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Abstract In order to approximate continuous functions on [0,+∞), we consider
a Lagrange–Hermite polynomial, interpolating a finite section of the function at the
zeros of some orthogonal polynomials and, with its first (r − 1) derivatives, at the
point 0. We give necessary and sufficient conditions on the weights for the uniform
boundedness of the related operator. Moreover, we prove optimal estimates for the
error of this process in the weighted L p and uniform metric.

Keywords Hermite–Lagrange interpolation · Approximation by algebraic
polynomials · Orthogonal polynomials · Generalized Laguerre weights · Real
semiaxis

Mathematics Subject Classification 41A05 · 41A10

The first author and the third authors were partially supported by University of Basilicata (local funds).
The second author was supported by University of Basilicata (local funds) and by National Group of
Computing Science GNCS–INDAM.

B Giuseppe Mastroianni
giuseppe.mastroianni@unibas.it

Incoronata Notarangelo
incoronata.notarangelo@unibas.it

Pietro Pastore
pietro.pastore@unibas.it

1 Department of Mathematics, Computer Sciences and Economics, University of Basilicata,
Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10092-015-0147-y&domain=pdf


236 G. Mastroianni et al.

1 Introduction

In this paperwe discuss theweighted polynomial interpolation of continuous functions
on [0,+∞), which are (r − 1)-times differentiable at 0 and can increase with order

O
(
ex

β/2
)

, β > 1/2, for x → ∞.

The case β = 1 has been treated in [1,5,15,20,22,24–26], where the Authors
considered Lagrange polynomials based on Laguerre zeros (see also [8]). Here we
choose as a tool the orthonormal system {pm(w)}m in (0,+∞) related to a generalized
Laguerre weight of the form w(x) = xαe−xβ

. From the numerical point of view, we
observe that the weight w is nonclassical in general and, for the construction of the
orthonormal system in the case β �= 1, we can use the procedure introduced in [2]
(see also [16]).

The presence of the derivatives of the function in 0 leads in a natural way to
the construction of Lagrange–Hermite polynomial Lm,r (w, f ) based at the zeros of
the polynomial pm(w), 0 as a multiple node and another additional node. Applying
the operator Lm,r (w) to a suitable finite section of the function f , we obtain a new
interpolation process, that we will denote by L∗

m,r (w). This new operator is not a
projector into the set of all polynomials of degree at most m + r , Pm+r , but on a
special subset P∗

m,r ⊂ Pm+r that can replace the space Pm+r , in the sense we are
going to show. Thus the projector L∗

m,r (w) can be profitably used in quadrature rules
and in the numerical treatment of Boundary Value Problems on (0,∞) (see, e.g.,
[6,27]).

We estimate the error of the process inweighted L p anduniformmetric and compare
it with the order of convergence of the best weighted polynomial approximation (that
can be found in [21]). The error estimates are sharp for the considered classes of
functions. All the results of this paper are new and cover the ones in the literature.

The paper is structured as follows. In Sect. 2 we recall some basic facts and give
some preliminary results, in Sect. 3 we will state our main results and in Sect. 4 we
will prove them.

2 Preliminary results

In the sequel C will stand for a positive constant that can assume different values in
each formula and we shall write C �= C(a, b, . . .) when C is independent of a, b, . . ..
Furthermore A ∼ B will mean that if A and B are positive quantities depending
on some parameters, then there exists a positive constant C independent of these
parameters such that (A/B)±1 ≤ C. Finally, we denote by Pm the set of all algebraic
polynomials of degree at most m.

In order to introduce some interpolation processes we consider the weight

w(x) = xαe−xβ

, x ∈ (0,+∞), (2.1)

with α > −1, β > 1
2 , and the corresponding sequence of orthonormal polynomials

{pm(w)}m , with positive leading coefficient γm . The zeros xk = xm,k(w) of pm(w),
m ≥ 1, are located as follows
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Lagrange–Hermite interpolation on the real semiaxis 237

(√
am
m

)2

< x1 < x2 < · · · < xm < am
(
1 − c

m2/3

)
,

where

am = am(
√

w) =
[
22β−2Γ (β)2

Γ (2β)

]1/β
(4m + 2α + 1)1/β ∼ m1/β

is the Mhaskar–Rakhmanov–Saff number related to the weight
√

w (see also [18,
19]). If β = 1 the nodes xk are the Laguerre zeros. Nevertheless, in general w is a
nonstandard weight and, for the computation of the zeros and the Christoffel numbers,
we may use the Mathematica package “OrthogonalPolynomials” introduced in [2].

For any continuous function in [0,+∞), f ∈ C0([0,+∞)), and (r − 1)-times
differentiable at 0, briefly f ∈ C0

r , r ≥ 1,we define the Lagrange–Hermite polynomial
Lm,r (w, f ) as follows

Lm,r (w, f, xk) = f (xk), k = 1, . . . ,m + 1,

with xm+1 := am , and

Lm,r (w, f )( j)(0) = f ( j)(0), j = 0, 1, . . . , r − 1,

where f (0) ≡ f . Here we used also an idea introduced by Szabados for Lagrange and
Hermite–Fejér interpolation, adding the additional node am (see [28]).

The polynomial Lm,r (w, f ) can be written as

Lm,r (w, f, x) =
m+1∑
k=1

xr

xrk
�k(w, x) f (xk)

+ (am − x)pm(w, x)
r−1∑
i=0

xi

i !
(

f

(am − ·)pm(w)

)(i)

(0), (2.2)

where

�k(w, x) = pm(w, x)

(x − xk)p′
m(w, xk)

(am − x)

(am − xk)
, k = 1, 2, . . . ,m,

and

�m+1(w, x) = pm(w, x)

pm(w, am)

are the fundamental Lagrange polynomials. It is easily seen that

Lm,r (w, P) = P, P ∈ Pm+r ,
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238 G. Mastroianni et al.

and Lm,r (w) is a projector from C0
r into Pm+r .

We are now going to introduce another Lagrange–Hermite type operator L∗
m,r (w),

modifying the operatorLm,r (w). To this end, for a fixed θ ∈ (0, 1) and for a sufficiently
large m we define an index j = j (m, θ) such that

x j = min
k

{xk : xk ≥ θam}. (2.3)

Of course if m is small we let j = m. Hence we define the new Lagrange–Hermite
type polynomial as follows

L∗
m,r (w, f, x) =

j∑
k=1

xr

xrk
�k(w, x) f (xk)

+(am − x)pm(w, x)
r−1∑
i=0

xi

i !
(

f

(am − ·)pm(w)

)(i)

(0). (2.4)

By this definition,

L∗
m,r (w, f, xk) = f (xk), k = 1, . . . , j,

L∗
m,r (w, f, xk) = 0, k = j + 1, . . . ,m + 1,

and

L∗
m,r (w, f )(i)(0) = f (i)(0), i = 0, 1, . . . , r − 1.

Moreover, we observe that L∗
m,r (w) does not preserve all the polynomials of degree

at most m + r , for example L∗
m,r (w, 1) �= 1.

Nevertheless, if we introduce the following set of polynomials

P∗
m,r = {Q ∈ Pm+r : Q(xi ) = 0, i > j} .

then it is easy to show that for any f ∈ C0
r , L∗

m,r (w, f ) ∈ P∗
m,r and for any Q ∈

P∗
m,r ,L∗

m,r (w, Q) = Q, therefore L∗
m,r (w, f ) is a projector from C0

r into P∗
m,r .

In order to show some approximation properties of the projectors defined above,
we are going to define some function spaces.

2.1 Function spaces

Let us consider a weight of the form

u(x) = xγ e−xβ/2, x ∈ (0,+∞), (2.5)

with β > 1
2 and the following weighted function spaces associated to u.
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Lagrange–Hermite interpolation on the real semiaxis 239

For 1 ≤ p < ∞ and γ > −1/p, by L p
u we denote the set of all measurable

functions f such that

‖ f ‖L p
u

:= ‖ f u‖p =
(∫ +∞

0
| f u|p(x) dx

)1/p

< ∞.

For p = ∞ and γ ≥ 0, by a slight abuse of notation, we set

L∞
u := Cu =

⎧
⎨
⎩ f ∈ C0(0,+∞) : lim

x→0+
x→+∞

f (x)u(x) = 0

⎫
⎬
⎭ ,

and we equip this space with the norm

‖ f ‖L∞
u

:= ‖ f u‖∞ = sup
x∈(0,+∞)

| f (x)u(x)| .

Note that the Weierstrass theorem implies the limit conditions in the definition of Cu .
Subspaces of L p

u , 1 ≤ p ≤ ∞, are the Sobolev spaces, given by

W p
s (u) =

{
f ∈ L p

u : f (s−1) ∈ AC(0,+∞), ‖ f (s)ϕsu‖p < ∞
}

, 1 ≤ s ∈ Z,

where AC(0,+∞) denotes the set of all functions which are absolutely continuous
on every closed subset of (0,+∞) and ϕ(x) = √

x . We equip these spaces with the
norm

‖ f ‖W p
s (u) = ‖ f u‖p + ‖ f (s)ϕsu‖p.

In order to define some further function spaces, we consider the s-th modulus of
smoothness of f ∈ L p

u , 1 ≤ p ≤ ∞, s ≥ 1,

Ωs
ϕ( f, t)u,p = sup

0<h≤t

∥∥∥Δs
hϕ ( f ) u

∥∥∥
L p(Irh)

,

where

Δs
hϕ f (x) =

s∑
i=0

(−1)i
(
s

i

)
f (x + (s − i)hϕ(x))

is the forward finite difference of order s with variable step hϕ(x), ϕ(x) = √
x and

Ish = [8s2h2, Ch− 1
(β−1/2) ], h > 0.

Let f ∈ L p
u , 1 ≤ p ≤ ∞. Then the following estimate

Ωs
ϕ( f, t)u,p ≤ C sup

0<h≤t
hs‖ f (s)ϕsu‖L p(Ish), (2.6)
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240 G. Mastroianni et al.

holds with C �= C( f, t), provided the norm on the right-hand side is finite (see [21]).
Using these moduli of smoothness we can define the Zygmund spaces as

Z p
λ (u) =

{
f ∈ L p

u : sup
t>0

Ωs
ϕ( f, t)u,p

tλ
< ∞, s > λ

}
, 0 < λ ∈ R,

with the norm

‖ f ‖Z p
λ (u) = ‖ f u‖p + sup

t>0

Ωs
ϕ( f, t)u,p

tλ
, s > λ.

Let us denote by

Em( f )u,p = inf
Pm∈Pm

‖( f − Pm) u‖p

the error of best weighted polynomial approximation in L p
u , 1 ≤ p ≤ ∞. Estimates

for the error of best weighted approximation have been proved in [21]. In particular it
has been shown that

lim
m→∞ Em( f )u,p = 0 ∀ f ∈ L p

u . (2.7)

For our aims it is sufficient to recall the following weak Jackson inequality

Em( f )u,p ≤ C
∫ √

am
m

0

Ωs
ϕ( f, t)u,p

t
dt (2.8)

that holds for any function f ∈ L p
u , 1 ≤ p ≤ ∞.

In particular, if f ∈ Z p
λ , by (2.8) we deduce

Em( f )u,p ≤ C
(√

am
m

)λ

sup
t>0

Ωs
ϕ( f, t)u,p

tλ
, (2.9)

and by (2.6) we have

Em( f )u,p ≤ C
(√

am
m

)s

‖ f (s)ϕsu‖p, (2.10)

for any f ∈ W p
s , s ≥ 1 and 1 ≤ p ≤ ∞.

We are now able to show an important property of the polynomials in P∗
m,r . To

this end we need some further notation. We say that PM is a polynomial of quasi best
approximation for f ∈ L p

u , 1 ≤ p ≤ ∞, if, for some C ≥ 1,

‖( f − PM ) u‖p ≤ CEM ( f )u,p.
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Lagrange–Hermite interpolation on the real semiaxis 241

Moreover, we denote by

E∗
m,r ( f )u,p = inf

Q∈P∗
m,r

‖( f − Q)u‖p,

the error of best approximation bymeans of polynomials ofP∗
m,r . The relation between

Em( f )u,p and E∗
m( f )u,p is established by the following Lemma.

Lemma 1 Letw, u be the weights defined in (2.1) and (2.5) with α > −1, β > 1
2 and

u ∈ L p, 1 ≤ p ≤ ∞. Let f ∈ L p
u and PM ∈ PM one of its polynomial of quasi best

approximation, with

M =
⌊(

θ

θ + 1

)
m

⌋
(2.11)

for a fixed θ ∈ (0, 1). Then we have

E∗
m,r ( f )u,p ≤ ‖[ f − L∗

m,r (w, PM )]u‖p ≤ C{EM ( f )u,p + e−cm‖ f u‖p}, (2.12)

where C, c are independent of m, r, f . Moreover, for s ≥ 1, we get

(√
am
m

)s

‖L∗
m,r (w, PM )(s)ϕsu‖p ≤ C

⎧
⎨
⎩e−cm‖ f u‖p +

∫ √
am
m

0

Ωs
ϕ( f, t)u,p

t
dt

⎫
⎬
⎭ .

(2.13)

Using Lemma 1 and (2.7) it follows that the order of convergence of E∗
m,r ( f )u,p is the

same as that of Em,r ( f )u,p. Therefore,
⋃

m P∗
m,r is dense in L

p
u . In the next Section we

will show the behaviour of the operators Lm,r (w) and L∗
m,r (w) in different function

spaces.

3 Main results

The following results hold true in weighted uniform norm. In order to state it we need
a further definition. We say that a function is quasi increasing on I if there exists a
constant C such that f (x) ≤ C f (y) for x < y, x, y ∈ I .

Theorem 2 Let w and u be the previously defined weights, with γ ≥ 0 and α > −1.
For every f ∈ C0

r ∩ Cu, r ≥ 1, we have

∥∥Lm,r (w, f ) u
∥∥∞ ≤ C

{
(logm)‖ f u‖∞ +

(√
am
m

)2γ r−1∑
i=0

| f (i)(0)|
i !

(√
am
m

)2i
}

,

(3.1)
where C �= C(m, f ), if and only if

α

2
+ 1

4
≤ γ + r ≤ α

2
+ 5

4
. (3.2)
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242 G. Mastroianni et al.

Moreover, under the assumptions (3.2), if
∣∣ f (i)

∣∣ is quasi increasing on [0, αm], with
αm = am/m2 and i = 0, 1, . . . , r − 1, we get

∥∥[ f − Lm,r (w, f )
]
u
∥∥∞ ≤ C(logm)Em+r ( f )u,∞ + O

((√
am
m

)r−1
)

(3.3)

where C �= C(m, f ) and the constant in “O” is independent of m.

Therefore, in weighted spaces of continuous functions, the behaviour of the operators{Lm,r (w)
}
m is comparable with similar interpolation processes based on Jacobi zeros

on bounded intervals (see, e.g., [15,17]).
We emphasize that if r and γ are given, then, in order to approximate a function f ,

we can always choose some α such that the Lagrange–Hermite polynomial converges
with the order of the best polynomial approximation times the extra factor logm. In
fact, we can rewrite (3.2) as follows

2r + 2γ − 5

2
≤ α ≤ 2r + 2γ − 1

2
.

Moreover, since the Lebesgue constants related to the processes {L∗
m,r (w)}m are

bounded by the ones related to {Lm,r (w)}m , by Theorem 2 and Lemma 1, we deduce
the following error estimate for the “truncated” process.

Corollary 3 Let θ ∈ (0, 1). Under the assumptions of Theorem 2, for every f ∈
C0
r , r ≥ 1, for m sufficiently large (say m > m0) we have

∥∥[ f − L∗
m,r (w, f )

]
u
∥∥∞ ≤ C(logm)EM ( f )u,∞ + O

((√
am
m

)r−1
)

,

where M given by (2.11), C �= C(m, f ) and the constant in “O” is independent of m.

In weighted L p-spaces the behaviour of
{Lm,r (w)

}
m is not optimal, while for the

new process
{L∗

m,r (w)
}
m we can state the following

Theorem 4 Let u ∈ L p, 1 < p < ∞ and θ ∈ (0, 1) be fixed. Then, for every function
f ∈ C0

r , r ≥ 1, we have

∥∥L∗
m,r (w, f ) u

∥∥
p ∼

⎛
⎝

j∑
k=1

Δxk | f u|p(xk)
⎞
⎠

1/p

+
(√

am
m

)2(γ+1/p) r−1∑
i=0

| f (i)(0)|
i !

(√
am
m

)2i

(3.4)

if and only if
α

2
+ 1

4
− 1

p
< γ + r <

α

2
+ 5

4
− 1

p
, (3.5)
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where the constants in “∼” depend on θ and are independent of m and f .

If the function f ∈ L p
u fulfills the additional assumption

Ωs
ϕ( f, t)u, p

t1+1/p ∈ L1[0, 1] (3.6)

for some s ≥ 1, then f is continuous in (0,+∞) (see [21]). Moreover, using the same
arguments as in [22], we obtain

⎛
⎝

j∑
k=1

Δxk | f u|p(xk)
⎞
⎠

1/p

≤ C
⎡
⎣‖ f u‖p +

(√
am
m

)1/p ∫ √
am
m

0

Ωs
ϕ( f, t)u,p

t1+1/p dt

⎤
⎦ .

Hence, if f ∈ L p
u fulfills (3.6) and is (r − 1)-times differentiable at 0, the bound (3.4)

becomes

∥∥L∗
m,r (w, f ) u

∥∥
p ≤ C

⎡
⎣‖ f u‖p +

(√
am
m

)1/p ∫ √
am
m

0

Ωs
ϕ( f, t)u,p

t1+1/p dt

+
(√

am
m

)2(γ+1/p) r−1∑
i=0

| f (i)(0)|
i !

(√
am
m

)2i
⎤
⎦ , (3.7)

where C depends on θ ∈ (0, 1) (fixed) and is independent of m and f . Note that if
f ∈ P∗

m,r , (3.7) becomes an equivalence.

Theorem 5 Under the assumptions (3.5), let f ∈ L p
u ∩C0

r satisfy (3.6) for some s ≥ r
and

∣∣ f (i)
∣∣ be quasi increasing on [0, αm], with αm = am/m2 and i = 0, 1, . . . , r − 1.

Then, for m > m0, we have

‖[ f − L∗
m,r (w, f )]u‖p ≤ C

(√
am
m

)1/p ∫ √
am
m

0

Ωs
ϕ( f, t)u,p

t1+1/p dt + O
((√

am
m

)r−1
)

(3.8)
where C depends on θ and is independent of m and f , the constant in “O” is inde-
pendent of m.

In particular, under the assumptions of Theorem 5, if f ∈ Z p
λ (u), 1/p < λ ≤ r − 1,

the error estimate (3.8) becomes

∥∥[ f − L∗
m,r (w, f )

]
u
∥∥
p = O

((√
am
m

)λ
)

,

where the constant in O is independent of m and f , that is the order of the best
approximation in Z p

λ (u) [see (2.9)].
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Analogously, if f ∈ W p
s (u), s ≤ r − 1, from Theorem 5 we get

‖[ f − L∗
m,r (w, f )]u‖p = O

((√
am
m

)s)
,

where the constant inO is independent ofm and f [see (2.10)].While, for f ∈ W p
r (u),

the following corollary holds.

Corollary 6 Under the assumptions (3.5), let f ∈ W p
r (u) ∩ C0

r , 1 < p < ∞, such
that

∣∣ f (i)
∣∣ is quasi increasing on [0, αm], αm = am/m2, for i = 0, 1, . . . , r − 1 and

m sufficiently large (say m > m0). Then we have

∥∥L∗
m,r (w, f ) u

∥∥
p ≤ C

{
‖ f u‖p +

(√
am
m

)r

‖ f (r)ϕr u‖p

}
(3.9)

and

∥∥[ f − L∗
m,r (w, f )

]
u
∥∥
p ≤ C

{(√
am
m

)r

‖ f (r)ϕr u‖p + e−cm‖ f u‖p

}
(3.10)

where C, c depend on θ and are independent of m and f .

Finally, the following remark is of some interest.

Remark 7 The behaviours of the two interpolation processes {Lm,r (w)}m and
{L∗

m,r (w)}m are essentially equivalent in weighted uniform norm. Nevertheless, the
“truncated” process {L∗

m,r (w)}m has the advantage of dropping c m terms, c < 1. This
turns out to be useful in the numerical treatment of functional equations, since the
dimension of the matrices obtained from the discretization of operators are strongly
reduced with an evident computational saving.

On the other hand, the two operators behave in a completely different way in
weighted L p-norm. In fact, the equivalence (3.4) of Theorem 4 is not true for the
“nontruncated” operator {Lm,r (w)}m .

Moreover, all the constants in Corollary 3, Theorems 4 and 5 are independent of
m and f , but depend on θ . For instance, the constant in the upper bound of (3.4) is
O (

(1 − θ)−3/4
)
for θ → 1 and so θ cannot assume value 1.

We refer to Sect. 4 for more details.

4 Proofs

First of all we recall some weighted polynomial inequalities with the weight u defined
in (2.5) which will be used in the sequel (see [21]).

Let 1 ≤ p ≤ ∞ and am = am(u) ∼ m1/β . For any Pm ∈ Pm , the restricted range
inequalities

‖Pmu‖p ≤ C‖Pmu‖L p(Im ), Im =
[
c
am
m2 , am

]
, (4.1)
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Lagrange–Hermite interpolation on the real semiaxis 245

and
‖Pmu‖L p[am (1+δ),+∞) ≤ Ce−cm‖Pmu‖p, δ > 0, (4.2)

hold with C �= C(m, Pm) and c �= c(m, Pm). Moreover, we recall the Bernstein and
Markov inequalities

‖P ′
mϕu‖p ≤ C m√

am
‖Pmu‖p, ϕ(x) = √

x, (4.3)

and

‖P ′
mu‖p ≤ Cm

2

am
‖Pmu‖p, (4.4)

where C �= C(m, Pm) in both cases. Finally, for 1 ≤ p < ∞, we will need the
following Nikolskii inequality

‖Pmu‖∞ ≤ C
(
m2

am

) 1
p

‖Pmu‖p, C �= C(m, Pm). (4.5)

We also need some estimates for the polynomials of the orthonormal system
{pm(w)}m∈N, wherew is the weight defined in (2.1). The generalized Laguerre weight
w is a nonstandard weight and the estimates for the related orthogonal polynomials
can be deduced by [7,11,12,21,22].

The estimate (which can be deduced from [9], see also [19,21])

|pm(w, x)|
(
x + am

m2

) α
2 + 1

4
e− xβ

2 4

√
|am − x | + am

m2/3 ∼ |x − xd |
Δxd±1

(4.6)

holds with x ∈ [0,+∞) and xd a zero closest to x . From (4.6) it follows that

|pm(w, x)|
√

w(x)
√
x(am − x) ≤ C, x ∈ Im . (4.7)

Moreover, the following proposition will be useful.

Proposition 8 Let w be the weight defined by (2.1) and {pm(w)}m its related ortho-
normal system. Then we have

|pm(w, 0)| ∼
(

m√
am

)α+ 1
2 1

4
√
am

, (4.8)

|p(k)
m (w, 0)| ≤ C

(
m√
am

)2k

|pm(w, 0)|, (4.9)

and ∣∣∣∣∣
(

1

pm(w)

)(k)

(0)

∣∣∣∣∣ ≤ C
(

m√
am

)2k 1

|pm(w, 0)| , (4.10)

where C and the constant in “ ∼′′ are independent of m.
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Proof Equivalence (4.8) easily follows from (4.6) for x = 0.
In order to prove (4.9) we set

g(x) =
(
x + am

m2

) α
2 + 1

4
e− xβ

2 4

√
|am − x | + am

m2/3 .

Then, using (4.4) with u replaced by g, by (4.6), we obtain

|p(k)
m (w, x)| ≤ C

(
m√
am

)2k ‖pm(w)g‖∞
|g(x)| ≤ C

(
m√
am

)2k 1

|g(x)| .

Hence, for x = 0, by (4.8), we get

|p(k)
m (w, 0)| ≤ C

(
m√
am

)2k 1
(√

am
m

)α+ 1
2 4
√
am

≤ C
(

m√
am

)2k

|pm(w, 0)|.

Finally, let us show (4.10) by induction. For k = 1, by (4.9) we have

∣∣∣∣
(

1

pm(w)

)′
(0)

∣∣∣∣ =
∣∣p′

m(w, 0)
∣∣

|pm(w, 0)|2 ≤ C
(

m√
am

)2 1

|pm(w, 0)| .

For k > 1, from the identity

(
1

pm(w)
pm(w)

)(k)

(0) =
k∑

i=0

(
k

i

)(
1

pm(w)

)(i)

(0)p(k−i)
m (w, 0) = 0

it follows that

−
(

1

pm(w)

)(k)

(0)pm(w, 0) =
k−1∑
i=0

(
k

i

)(
1

pm(w)

)(i)

(0)p(k−i)
m (w, 0)

Then, using the induction hypothesis and (4.9), we obtain

|pm(w, 0)|
∣∣∣∣∣
(

1

pm(w)

)(k)

(0)

∣∣∣∣∣ =
∣∣∣∣∣
k−1∑
i=0

(
k

i

)(
1

pm(w)

)(i)

(0)p(k−i)
m (w, 0)

∣∣∣∣∣

≤ C
(

m√
am

)2k

,

which completes the proof. ��
Furthermore, the following relation will be useful (see [10,21])

1

|p′
m(w, xk)|√w(xk)

∼ Δxk 4
√
xk

4

√
|am − xk | + am

m2/3 . (4.11)
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By (4.6) and (4.11) if x ∈
[(√

am
m

)2
, am

]
we have

u(x)
|�k(w, x)|
u(xk)

≤ C
(

x

xk

)γ− α
2 − 1

4
(
am − x

am − xk

)3/4
Δxk

|x − xk | , (x �= xk). (4.12)

Moreover, if xd is a node closest to x , we get (see [4])

u(x)
|�d(w, x)|
u(xd)

∼ 1. (4.13)

Proof of Lemma 1 We are going to prove (2.12) only for p < ∞, since the case
p = ∞ is simpler.

Let PM ∈ PM , with M =
⌊

θm
θ+1

⌋
, be a polynomial of quasi best approximation for

f ∈ L p
u . So we can write

E∗
m,r ( f )u,p ≤ ∥∥[ f − L∗

m,r (w, PM )
]
u
∥∥
p .

Since

L∗
m,r (w, PM , x) = PM(x) −

m∑
k= j+1

�k(w, x)xr

xrk
PM (xk) (4.14)

then, letting vr (x) = xr , we get

E∗
m,r ( f )u,p ≤ CEM ( f )u,p +

∥∥∥∥∥∥
m∑

k= j+1

�k(w)vr u

vr (xk)u(xk)
(PMu)(xk)

∥∥∥∥∥∥
p

.

By (4.1) the second summand on the right-hand side is dominated by

Ca1/pm ‖PMu‖L∞[θam ,+∞) sup
x∈Im

m∑
k= j+1

|�k(w, x)|vr (x)u(x)

vr (xk)u(xk)
,

and, using (4.12) and (4.13), we have

sup
x∈Im

m∑
k= j+1

|�k(w, x)|vr (x)u(x)

vr (xk)u(xk)
≤ Cmτ , (4.15)
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for some τ > 0. Moreover, by (4.2) and (4.5), we obtain

∥∥∥∥∥∥
m∑

k= j+1

�k(w)vr u

vr (xk)u(xk)
(PMu)(xk)

∥∥∥∥∥∥
p

≤ Cmτa1/pm ‖PMu‖L∞[θam ,+∞)

≤ Cmτa1/pm e−cm‖PMu‖∞
≤ Cmτ+ 2

p e−cm‖PMu‖p

≤ Ce−cm‖ f u‖p. (4.16)

Let us now prove (2.13). By (4.14) we have

(√
am
m

)s

‖L∗
m,r (w, PM )(s)ϕsu‖p

≤
(√

am
m

)s

‖P(s)
M ϕsu‖p +

(√
am
m

)s

∥∥∥∥∥∥∥

⎛
⎝

m∑
k= j+1

�k(w)vr

vr (xk)
PM (xk)

⎞
⎠

(s)

ϕsu

∥∥∥∥∥∥∥
p

For the first term on the right-hand side we use the following estimate (see [21])

(√
am
m

)s

‖P(s)
M ϕsu‖p ≤ C

∫ √
am/m

0

Ωs
ϕ ( f, t)u,p

t
dt.

While, for the second termon the right-hand side, using s times theBernstein inequality
(4.3) and (4.16), we obtain

(√
am
m

)s

∥∥∥∥∥∥∥

⎛
⎝

m∑
k= j+1

�k(w)vr

vr (xk)
PM (xk)

⎞
⎠

(s)

ϕsu

∥∥∥∥∥∥∥
p

≤ C
∥∥∥∥∥∥

m∑
k= j+1

�k(w)vr

vr (xk)
PM (xk)u

∥∥∥∥∥∥
p

≤ Ce−cm‖ f u‖p.

Hence we get (2.13). ��
We recall the following estimate, concerning the distance Δxk between two con-

secutive zeros (see [10,21]):

Δxk = xk+1 − xk ∼ am
m

√
xk

1√
am − xk + amm−2/3

, (4.17)

where the constants in “∼” are independent of m and k. We remark that from (4.17),
with j given by (2.3), it follows that

Δxk ∼
√
am
m

√
xk k = 1, 2, . . . j.

123



Lagrange–Hermite interpolation on the real semiaxis 249

Now, letting

σm( f ) =
r−1∑
i=0

f (i)(0)

i !
(√

am
m

)2i

(4.18)

and

A(x) = (am − x)pm(w, x)
r−1∑
i=0

xi

i !
(

f

(am − ·)pm(w)

)(i)

(0), (4.19)

we can state the following proposition.

Proposition 9 With the notation (4.18) and (4.19), we have

‖Au‖∞ ≤ C
(√

am
m

)2γ

σm( f ), C �= C(m, f ), (4.20)

if and only if
α

2
+ 1

4
≤ γ + r ≤ α

2
+ 5

4
. (4.21)

Moreover, for p ≥ 1, we get

‖Au‖p ≤ C
(√

am
m

)2(γ+1/p)

σm( f ), C �= C(m, f ), (4.22)

if and only if
α

2
+ 1

4
− 1

p
≤ γ + r ≤ α

2
+ 5

4
− 1

p
. (4.23)

Proof We first prove (4.20). Recalling (4.19), we may write

|A(x)u(x)| ≤
r−1∑
i=0

bi
|Di |
i ! , (4.24)

where
bi = ‖(am − ·)pm(w, ·)uvi‖∞, vi (x) = xi

and

|Di | =
∣∣∣∣∣
(

f

(am − ·)pm(w)

)(i)

(0)

∣∣∣∣∣

=
∣∣∣∣∣∣

i∑
η=0

(
i

η

)
f (η)(0)

(
1

(am − ·)pm(w, ·)
)(i−η)

(0)

∣∣∣∣∣∣
.
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By (4.10) and (4.11) we get

∣∣∣∣∣
(

1

(am − ·)pm(w, ·)
)(i−η)

(0)

∣∣∣∣∣ =
∣∣∣∣∣∣

i−η∑
j=0

(
i−η

j

) −1 j

(am) j+1

(
1

pm(w, ·)
)(i−η− j)

(0)

∣∣∣∣∣∣

≤ C
|pm(w, 0)|

i−η∑
j=0

(
i−η

j

)
1

(am) j+1

(
m√
am

)2(i−η− j)

= C
am |pm(w, 0)|

(
1

am
+ m2

am

)i−η

≤ C
(

m√
am

)2i−2η 1

am |pm(w, 0)| .

Then we have

|Di | ≤ C
am |pm(w, 0)|

i∑
η=0

(
i

η

)
| f (η)(0)|

(
m√
am

)2i−2η

. (4.25)

On the other hand, by (4.1), (3.2) and (4.8), we get

bi ≤ Cmax
x∈Im

∣∣∣
√

w(x)pm(w, x)(am − x)xi+γ− α
2

∣∣∣

≤ Cmax
x∈Im

∣∣∣(am − x)
3
4 xi+γ− α

2 − 1
4

∣∣∣

≤ C(am)
3
4

(√
am
m

)2i+2γ−α− 1
2 ∼ am

(√
am
m

)2i+2γ

|pm(w, 0)|. (4.26)

Combining (4.25) and (4.26) in (4.24), we obtain

|A(x)u(x)| ≤ C
(√

am
m

)2γ r−1∑
i=0

1

i !
i∑

η=0

(
i

η

)
| f (η)(0)|

(√
am
m

)2η

= C
(√

am
m

)2γ r−1∑
i=0

r−1∑
η=0

(i − η + 1)0+| f (η)(0)|
(√

am
m

)2η (i

η

)
1

i !

= C
(√

am
m

)2γ r−1∑
η=0

(√
am
m

)2η

| f (η)(0)|
r−1∑
i=0

(i − η + 1)0+
(
i

η

)
1

i !

∼
(√

am
m

)2γ r−1∑
ν=0

| f (ν)(0)|
ν!

(√
am
m

)2ν

,

since
∑r−1

i=η+1

(
i

η

)
1

i ! ∼ 1.
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Let us now show (4.22). Recalling (4.24), we have

‖(am − ·)pm(w)uvi‖p ≤ C‖(am − ·)pm(w)uvi‖L p(Im )

= C‖√wpm(w)(am − ·)vi+γ− α
2 ‖L p(Im )

≤ C‖(am − ·) 3
4 vi+γ− α

2 − 1
4 ‖L p(Im )

≤ C(am)
3
4

(√
am
m

)2i+2γ−α− 1
2+ 2

p

= C
(√

am
m

)2i+2γ+ 2
p

am |pm(w, 0)|

where we have applied (4.1), (4.6), (4.8), taking also into account the assumption
(4.23). Then recalling (4.25), we deduce (4.22).

The necessity of the conditions (4.21) and (4.23) can be proved using standard
arguments (see [22]). We omit the details. ��
Proof of Theorem 2 Let us first prove that conditions (3.2) imply inequality (3.1).
Recalling (2.2) and Proposition 9, it remains to prove that

∣∣∣∣∣
m+1∑
k=1

u(x)
xr

xrk

�k(w, x)

u(xk)
f (xk)u(xk)

∣∣∣∣∣ ≤ C(logm) max
1≤i≤m+1

| f u|(xi ).

Let x ∈ Im =
[
c am
m2 , am

]
and xd be a zero closest to x . By using (4.7), (4.11) and

(4.13), we get

m+1∑
k=1

u(x)
xr

xrk

|�k(w, x)|
u(xk)

f (xk)u(xk)

≤ C
⎡
⎣|pm(w, x)|

√
w(x)

√
x(am − x)

∑
k �=d,m+1

(
x

xk

)r+γ− α
2 − 1

4
(
am − x

am − xk

) 3
4

Δxk
|x − xk | + 1 +

∣∣∣∣
pm(w, x)

pm(w, am)

∣∣∣∣
xr

arm

u(x)

u(am)

⎤
⎦ max

1≤i≤m+1
| f u|(xi ).

By (4.6) the last summand on the right-hand side is bounded by
(

x
am

)r+γ− α
2 − 1

4
and

so the whole right-hand side is dominated by

C
⎛
⎝ ∑

k �=d,m+1

(
x

xk

)r+γ− α
2 − 1

4
(
am − x

am − xk

) 3
4 Δxk

|x − xk |

+1 +
(

x

am

)r+γ− α
2 − 1

4

⎞
⎠ max

1≤i≤m+1
| f u|(xi ).
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Therefore, if the parameters r, γ and α fulfill the assumptions (3.2), the sum on the
right-hand side is bounded by C(logm) and the last term is bounded by 1.

Let us now prove that inequality (3.1) implies conditions (3.2). To this aim, for any
f ∈ Cu , consider the piecewise linear function f1 defined as follows

⎧
⎨
⎩

f (i)
1 (0) = 0, i = 0, 1, . . . , r − 1,
f1(xk) = −| f (xk)| sgn{p′

m(w, xk)} �= 0, for 1 ≤ xk ≤ 2,
f1(xk) = 0, otherwise.

(4.27)

By (3.1) we have

C(logm) max
1≤xi≤2

| f1u|(xi ) ≥ ‖Lm,r (w, f1)u‖∞ ≥ ‖Lm,r (w, f1)u‖L∞[0,1], (4.28)

where, for x ∈ [0, 1] and xk ∈ [1, 2],

Lm,r (w, f1, x)u(x) = −
∑

1≤xk≤2

xr

xrk

pm(w, x)| f1u|(xk)
|p′

m(w, xk)|(x − xk)

(
am − x

am − xk

)
u(x)

u(xk)

=
∑

1≤xk≤2

xr

xrk

pm(w, x)| f u|(xk)
|p′

m(w, xk)||x − xk |
(
am − x

am − xk

)
u(x)

u(xk)
,

since x− xk < 0. Now, if x ∈ [0, 1] and xk ∈ [1, 2], then |x− xk | ≤ 2 and am−x
am−xk

∼ 1.
Hence, setting

Ã(x) = pm(w, x)
√

w(x)
√
x (am − x)

and using (4.11), we get

‖Lm,r (w, f1)u‖L∞[0,1] ≥ C‖ Ãvr+γ− α
2 − 1

4 ‖L∞[0,1]
∑

1≤xk≤2

Δxk | f u|(xk)
x
r+γ− α

2 − 1
4

k

. (4.29)

Combining (4.28) and (4.29), we obtain

‖ Ãvr+γ− α
2 − 1

4 ‖L∞[0,1]
∑

1≤xk≤2

Δxk | f u|(xk)
x
r+γ− α

2 − 1
4

k

≤ C(logm) max
1≤xi≤2

| f u|(xi )

with C �= C(m, f ), whence letting bi = | f u|(xi ) and ‖b ‖∗∞ = max
1≤xi≤2

bi , we have

‖ Ãvr+γ− α
2 − 1

4 ‖L∞[0,1]
∑

1≤xk≤2

Δxk

x
r+γ− α

2 − 1
4

k

bk
‖b ‖∗∞

≤ C(logm), C �= C(m, f )
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and then

‖ Ãvr+γ− α
2 − 1

4 ‖L∞[0,1] sup
‖d ‖∗∞=1

∑
1≤xk≤2

Δxk

x
r+γ− α

2 − 1
4

k

dk ≤ C(logm), C �= C(m, f ).

Hence we get

‖ Ãvr+γ− α
2 − 1

4 ‖L∞[0,1]
∑

1≤xk≤2

Δxk

x
r+γ− α

2 − 1
4

k

≤ C(logm).

Obviously the sum on the left-hand side is ∼1. Moreover, by (4.6), we have

‖ Ãvr+γ− α
2 − 1

4 ‖L∞[0,1] ≥
∣∣∣ Ã

( am
m2

)
vr+γ− α

2 − 1
4

( am
m2

)∣∣∣ ∼
( am
m2

)r+γ− α
2 − 1

4
.

So, from

( am
m2

)r+γ− α
2 − 1

4 ≤ C(logm)

it follows that r + γ ≥ α
2 + 1

4 .
In order to prove the necessity of the other inequality in (3.2), we introduce the

piecewise linear function f2 defined as

⎧⎨
⎩

f (i)
2 (0) = 0, i = 0, 1, . . . , r − 1,
f2(xk) = | f (xk)| sgn{p′

m(w, xk)}, for 0 < xk ≤ 1,
f2(xk) = 0, otherwise.

(4.30)

Using similar arguments we obtain

‖ Ãvr+γ− α
2 − 1

4 ‖L∞[1,2]
∑

0<xk≤1

Δxk

x
r+γ− α

2 − 1
4

k

≤ C(logm).

Now, the sumon the left-hand side is∼ ∫ 1
x1
x−r−γ+ α

2 + 1
4 dx , while the norm is bounded.

So, from

∫ 1

x1
x−r−γ+ α

2 + 1
4 dx ≤ C

∑
0<xk≤1

Δxk

x
r+γ− α

2 − 1
4

k

≤ C(logm)

we deduce r + γ ≤ α
2 + 5

4 and the first part of the theorem follows.
Let us now prove (3.3). Since

∣∣ f (i)
∣∣ is quasi increasing on [0, αm], with i ∈

{0, 1, . . . , r − 1} and αm = am/m2, we have

α
i+γ
m

∣∣∣ f (i)(0)
∣∣∣ ≤ Cα

i+γ
m

∣∣∣ f (i)
(αm

2

)∣∣∣ ≤ Cα
i+γ
m

∥∥∥ f (i)
∥∥∥
L∞[ αm

2 ,αm ] .

123



254 G. Mastroianni et al.

Recalling a formula in [3, p.15], it follows that

α
i+γ
m

∣∣∣ f (i)(0)
∣∣∣ ≤ Cα

γ
m ‖ f ‖L∞[ αm

2 ,αm ] + Cα
r−1+γ
m

∥∥∥ f (r−1)
∥∥∥
L∞[ αm

2 ,αm ]

≤ C ‖ f u‖L∞[ αm
2 ,αm ] + C

(√
am
m

)r−1 ∥∥∥ f (r−1)ϕr−1u
∥∥∥
L∞[ αm

2 ,αm ] .

Hence (3.1) becomes

∥∥Lm,r (w, f ) u
∥∥∞ ≤ C(logm)‖ f u‖∞ + O

((√
am
m

)r−1
)

.

Letting Pm+r ∈ Pm+r be the polynomial of best approximation for f ∈ Cu , it follows
that

∥∥[ f − Lm,r (w, f )
]
u
∥∥∞ = ∥∥[ f − Pm+r − Lm,r (w, f − Pm+r )

]
u
∥∥∞

≤ C(logm)Em+r ( f )u,∞ + O
((√

am
m

)r−1
)

,

i.e. (3.3). ��
In order to prove Theorem 4 we recall some known results concerning the Hilbert

transform H( f, t). The Hilbert transform related to the interval (0, a) is defined as
follows

H( f, t) =
∫ a

0

f (x)

x − t
dx, t ∈ (0, a), a > 0,

where the integral is understood in the Cauchy principal value sense. Letting vρ(x) =
xρ and 1 < p < ∞, the bound

‖(H f )vρ‖L p(0,1) ≤ C‖ f vρ‖L p(0,1), C �= C( f ), (4.31)

holds for any f such that f vρ ∈ L p(0, a) if and only if − 1
p < ρ < 1− 1

p (see [23]).
The following lemma, that can be found in [21] (see also [8]), will be also useful

in the proof of Theorem 4.

Lemma 10 Let 0 < θ < 1, j be given by (2.3), u ∈ L p, 1 ≤ p < ∞ and Δxk =
xk+1 − xk . Then, for an arbitrary polynomial P ∈ Plm (where l is a fixed integer),
there exists θ̄ ∈ (θ, 1) such that

j∑
k=1

Δxk |Pu|p(xk) ≤ C
∫ θ̄am

x1
|Pu|p(x) dx, (4.32)

with C �= C(m, f ).
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We want to emphasize that the first Marcinkiewicz inequality (4.32) does not hold if
the sum on the left-hand side is extended to all the zeros of pm(w), i.e. k = 1, . . . ,m
(see [13,14]).

Proof of Theorem 4 Taking into account Proposition 9 it remains to estimate the L p
u -

norm of the first term in (2.4). Letting vr (x) = xr and

L∗
m(w, f, x) =

j∑
k=1

�k(w, x) f (xk), �k(w, x) = pm(w, x)

(x − xk)p′
m(w, xk)

(am − x)

(am − xk)
,

this term can be rewritten as vr L∗
m

(
w,

f
vr

)
. So, using (4.1), we have

∥∥∥∥vr L∗
m

(
w,

f

vr

)
u

∥∥∥∥
p

≤ C
∥∥∥∥ vr L∗

m

(
w,

f

vr

)
u

∥∥∥∥
L p(Im )

= C sup
‖g‖q=1

∣∣∣∣
∫

Im
xr L∗

m

(
w,

f

xr
, x

)
u(x)g(x) dx

∣∣∣∣
=: sup

‖g‖q=1
|Γ (g)|, (4.33)

where Im = [
c amm−2, am

]
and

Γ (g) =
∫

Im
xr

j∑
k=1

�k(w, x)

xrk
f (xk)g(x)u(x) dx

=
j∑

k=1

f (xk)u(xk)

p′
m(w, xk)(am − xk)u(xk)xrk

∫

Im

(am − x)pm(w, x)xr g(x)u(x)

x − xk
dx .

By using (4.11), we have

|Γ (g)| ≤ C
j∑

k=1

Δxk | f u|(xk)
(am − xk)

3
4 x

r+γ− α
2 − 1

4
k

∣∣∣∣
∫

Im

(am − x)pm(w, x)xr g(x)u(x)

x − xk
dx

∣∣∣∣

≤ C
a3/4m

j∑
k=1

Δxk | f u|(xk)
x
r+γ− α

2 − 1
4

k

∣∣∣∣
∫

Im

(am − x)pm(w, x)xr g(x)u(x)

x − xk
dx

∣∣∣∣ .

Denoting by G(xk) the integral on the right-hand side and using the Hölder inequality,
we get

|Γ (g)| ≤ C
a3/4m

⎛
⎝

j∑
k=1

Δxk | f u|p(xk)
⎞
⎠

1/p ⎛
⎝

j∑
k=1

Δxk

∣∣∣∣∣
G(xk)

xr+γ−α/2−1/4
k

∣∣∣∣∣
q
⎞
⎠

1/q

.

(4.34)
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For any polynomial 0 < Q ∈ Plm , with l a fixed integer, we can write

G(xk)

=
∫

Im

(am − x)pm(w, x)Q(x) − (am − xk)pm(w, xk)Q(xk)

x − xk

xr g(x)u(x)

Q(x)
dx

and G(t) is a polynomial of degree m + lm. Thus, using Lemma 10, we have

B =
⎛
⎝

j∑
k=1

Δxk

∣∣∣∣∣
G(xk)

xr+γ−α/2−1/4
k

∣∣∣∣∣
q
⎞
⎠

1/q

≤
(∫

Iθ̄m

∣∣∣∣
G(t)

tr+γ−α/2−1/4

∣∣∣∣
q

dt

)1/q

,

where 0 < θ < θ̄ < 1 and Iθ̄m = [c amm−2, θ̄am]. Then we obtain

B ≤
(∫

Iθ̄m

∣∣∣∣t−r−γ+α/2+1/4
∫

Im

(am − x)pm(w, x)xr (gu)(x)

x − t
dx

∣∣∣∣
q

dt

)1/q

+
(∫

Iθ̄m

∣∣∣∣t−r−γ+α/2+1/4(am − t)pm(w, t)Q(t)
∫

Im

xr (gu)(x)

(x − t)Q(x)
dx

∣∣∣∣
q

dt

)1/q

=: B1 + B2. (4.35)

Let us estimate the term B1. By (4.7) we have

∣∣ Ã(x)
∣∣ := |pm(w, x)|

√
w(x)

√
x(am − x) ≤ C, x ∈ Im .

Moreover, under the assumptions (3.5), t−r−γ+ α
2 + 1

4 ∈ Lq and tr+γ− α
2 − 1

4 ∈ L p, we
can apply (4.31), obtaining

B1 ≤
(∫

Im

∣∣∣∣∣ t
−r−γ+ α

2 + 1
4

∫

Im

(am − x)
3
4 Ã(x)xr+γ− α

2 − 1
4 g(x)

x − t
dx

∣∣∣∣∣
q

dt

)1/q

≤ C
(∫

Im

∣∣∣(am − x)
3
4 Ã(t)g(t)

∣∣∣
q
dt

)1/q

≤ Ca
3
4
m‖g‖Lq (Im ). (4.36)

In order to estimate B2 we can construct a polynomial Q ∈ Plm such that Q(x) ∼
xru(x) for x ∈ Im . So, using (4.7), we have

∣∣∣t−r−γ+α/2+1/4(am − t)pm(w, t)Q(t)
∣∣∣ ≤ Ca3/4m .
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Then, by (4.31), we get

B2 ≤ Ca3/4m

(∫

Im

∣∣∣∣
∫

Im

xr (gu)(x)

(x − t)Q(x)
dx

∣∣∣∣
q

dt

)1/q

≤ Ca3/4m ‖g‖Lq (Im ). (4.37)

So, taking into account (4.36), (4.37) and (4.35), it follows that

(∫

Iθ̄m

∣∣∣∣
G(t)

tr+γ−α/2−1/4

∣∣∣∣
q

dt

)1/q

≤ Ca3/4m ‖g‖Lq (Im ),

and combining this last inequality with (4.34) and (4.33), the first term in (2.4) is
bounded by

C
⎛
⎝

j∑
k=1

Δxk | f u|p(xk)
⎞
⎠

1/p

.

Therefore, recalling (4.22), we have that (3.5) implies (3.4).
In order to prove that (3.4) implies (3.5) we use arguments similar to those in the

proof of Theorem 4. Therefore, we are going to show only the main steps. Considering
the function f1 as in (4.27) we can write

‖L∗
m,r (w, f1)u‖L p[c amm−2,1] ≤ ‖L∗

m,r (w, f1)u‖p ≤ C
⎛
⎝ ∑

1≤xk≤2

Δxk | f1u|p(xk)
⎞
⎠

1/p

,

where [c amm−2, 1] = [0, 1] ∩ Im . Recalling the expression of L∗
m,r (w, f1, x) for

x ∈ [c amm−2, 1], with
∣∣ Ã(x)

∣∣ = |pm(w, x)|
√

w(x)
√
x(am − x),

we obtain

‖ Ãvr+γ− α
2 − 1

4 ‖L p[amm−2,1]
∑

1≤xk≤2

Δxk | f1u|(xk)
x
r+γ− α

2 − 1
4

k

≤ C
⎛
⎝ ∑

1≤xk≤2

Δxk | f1u|p(xk)
⎞
⎠

1/p

.

(4.38)
Now, to simplify the notation, we set

ak = (Δxk)1/q

x
r+γ− α

2 − 1
4

k

, bk = (Δxk)
1/p| f1u|(xk), ‖b ‖∗

p =
⎛
⎝ ∑

1≤xk≤2

bp
k

⎞
⎠

1/p

.
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Hence (4.38) becomes

‖ Ãvr+γ− α
2 − 1

4 ‖L p[c amm−2,1]
∑

1≤xk≤2

ak
bk

‖b ‖∗
p

≤ C, C �= C(m, f ).

Taking the supremum on b, we get

‖ Ãvr+γ− α
2 − 1

4 ‖L p[c amm−2,1]

⎛
⎝ ∑

1≤xk≤2

|ak |q
⎞
⎠

1/q

≤ C,

which implies r + γ − α
2 − 1

4 > − 1
p , taking into account that, by (4.7),

∣∣ Ã(x)
∣∣ ≤

C, x ∈ [c amm−2, 1].
Analogously, considering the function f2 defined in (4.30), we get

‖ Ãvr+γ− α
2 − 1

4 ‖L p[1,2]

⎛
⎝ ∑

0<xk≤1

|ak |q
⎞
⎠

1/q

≤ C,

i.e.

‖ Ãvr+γ− α
2 − 1

4 ‖L p[1,2]

⎛
⎝ ∑

0<xk≤1

Δxk

x (r+γ−α/2−1/4)q
k

⎞
⎠

1/q

≤ C,

whence −r − γ + α
2 + 1

4 > − 1
q that is r + γ − α

2 − 1
4 < 1− 1

p , which completes the
proof. ��

Proof of Theorem 5 Since
∣∣ f (i)

∣∣ is quasi increasing on [0, αm], with i ∈ {0, 1, . . . , r−
1} and αm = am/m2, using the Hölder inequality, we have

α
i+γ+1/p
m

∣∣∣ f (i)(0)
∣∣∣ ≤ Cα

i+γ+1/p
m

∣∣∣ f (i)
(αm

2

)∣∣∣ ≤ Cα
i+γ+1/p−1
m

∫ αm

αm
2

∣∣∣ f (i)(x)
∣∣∣ dx

≤ Cα
i+γ
m

∥∥∥ f (i)
∥∥∥
L p[ αm

2 ,αm ] .

Recalling a formula in [3, p.15], it follows that

α
i+γ+1/p
m

∣∣∣ f (i)(0)
∣∣∣ ≤ Cα

γ
m ‖ f ‖L p[ αm

2 ,αm ] + Cα
r−1+γ
m

∥∥∥ f (r−1)
∥∥∥
L p[ αm

2 ,αm ]

≤ C ‖ f u‖L p[ αm
2 ,αm ] + C

(√
am
m

)r−1 ∥∥∥ f (r−1)ϕr−1u
∥∥∥
L p[ αm

2 ,αm ] .
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So inequality (3.7) becomes

∥∥L∗
m,r (w, f ) u

∥∥
p ≤ C

⎡
⎣‖ f u‖p +

(√
am
m

)1/p ∫ √
am
m

0

Ωs
ϕ( f, t)u,p

t1+1/p dt

+
(√

am
m

)r−1 ∥∥∥ f (r−1)ϕr−1u
∥∥∥
L p[0,αm ]

⎤
⎦ . (4.39)

Let PM ∈ PM , with M =
⌊

θm
θ+1

⌋
, be a polynomial of quasi best approximation for

f ∈ L p
u , and set Q = L∗

m,r (w, PM ). Hence, by (4.39), we get

‖[ f −L∗
m,r (w, f )]u‖p ≤ C

⎡
⎣‖( f −Q) u‖p +

(√
am
m

)1/p∫ √
am
m

0

Ωs
ϕ( f − Q, t)u,p

t1+1/p dt

+
(√

am
m

)r−1 ∥∥∥( f − Q)(r−1) ϕr−1u
∥∥∥
L p[0,αm ]

⎤
⎦

Now, to estimate the first summand at the right-hand side we can use (2.12) and (2.8).
For the second summand we note that

Ωs
ϕ( f − Q, t)u,p ≤ Ωs

ϕ( f, t)u,p + t s
∥∥∥Q(s)ϕsu

∥∥∥
p
.

So, by (2.13), taking into account that

∫ √
am
m

0

Ωs
ϕ( f, t)u,p

t
dt ≤

(√
am
m

)1/p ∫ √
am
m

0

Ωs
ϕ( f, t)u,p

t1+1/p dt,

inequality (3.8) follows. ��
Proof of Corollary 6 Proceeding as in the proof of Theorem 5, since

∣∣ f (i)
∣∣ is quasi

increasing on [0, αm], with i ∈ {0, 1, . . . , r − 1} and αm = am/m2, and f ∈ W p
r (u),

we get

α
i+γ+1/p
m

∣∣∣ f (i)(0)
∣∣∣ ≤ Cα

γ
m ‖ f ‖L p[ αm

2 ,αm ] + Cα
r+γ
m

∥∥∥ f (r)
∥∥∥
L p[ αm

2 ,αm ]

≤C ‖ f u‖L p[ αm
2 ,αm ]+C

(√
am
m

)r ∥∥∥ f (r)ϕr u
∥∥∥
L p[ αm

2 ,αm ] . (4.40)

Hence, by (3.7), (2.6) and (4.40), we obtain (3.9).
Now, in order to prove (3.10), let Q = L∗

m,r (w, PM ), where PM ∈ PM , with

M =
⌊

θm
θ+1

⌋
, is a polynomial of quasi best approximation for f ∈ L p

u . By (3.9) we

have
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∥∥[ f − L∗
m,r (w, f )

]
u
∥∥
p ≤ C ‖( f − Q) u‖p + ∥∥L∗

m,r (w, f − Q) u
∥∥
p

≤ C ‖( f − Q) u‖p +
(√

am
m

)r ∥∥∥ f (r)ϕr u
∥∥∥
p

+
(√

am
m

)r ∥∥∥Q(r)ϕr u
∥∥∥
p
.

Using Lemma 1, (2.10) and (2.6), we obtain (3.10). ��
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15. Mastroianni, G., Milovanović, G.V.: Interpolation Processes. Basic Theory and Applications, Springer
Monographs in Mathematics. Springer, Berlin (2008)

16. Mastroianni, G., Milovanovic, G.V.: Some numerical methods for second kind Fredholm integral
equation on the real semiaxis. IMA J. Numer. Anal. 29, 1046–1066 (2009)
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