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Abstract Let H be a Hilbert space. The recently introduced notions of the DMP
inverse are extended from matrices to operators. The group, Moore–Penrose, Drazin
inverses are integrated by DMP inverse and many closely equivalent relations among
these inverses are investigated by using appropriate idempotents. Some new properties
of DMP inverse are obtained and some known results are generalized.
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1 Introduction and preliminaries

LetH be a complex Hilbert space. Denote by B(H) of all bounded linear operators on
H.R(T ) andN (T ) represent the range and the null space of T , respectively. We call
P ∈ B(H) an idempotent if P = P2, and an orthogonal projector if P2 = P = P∗.
The orthogonal projector onto a closed subspace M is denoted by PM. An operator
S is an outer generalized inverse of T if (II) ST S = S. Let

(I) T ST = T, (III) (T S)∗ = T S, (IV) (ST )∗ = ST, (V) T S = ST,

(VI) T k ST = T k .
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The (I, II, III, IV)-inverse is called Moore–Penrose inverse (for short MP inverse),
denoted by S = T †. It is well known that T has the MP inverse if and only if R(T )

is closed and the MP inverse of T is unique (see [2,7]). And the (II, V, VI)-inverse
is called Drazin inverse, denoted by S = T D , where k = i(T ) is the Drazin index
of T . An operator T ∈ B(H) is Drazin invertible if and only if it has finite ascent
asc(T ) and descent des(T ), which is equivalent with that 0 is a finite order pole
of the resolvent operator Rλ(T ) = (λI − T )−1 [16], say of order k. In such case
i(T ) = asc(T ) = des(T ) = k [2,4,16]. Similarly, the (I, II, V)-inverse is called
group inverse, denoted by S = T # [2,12]. In the case where i(A) ≤ 1, AD is reduced
to the group inverse A# [3,6,8,19].

Recently, Baksalary and Trenkler introduced in [1] a new pseudoinverse of a matrix
named core inverse. Malik and Thome in [15] generalized this definition and defined a
new generalized inverse of a square matrix of an arbitrary index. They used the Drazin
inverse (D) and the Moore–Penrose (MP) inverse and therefore this new generalized
inverse is called the DMP-inverse (see also [5,13,14,17]).

Definition 1.1 [1,15] Let closed range operator T ∈ B(H) have index k. Then an
operator X ∈ B(H) is the DMP-inverse of T , denoted by X = T D,†, if

XTX = X, XT = T T D and T k X = T kT †. (1)

Our aim is to investigate the characterizations and the properties of DMP inverse.
The matrix representation of the DMP inverse is given. We show that all kinds of
general inverses and corresponding related idempotents are closed related. Some
equivalent characterizations among the existence of these inverses by the existence of
self-adjoint idempotents

P1 = PR(T ) = T T †, P2 = PR(T k ), P3 = PR(T ∗) = T †T

and idempotents

Q1 = T T D = T D,†T = T T †,D, Q2 = T T D,† = Q1P1, Q3 = T †,DT = P3Q1

are built.

2 Some lemmas

To prove the main results, some lemmas are needed.

Lemma 2.1 ([7, Theorem 6]) Let T11 ∈ B(H), T22 ∈ B(K), T12 ∈ B(K,H) and T11

be invertible. Then T =
(
T11 T12
0 T22

)
is MP invertible if and only ifR(T22) is closed,

and

T † =
(

T ∗
11� −T ∗

11�T12T
†
22

(I − T †
22T22)T

∗
12� T †

22 − (I − T †
22T22)T

∗
12�T12T

†
22

)
, (2)
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where � =
[
T11T ∗

11 + T12(I − T †
22T22)T

∗
12

]−1
. Moreover, T T † =

(
I 0
0 T22T

†
22

)

and

T †T =
(

T ∗
11�T11 T ∗

11�T12(I − T †
22T22)

(I − T †
22T22)T

∗
12�T11 T †

22T22 + (I − T †
22T22)T

∗
12�T12(I − T †

22T22)

)
.

(3)

If T has the Drazin inverse T D with i(T ) = k, thenR(T k) is an invariant subspace
of T since T T k = T k+2T D = T kT 2T D. And T has the following operator matrix

T =
(
T11 T12
0 T22

)
(4)

with respect to the spacedecompositionH = R(T k)⊕R(T k)⊥,whereT11 is invertible
and T k

22 = 0 [10].

Lemma 2.2 ([10, Theorem 2.5]) If T ∈ B(H) is Drazin invertible with i(T ) = k,
then T has the operator matrix form (4) and

T D =
(
T−1
11

∑k−1
i=0 T i−k−1

11 T12T
k−1−i
22

0 0

)
. (5)

Throughout this work we denote by

X0 =
k−1∑
i=0

T i−k−1
11 T12T

k−1−i
22 , � =

[
T11T

∗
11 + T12(I − T †

22T22)T
∗
12

]−1
. (6)

Lemma 2.3 Let X0 be defined as in (6), where T11 is invertible and T k
22 = 0. Then

(i)

T11X0 − X0T22 = T−1
11 T12. (7)

(ii) X0 = 0 ⇐⇒ T12 = 0.
(iii) X0T22T

†
22 = 0 ⇐⇒ X0T22 = 0 ⇐⇒ T12T22 = 0 ⇐⇒ X0 = T−2

11 T12.

Proof Item (i) is clear by the definition of X0 in (6). Item (ii) follows by the relation
in (7).

(iii) If X0T22T
†
22 = 0, then X0T22 = X0T22T

†
22T22 = 0.

If X0T22 = 0, by (6),

T−2
11 T12T22 + T−3

11 T12T
2
22 + · · · + T−k+1

11 T12T
k−2
22 + T−k

11 T12T
k−1
22 = 0. (8)

Product T k−2
22 from right in (8) we get T−2

11 T12T
k−1
22 = 0. It follows that T12T

k−1
22 = 0.

In the same way, T12T
k−2
22 = 0 by production T k−3

22 from right in (8). With a step by
step deduction it follows that T12T22 = 0.
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If T12T22 = 0. then X0 = T−2
11 T12 by the definition of X0.

On the other hand, if X0 = T−2
11 T12, then

X0 − T−2
11 T12 = T−3

11 T12T22 + T−4
11 T12T

2
22

+ · · · + T−k
11 T12T

k−2
22 + T−k−1

11 T12T
k−1
22 = 0.

Again we derive that T12T22 = 0 by the above method.
If T12T22 = 0, then X0T22 = 0. If X0T22 = 0, it is clear that X0T22T

†
22 = 0. 
�

Thenextwell-knowncriterion (i) due toDouglas [9] (see alsoFillmore andWilliams
[11]) about range inclusions and factorization of operatorswill be crucial. The criterion
(ii) was given in [18] for Hilbert C*-modules.

Lemma 2.4 (i) [9] If A, B ∈ B(H), there exists an operator C ∈ B(H) such that
A = BC if and only ifR(A) ⊂ R(B).

(ii) [18] If L and M are closed subspaces of H and PL,M is an idempotent on L
along M, then

PL,MT = T ⇐⇒ R(T ) ⊂ L, T PL,M = T ⇐⇒ N (T ) ⊃ M.

3 The representation for the DMP-inverse

First we show that the solution of (1) is unique if system is consistent (see [15, Defi-
nition2.3] for the matrix case).

Theorem 3.1 If closed range operator T ∈ B(H) has index k, then the DMP inverse
of T is unique and T D,† = T DT T †.

Proof T is MP invertible and Drazin invertible since T is closed range operator with
index k (not necessarily ≤ 1). Let X = T DT T †. Then

XT X = T DT T †T T DT T † = T DT T † = X,

XT = T DT T †T = T DT and T k X = T kT DT T † = T kT †. Hence X = T DT T † is
a solution of system (1). If X1 and X2 are two solutions of system (1), then

X1 = X1T X1 = T T DX1 = (T T D)k X1 = (T D)kT k X1 = (T D)kT kT †

= (T D)kT k X2 = T DT X2 = X2T X2 = X2.

Hence system (1) has a unique solution. 
�
From Theorems 3.1 it follows that T is both Drazin and MP invertible if and only

if T is DMP invertible. We next give the canonical form for the DMP inverse of an
operator T using block operator matrix method.
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Theorem 3.2 Let closed range operator T ∈ B(H) have the operator matrix form
(4) and i(T ) = k. Then

T D,† =
(
T−1
11 X0T22T

†
22

0 0

)
(9)

with respect to the space decompositionH = R(T k)⊕R(T k)⊥, where X0 is defined
in (6).

Proof By Theorem 3.1, Lemmas 2.1 and 2.2,

T D,† = T DT T † =
(
T−1
11 X0
0 0

)(
I 0
0 T22T

†
22

)
=

(
T−1
11 X0T22T

†
22

0 0

)
. 
�

There is another inverse associated with operator T , namely T †,D = T †T T D and
its canonical form in terms of the decomposition of T in (4) is given by

T †,D =
(

T ∗
11� T ∗

11�T11X0

(I − T †
22T22)T

∗
12� (I − T †

22T22)T
∗
12�T11X0

)
, (10)

where X0 and � are defined in (6).

Remark (1) If (I − T †
22T22)T

∗
12 = 0, then T †,D = T D. If i(T ) ≤ 1, then T22 = 0.

Hence, T #,† = T−1
11 ⊕ 0,

T † =
(
T ∗
11�′ 0

T ∗
12�′ 0

)
, T # =

(
T−1
11 T−2

11 T12

0 0

)
, T †,# =

(
T ∗
11�′ T ∗

11�′T−1
11 T12

T ∗
12�′ T ∗

12�′T−1
11 T12

)
,

(11)

where �′ = (T11T ∗
11 + T12T ∗

12)
−1.

(2) If T D = T †, then T12 = 0 and T22 = 0 in (4). Hence

T # = T † = T #,† = T †,# = T−1
11 ⊕ 0.

(3) If T D = T , then T22 = 0 and T 2
11 = I in (4). Hence, i(T ) ≤ 1 and T = T 3,

T #,† = T #T T † = T 2T † = (T #)2T †, T #,†T = T 2, T T #,† = T T †

and

T †,# = T †T T # = T †T 2 = T †(T #)2, T †,#T = T †T, T T †,# = T 2.

(4) If T D,† = T , then T12 = 0, T22 = 0 and T 2
11 = I in (4). If T † = T , by (2) and

(4), (I − T †
22T22)T

∗
12 = 0 and T †

22 = T22. Since T22 is k nilpotent, T †
22 = T22 implies

that T22 = 0. It follows that T12 = 0 and T 2
11 = I . Then we derive that
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T D,† = T ⇐⇒ T † = T ⇐⇒ T12 = 0, T22 = 0, T 2
11 = I.

In this case,

T 2 = T #,†T = T T #,† = T T † = T T # = I ⊕ 0,

T #,† = T † = T = T # = T †,# = T11 ⊕ 0.

In the following we introduce a method to obtain the DMP inverse by a different
algebraic approach.

Theorem 3.3 Let closed range operator T ∈ B(H) have index k. Then T D,† =
(T 2T †)D.

Proof Let T ∈ B(H) have the operator matrix form (4) and i(T ) = k. By Theorem
3.2,

T D,† =
(
T−1
11 X0T22T

†
22

0 0

)
, X0 =

k−1∑
i=0

T i−k−1
11 T12T

k−1−i
22 .

By Lemma 2.1,

T 2T † = T (T T †) =
(
T11 T12
0 T22

) (
I 0
0 T22T

†
22

)
=

(
T11 T12T22T

†
22

0 T 2
22T

†
22

)
.

If i(T ) ≤ 1, then T22 = 0 and

(T 2T †)D =
(
T11 0
0 0

)D

=
(
T−1
11 0
0 0

)
= T D,†.

The result holds. If k ≥ 2, then (T 2
22T

†
22)

k−1 = T k
22T

†
22 = 0 since T k

22 = 0. By Lemma
2.2,

(T 2T †)D =
(
T11 T12T22T

†
22

0 T 2
22T

†
22

)D

=
(
T−1
11 Y
0 0

)
,

where

Y =
k−2∑
i=0

T i−k
11 T12T22T

†
22(T

2
22T

†
22)

k−2−i

= T−2
11 T12T22T

†
22 + T−3

11 T12T22T
†
22T

2
22T

†
22 + T−4

11 T12T22T
†
22T

3
22T

†
22

+ · · · + T−k
11 T12T22T

†
22T

k−1
22 T †

22

=
[
T−2
11 T12 + T−3

11 T12T22 + T−4
11 T12T

2
22 + · · · + T−k

11 T12T
k−2
22
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+T−k−1
11 T12T

k−1
22

]
T22T

†
22

= X0T22T
†
22.

Hence, T D,† = (T 2T †)D . 
�

4 Characterizations of relating idempotents

Suppose that T ∈ B(H) is a closed range operatorwith index k. ThenR(T †) = R(T ∗)
and N (T †) = N (T ∗). By Lemma 2.4,

R(T k) = R(T D) = R(T DT T †T T D) ⊆ R(T DT T †) = R(T D,†) ⊆ R(T D)

and

N (T k) = N (T k+1T D) ⊇ N (T D) = N (T D(T D)kT k) ⊇ N (T k).

The outer generalized inverse T (2)
S,T of T ∈ B(H) is the operator X ∈ B(H) satisfying

XT X = X , R(X) = S and N (X) = T [2,4]. Hence, T †, T D and T # are outer
generalized inverse T (2)

S,T with prescribed range S and null space T :

T † = T (2)
R(T ∗),N (T ∗), T D = T (2)

R(T k ),N (T k )
, T # = T (2)

R(T ),N (T )
.

The DMP-inverse is one kind of outer generalized inverses T D,† = T (2)
R(T k ),N (T DT T †)

.

If i(T ) ≤ 1, then

N (T ∗) = N (T †) = N (T †T T #T T †) ⊇ N (T #T T †) = N (T #,†) ⊇ N (T †)

and T #,† = T (2)
R(T ),N (T ∗). Since T

D,† = T DT T † and T †,D = T †T T D,

T T †,D = T D,†T = T T D, T †,DT T †,D = T †,D, T D,†T T D,† = T D,†.

Hence T †,DT , T T †,D , T T D,† and T D,†T are idempotents. Define the self-adjoint
idempotents

P1 = PR(T ) = T T †,

P2 = PR(T k ),

P3 = PR(T ∗) = T †T (12)

and the idempotents

Q1 = T T D = T D,†T = T T †,D,

Q2 = T T D,† = Q1P1,
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Q3 = T †,DT = P3Q1. (13)

We have the following equivalent relations.

Theorem 4.1 Let closed range operator T ∈ B(H) have index k. Let Qi , i = 1, 2, 3,
be defined as in rm (13). Then

(i) Q1 = Q2 ⇐⇒ N (T ∗) ⊆ N (T k) ⇐⇒ T D = T D,†.

(ii) Q1 = Q3 ⇐⇒ R(T k) ⊆ R(T ∗) ⇐⇒ T D = T †,D .

(iii) Q2 = Q3 ⇐⇒ N (T ∗) ⊆ N (T k) and R(T k) ⊆ R(T ∗) ⇐⇒ T D,† = T D =
T †,D .

Proof (i) Since Q1 = T D,†T = T T D and Q2 = T T D,† = T T DT T †,

Q1 = Q2 ⇐⇒ T T DT T † = T T D ⇐⇒ T T D(I − T T †) = 0

⇐⇒ N (T ∗) = N (T T †) = R(I − T T †) ⊆ N (T T D) = N (T D) = N (T k)

⇐⇒ T D(I − T T †) = 0 ⇐⇒ T D = T D,†.

(ii) Since Q3 = T †,DT = T †T T DT ,

Q1 = Q3 ⇐⇒ T †T T DT = T DT ⇐⇒ (I − T †T )T T D = 0

⇐⇒ R(T k) = R(T D) = R(T T D) ⊆ N (I − T †T ) = R(T †T ) = R(T ∗)
⇐⇒ (I − T †T )T D = 0 ⇐⇒ T D = T †,D .

(iii)Weonly show that Q2 = Q3 �⇒ N (T ∗) ⊆ N (T k) andR(T k) ⊆ R(T ∗).The
rest results are obvious by items (i) and (ii). If Q2 = Q3, then T T DT T † = T †T T DT .
First, product T from leftwe get T 2T DT T † = T 2T D . So T 2T D(I−T T †) = 0,which
implies thatN (T ∗) = N (T T †) = R(I − T T †) ⊆ N (T 2T D) = N (T D) = N (T k).
Second, product T from right we get T DT 2 = T †T T DT 2. So (I − T †T )T 2T D = 0,
which implies that R(T k) = R(T 2T D) ⊆ N (I − T †T ) = R(T ∗). 
�
Theorem 4.2 Let closed range operator T ∈ B(H) have index k. Let Pi and Qi , i =
1, 2, 3, be defined as in (12) and (13), respectively. Then

(i)

P2 = Q1 ⇐⇒ P2 = Q3 ⇐⇒ [T, P2] =: T P2 − P2T = 0
⇐⇒ T12 = 0. (see (4) for Ti2, i = 1, 2)

(ii) P2 = Q2 ⇐⇒ P2T (I − P2)T = 0 ⇐⇒ T12T22 = 0.
(iii) P1 = P2 ⇐⇒ P1 = Q2 ⇐⇒ i(T ) ≤ 1 (i.e., T is group invertible)⇐⇒ T22 = 0.
(iv)

P1 = P3 ⇐⇒ P2 = P3 ⇐⇒ P1 = Q1 ⇐⇒ P1 = Q3
⇐⇒ P3 = Q1 ⇐⇒ P3 = Q2 ⇐⇒ P3 = Q3
⇐⇒ i(T ) ≤ 1 and R(T ) = R(T ∗) (i.e., T is EP)

⇐⇒ T12 = 0 and T22 = 0.
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Proof We give the proof only for the items (i) and (ii); the other items may be proved
in the same manner.

(i) By (3)–(6), we know

P2 =
(
I 0
0 0

)
, Q1 =

(
I T11X0
0 0

)

and

Q3 =
(

T ∗
11�T11 T ∗

11�T 2
11X0

(I − T †
22T22)T

∗
12�T11 (I − T †

22T22)T
∗
12�T 2

11X0

)
.

Then P2 = Q1 ⇐⇒ X0 = 0 ⇐⇒ T12 = 0 by Lemma 2.3 ⇐⇒ P2 = Q3 ⇐⇒
[T, P2] =: T P2 − P2T = 0.

(ii) By (3)–(6), we know

Q2 =
(
I T11X0T22T

†
22

0 0

)
.

Then P2 = Q2 ⇐⇒ X0T22T
†
22 = 0 ⇐⇒ T12T22 = 0 by Lemma 2.3 ⇐⇒ P2T (I −

P2)T = 0. 
�
Theorem 4.3 Let closed range operator T ∈ B(H) have index k. Let Pi and Qi , i =
1, 2, 3, be defined as in (12) and (13), respectively. Then

(i) P1T D = T DP3 = T D.
(ii) P1Q1 = Q1 = Q1P3 and P2P1 = P2 = P1P2.
(iii) T D,† = T DP1 = Q1T DP1 and T †,D = P3T D = P3T DQ1.

(vi) Q1T P3 = P1T Q1 = Q1T Q1 = T Q1 = T 2T D = (T D)D.

(v) T 2
[
T D,†

]2 = T T D,† = Q2 and
[
T D,†

]2
T 2 = T D,†T = T DT = Q1.

Proof We only give the proof of the items (i) and (v). The other items can be checked
by the definitions in (12) and (13).

(i) Since R(T D) = R(T k) ⊆ R(T ) and N (T D) = N (T k) ⊇ N (T ), by Lemma
2.4,

P1T
D = T T †T D = T D = T DT †T = T DP3.

(iv) T 2
[
T D,†

]2 = T 2T DT T †T T DT † = T 2T DT T DT † = T 2T DT † =
T T D,† = Q2 and

[
T D,†

]2
T 2 = T DT T †T DT T †T 2 = T DT = T DT T †T =

T D,†T = Q1. 
�
It is well known that (T D)D = T 2T D and (T †)† = T . The relations for (T D,†)D,†,

(T D)D,† and (T D,†)D are given as follows.

Theorem 4.4 Let closed range operator T ∈ B(H) have index k. Let P2 be defined
as in (12). Then
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(i) (T D,†)D,† = (T D)D,† = T P2.
(ii)

[
(T D)D,†

]2
T D,† = T 2T D,† = (T D,†)D.

Proof (i) Let T ∈ B(H) have the operator matrix form (4) and i(T ) = k. By Lemma
2.2 and Theorem 3.2,

(T D,†)D =
(
T−1
11 X0T22T

†
22

0 0

)D

=
(
T11 T 2

11X0T22T
†
22

0 0

)
.

By Lemma 2.1 and Theorem 3.2,

(T D,†)† =
(
T−1
11 X0T22T

†
22

0 0

)†

=
(

(T−1
11 )∗�′′ 0

(X0T22T
†
22)

∗�′′ 0

)
,

where �′′ =
[
T−1
11 (T−1

11 )∗ + X0T22T
†
22(X0T22T

†
22)

∗
]−1

. So,

(T D,†)D,† =
(
T−1
11 X0T22T

†
22

0 0

)D,†

, X0 = ∑k−1
i=0 T i−k−1

11 T12T
k−1−i
22 .

=
(
T−1
11 X0T22T

†
22

0 0

)D (
T−1
11 X0T22T

†
22

0 0

) (
T−1
11 X0T22T

†
22

0 0

)†

=
(
T11 T 2

11X0T22T
†
22

0 0

) (
T−1
11 X0T22T

†
22

0 0

) (
(T−1

11 )∗�′′ 0

(X0T22T
†
22)

∗�′′ 0

)

=
(
I T11X0T22T

†
22

0 0

)(
(T−1

11 )∗�′′ 0

(X0T22T
†
22)

∗�′′ 0

)

=
(
T11 0

0 0

)
.

In the same vein, we obtain that

(T D)D,† =
(
T11 0
0 0

)
= (T D,†)D,† = T P2.

Hence (i) holds.
(ii) By the proof of item (i),

[
(T D)D,†

]2
T D,† =

(
T 2
11 0
0 0

) (
T−1
11 X0T22T

†
22

0 0

)

=
(
T11 T 2

11X0T22T
†
22

0 0

)
= (T D,†)D
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and

T 2T D,† =
(
T11 T12
0 T22

)2 (
T−1
11 X0T22T

†
22

0 0

)

=
(
T11 T 2

11X0T22T
†
22

0 0

)
= (T D,†)D.


�
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