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Abstract In this paper, we present an iterative three-point method with memory based
on the family of King’s methods to solve nonlinear equations. This proposed method
has eighth order convergence and costs only four function evaluations per iteration
which supports the Kung-Traub conjecture on the optimal order of convergence. An
acceleration of the convergence speed is achieved by an appropriate variation of a free
parameter in each step. This self accelerator parameter is estimated using Newton’s
interpolation polynomial of fourth degree. The order of convergence is increased from
8 to 12 without any extra function evaluation. Consequently, this method, possesses
a high computational efficiency. Finally, a numerical comparison of the proposed
method with related methods shows its effectiveness and performance in high precision
computations.
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1 Introduction

Solving nonlinear equations is one of the most important problems that has interesting
applications in all fields in science and engineering. We consider iterative methods to
find a simple root « of a nonlinear equation f(x) = 0, where f : D C R — R for an
open interval D is a scalar function. Newton-Raphson iteration x,,+1 = x,, — ;,((’;’;)) is
probably the most widely used algorithm for finding roots. It is of second order and
requires two evaluations for each iteration step, one evaluation of f and one of f’
[10,17].

Kung and Traub [7] conjectured that no multi-point method without memory with
n evaluations could have a convergence order larger than 2"~!. A multi-point method
with convergence order 2"~! is called optimal. The efficiency index, gives a measure
of the balance between those quantities, according to the formula pl/ " where p is
the convergence order of the method and » is the number of function evaluations per
iteration.

Some well-known optimal two-point methods have been introduced by Jarratt [5],
King [6], Ostrowski [10] and Petkovic et al. [12]. Some optimal multi-point methods
have been proposed by Chun and Lee [1], Cordero et al. [2], Lotfi et al. [8], Neta [9],
Salimi et al. [13] and Sharifi et al. [14, 15]. Zheng et al. [19] have presented an optimal
Steffensen-type family. Dzunic et al. [3], Petkovic et al. [11] and Sharma et al. [16]
have constructed methods with memory to solve nonlinear equations.

In this paper, we present a modification of the family of King’s methods which
is derivative-free. The result of this paper is organized as follows: Sect. 2 and 3 are
devoted to the construction and convergence analysis of two-point and three-point
optimal derivative-free methods. We introduce the methods with memory and prove
their R-order in Sect. 4. In Sect. 5, the new methods are compared with a closest
competitor in a series of numerical examples. Section 6 contains a short conclusion.

2 Derivative-free two-point method of fourth order
2.1 Description of derivative-free two-point method

We start with King’s family of methods which is one of the most important two-point
families for solving nonlinear equations [6].

-y — S (xn)
" ! f/(xn)’
Xnil = Vn S ) SO +vf ) n=01,..), yeR,

@) fe+ =2 G
2.1

where x( is an initial approximation of a simple zero « of f. The main idea is to con-
struct a derivative-free class of two-point methods with optimal order of convergence
four. We consider Steffensen-Like’s method for the first step and for the second step
approximate f’(x,) by

SG) ~ G(1)

’
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1= ) — f(wy) _ S )

where w, = x, — Bf (xn), B # 0, fYn, wn s In = and G
. . Yn — Wy S ()
is a real function.
Hence, we obtain
B Bf (xn)?
= o~ Fwn) '
B FO) + v FO) £ ) 2.2
Xn+l1 = Yn — G(tn)~

FCn)+ @ =2 FOn)  flyns wal

2.2 Convergence analysis

We shall state the convergence theorem for the family of methods (2.2).

Theorem 1 Let D C R be an open interval, f : D — R four times continuously
differentiable and let « € D be a simple zero of f. If the initial point xo is sufficiently
close to o, then the method defined by (2.2) converges to o with order four if the weight
function G : R — R is continuously differentiable and satisfies the conditions

GO)y=1, G'©0)=-1.

f™ (@)
Proof Lete, :=x, —a, e,y =W, —a, €,y =y, —aand ¢, := —5—, =
’ ’ n!f (e)
2,3,...
Using Taylor expansion of f at « and taking into account f(«) = 0, we have
fom) = f'@) (en +c2ed + e3¢ + caet) + 0 (e3). 2.3)
then
enw=wy—a=(1-Bf(@)es — Bf (@)c2e> + O (eﬁ) ,
and

fwn) = f (@ (en,w + el +c3e , + qeﬁ,w) +0 (ef,,w) L Qe

From (2.3) and (2.4), we have

2
s = e (@ adto(q). @)

by substituting (2.5) in (2.2), we get

eny =yn — 0 = (1 — ,Bf’(a)) cze,2, +0 (ef’l) )
As well as

fOn) = f/(oe) (e,,,y + czei,y + C3e,3,,y + C4eﬁ,y) + 0 (e,slyy) . (2.6)
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From (2.3) and (2.6), we obtain

_ SO , / / )
=y = (A @) e+ (= (1@ (3 + @)
F (24 BF @) (=1 + Bf (@) c3) & + O (eg) : .7

by expanding G (t,) around 0, we have

G(ta) = G(O0) +G' O, + 0 (12) 2.8)

moreover, from (2.4) and (2.6), we obtain
1= ) — f(wp)
B Yn — Wy
’ ’ 2 ’ 2 2 3
1 (@) ((1—2,3f (@) E+(=1+ Bf (@) C3) 240 (e) . (2.9)

f [yns wn = (@) + f'(@) (1 = Bf' (@) c2en

then, by substituting (2.3)—(2.9) in (2.2) we get
entl =Zn — QA = Rze,zl + R3€,3 + R4efl + 0 (6;51) ,

with

Ry=—c2 (1= Bf' (@) (=1+G(0)),
2
Ry =—c; (1= Bf (@) (1+G'(0),
2
Ry=—c2 (1= 7' @)’ (-1 =27 + B/ @ (=1 +29) G +¢3).
Therefore, to provide the fourth order convergence of the two-point method (2.2), it
is necessary to choose R; = 0 for i = 2, 3, and to achieve this we use the fact that
R,=0 if G@O) =1,
R3 =0 if G'(0) = —1.

It is clear that R4 # O in general. Thus, method (2.2) converges to o with order four
and the error equation becomes

enti=(c2 (1= @) (=1 = 2v + Bf @(=1 +29) G +¢3) ) e1+0 (e3)-
(2.10)

This finishes the proof of the theorem. O
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3 Derivative-free three-point method with order eight
3.1 Description of derivative-free three-point method

Again, we will add one Newton step to the method (2.2)
Bf ()’

I o) — Fwn)
_ J ) +vf ) J )
in = Yn — G(ty), 3.1
f()}n) + (¥ =2)f(n) fyn, wal
in
el = S (zn) )

As it is seen the function is evaluated for five times, so this method is not optimal and
it is also not free of derivatives. To make it an optimal and derivative-free method,
we approximate f”(z,) with Newton’s interpolation polynomial of degree three at the
point x,,, wy,, ¥, and z,,.
N3 (25 zns Yns Xns wn) = f (2n) + [ (20, Yul (0 — 20)
+ flzns Yns X0 )@ — 20) (& — yn)
+ flzn, Yns Xn, wal(t — 20) (& — Yu) (2 — Xn).

It is clear that
N3(zp) = f(zn), and N%(t) |t=zn: f/(Zn)-

Then

dt

= flzn, ynl + flzn, Yu> X0z — yn)
+ flzns Yns X0y wal(@n — yu)(@n — X)),

d
N3(zn) = [—N3(t)]
t=zp

and hence we get

Bf (xn)z

T o) — )

I (O (S (C O N
! ! FOn) + @ —=2)fOn) fn, wal "

X1 =2Zp — f(zn) )
" " flzns yul=+ flzns Yu> X0l@n — Yu)+ flzns Yns Xu, Wal(zZn — Yu) (20 — Xn)

(3.2)

3.2 Convergence analysis

The following theorem shows that the method (3.2) has convergence order eight.

Theorem 2 Let D C R be an open interval, f : D — R eight times continuously
differentiable and let « € D be a simple zero of f. If the initial point x is sufficiently
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close to o and conditions of Theoerem 1 are established, then the method defined by
(3.2) converges to a with order eight.

Proof Define e, := x, — o, ey .y := Wy — A, €yy = Yy — @, &, ; := 7, —a and

Cp = r]:'(f Ea; forn=2,3,...
Using Taylor expansion of f at o and taking into account that f (o) = 0, we have

fn) = f (@) (en + 282 +czel + -+ cged ) +0 ( ) (3.3)
then
enw=wy —a=(1-Bf(@)es — Bf @c2ep — Bf (@)c3e)
— BF @csey — B (@ese + 0 (ef)
and

Fwn) = f @ enu + 26l +e3eh, o esed )+ 0 (0,). G4

from (3.3) and (3.4), we have

eny = v —a = (1= Bf @) 2l + (= 2+ B @ (=2 + Bf @) 3
+ (=24 Bf (@) (=1 +Bf (@) c3) e}
+((4= 8@ (5+ Bf @ (=34 B @))) &
+ (=74 Bf' (@) (104 Bf' (@) (=7 +2Bf'(@)))) c2c3
— (14 Bf'@) 3+ Bf @ (-3 + Bf @) cs) s + O (&)
3.5)
as well as
Fom =@ (eny + 262 +esed + o teses ) +0 (). 66

According to Theorem 1, we get

€pnz; =4n — U
(—e2 (1= Br'@)* (=1 =2y + Bf @ (1 +29)) 3 +¢3)) ef

+(1= B/ @) (-4 + 87/ @ = B (' @)’

F2 (=14 Bf' (@) (6 + Bf'(@) (=4 + Bf (@)) ¥

+2 (=1 4 Bf (@)’ )/2) A+ (8+ 12y — Bf (@) (44 30y + BF (@)

x (5=3Bf"(@)+6 (—4+Bf' (@) 7)) 3es— (=2+Bf (@) (1+Bf(@)) 3
— (24 Bf'@) (=1 + B @) caea) € + O (€5).
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by using the expansion of f(z,), we have

Flo) = f (@) (em +erel el 4o cgeg’z) +0 (e,jz) .G
From (3.6) and (3.7), we get

S @) = fOm)

in — Yn

= 1@+ f'@d} (1= Bf @) e + (—f'@ 2+ Bf (@) 3
+F(@) (=24 BF @) (=1 + Bf (@) cac3) € + O (e;:) . (38)

Slzn, ynl =

And from (3.3) and (3.6), we have

_ FQn) — fxn)

Yn — Xn

= [ + e f @en+ 1@ (3 (1= Bf'@) + c3) 2
+1'@ (= @+ B @ (-2 + Bf @) 3

+ (=34 B1'@) (-1 + B @) 263 + ca) e + 0 (e1) . 39)

Syns xn]

From (3.3) and (3.4), we obtain

SOn) = fwy)
Xp — Wy
= @+ f'@ 2= B @) e+ f'(@) (~c3Bf (@)
+ (B3 +eBf (@ (-3+ Bf'@))) en
—f'(@) (=2 + Bf' (@) (—2c20c38f (@)
+ (24 B/ @ (=24 Bf'@)) ca) €2 + O (eﬁ) . (3.10)

Slxn, wy] =

From (3.8) and (3.9), we get

_ flzns ynl — flyns xnl

Jlzn, Yns Xn] = pa—
= oo f'(@) + caf'(@en + /(@) (cac3 (1 — Bf (@) + c4) en
+1'@ (=Ges 2+ B @ (<24 Bf @)
+c3 (=2 + Bf (@) (=1 + Bf (@)
+eaes (1= Bf' (@) +¢s) 2 + O (eﬁ) . 3.11)

@ Springer



208 S. Sharifi et al.

And from (3.9) and (3.10), we get

Syns xn] = flxn, wal

Syn, Xn, wyl = Yo —w
=2 f'(@) + 3 /(@) (2= Bf (@) en + c2c3 f (@) ((1 = 281" (@)
+(3+ Bl @ (<34 BF@))) 2+ 0 (e7). (3.12)

Therefore, from (3.11) and (3.12), we get

Sflzns Yo Xn] = fln, Xn, wal
flzns Yn, Xn, wpl =

in — Wy
=c3f (@) +eaf (@) (2 = Bf' (@) en + f'(@) (c2ca (1 = 2Bf ()
+ (3 +esBf (@) (=34 Bf (@) e2 + 0(e)). (3.13)

Finally, by substituting (3.3)—(3.13) in (3.2), we obtain

et =1 —a = (1= B/ @) 3 (=1 =2y + B @ (-1 +29)) 3 + )

(=1 =2y +Bf'(@) (=1 +2y)) &3 +cac3 —ca) eb + O (e .
( )ei+0(e)

Which shows that the method (3.2) has optimal convergence order equal to eight. O

4 The development of a new method with memory

In this section, we design a new method with memory by using self-accelerating
parameters on method (3.2). We observe that the order of convergence of method (3.2)
is eight when 8 # 1/f/(a). If B = 1/f'(a) the convergence order of method (3.2)
would be 12. Since the value f’(«) is not available, we use an approximation f’(a) ~
f/(a), instead. The goal is to construct a method with memory that incorporates
the calculation of the parameter f = f, as the iteration proceeds by the formula
Bn = 1/f (@) forn = 1,2,3,...Itis assumed that an initial estimate Sy should be
chosen before starting the iterative process. In the following, we use the symbols —,
O and ~ according to the following convention [17]: If lim,,_, ~ f(x,) = C, we write
f(x,) = Cor f — C, where C is a nonzero constant. If i C, we shall write
f=0@orf~C.
We approximate f’(a) by N;(x,), then we have

1

= —, 4.1
N!;(xn) @D

Bn

where Né’t(t) = Na(t; Xn, Zn—1, Yn—1, Wn—1, Xn—1) 1s Newton’s interpolation polyno-
mial of fourth degree, set through five available approximations (x,,, Z,—1, Yn—1, Wn—1,
Xn—1).
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Solving nonlinear equations by a derivative-free ... 209

dt
=f [-xl’la Zn—l] +f [xn’ Zn—1, yn—l] (Xn — zZn—1)
+f [xnv Zn—1> Yn—1, wn—l] (xn — zn—1) (Xn — Yn—1)

+f [xnv Zn—15 Yn—1> Wn—1, xn—l] (Xn> Zn—1) (Xn — Yn—1) (Xp — Wp—1) .
42)

, d
NAM)={—NMG]
I1=xp

Lemma 3 ([16]) If B, = L =1,2,... then the estimate

Ni(xn)’
(1 - lgnf/(a)) ~ C5€p—1€n—1,wén—1,y€n—1,z, (4.3)

holds.

Theorem 4 [f xq is close to a simple zero of the function f, then the convergence
R-order of the method (3.2) with memory with the corresponding expression (4.1) of
By is at least 12.

Proof Let (x,) be a sequence of approximations produced by an iterative method (3.2).
If f(«) = 0 and this sequence converges to « with the R-order Qr((3.2), @) > r, we
will write

ent1 ~ Dy ey, e =x, —a, (4.4)

where D, , refers to the asymptotic error of (3.2) when n tend to infinity. In other
words, we get

, 2
ent1 ~ Dy (anl,re,rlfl) = Dn,rD:Lf],rezfl- 4.5)

Assume that the sequences (w,), (y,) and (z,) have the R-order ¢, p and s, respec-
tively, that is

q r q q rq
enw ~ Dngei ~ Dng (Dn-1,€,_1)" = DugDi_, €7, (4.6)
p ro\P p rp
eny ~ Dy pen ~ Dy p (Dn_l,ren_l) =Dy pD, ;€1 .7
and
s r s s rs
€n,z ™ Dnssen ~ D”,S (D”*]J’en—l) = ansDn—l,ren—l‘ (48)

Also, we have

Cnw " (1 - ,an/(a)) €n,
eny ~ 2 (1= Buf'(@) e,
en: ~ B (1= Buf (@) e,

where B = —c3 ((—1 =2y + Bf (@) (=1 +2y)) 3 +¢c3)

ent1 ~ AL = B f(@))*el,
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210 S. Sharifi et al.

where A = G ((-1 =2y +Bf'(@)(=1+2y))c5+c3) (-1 =2y + Bf' (@)
(=1+42y)) cg + cc3 — 04).
Therefore by Lemma 3, we obtain

Cnw ™ (1 - .an/(a)) €n ™~ (CSen—len—l,wen—l,yen—l,z) €n

~ CSanl,qanl,panl,sanl,re;tll?+S+q+l7 (4.9)
eny ~ 2 (1= Buf' (@) ez ~ ca (csen—t1en—1,wen—1,yen—1.z) €2

~ ¢2¢5Dy—1,4Du—1,pDu—1,, D2, yer 2 FPTIHL 4.10)
en; ~ B (1 - ,an/(a))z ei ~ B (C'Sen—len—l,wen—l,yen—l,z)2 63

~ BcDy_14D?_, D}y Di_, er 2T @.11)
ent1 ~ A(l— ﬂnf/(a))4 e~ A (Csen—l€n—1,w6n—1,y€n—1,z)4eﬁ

~ ACDy 1 gDE_| D (DS ey BT, (4.12)

By comparing exponents of e,,_1 appearing in two pairs of relations (4.5), (4.12) and
(4.6), (4.9) and (4.7), (4.10) and (4.8), (4.11), we obtain the nonlinear system of four
equations and four unknown r, s, p and q.

r?—8r—ds —4p —4q — 4 =0,
rs —4r —2s —2p —2q —2 =0,
rp—2r—s—p—q—1=0,
rq—r—s—p—q—1=0.

A non-trivial solution of the above systemisr = 12,s =6, p =3,q = 2.
We have proved that the convergence order of the iterative method (3.2) is at least
12. O

5 Numerical example

In this section, we show the results of some numerical tests to compare the efficien-
cies of methods, using the programming package Mathematica. To obtain very high
accuracy and avoid the loss of significant digits, we employed multi-precision arith-
metic with 1200 significant decimal digits in the programming package Mathematica
8.

In what follows, we present some concrete iterative methods from the scheme
(3.2).

Method 1. Choose the weight function G as follows:
G(ty) =1 — 1y, (GH))

where 1, = @ The function G in (5.1) satisfies the assumptions of Theorem 2,

then we have the following method
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Solving nonlinear equations by a derivative-free ... 211

ﬂnf(xn)z 1
n=Xn " 7 5, < Wn=Xp— PnfXn), n = N7
' F o) — f(wn) Puf Cond. P = s
Zn = Yn — S ) + v () ) S ) — f Q) ) S )
T fa) (=2 fOm) f ) flyns wal’
Xpi] = Zn— S (zn)
" " Slzn, yul+ flzns Yns X01@n—Yu) + fl2ns Yns Xns Wn (20— Yn) (@0 —Xn) ’
5.2)
where in general, the divide differential of order n is obtained as:
flxo, x1, ..., x,] = flet, xa, oo dul = flx0 41 - et forn =1,2,...
X — X0
Method 2. Choose the weight function G as follows:
Gty =1 In (5.3)
e 141, '
where 1, = %y:) The function G in (5.3) satisfies the assumptions of Theorem 2,
then we have the following method
,an(xn)z 1
n=Xn " 7 7, < Wn=Xp— PnfXn), n = N>
g FCp) — £ (wy) Puf ). P = s
R £ L 7 (7 B (1 M )
T fa =2 fw) f«xn>+-fxfn)) Flyns wal’
Zn
Tkl = Slzns Yul + flzn, Yus Xn1@n—Y0) + fl2n, Yo Xns W l(Zn—Yn) (20 —Xn) '
5.4
Method 3. Choose the weight function G as follows:
1-2t,
G(ty) = I , (5.5)
— t’l
where 1, = % The function G in (5.5) satisfies the assumptions of Theorem 2,

then we have the following method

.an(xn)z

. . 1
Yn = Xn f(x") — f(wn), Wy = Xp ﬂnf(xn)’ Bn = TACHN
In = Yn — F) +vf ) ) Fn) =21 (w) . )
e fUU+W—Dﬂm)fUM—%n)fUmwT
Zn
Tl = f[va )’n]"‘f[zns Yn» Xnl(zn — Yn)'i‘f[zru Yns Xn, wpl(zn — _Yn)(zn - xn) ’
(5.6)
Method 4. Choose the weight function G as follows:
2p+1
G(ty) = (1 — 1) m+T, 5.7
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212 S. Sharifi et al.

where t, = ;g :; The function G in (5.7) satisfies the assumptions of Theorem 2,
then we have the following method

Bn f(xn)z

_ _ _ _ _ 1
Yn = Xn o) — f(wn)’ Wy = Xp — Buf(Xn), ,th: )f‘}((j”))’
Zn = Yn — S )+ vf () . (f(xn) - f(yn)) TOm+/on) ) S )
T fa) =D f ) fen) Flns wal’
Zn
Akl =an f[Zns )’n] + f[Zns Yn, xn](Zn - yn) + f[Zns Yns Xn, wn](zn - )’n)(Zn - xn) ’

(5.8)
The new proposed methods with memory were compared with existing three-point
methods given in what follows, having the same order convergence and with the same

initial data xo and Bo.

Method S. The derivative-free method by Kung and Traub [7] given by

- _ S () N |
yn - xl’l f[wn, x”]’ wl’l - xn + .an(xn)’ .Bn - N’(X,l)’
= Y — S Q) f (wy)
T (fwa) = fOW) flxn, yal o) (5.9)
Xn
B S ) f (Wn) \ yn — xn + I Zn]) )
Xn+1 = Zn — + .
{ (f n) = @) (f (wn = f(zn)) Syn, znl

Method 6. The method by Sharma et al. [16] given by

y Sf(xn)
n n ’
@ (xn)
0 = v — Huy, vn)f(yn)’
(xn)
Xy ] =2 — S (@)
" " Slzns Yul + flzns Yns Xul@n = Yn) + flzn,s Yns> Xn> Wal(@Zn — Yn) (20 — Xn) '
(5.10)
_ _ 1+u
where () = HGlEE wn = o B f (o). B = s H W va) = 35
o =
Method 7. The method by Zheng et al. [19] given by
(oxn) _
Yn = Xn — ﬁv Wy = Xp + B f (X)), Bn = Win),
0= Yn — S Q)
" " Sms xnl + flyns Xn, wal(yn _xn)’
f(zn)
Xn+1=2Zn— ’
Slzns yul + flzns yns Xul(@n = yn) + flzn, Y, X0 wal(zn — yu) (zn — xn)
(5.11)
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Solving nonlinear equations by a derivative-free ... 213

In order to test our proposed methods with memory (5.2), (5.4), (5.6) and (5.8) and
also compare them with the methods (5.9), (5.10) and (5.11), we choose the initial
value x¢ using the Mathematica command FindRoot [4, pp. 158-160] and com-
pute the error and the computational order of convergence (coc) by the approximate
formula [18]
~ In [Cxpg1 — )/ (xp — )]

In|(x, —a)/(xp—1 — )|

coC

We introduced three test functions with their roots in Table 1. In Addition, in
Tables 2 and 3, the proposed methods with memory with weight functions (5.1), (5.3),
(5.5) and (5.7) and the methods (5.9)—(5.11) have been tested on these three different
nonlinear equations respectively. It is clear that these methods are in accordance with
the developed theory.

Table 1 Test functions f1, f2, f3 and root «

Test function f, Root o
1) =1n (¥ =20 +2) + e =5 sin (x - 1) 1
Fx) = e+ sin () 4 xIn (x sin(x) + 1) 0
f30) = (1= sina?)) :Kﬁ (2 7+ 1) - g Nia

Table 2 Errors and coc for methods (5.2), (5.4), (5.6) and (5.8) with y =0

Method (5.2) Method (5.4) Method (5.6) Method (5.8)

f1.x0 =135

[x1 — of 0.314e — 6 0.134¢ — 5 0.543¢ — 6 0.703¢ — 6

[x — | 0.110e — 66 0.153e — 61 0.715¢ — 65 0.542¢ — 64

[x3 — o] 0.178e — 800 0.914e — 739 0.100e — 788 0.360e — 768

coc 12.1378 12.1056 12.1238 12.1175
f2,x9 =0.6

[x1 — | 0.900e — 4 0.585¢ — 3 0.308¢ — 4 0.539¢ — 4

[x2 — | 0.111e — 44 0.713¢ — 38 0.650¢ — 49 0.335¢ — 48

[x3 — | 0.255e¢ — 536 0.126e — 454 0.419¢ — 587 0.148¢ — 578

coc 12.0178 11.9363 12.0465 11.9972
f3,x0 =17

|x1 — «f 0.836¢ — 8 0.164e — 7 0.605¢ — 8 0.290e — 8

[x2 — o] 0.102¢ — 94 0.101e — 96 0.624e — 97 0.116e — 100

[x3 — o 0.134¢ — 1138 0.118¢ — 1090 0.341e — 1165 0.612¢ — 1210

coc 12.0110 12.0173 12.0048 12.0057
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Table 3 Errors and coc for methods (5.9), (5.10) and (5.11)

Method (5.9)

Method (5.10)

Method (5.11)

f1,x9 = 1.35
lxp —«f
[x2 — «af
[x3 — «af
coc

f2,x0 =0.6
lxp —«af
lx2 — «af
lx3 —«af

coc

Sz, x9 = 1.7
lx1 — «af
lxy — «af
lx3 —«af

coc

0.845¢ — 4
0.393¢ — 45
0.100e — 540
11.9906
0.798e — 3
0.194¢ — 40
0.976e — 486
11.8387
0.241e — 8
0.137¢ — 99
0.283¢ — 1196
12.0190

0.308¢ — 6
0.179e — 67
0.126e — 812
12.1688
0.891e — 4
0.541e — 45
0.274e — 543
12.0827
0.757¢ — 8
0.267¢ — 96
0.561e — 1158
12.0028

0.148¢ — 5
0.157e — 61
0.481e — 738
12.0973
0.214e — 4
0.168e — 53
0.386e — 642
11.9875
0.221e =7
0.140e — 90
0.546e — 1089
12.0001

6 Conclusion

We have introduced a new method with memory for approximating a simple root of a
given nonlinear equation. An increase of the convergence order is attained without any
additional function evaluations, which points to a very high computational efficiency
of the proposed methods with memory. We have proved that the convergence order of
the new method with memory is, at least 12. So its efficiency index is 12!/ = 1.86121
which is greater than that of the three-point methods of order eight 8!/4 = 1.68179
with the same function evaluations. Numerical examples show that our methods with
memory work and can compete with other methods under the same conditions.
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