ∈ R
n the following expression holds:

F(x + h) = F(x) + F′(x)h + 1

2!F
′′(x)h2 + 1

3!F
′′′(x)h3 + · · · + 1

(p − 1)!F
(p−1)(x)hp−1 + Rp,

where

∣
∣
∣
∣Rp

∣
∣
∣
∣ � 1

p! sup
0<t<1

∣
∣
∣

∣
∣
∣F(p)(x + th)

∣
∣
∣

∣
∣
∣ ||h||pand hp = (h,h,

p−times· · · ,h).

The following theorem gives the convergence order of the proposed method.

Theorem 2 Let the function F : D ⊆ R
n → R

n be sufficiently Fréchet differentiable
in an open neighborhood D of its zero r. Suppose that F′(x) is continuous and non-
singular in r. If an initial approximation x(0) is sufficiently close to r, then the local
order of convergence of proposed Newton-like method (φ

(5)
1 ) is 5.

Proof Taylor expansion of F(x) around x(k) is

F(x) = F
(

x(k)
)

+ F′ (x(k)
) (

x − x(k)
)

+ 1

2!F
′′ (x(k)

) (

x − x(k)
)2

+ 1

3!F
′′′ (x(k)

) (

x − x(k)
)3 + 1

4!F
(iv)

(

x(k)
) (

x−x(k))4

+ 1

5!F
(v)(x(k))

(

x−x(k)
)5 + O

(∥
∥
∥(x−x(k))6

∥
∥
∥

)

. (13)

Let e(k) = x(k) − r and assuming that F′(x(k))−1 exists, then setting x = r and using
F(r) = 0 in (13),

F
(

x(k)
)

= F′ (x(k)
)

e(k) − 1

2!F
′′ (x(k)

)

(e(k))2 + 1

3!F
′′′ (x(k)

) (

e(k)
)3

− 1

4!F
(iv)

(

x(k)
)

(e(k))4 + 1

5!F
(v)

(

x(k)
)

(e(k))5 + O

(∥
∥
∥
∥

(

e(k)
)6

∥
∥
∥
∥

)

.

(14)
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Pre-multiplying (14) by F′(x(k))−1,

F′ (x(k)
)−1

F
(

x(k)
)

= e(k) − 1

2!G
(

x(k)
)

(e(k))2 + 1

3!H
(

x(k)
)

(e(k))3

− 1

4!J
(

x(k)
)

(e(k))4 + 1

5!F
′ (x(k)

)−1
F(v)(x(k))(e(k))5

+ O

(∥
∥
∥
∥

(

e(k)
)6

∥
∥
∥
∥

)

, (15)

where G(x(k)) = F′(x(k))−1F′′(x(k)), H(x(k)) = F′(x(k))−1F′′′(x(k)) and J(x(k)) =
F′(x(k))−1F(iv)(x(k)).
Taylor expansion of F(y(k)) around x(k) is

F(y(k)) = F(x(k)) + F′(x(k))
(

y(k) − x(k)
)

+ 1

2!F
′′(x(k))

(

y(k) − x(k)
)2

+ 1

3!F
′′′(x(k))

(

y(k) − x(k))3 + 1

4!F
(iv)

(

x(k)
) (

y(k) − x(k)
)4

+ 1

5!F
(v)

(

x(k)
) (

y(k) − x(k)
)5 + O

(∥
∥
∥
∥

(

y(k) − x(k)
)6

∥
∥
∥
∥

)

. (16)

Using first step of (12) and then value of F′(x(k))−1F
(

x(k)
)

from (15) in (16), we
get

F(y(k)) = 1

2
F′′(x(k))

(

e(k))2 −
(1

2
F′′(x(k))G(x(k)) + 1

6
F′′′(x(k))

) (

e(k)
)3

+
[
1

2
F′′(x(k))

(
1

4
G(x(k))2 + 1

3
H(x(k))

)

+ 1

4
F′′′(x(k))G(x(k)) + 1

24
F(iv)(x(k))

]
(

e(k))4

+
[1

2
F′′(x(k))

(
1

12
J(x(k)) + 1

6
G(x(k))H(x(k))

)

+ 1

6
F′′′(x(k))

(
1

2
H(x(k)) + 3

4
G(x(k))2

)

+ 1

12
F(iv)

(

x(k)
)

G(x(k)) + 1

120
F(v)(x(k))

] (

e(k)
)5 + O

(∥
∥
∥
∥

(

e(k)
)6

∥
∥
∥
∥

)

. (17)

Taylor expansion of F(z(k)) around x(k) is

F(z(k)) = F(x(k)) + F′(x(k))
(

z(k) − x(k)) + 1

2!F
′′(x(k))

(

z(k) − x(k)
)2 + 1

3!F
′′′ (x(k)

) (

z(k) − x(k)
)3

+ 1

4!F
(iv)

(

x(k)
) (

z(k) − x(k)
)4 + 1

5!F
(v)

(

x(k)
) (

z(k) − x(k)
)5 + O

(∥
∥
∥
∥

(

z(k) − x(k)
)6

∥
∥
∥
∥

)

.

(18)

Combining the first two steps of (12), we obtain z(k) − x(k) = −F′(x(k))−1
(

F
(

x(k)
)+

5F(y(k))
)

. Then using this value in (18), it follows that

F(z(k)) = − 5F(y(k)) + 1

2
F′′(x(k))

(

e(k))2 −
(
1

6
F′′′(x(k)) − 2F′′(x(k))G(x(k))

)(

e(k)
)3

−
(1

2
F′′(x(k))G(x(k))2+ 2

3
F′′ (x(k)

)

H
(

x(k)
)

+F′′′ (x(k)
)

G(x(k))− 1

24
F(iv)(x(k))

) (

e(k)
)4
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−
(35

8
F′′ (x(k)

)

G(x(k))3 + 1

2
F′′ (x(k)

)

G(x(k))H(x(k)) − 5

4
F′′ (x(k)

)

H(x(k))G
(

x(k)
)

− 1

6
F′′ (x(k)

)

J(x(k))+ 3

4
F′′′ (x(k)

)

G(x(k))2− 1

3
F′′′ (x(k)

)

H
(

x(k)
)

− 1

3
F(iv)(x(k))G(x(k))

+ 1

120
F(v)(x(k))

) (

e(k)
)5 + O

(∥
∥
∥
∥

(

e(k)
)6

∥
∥
∥
∥

)

. (19)

Combining all the three steps of (12), we can write

x(k+1) = x(k) − F′(x(k))−1
(

F(x(k)) + 9

5
F(y(k)) + 1

5
F(z(k))

)

. (20)

Using (14), (17) and (19) in (20), we obtain the error equation as

e(k+1) =
(7

8
G(x(k))4 + 1

6
G(x(k))2H(x(k)) − 1

4
G(x(k))H(x(k))G(x(k))

+ 1

4
H(x(k))G(x(k))2

)(

e(k))5 + O

(∥
∥
∥
∥

(

e(k)
)6

∥
∥
∥
∥

)

. (21)

This equation shows that proposed method (φ
(5)
1 ) for system of equations possesses

fifth order of convergence. This completes the proof of Theorem 2. �	

5 Computational efficiency

In order to assess the computational efficiency of derived method, we will consider
all possible number of evaluations that contribute to the total cost of computation. For
example, to compute F in any iterative method we evaluate n scalar functions, whereas
the number of scalar evaluations is n2 for any new derivative F′. In addition, we must
include the amount of computational work required to evaluate the inverse of a matrix.
Instead of computing the inverse operator we solve a linear system, where we have
n(n − 1)(2n − 1)/6 products and n(n − 1)/2 quotients in the LU decomposition, and
n(n − 1) products and n quotients in the resolution of two triangular linear systems.
Moreover, we must add n2 products for the multiplication of a matrix with a vector
or of a matrix by a scalar and n products for the multiplication of a vector by a scalar.
We suppose that a quotient is equivalent to l products.

Computational efficiency of the presented Newton-like method φ
(5)
1 is compared

with some well-known fourth and fifth order methods. For example, fourth order
generalized Jarratt’s method [5], fourth order method by Cordero et al. [4], and fifth
order methods by Cordero et al. [5,6], Grau et al. [11] and Sharma and Gupta [25].
The existing mentioned methods are given as follows:
Fourth order Generalized Jarratt method (φ

(4)
1 ):

y(k) = x(k) − 2

3
F′(x(k))−1F(x(k)),

x(k+1) = x(k) − 1

2

[

3F′(y(k)) − F′(x(k))
]−1[

3F′(y(k)) + F′(x(k))
]

F′(x(k))−1F(x(k)).
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Fourth order method by Cordero et al. (φ(4)
2 ):

y(k) = φ
(2)
1 (x(k)),

x(k+1) = y(k) −
[

2F′(x(k))−1 − F′(x(k))−1F′(y(k))F′(x(k))−1
]

F(y(k)).

Fifth order method by Cordero et al. (φ(5)
2 ):

y(k) = x(k) − 2

3
F′(x(k))−1F(x(k)),

z(k) = x(k) − 1

2

[

3F′(y(k)) − F′(x(k))
]−1[

3F′(y(k)) + F′(x(k))
]

F′(x(k))−1F(x(k)),

x(k+1) = z(k) −
[

αF′(x(k)) + (1 − α)F′(y(k))
]−1

F(z(k)),

where α ∈ R − {−1/2}.
Fifth order method by Cordero et al. (φ(5)

3 ):

y(k) = φ
(2)
1 (x(k)),

z(k) = x(k) − 2
[

F′(y(k)) + F′(x(k))
]−1

F(x(k)),

x(k+1) = z(k) − F′(y(k))−1F(z(k)).

Fifth order method by Grau et al. (φ(5)
4 ):

y(k) = φ
(2)
1 (x(k)),

z(k) = x(k) − 1

2

[

F′(x(k))−1 + F′(y(k))−1
]

F(x(k)),

x(k+1) = z(k) − F′(y(k))−1F(z(k)).

Fifth order Sharma-Gupta method (φ
(5)
5 ):

y(k) = x(k) − 1

2
F′(x(k))−1F(x(k)),

z(k) = x(k) − F′(y(k))−1F(x(k)),

x(k+1) = z(k) −
[

2F′(y(k))−1 − F′(x(k))−1
]

F(z(k)).

Let us denote efficiency indices of φ(p)
i by E (p)

i and computational cost by C (p)
i . Then

using the Definition 2.4 of computational efficiency while taking into account all the
possible evaluations discussed above, we have

C (4)
1 = nμ0 + 2n2μ1 + n

3

(

2n2 + 9n + 1 + 3l(n + 1)
)

and E (4)
1 = 41/C

(4)
1 .

(22)
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C (4)
2 = 2nμ0 + 2n2μ1 + n

6

(

2n2 + 21n − 11 + 3l(n + 5)
)

and E (4)
2 = 41/C

(4)
2 .

(23)

C (5)
1 = 3nμ0 + n2μ1 + n

6

(

2n2 + 15n + 1 + 3l(n + 5)
)

and E (5)
1 = 51/C

(5)
1 .

(24)

C (5)
2 = 2nμ0 + 2n2μ1 + n

2

(

2n2 + 11n − 1 + 3l(n + 1)
)

and E (5)
2 = 51/C

(5)
2 .

(25)

C (5)
3 = 2nμ0 + 2n2μ1 + n

2

(

2n2 + 3n − 3 + 3l(n + 1)
)

and E (5)
3 = 51/C

(5)
3 .

(26)

C (5)
4 = 2nμ0 + 2n2μ1 + n

3

(

2n2 + 6n − 5 + 3l(n + 2)
)

and E (5)
4 = 51/C

(5)
4 .

(27)

C (5)
5 = 2nμ0 + 2n2μ1 + n

3

(

2n2 + 9n − 5 + 3l(n + 3)
)

and E (5)
5 = 51/C

(5)
5 .

(28)

Here μ0 and μ1 are the ratios between products and evaluations as stated in the
definition of computational efficiency in Sect. 2.

5.1 Efficiency comparison

To compare the computational efficiencies of the iterative methods, say φ
(p)
i against

φ
(q)
j , we consider the ratio

Rp,q
i, j = log E (p)

i

log E (q)
j

= C (q)
j log(p)

C (p)
i log(q)

. (29)

It is clear that if Rp,q
i, j > 1, the iterative method φ

(p)
i is more efficient than φ

(q)
j .

Note that the boundary between two computational efficiencies is given by Rp,q
i, j = 1,

this boundary is expressed by the equation μ0 written as a function of μ1, n and l;
(μ1, μ0) ∈ (0,+∞) × (0,+∞), n is a positive integer � 2 and l � 1.
φ

(5)
1 versus φ

(4)
1 case:

Using (22) and (24) in (29) the boundary R5,4
1,1 = 1, expressed in μ0 as function of

μ1, n and l, is given by

μ0= 6(s−2r)nμ1 + (s−2r)n2 + 3(5s−6r)n + (s−2r)+ 3(s−2r)ln + 3(5s−r)l

6(r−3s)
,

where r = log(5) and s = log(4). A comparison between the efficiencies E (5)
1 and

E (4)
1 can be made in the (μ1, μ0)-plane. In Fig. 1, we present some boundary lines
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Fig. 1 Boundary lines in the (μ1, μ0)-plane for E
5
1 and E4

1

Li (i =1, 2, 3, 4) in the (μ1, μ0)-plane corresponding to n = 5, 10, 15 and 20 taking
l = 2.66 in each case. Reason for selecting the value 2.66 for l will be clear in the next
section. These boundaries are the straight lines with positive slope, where E (5)

1 > E (4)
1

on the right (below) and E4
1 > E5

1 on the above (left) of each line.

φ
(5)
1 versus φ

(4)
2 case:

The boundary R5,4
1,2 = 1, calculated by using (23) and (24) in (29), is expressed by

μ0 = 6(s−2r)nμ1+2(s−r)n2+3(5s−7r)n+(s+11r)+3(s−r)ln+15(s−r)l

6(2r−3s)
.

In order to compare the efficiencies E (5)
1 and E (4)

2 , here we also draw some particular
boundaries Li (i = 1, 2, 3, 4) in the (μ1, μ0)-plane using the same set of values of
n and l as in the previous case. These boundaries are the straight lines with positive
slopes, where E (5)

1 > E (4)
2 on the right and E (4)

2 > E (5)
1 on the left of each line (see

Fig. 2).
φ

(5)
1 versus φ

(5)
2 case:

For this case the boundary R5,5
1,2 = 1 is given as

μ0 = nμ1 + 2

3
(n2 − 1) + 3n + ln − l.

The comparison between the efficiencies E (5)
1 and E (5)

2 can be made in the (μ1, μ0)-
plane. Thus, we draw some particular boundaries Li (i = 1, 2, 3, 4) in the (μ1,
μ0)-plane using the values of n and l considered in the previous cases. The boundaries
are the straight lines with positive slope, where E (5)

1 > E (5)
2 on the right (below) and

E5
2 > E5

1 on the above (left) of each line (see Fig. 3).
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Fig. 2 Boundary lines in the (μ1, μ0)-plane for E
5
1 and E4

2

Fig. 3 Boundary lines in the (μ1, μ0)-plane for E
5
1 and E5

2

φ
(5)
1 versus φ

(5)
3 case:

The boundary R5,5
1,3 = 1 is given by

μ0 = nμ1 + 1

3
(2n2 − 5) − n + ln − l.

Here also we show some boundary lines Li (i = 1, 2, 3, 4) in the (μ1, μ0)-plane using
the values of n and l as in the previous cases for comparing the efficiencies E (5)

1 and

E (5)
3 . Such boundaries are straight lines with positive slopes, where E (5)

1 > E (5)
3 on

the right and E (5)
3 > E (5)

1 on the left of each line (see Fig. 4).
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Fig. 4 Boundary lines in the (μ1, μ0)-plane for E
5
1 and E5

3

Fig. 5 Boundary lines in the (μ1, μ0)-plane for E
5
1 and E5

4

φ
(5)
1 versus φ

(5)
4 case:

The boundary R5,5
1,4 = 1 is expressed by

μ0 = nμ1 + 1

6

(

2n2 − 3n − 11 + 3ln − 3l
)

.

We draw the boundaries Li (i = 1, 2, 3, 4) in the (μ1, μ0)-plane using the same set of
values of n and l as in the previous case. These boundaries are the straight lines with
positive slope, where E (5)

1 > E (5)
4 on the right and E (5)

4 > E (5)
1 on the left of each

line (see Fig. 5).
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Fig. 6 Boundary lines in the (μ1, μ0)-plane for E
5
1 and E5

5

φ
(5)
1 versus φ

(5)
5 case:

For this case the boundary R5,5
1,5 = 1 is given by

μ0 = nμ1 + 1

6

(

2n2 + 3n − 11 + 3ln + 3l
)

.

We draw the boundaries Li (i = 1, 2, 3, 4) in the (μ1, μ0)-plane using the previously
considered values of n and l in order to compare the efficiencies E (5)

1 and E (5)
5 . The

boundaries are the straight lines with positive slope, where E (5)
1 > E (5)

5 on the right

and E (5)
5 > E (5)

1 on the left of each line (see Fig. 6).
Below we summarize the above proved results:

Theorem 3 For μ0 > 0, μ1 > 0, l � 1 and n � 2 we have:

(i) E (5)
1 > E (4)

1 for μ0 < m1,

(ii) E (5)
1 > E (4)

2 for μ0 < m2,

(iii) E (5)
1 > E (5)

2 for μ0 < m3,

(iv) E (5)
1 > E (5)

3 for μ0 < m4,

(v) E (5)
1 > E (5)

4 for μ0 < m5,

(vi) E (5)
1 > E (5)

5 for μ0 < m6,

where

m1 = 6(s−2r)nμ1+(s−2r)n2+3(5s−6r)n+(s−2r)+3(s−2r)ln+3(5s−r)l

6(r−3s)
,

m2 = 6(s−2r)nμ1+2(s−r)n2+3(5s−7r)n+(s+11r)+3(s−r)ln+15(s−r)l

6(2r−3s)
,

m3 = nμ1 + 2

3
(n2 − 1) + 3n + ln − l,

123



466 J. R. Sharma, R. K. Guha

m4 = nμ1 + 1

3
(2n2 − 5) − n + ln − l,

m5 = nμ1 + 1

6

(

2n2 − 3n − 11 + 3ln − 3l
)

,

m6 = nμ1 + 1

6

(

2n2 + 3n − 11 + 3ln + 3l
)

.

Remark 2 It is clear from Figs. 1, 2, 3, 4, 5 and 6 that the efficiency region of the
proposed method (φ(5)

1 ) increases in size with increasing value of n as compared with
the efficiency regions of existing methods which decrease in size. That means the
efficiency of new method is greater than the efficiency of existing methods in a wide
region of (μ1, μ0)-plane with increasing n. This shows that the proposed method is
more efficient, especially in case of the systems with large dimensions.

Remark 3 It has been seen that, in general, the presented method is more efficient than
the second and third order methods. For this reason we have not included such lower
order methods in the comparison of computational efficiencies.

6 Numerical results

In order to illustrate the convergence behavior and computational efficiency of the new
scheme φ

(5)
1 , we consider some numerical examples and compare the performance

with existing methods, namely fourth order (φ(4)
i , i = 1, 2) and fifth order (φ(5)

j , j =
2, 3, 4, 5) methods. The computations are performed in the programming package
Mathematica [27] using multiple-precision arithmetic with 4096 digits. For every
method, we analyze the number of iterations (k) needed to converge to the solution
such that the stopping criterion ||x(k+1) − x(k)|| + ||F(x(k))|| < 10−300 is satisfied. In
numerical results, we also include CPU time used in the execution of program which
is computed by the Mathematica command “TimeUsed[ ]”.

The results of Theorem 3 are also verified through numerical examples. In order to
do this, we need an estimation of the factors μ0 and μ1. To claim this estimation, we
express the cost of the evaluation of elementary functions in terms of products, which
depends on the computer, the software and the arithmetics used (see, for example [9]).
In Table 1, the elapsed CPU time (measured in milliseconds) in the computation of
elementary functions and an estimation of the cost of the elementary functions in prod-
uct units are displayed. The programs are performed in the processor Intel (R) Core

Table 1 CPU time and estimation of computational cost of elementary functions, where x = √
3− 1 and

y = √
5

Functions xy x/y
√
x ex ln(x) sin(x) cos(x) arccos(x) arctan(x)

CPU time 0.0495 0.1317 0.0601 3.8934 3.7347 4.8079 4.7908 7.8906 7.6487

Cost 1 2.66 1.22 78.74 75.52 97.23 96.88 159.57 154.68
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(TM) i5-520M CPU@ 2.40 GHz (64-bit Machine) Microsoft Windows 7 Home Pre-
mium 2009 and are complied by computational software programMathematica using
multiple-precision arithmetic. It can be observed from Table 1 that for this hardware
and the software, the computational cost of division with respect to multiplication is,
l = 2.66.

For numerical tests we consider the following problems:

Problem 1 Consider the system of two equations (selected from [25]):

{

x1 + ex2 − cos x2 = 0,
3x1 − sin x1 − x2 = 0,

with initial value x(0) = {−1.5, 1.5}T towards the solution: r = {0, 0}T . For this
problem the corresponding values of parameters μ0 and μ1 (calculated by using the
Table 1) are 136.93 and 68.21 which we use in (22)–(28) for computing computational
costs and efficiency indices, and also to verify the results of theorem 3. Observe that
the other parameters are (n, l) = (2, 2.66).

Problem 2 Consider the Gauss-Legendre quadrature formula:

∫ 1

0
f (x)dx =

m
∑

j=1

ω j f (x j ),

where x j and ω j are called abscissas and weights, respectively. The abscissas and
weights are symmetrical with respect to the middle point of the interval. There being
2m unknowns, 2m relations between them are necessary so that the formula is exact
for all polynomials of degree not exceeding 2m − 1. Thus we consider

f (x) =
2m−1
∑

i=0

ci x
i .

Then,
∫ 1

0
f (x)dx =

∫ 1

0

( 2m−1
∑

i=0

ci x
i
)

dx =
2m−1
∑

i=0

ci
i + 1

.

Also,
∫ 1

0
f (x)dx =

m
∑

j=1

2m−1
∑

i=0

ω j ci x
i
j .

But both the above last equations are identical for all values of ci , hence comparing
coefficients of ci , we obtain the following system of 2m equations in 2m unknowns
x j and w j ( j = 1, 2, . . . ,m):

m
∑

j=1

ω j x
i
j − 1

i + 1
= 0, i = 0, 1, 2, . . . , 2m − 1.
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In particular, we solve this problem for m = 2 so that n = 4 by choosing the initial
value x(0) = {x (0)

1 , x (0)
2 , ω

(0)
1 , ω

(0)
2 }T = {0, 1, 1, 1}T towards the solution:

r = {x1, x2, ω1, ω2}T = {0.21132486540518712 . . . , 0.78867513459481288 . . . , 0.5, 0.5}T .

For this problem the correspondingvalues of parametersμ0 andμ1, calculated byusing
the Table 1, are 1.5 and 0.75. Note that the other parameters are (n, l) = (4, 2.66).

Problem 3 The boundary value problem (see [20]):

u′′ + a2(u′)2 + 1 = 0, u(0) = 0, u(1) = 0,

is studied. Consider the following partitioning of the interval [0, 1]:

t0 = 0 < t1 < t2 < · · · < tm−1 < tm = 1, t j+1 = t j + h, h = 1/m.

Let us define u0 = u(t0) = 0, u1 = u(t1), . . . , um−1 = u(tm−1), um = u(tm) = 1.
If we discretize the problem by using the numerical formulae for first and second
derivatives

u′
k = uk+1 − uk−1

2h
, u′′

k = uk−1 − 2uk + uk+1

h2
, (k = 1, 2, 3, . . . ,m − 1),

we obtain a system of m − 1 nonlinear equations in m − 1 variables:

uk−1 − 2uk + uk+1 + a2(uk+1 − uk−1)
2 + h2 = 0, (k = 1, 2, 3, . . . ,m − 1).

In particular, we solve this problem for m = 9 so that n = 8 by selecting u(0) =
{−1,−1, . . .,−1}T as the initial value and a = 2. The solution of this problem is,

r={0.068510993237298025 . . . , 0.11210808478752376 . . . , 0.13846581959470837 . . . ,

0.15096779807292381 . . . , 0.15096779807292381 . . . , 0.13846581959470837 . . . ,

0.11210808478752376 . . . , 0.068510993237298025 . . .}T

and concrete values of the parameters (n, l, μ0, μ1) are (8, 2.66, 2, 0.125).

Problem 4 Consider the system of thirteen equations (selected from [12]):

13
∑

j=1, j �=i

x j − e−xi = 0, 1 ≤ i ≤ 13,

with initial value x(0) = {2.5, 2.5, . . ., 2.5}T towards the solution:

r = {0.077146207613064638 . . . , 0.077146207613064638 . . . , . . .,

0.077146207613064638 . . .}T .
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Table 2 Comparison of the
performances of methods Methods k ρk C(p)

i E(p)
i CPU-time

Problem 1

φ
(4)
1 7 4.00000 853.50 1.001626 0.32067

φ
(4)
2 7 4.00000 1125.02 1.001233 0.38301

φ
(5)
1 6 5.00000 1126.04 1.001430 0.33458

φ
(5)
2 6 5.00000 1146.34 1.001405 0.34845

φ
(5)
3 6 5.00000 1128.34 1.001427 0.34367

φ
(5)
4 6 5.00000 1124.68 1.001432 0.32165

φ
(5)
5 6 5.00000 1134.00 1.001420 0.34780

Problem 2

φ
(4)
1 6 4.00000 175.20 1.007944 0.17334

φ
(4)
2 7 4.00000 153.88 1.009050 0.17156

φ
(5)
1 6 5.00000 139.88 1.011572 0.11612

φ
(5)
2 6 5.00000 265.80 1.006073 0.24166

φ
(5)
3 6 5.00000 197.80 1.008170 0.22189

φ
(5)
4 5 6.00000 167.84 1.010733 0.15645

φ
(5)
5 6 5.00000 194.48 1.008310 0.19067

Problem 3

φ
(4)
1 7 4.00000 759.52 1.001827 0.43865

φ
(4)
2 7 4.00000 566.32 1.002451 0.42886

φ
(5)
1 6 5.00000 526.32 1.003063 0.24433

φ
(5)
2 6 5.00000 1195.28 1.001347 0.50267

φ
(5)
3 6 5.00000 931.28 1.001730 0.47458

φ
(5)
4 6 6.00000 716.80 1.002503 0.35889

φ
(5)
5 6 5.00000 802.08 1.002009 0.36223

Problem 4

φ
(4)
1 6 4.00000 5531.01 1.000251 3.58862

φ
(4)
2 6 4.00000 5705.73 1.000243 3.65267

φ
(5)
1 5 5.00000 5562.71 1.000289 2.52756

φ
(5)
2 5 5.00000 7940.69 1.000203 4.42524

φ
(5)
3 5 5.00000 7251.69 1.000222 4.24344

φ
(5)
4 5 5.00000 6394.21 1.000252 3.53235

φ
(5)
5 5 5.00000 6597.79 1.000244 3.59426

Problem 5

φ
(4)
1 7 4.00000 13484.40 1.000103 37.24354

φ
(4)
2 7 4.00000 12459.80 1.000111 35.17520
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Table 2 continued

∗ φ
(5)
4 converges to solution r2,

whereas the rest converge to r1

Methods k ρk C(p)
i E(p)

i CPU-Time

φ
(5)
1 6 5.00000 12092.60 1.000133 17.09776

φ
(5)
2 6 5.00000 19630.60 1.000082 35.45393

φ
(5)
3 6 5.00000 18010.60 1.000089 33.61846

φ
(5)∗
4 6 5.00000 15035.20 1.000107 30.01342

φ
(5)
5 6 5.00000 15488.40 1.000104 30.73324

For this problem values of the parameters (n, l, μ0, μ1) are (13, 2.66, 78.74, 6.057).

Problem 5 Lastly, considering the system of twenty equations (selected from [25]):

xi − cos

⎛

⎝2xi −
20
∑

j=1

x j

⎞

⎠ = 0, 1 ≤ i ≤ 20.

In this problem a closer choice of initial approximation to the required solution is
very much needed since the problem has many solution vectors with the same value
of each component of magnitude less than one in every solution vector. That means

each solution vector satisfies ‖r‖ =
√

∑20
i=1 |ri |2 <

√
20. The two solutions of this

problem are given by,

r1 = {−0.89797814194212824 . . . ,−0.89797814194212824 . . . , . . .,

−0.89797814194212824 . . .}T

and

r2 = {−0.57671512524652449 . . . ,−0.57671512524652449 . . . , . . .,

−0.57671512524652449 . . .}T .

We choose the initial approximation x(0) = {−1,−1, . . .,−1}T to solve the prob-
lem. The concrete values of parameters used in (22)–(28) are (n, l, μ0, μ1) =
(20, 2.66, 96.88, 4.862).

In Table 2,we exhibit numerical results obtained for the considered problems 1–5 by
implementing the methods φ

(4)
i , (i = 1, 2) and φ

(5)
j , ( j = 1, 2, . . . , 5). Displayed in

the table are the necessary iterations (k), the computational order of convergence (ρk),
the computational cost (C (p)

i ) in terms of products, the computational efficiency (E (p)
i )

and the mean elapsed CPU time (CPU-Time). Computational cost and efficiency are
calculated according to the corresponding expressions given by (22)–(28) using the
values of parameters n, μ0 and μ1 as shown in the end of each problem and taking
l = 2.66 in each case.
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The mean elapsed CPU time is calculated by taking the mean of 50 performances of
the program, wherein we use ||x(k+1) − x(k)|| + ||F(x(k))|| < 10−300 as the stopping
criterion in single performance of the program.

From the numerical results, we can observe that like the existing methods the
present method shows consistent convergence behavior. Calculated values of the com-
putational order of convergence displayed in the third column of Table 2 verify the
theoretical fifth order of convergence proved in Sect. 4. The existing method φ

(5)
4 by

Grau et al. converges to the solution with sixth order convergence in the second and
third problems consisting of algebraic equations. In order to confirm that the results
obtained in Table 2 are also in accordance with the results of Theorem 3, we find
mi , (i = 1, 2 · · · , 6) using the values of l, n, andμ1 for each numerical problem. The
results are presented in Table 3. Comparing the efficiency results of Table 2 with that
of Table 3, we find that the results are compatible with each other for each numerical
problem, and hence theorem 3 is verified. From the numerical values of the efficiency
(E (p)

i ) and elapsed CPUTime (CPU-Time), we can observe that the method with large
efficiency uses less computing time than the method with small efficiency. This shows
that the efficiency results are in complete agreement with the CPU time utilized in the
execution of program. Moreover, the results of efficiency and CPU-time confirm the
robust and efficient nature of the new method.

7 Concluding remarks

In the foregoing study, we have developed a fifth-order iterative method for solving
nonlinear equations. Scheme of the method is very simple which consists of three
steps. Of these three steps the first step is Newton’s step and last two are Newton-
like steps. Hence, the name Newton-like method. Taylor’s expansion is used to prove
the local convergence order of the method. The computational efficiency is discussed
exhaustively. Then a comparison between the efficiencies of new method with some
existing methods is performed. It is shown that the proposed method is more effi-
cient than existing methods, especially when applied for solving the systems of large
dimensions. To illustrate the new technique five numerical examples are presented and
completely solved. Computational results have justified robust and efficient conver-
gence behavior of the proposed method. Similar numerical experimentations, carried
out for a number of problems of different type, confirmed the above conclusions to a
large extent.
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