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Abstract The hp-version of the finite element method is applied to a singularly per-
turbed reaction-diffusion equation posed on an interval or a two-dimensional domain
with an analytic boundary. On suitably designed Spectral Boundary Layer meshes,
robust exponential convergence in a “balanced” norm is shown. This “balanced” norm
is an ε-weighted H1-norm, where the weighting in terms of the singular perturbation
parameter ε is such that, in contrast to the standard energy norm, boundary layer
contributions do not vanish in the limit ε → 0. Robust exponential convergence in
the maximum norm is also established. We illustrate the theoretical findings with two
numerical experiments.
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1 Introduction

The numerical solution of singularly perturbed problems has been studied extensively
over the last decades (see, e.g., the books [8,11] and the references therein). These
problems typically feature boundary layers (and, more generally, also internal layers).
Their resolution requires the use of strongly refined, layer-adapted meshes. In the
context of fixed order methods, well-known representatives of such meshes include
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the Bakhvalov mesh [1] and the Shishkin mesh [14]. For the p/hp-version Finite
Element Method (FEM) or for spectral methods, the Spectral Boundary Layer mesh
[3,4,13] is essentially the smallest mesh that permits the resolution of boundary layers
(see Definition 2.2 ahead for the 1D version and Sect. 3.1 for a realization in 2D).

The use of the above mentioned meshes can lead to robust convergence, i.e., con-
vergence uniform in the singular perturbation parameter. For the reaction-diffusion
equations (2.1), (3.1) under consideration here, the FEM is naturally analyzed in the
energy norm (2.6), (3.4), which is simply the norm induced by the inner-product
defined by the bilinear form of the variational problem; robust convergence of the
h-FEM on Shishkin meshes can be found, for example, in [11] and robust exponen-
tial convergence on Spectral Boundary Layer meshes is shown in [3,4]. The (natural)
energy norm associated with this boundary value problem is rather weak in that the
layer contributions are not “seen” by the energy norm; that is, the energy norm of
the layer contribution vanishes as the singular perturbation parameter ε tends to zero
whereas the energy norm of the smooth part of the solution does not. This has sparked
the recent work [2,9,10] to study the convergence of the h-FEM in norms stronger than
the energy norm. The analysis of [2,9,10] is performed in an ε-weighted H1-norm
which is balanced in the sense that both the smooth part and the layer part are (gener-
ically) bounded away from zero uniformly in ε; both energy norm [see (2.6), (3.4) for
the 1D and 2D case, respectively] and balanced norm [see (2.10), (3.5)] are ε-weighted
H1-norms but they differ in the ε-scaling. Robust convergence in this balanced norm
is shown in [2,9,10] if Shishkin meshes are employed. We show in the present work
that this analysis can be extended to the hp-version FEM on Spectral Boundary Layer
meshes to give robust exponential convergence of the hp-version FEM in this balanced
norm. An additional outcome of our convergence analysis in the balanced norm is the
robust exponential convergence in the maximum norm.

It is worth mentioning that robust exponential convergence of the hp-FEM on
Spectral Boundary Layer meshes in the balanced norm was shown earlier in special
cases. For example, for the case of equationswith constant coefficients and polynomial
right-hand sides, [13] observes that the smooth part of the asymptotic expansion is
again polynomial and therefore in the finite element space. It follows that a factor ε1/2

is gained in the convergence estimate and leads to robust exponential convergence in
the balanced norm. A more detailed discussion of similar effects can be found in the
concluding remarks of [5] and in the section with numerical results in [6].

Let us briefly discuss the ideas underlying our analysis. Asymptotic expansions
may be viewed as a tool to decompose the solution into components associated with
different length scales. Roughly speaking, our analysis in balanced norms mimicks
this technique on the discrete level in that the Galerkin approximation is likewise
decomposed into components associated with different length scales. In total, our
analysis involves the following ideas:

1. An analysis of the difference between the FEM approximation and a Galerkin
approximation to a reduced problem.

2. A stable decomposition of the FEM space on the layer-adapted mesh into fine and
coarse components. This decomposition relies essentially on strengthenedCauchy–
Schwarz inequalities.
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Robust exponential convergence of hp-FEM 107

Throughout the paper we will utilize the usual Sobolev space notation Hk (�) to
denote the space of functions on � with weak derivatives up to order k in L2 (�),
equipped with the norm ‖·‖k,� and seminorm |·|k,�. We will also use the space
H1
0 (�) = {

u ∈ H1 (�) : u|∂� = 0
}
, where ∂� denotes the boundary of �. The

norm of the space L∞(�) of essentially bounded functions is denoted by ‖ · ‖∞,�.
The letters C , c will be used to denote generic positive constants, independent of any
discretization or singular perturbation parameters and possibly having different val-
ues in each occurrence. Finally, the notation A � B means the existence of a positive
constant C , which is independent of the quantities A and B under consideration and
of the singular perturbation parameter ε, such that A ≤ C B.

2 The one-dimensional case

We start with the one-dimensional case as many of the ideas can be seen in this setting
already.

2.1 Problem formulation and solution regularity

We consider the following model problem: Find u such that

− ε2u′′ + bu = f in I = (0, 1), (2.1a)

u(0) = u(1) = 0. (2.1b)

The parameter 0 < ε ≤ 1 is given, as are the functions b > 0 and f , which are
assumed to be analytic on I = [0, 1]. In particular, we assume that there exist constants
C f , γ f , Cb, γb, cb > 0, such that

⎧
⎪⎨

⎪⎩

∥
∥ f (n)

∥
∥∞,I ≤ C f γ

n
f n! ∀ n ∈ N0,∥

∥b(n)
∥
∥∞,I ≤ Cbγ

n
b n! ∀ n ∈ N0,

b(x) ≥ cb > 0 ∀x ∈ I .

(2.2)

The variational formulation of (2.1) reads: Find u ∈ H1
0 (I ) such that

Bε (u, v) = F (v) ∀ v ∈ H1
0 (I ) , (2.3)

where, with 〈·, ·〉I the usual L2(I ) inner product,

Bε (u, v) = ε2
〈
u′, v′〉

I + 〈bu, v〉I , (2.4)

F (v) = 〈 f, v〉I . (2.5)

The bilinear formBε (·, ·) given by (2.4) is coercive with respect to the energy norm

‖u‖2E,I := Bε (u, u) , (2.6)
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i.e.,
Bε (u, u) ≥ ‖u‖2E,I ∀ u ∈ H1

0 (I ) .

The solution u is analytic in I and features boundary layers at the endpoints. Its
regularity was described in [3] (our presentation below follows [4, Prop. 2.2.1]) both
in terms of classical differentiability (see Proposition 2.1, (i)) as well as asymptotic
expansions (see Proposition 2.1, (ii)):

Proposition 2.1 ([4, Prop. 2.2.1], [3]) Assume (2.2) and let u ∈ H1
0 (I ) be the solution

of (2.1) Then:

(i) There are constants C, K > 0 independent of ε ∈ (0, 1] such that ‖u(n)‖L2(I ) ≤
C K n max{n + 1, ε−1}n for all n ∈ N0.

(ii) u can be decomposed as u = w + u BL + r where, for some constants Cw, γw,
CBL , γBL , Cr , γr , b > 0 independent of ε ∈ (0, 1],

∥
∥
∥w(n)

∥
∥
∥∞,I

≤ Cwγ n
wnn ∀n ∈ N0, (2.7a)

∣
∣
∣
∣
(

u BL
)(n)

(x)

∣
∣
∣
∣ ≤ CBLγ n

BL max{n + 1, ε−1}ne−b dist(x,∂ I )/ε ∀n ∈ N0, (2.7b)

‖r (n)‖0,I ≤ Crε
2−ne−γr /ε, n ∈ {0, 1, 2}. (2.7c)

2.2 High order FEM

The discrete version of the variational formulation (2.3) reads: Given VN ⊂ H1
0 (�)

find uF E M ∈ VN such that

Bε (uF E M , v) = F (v) ∀v ∈ VN . (2.8)

In order to define the FEM space VN , let � = {0 = x0 < x1 < · · · < xN = 1} be an
arbitrary partition of I = (0, 1) and set

I j = [
x j−1, x j

]
, h j = x j − x j−1, j = 1, . . . , N .

Also, define the reference element IST = [−1, 1] and note that it can be mapped
onto the j th element I j by the standard affine mapping x = M j (t) = 1

2 (1 − t) x j−1+
1
2 (1 + t) x j . With �p (IST ) the space of polynomials of degree ≤ p on IST (and with
◦ denoting composition of functions), we define the finite dimensional subspace as

S p(�) =
{
v ∈ H1 (I ) : v ◦ M j ∈ �p j (IST ), j = 1, . . . , N

}
,

S p
0 (�) = S p(�) ∩ H1

0 (I ).

We restrict our attention here to constant polynomial degree p for all elements,
i.e., p j = p, j = 1, . . . , N ; clearly, more general settings with variable polynomial
degree are possible. The following Spectral Boundary Layer mesh is essentially the
minimal mesh that yields robust exponential convergence.
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Robust exponential convergence of hp-FEM 109

Definition 2.2 (Spectral Boundary Layer mesh) For λ > 0, p ∈ N and 0 < ε ≤ 1,
define the Spectral Boundary Layer mesh �BL(λ, p) as

�BL(λ, p) :=
{

{0, λpε, 1 − λpε, 1} if λpε < 1/4

{0, 1} if λpε ≥ 1/4.

The spaces S(λ, p) and S0(λ, p) of piecewise polynomials of degree p are given by

S(λ, p) := S p(�BL(λ, p)),

S0(λ, p) := S p
0 (�BL(λ, p)) = S(λ, p) ∩ H1

0 (I ).

We quote the following result from [3].

Proposition 2.3 ([3, Thm. 16]) Assume that (2.2) holds and let u be the solution
to (2.3). Then, there exists λ0 > 0 (depending only on b, f ) such that for every
λ ∈ (0, λ0) there are C, σ > 0, independent of ε ∈ (0, 1] and p ∈ N such that

inf
v∈S0(λ,p)

‖u − v‖E,I ≤ Ce−σ p. (2.9)

By Céa’s Lemma the Galerkin approximation uF E M ∈ S0(λ, p) satisfies ‖uF E M

− u‖E,I ∼ ‖uF E M − u‖0,I + ε
∥
∥(uF E M − u)′

∥
∥
0,I ≤ Ce−σ p.

Define the balanced norm by

‖v‖2balanced,I := ‖v‖20,I + ε‖v′‖20,I . (2.10)

We note that the balanced norm ‖ ·‖balanced,I is stronger than the energy norm ‖ ·‖E,I

of (2.6). In Lemma 2.5 below, we will show that the approximation result (2.9) can be
sharpened to

inf
v∈S0(λ,p)

‖u − v‖balanced,I ≤ Ce−σ p.

The key step towards this result is a better treatment of the boundary layer part than
it is done in [3, Thm. 16]. This modification is due to [13]. For future reference we
formulate this modification as a separate lemma:

Lemma 2.4 Let ε ∈ (0, 1]. Let the function v satisfy on I = (0, 1) the estimate

|v(n)(x)| ≤ Cvγ
n max{n + 1, ε−1}ne−x/ε ∀x ∈ I, ∀n ∈ N0. (2.11)

Then there are constants C, β, η > 0 (depending only on γ ) such that the following
is true: Let � be any mesh with a mesh point ξ ∈ (0, 1] that satisfies

ξ

pε
≤ η. (2.12)
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110 J. M. Melenk, C. Xenophontos

Then there exists an approximation Ipv ∈ S p(�) with Ipv(0) = v(0) and Ipv(1) =
v(1) as well as the approximation properties

‖v − Ipv‖∞,(0,ξ) + ξ−1/2‖v − Ipv‖0,(0,ξ) + ξ1/2‖v − Ipv‖1,(0,ξ),

≤ CCv

[
ξ

pε
e−βp + e−ξ/ε

]
, (2.13)

‖v − Ipv‖∞,(ξ,1) ≤ CCve−ξ/ε, (2.14)

‖v − Ipv‖0,(ξ,1) + ε‖v − Ipv‖1,(ξ,1) ≤ CCv

√
εe−ξ/ε. (2.15)

Proof We will assume that ξ ∈ (0, 1/2); in the converse, “asymptotic” case we have
ε−1 � p so that a suitable approximation on a single element may be taken (e.g., the
Gauß–Lobatto interpolant or the operator Ip discussed in detail in [12, Thm. 3.14]
and [5, Sec. 3.2.1]).

It suffices to assume that the mesh consists of the two elements I1 := (0, ξ) and
I2 := (ξ, 1). We construct Ipv separately on the two elements, starting with I1.

On I1, we construct Ipv in two steps. In the first step, we let π1 ∈ �p be the
polynomial (on I1) given by [5, Lemma 3.8]. It interpolates in the endpoints 0, ξ of
the interval I1, i.e.,

π1(0) = v(0), π1(ξ) = v(ξ). (2.16)

Furthermore, [5, Lemma 3.8] asserts the existence of η > 0 such the constraint (2.12)
implies

ξ−1‖π1 − v‖0,I1 + |π1 − v|1,I1 ≤ CCv

ξ1/2

pε
e−βp. (2.17)

(Note that [5, Lemma 3.8] constructs an approximation on the reference element IST

instead of I1. It is applicable with K = ε−1 and h = ξ ). The 1D Sobolev embedding
theorem in the form ‖v‖∞,J � |J |−1/2‖v‖0,J +|J |1/2‖v′‖0,J (where |J | denotes the
length of the interval J ) gives

ξ−1/2‖π1 − v‖∞,I1 + ξ−1‖π1 − v‖0,I1 + |π1 − v|1,I1 ≤ CCv

ξ1/2

pε
e−βp.

In the second step, we modify π1 as proposed in [13] in order to obtain a better
approximation on the element I2. We define π2 ∈ �p on I1 as

π2(x) := π1(x) − x

ξ

(
1 − √

ε
)
v(ξ),

so that π2(ξ) = π1(ξ) − (1− √
ε)v(ξ) = √

εv(ξ). In view of |v(ξ)| ≤ Cve−ξ/ε, this
modification leads to
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Robust exponential convergence of hp-FEM 111

ξ−1/2‖π2 − v‖∞,I1 + ξ−1‖π2 − v‖0,I1 + |π2 − v|1,I1

≤ CCv

[
ξ1/2

pε
e−βp + ξ−1/2e−ξ/ε

]
.

We take (Ipv)|I1 = π2, and this shows (2.13). On I2, we take (Ipv)|I2 as the linear
interpolant between the values π2(ξ) = √

εv(ξ) at ξ and v(1) at 1. We immediately
get

‖Ipv‖∞,I2 + ‖(Ipv)′‖∞,I2 ≤ C
√

ε|v(ξ)| ≤ CCv

√
εe−ξ/ε. (2.18)

Furthermore, for v we have

‖v‖∞,I2 + ε−1/2‖v‖0,I2 + √
ε‖v‖1,I2 ≤ CCve−ξ/ε. (2.19)

(2.18) and (2.19) imply, along with the triangle inequality, then (2.14), (2.15). ��
Lemma 2.4 shows that boundary layer functions can be approximated at a robust

exponential rate in various norms including L∞ and the energy norm (2.6), if the mesh
is suitably chosen. We now show approximability of solutions to (2.3) in the balanced
norm (2.10):

Lemma 2.5 Assume that (2.2) holds and let u be the solution to (2.3). Then there
are constants λ0, C, β > 0 (depending only on the constants appearing in (2.2))
such that for every λ ∈ (0, λ0], ε ∈ (0, 1], p ∈ N, there exists an approximant
Ipu ∈ S p

0 (�BL(λ, p)) that satisfies

‖u − Ipu‖∞,I ≤ Ce−βλp, (2.20a)

‖u − Ipu‖0,I +√
λpε‖(u − Ipu)′‖0,I ≤ Ce−βλp. (2.20b)

Proof The proof follows the lines of [3, Thm. 16]. For case of pε sufficiently small,
Proposition 2.1 decomposes the solution u as u = w + u BL + r . The approximation
of w and r is done as in [3, Thm. 16]. The treatment of the boundary layer part u BL of
[3, Thm. 16] is replaced with an appeal to Lemma 2.4. We remark that slightly sharper
estimates are possible if one formulates bounds for u − Ipu on the two elements
(0, λpε) and (λpε, 1) separately. ��

2.3 Robust exponential convergence in a balanced norm

The goal of this article is to improve on Proposition 2.3 by showing that the Galerkin
error u − uF E M convergences at a robust exponential rate also in the balanced norm
‖ · ‖balanced,I :

Theorem 2.6 Assume (2.2). Let u solve (2.3) and uF E M ∈ S0(λ, p) be obtained
by (2.8) based on the Spectral Boundary Layer mesh �BL(λ, p). Then there exists
λ0 > 0 (depending solely on b and f ) such that for every λ ∈ (0, λ0) there are
constants C, σ > 0 such that for every ε ∈ (0, 1], p ∈ N

‖u − uF E M‖0,I + √
ε
∥
∥(u − uF E M )′

∥
∥
0,I ≤ Ce−σ p. (2.21)
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112 J. M. Melenk, C. Xenophontos

The remainder of this section is devoted to the proof of Theorem 2.6. Before that, we
note a consequence of Theorem 2.6:

Corollary 2.7 Under the assumptions of Theorem 2.6 there is λ0 > 0 such that for
every λ ∈ (0, λ0) there are constants C, σ > 0 such that for all ε ∈ (0, 1], p ∈ N

‖u − uF E M‖∞,I ≤ Ce−σ p.

Proof We first observe that standard inverse estimates yield the result when λpε ≥
1/4, in which case the mesh consists of a single element. Let us therefore consider the
3-element case λpε < 1/4. Using the boundary condition at x = 0 we can write

|u(x) − uF E M (x)| =
∣
∣
∣
∣

∫ x

0
(u(t) − uF E M (t))′ dt

∣
∣
∣
∣ .

Assume first that x ∈ (0, λpε]. Then by the Cauchy–Schwarz inequality and (2.21)

|u(x) − uF E M (x)| ≤ √
λpε

(
Cε−1/2e−σ p

)
≤ C

√
λpe−σ p.

The same technique works if x ∈ [1−λpε, 1). For x ∈ [λpε, 1−λpε], we write with
the approximation Ipu of Lemma 2.5 and the triangle inequality |u(x)−uF E M (x)| ≤
|u(x) − Ipu(x)| + |Ipu(x) − uF E M (x)|. Lemma 2.5 takes care of |u(x) − Ipu(x)|
while |Ipu(x) − uF E M (x)| is treated with the standard polynomial inverse estimate
‖Ipu − uF E M‖∞,[λpε,1−λpε] ≤ Cp2‖Ipu − uF E M‖0,I and the energy estimate of
Proposition 2.3. ��

The proof of Theorem 2.6 is done in two steps: First, in Sect. 2.3.1 we reduce the
analysis to an H1-stability analysis of a projection operator P0 that is closely con-
nected with the reduced/limit problem. Next, we recognize that polynomial inverse
estimates will be needed for the H1-stability analysis. In order tominimize the adverse
impact of small elements of size O(εp) on inverse estimates, we work with a decom-
position of the space S(λ, p) into global polynomials and polynomials supported by
the small elements near the boundary. Section 2.3.2 provides the necessary strength-
ened Cauchy–Schwarz inequality, and Lemma 2.9 formulates the H1-stability results
for P0. Finally, in Sect. 2.3.3 we conclude the proof of Theorem 2.6.

2.3.1 Reduction to an H1-stability analysis for a reduced problem

Since the desired estimate in the “asymptotic” case λpε ≥ 1/4 is easily shown (see the
formal proof of Theorem 2.6 at the end of the section) we will focus in the following
analysis on the 3-element case, i.e., λpε < 1/4.

We begin by defining the bilinear form

B0 (u, v) = 〈bu, v〉I , (2.22)
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Robust exponential convergence of hp-FEM 113

corresponding to the reduced/limit problem. We also introduce the operator P0 :
L2(I ) → S0(λ, p) by the orthogonality condition1

B0 (u − P0u, v) = 0 ∀ v ∈ S0(λ, p). (2.23)

Then, by Galerkin orthogonality satisfied by u − uF E M (with respect to the bilinear
form Bε) and by u − P0u (with respect to the bilinear form B0) we have

‖uF E M − P0u‖2E,I = Bε (uF E M − P0u, uF E M − P0u) (2.24)

= Bε (u − P0u, uF E M − P0u)

= ε2
〈
(u − P0u)′ , (uF E M − P0u)′

〉
I

≤ ε2‖ (u − P0u)′ ‖0,I ‖ (uF E M − P0u)′ ‖0,I .

Hence

ε
∥
∥(uF E M − P0u)′

∥
∥
0,I ≤ ‖uF E M − P0u‖E,I ≤ ε

∥
∥(u − P0u)′

∥
∥
0,I .

The triangle inequalitywill then allowus to infer from this the exponential convergence
result (2.21) provided we can show that

∥
∥(u − P0u)′

∥
∥
0,I ≤ Cε−1/2e−σ p,

for some C and σ > 0 independent of ε and p. This calculation shows that we have to
study the H1-stability of the operator P0 on Spectral Boundary Layer meshes. This is
achieved in Lemma 2.9. Subsequently in Lemma 2.10, we control ‖(u − P0u)′‖0,I .

2.3.2 Stable decompositions of the spaces S(λ, p)

Asymptotic expansions are a tool to decompose the solution u into components on
the different length scales. We need to mimick this on the discrete level for P0u. We
define (implicitly assuming λpε < 1/4) the layer region

Iε := [0, λpε] ∪ [1 − λpε, 1]

and the following two subspaces of S(λ, p):

S1 = S p(�), � = {0, 1}, (2.25)

Sε = {u ∈ S(λ, p): supp u ⊂ Iε}. (2.26)

Note that the spaces S1 and Sε do not carry any boundary conditions at the endpoints
of I—this is a reflection of the fact that the reduced problem does not satisfy the

1 Note the subtle point that S0(λ, p) ⊂ H1
0 (I ); in contrast, the reduced problem doesn’t involve boundary

conditions.
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114 J. M. Melenk, C. Xenophontos

homogeneous Dirichlet boundary conditions. It is important for the further develop-
ments to observe that for the three-element mesh of sufficiently small λpε, there holds
S(λ, p) = S1 ⊕ Sε. In other words, each z ∈ S(λ, p) has a unique decomposition
z = z1 + zε with z1 ∈ S1 and zε ∈ Sε, when λpε < 1/4. We also have the inverse
estimates

‖z′‖0,I ≤ Cp2‖z‖0,I ∀z ∈ S1, (2.27)

‖z′‖0,I ≤ C
p2

λpε
‖z‖0,I ∀z ∈ Sε, (2.28)

by [12, Thm. 3.91]. Furthermore, we have the following strengthened Cauchy–
Schwarz inequality:

Lemma 2.8 (Strengthened Cauchy–Schwarz inequality) Let B0 be given by (2.22).
Then, there is a constant C > 0 depending solely on ‖b‖∞,I and infx∈I b(x) such
that

|B0 (u, v)| ≤ C min{1,√λpεp} ‖u‖0,I ‖v‖0,Iε ∀u ∈ S1, v ∈ Sε.

Proof The standard Cauchy–Schwarz inequality yields |B0(u, v)| ≤ ‖b‖∞,I ‖u‖0,I

‖v‖0,I , which accounts for the “1” in the minimum.
Let I1 = (0, δ1) and I2 = (0, δ2) be two intervals with δ1 < δ2. Consider polyno-

mials π1 and π2 of degree p. Then, using an inverse inequality [12, eq. (3.6.4)],

∣
∣
∣
∣

∫

I1
π1(x)π2(x) dx

∣
∣
∣
∣ ≤

∫

I1
|π1(x)| |π2(x)| dx ≤ C

√
δ1

δ2
p‖π1‖0,I2‖π2‖0,I1 .

The result follows by taking δ1 = λpε, δ2 = 1. ��
As already mentioned, since S(λ, p) = S1⊕ Sε when λpε < 1/4,we can uniquely

decompose P0u into components in S1 and Sε. The Strengthened Cauchy–Schwarz
inequality of Lemma 2.8 allows us to quantify the size of these contributions:

Lemma 2.9 (stability of P0) There exist constants C, c > 0 depending solely on
infx∈I b(x) > 0 and ‖b‖∞,I such that the following is true under the assumption

√
λpεp ≤ c : (2.29)

For each z ∈ L2(I ), the (unique) decomposition of

P0z = z1 + zε

into the components z1 ∈ S1 and zε ∈ Sε satisfies

‖z1‖0,I ≤ C‖z‖0,I , (2.30)

‖zε‖0,I ≤ C{‖z‖0,Iε +√
λpεp‖z‖0,I }. (2.31)
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Furthermore,

‖z′
1‖0,I ≤ Cp2‖z‖0,I , (2.32)

‖z′
ε‖0,I ≤ C

{
p2

λpε
‖z‖0,Iε + (λpε)−1/2 p3‖z‖0,I

}
. (2.33)

Proof Before we start with the proof of (2.30), (2.31), we mention that (2.30) follows
by fairly standard arguments. Indeed, the smallness assumption (2.29) on c implies
the strengthened Cauchy–Schwarz inequality by Lemma 2.8, and for this setting, it is
well-known that the contributions z1 and zε can be controlled in terms of the constant
of the strengthened Cauchy–Schwarz inequality and ‖P0z‖0,I . This result produces
(2.30) but not (2.31), for which we need to refine the standard analysis. This is done
below. In the interest of completeness, we will nevertheless present a proof for both
(2.30), (2.31).

Write P0z = z1 + zε with z1 ∈ S1 and zε ∈ Sε. We define the auxiliary function

ψ1,ε :=
{(

1 − x
λpε

)p
if x ∈ [0, λpε]

0 otherwise.

Then supp ψ1,ε ⊂ [0, λpε], ψ1,ε(0) = 1 and
∥
∥ψ1,ε

∥
∥
0,Iε

∼ p−1/2√λpε. For the
right endpoint we define ψ2,ε(x) := ψ1,ε(1 − x), x ∈ [1 − λpε, 1]. We also define

z̃ε := zε + ψ1,εz1(0) + ψ2,εz1(1),

and note that P0z ∈ S0(λ, p). Thus, (z1 + zε)|∂ I = 0 so that z̃ε ∈ Sε ∩ H1
0 (I ) ⊂

Sε ∩ S0(λ, p). Utilizing the inverse estimate [12, Thm. 3.92]

‖π‖∞,I ≤ Cp ‖π‖0,I ∀ π ∈ S1,

we arrive at

‖̃zε‖0,I = ‖̃zε‖0,Iε ≤ C
{
‖zε‖0,Iε + p1/2

√
λpε ‖z1‖0,I

}
.

The representation P0z = z1 + zε ∈ S0(λ, p) also implies

B0(z1, v1) + B0(zε, v1) = B0(P0z, v1) ∀ v1 ∈ S1, (2.34)

B0(z1, vε) + B0(zε, vε) = B0(P0z, vε) = B0(z, vε) ∀ vε ∈ Sε ∩ S0(λ, p), (2.35)

where in (2.35) we used the fact that P0 is the B0–projection onto S0(λ, p). Taking
v1 = z1 in (2.34) and vε = z̃ε ∈ Sε ∩ S0(λ, p) in (2.35) yields, together with the
Strengthened Cauchy Schwarz inequality of Lemma 2.8,

‖z1‖20,I ≤ C{‖P0z‖0,I ‖z1‖0,I + p
√

λpε‖zε‖0,I ‖z1‖0,I }, (2.36a)

‖zε‖20,I ≤ C{‖z‖0,Iε ‖̃zε‖0,Iε + p
√

λpε‖̃zε‖0,I ‖z1‖0,I + ‖zε‖0,I ‖z1‖0,I
√

λpεp1/2}
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≤ C{‖zε‖0,I

[
‖z‖0,Iε + p

√
λpε‖z1‖0,I +√

λpεp1/2‖z1‖0,I

]

+
[
‖z‖0,Iε + p

√
λpε‖z1‖0,I

]√
λpεp1/2‖z1‖0,I }. (2.36b)

Estimating generously
√

λpεp1/2 ≤ √
λpεp and using an appropriate Young inequal-

ity in (2.36b) we get

‖z1‖0,I ≤ C{‖P0z‖0,I + p
√

λpε‖zε‖0,I }, (2.37a)

‖zε‖0,I ≤ C{‖z‖0,Iε + p
√

λpε‖z1‖0,I }. (2.37b)

Inserting (2.37b) in (2.37a), assuming that
√

λpεp is sufficiently small and using the
stability ‖P0z‖0,I ≤ C‖z‖0,I gives ‖z1‖0,I ≤ C‖z‖0,I . Inserting this bound in (2.37b)
concludes the proof of (2.30) and (2.31). Finally, the proof (2.32), (2.33) follows from
a further application of the standard polynomial inverse estimates (2.27), (2.28). ��

2.3.3 Conclusion of the proof of Theorem 2.6

We are now in the position to prove the following

Lemma 2.10 Assume (2.2). Let u be the solution of (2.3) and let λ0 be given by
Lemma 2.5. Let λ ∈ (0, λ0] and assume that λ, p, ε satisfy (2.29). Then there exist
constants C, β > 0 (independent of ε ∈ (0, 1] and p ∈ N but dependent on λ) such
that

‖(u − P0u)′‖0,I ≤ Cε−1/2e−βp. (2.38)

Proof Recall that only the case λpε < 1/4 is of interest. By Lemma 2.5 we can find
an approximation Ipu ∈ S0(λ, p) with

‖u − Ipu‖0,I + √
ε‖(u − Ipu)′‖0,I ≤ Ce−βp. (2.39)

We stress that, while the estimate (2.20) is explicit in the parameterλ, we have absorbed
this dependence here in the constants C and β for simplicity of exposition.

Since P0 is a projection on S0(λ, p) and Ipu ∈ S0(λ, p), we can write u −P0u =
u − Ipu − P0(u − Ipu). The first term, u − Ipu, is already treated in (2.39). For the
second term, P0(u − Ipu) ∈ S0(λ, p), we decompose P0(u − Ipu) = z1 + zε and
use the estimates (2.32), (2.33) of Lemma 2.9 to get

‖z′
1‖0,I � p2‖u − Ipu‖0,I ≤ Ce−βp,

‖z′
ε‖0,I � p2

λpε

[
‖u − Ipu‖0,Iε +√

λpεp‖u − Ipu‖0,I

]
.

There are several possible ways to treat the term ‖(u − Ipu)‖0,Iε . A rather generous
approach exploits the fact that (u − Ipu)(0) = (u − Ipu)(1) = 0 so that we use
z(x) = ∫ x

0 z′(t) dt and obtain

‖u − Ipu‖0,Iε ≤ Cλpε‖(u − Ip)
′‖0,Iε .
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Hence,

‖z′
ε‖0,I � p2

λpε

[
λpε‖(u − Ipu)′‖0,Iε +√

λpεp‖u − Ipu‖0,I

]
� ε−1/2e−βp.

��
Proof of Theorem 2.6. In view of ‖u − uF E M‖0,I ≤ C‖u − uF E M‖E,I ≤ Ce−σ p by
Proposition 2.3, we focus on the control of

√
ε‖(u − uF E M )′‖0,I . We distinguish two

cases:
Case 1 Assume that (2.29) is satisfied. Then (2.38) yields the result.
Case 2 Assume that

√
λpεp ≥ c for the constant c appearing in (2.29). Then

ε−1/2 ≤ c−1 p3/2λ1/2 so that

√
ε‖(u − uF E M )′‖0,I ≤ ε−1/2‖u − uF E M‖E,I

≤ c−1λ1/2 p3/2‖u − uF E M‖E,I � e−σ p,

which concludes the proof. ��

2.4 Numerical example

To illustrate the theoretical findings presented above, we show in Fig. 1 the results of
numerical computations for the following problem:

−ε2u′′(x) + u(x) =
(

x + 1

2

)−1

, x ∈ (0, 1),

u(0) = u(1) = 0.

We use the Spectral Boundary Layer mesh �BL(λ, p) with λ = 1 and polynomials
of degree p which we increase from 1 to 5 to improve accuracy. We select ε = 10− j ,
j = 4, . . . , 8. We note dimS0(λ, p) = 2 + 3(p − 1). Since no exact solution is
available, we use a reference solution to estimate the error. In Fig. 1, we present the
error in the balanced norm (2.10) versus the polynomial degree p as well as the error
ε1/2‖(u − uF E M )′‖0,I and the L2-error. The error curves are on top of each other,
which supports the robust exponential convergence in the balanced norm.

3 The two-dimensional case

The ideas of the previous section carry over to the two-dimensional case. We consider
the following boundary value problem: Find u such that

− ε2�u + bu = f in � ⊂ R
2, (3.1a)

u = 0 on ∂�, (3.1b)
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Fig. 1 Convergence on Spectral Boundary Layer meshes. Top convergence in the balanced norm. Bottom
left error ε1/2‖(u − uF E M )′‖0,I versus p. Bottom right convergence in L2

where ε ∈ (0, 1], and the functions b, f are given with b > 0 on �. We assume that
the data of the problem is analytic, i.e., ∂� is an analytic curve and that there exist
constants C f , γ f , Cb, γb, cb > 0 such that

⎧
⎨

⎩

‖∇n f ‖∞,� ≤ C f γ
n
f n! ∀ n ∈ N0,

‖∇nb‖∞,� ≤ Cbγ
n
b n! ∀ n ∈ N0,

infx∈� b(x) ≥ cb > 0.
(3.2)

The variational formulation of (3.1a), (3.1b) reads: Find u ∈ H1
0 (�) such that

Bε(u, v) := ε2 〈∇u,∇v〉� + 〈bu, v〉� = F(v) := 〈 f, v〉� ∀v ∈ H1
0 (�) , (3.3)

where 〈·, ·〉� denotes the usual L2(�) inner product. As in 1D, the energy norm ‖·‖E,�

and the balanced norm ‖ · ‖balanced,� are defined by

‖v‖2E,� := Bε(v, v), (3.4)

‖v‖2balanced,� := ‖v‖20,� + ε‖∇v‖20,�. (3.5)

123



Robust exponential convergence of hp-FEM 119

The discrete version of (3.3) reads: find uF E M ∈ VN ⊂ H1
0 (�) such that (3.3) holds

for all v ∈ VN ⊂ H1
0 (�), with u replaced by uF E M , where the subspace VN will be

defined shortly.

3.1 Meshes and spaces

Concerning the meshes and the hp-FEM space based on these meshes, we adopt the
simplest case that generalizes our 1D analysis to 2D: The elements are (curvilinear)
quadrilaterals and the needle elements required to resolve the boundary layer are
obtained as mappings of needle elements of a reference configuration. This approach
is discussed in more detail in [7, Sec. 3.1.2] and expanded as the notion of “patchwise
structured meshes” in [4, Sec. 3.3.2].

Our hp-FEM spaces have the following general structure: Let � = {�i }N
i=1 be a

mesh consisting of curvilinear quadrilaterals �i , i = 1, . . . , N , subject to the usual
restrictions (see, e.g., [7]) and associate with each�i a bijective, Lipschitz continuous
(further smoothness assumptions are imposed below) element mapping Mi : SST →
�i , where SST = [0, 1]2 denotes the usual reference square. With Q p(SST ) the space
of polynomials of degree p (in each variable) on SST , we set

S p(�) =
{

u ∈ H1 (�) : u|�i
◦ Mi ∈ Q p(SST ), i = 1, . . . , N

}
,

S p
0 (�) = S p(�) ∩ H1

0 (�).

We now describe the mesh � and the element maps that we will use (see Fig. 2).
Our starting point is a fixed mesh �A (the subscript “A” stands for “asymptotic”)
consisting of curvilinear quadrilateral elements �i , i = 1, . . . , N ′. These elements
�i are the images of the reference square SST = [0, 1]2 under the element maps MA,i ,
i = 1, . . . , N ′ (we added the subscript “A” to emphasize that they correspond to the
asymptotic mesh �A). They are assumed to satisfy the conditions (M1)–(M3) of [7]
in order to ensure that the space S p(�A) has suitable approximation properties. The
element maps MA,i are assumed to be analytic with analytic inverse; that is, as in [7]
we require for some constants C1, C2, γ > 0

‖(M ′
A,i )

−1‖∞,SST ≤ C1, ‖Dα MA,i‖∞,SST ≤ C2α!γ |α| ∀α ∈ N
2
0, i = 1, . . . , N ′.

We furthermore assume that elements do not have a single vertex on the boundary ∂�

but only complete, single edges, i.e., the following dichotomy holds:

either �i ∩ ∂� = ∅ or �i ∩ ∂� is a single edge of �i . (3.6)

Edges of curvilinear quadrilaterals are, of course, the images of the edges of SST under
the element maps. For notational convenience, we assume that the edges lying on ∂�

are the image of the edge {0}×[0, 1] under the element map. It then follows that these
elements have one edge on ∂� and the images of the edges {y = 1} and {y = 0}
of SST are shared with elements that likewise have one edge on ∂�. For notational
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convenience, we assume that the elements at the boundary are numbered first, i.e.,
they are the elements �i , i = 1, . . . , n < N ′. For a parameter λ > 0 and a degree
p ∈ N, the boundary layer mesh �BL = �BL(λ, p) is defined as follows.

Definition 3.1 (Spectral Boundary Layer mesh �BL(λ, p)) Given parameters λ > 0,
p ∈ N, ε ∈ (0, 1] and the asymptotic mesh �A, the mesh �BL(λ, p) is defined as
follows:

1. λpε ≥ 1/2. In this case we are in the asymptotic regime, and we use the asymptotic
mesh �A.

2. λpε < 1/2. In this regime, we need to define so-called needle elements. This is
done by splitting the elements�i , i = 1, . . . , n into two elements�need

i and�
reg
i .

To that end, split the reference square SST into two elements

Sneed = [0, λpε] × [0, 1], Sreg = [λpε, 1] × [0, 1],

and define the elements �need
i , �reg

i as the images of these two elements under the
element map MA,i and the corresponding element maps as the concatination of the
affine maps

Aneed : SST → Sneed , (ξ, η) → (λpεξ, η),

Areg : SST → Sreg, (ξ, η) → (λpε + (1 − λpε)ξ, η)

with the element map MA,i , i.e., Mneed
i = MA,i ◦ Aneed and Mreg

i = MA,i ◦ Areg .
Explicitly:

�need
i = MA,i

(
Sneed

)
, �

reg
i = MA,i

(
Sreg) ,

Mneed
i (ξ, η) = MA,i (λpεξ, η) , Mreg

i (ξ, η) = MA,i (λpε + (1 − λpε)ξ, η) .

In Fig. 2 we show an example of such a mesh construction on the unit circle. In
total, the mesh �BL(λ, p) consists of N = N ′ + n elements if λpε < 1/2.

Anticipating that we will need, for the case λpε < 1/2, a decomposition of

S(λ, p) := S p(�BL(λ, p))

into two spaces reflecting the two scales present, we proceed as follows: With �A the
asymptotic (coarse) mesh that resolves the geometry we set

S1 := S p(�A), (3.7)

Sε := {v ∈ S p(�BL(λ, p)) | supp v ⊂ �λpε}, (3.8)

where the boundary layer region �λpε is defined as

�λpε = n∪
i=1

�need
i . (3.9)
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Fig. 2 Example of an admissible mesh. Left asymptotic mesh �A . Right boundary layer mesh �BL

As in the 1D situation, our approximation space S p(�BL(λ, p)) can be written as a
direct sum of S1 and Sε if λpε < 1/2:

Lemma 3.2 Let λpε < 1/2. Then S p(�BL(λ, p)) is the direct sum S1 ⊕ Sε. Further-
more, we have the inverse estimates

‖u‖0,∂�i ≤ Cp‖u‖0,�i ∀u ∈ S1, i = 1, . . . , N ′, (3.10)

|u|1,�i ≤ Cp2‖u‖0,�i ∀u ∈ S1, i = 1, . . . , N ′, (3.11)

|u|1,�i ≤ C
p2

λpε
‖u‖0,�i ∀u ∈ Sε, i = 1, . . . , n, (3.12)

Proof The claim that S p(�BL(λ, p)) = S1 ⊕ Sε follows from the way �BL(λ, p)

is constructed. Let z ∈ S p(�BL(λ, p)). Define z1 ∈ S1 as follows: For the internal
elements�i with i = n+1, . . . , N ′ take z1|�i := z|�i . For�i , i ∈ {1, . . . , n},which is
further decomposed into�need

i and�
reg
i , we consider the pull-back z̃i := z|�i ◦ MA,i .

This pull-back z̃i is a piecewise polynomial on SST = Sneed ∪ Sreg . Define the
polynomial ẑi ∈ Q(SST ) on the full reference element SST by the condition

ẑi |Sreg = z̃i |Sreg

and then set z1|�i := ẑi ◦ M−1
A,i ; that is, the restriction z̃i |Sreg is extended polynomially

to SST . In this way, the function z1 is defined elementwise, and the assumptions on
the element maps MA,i of the asymptotic mesh �A ensure that z1 ∈ H1(�), i.e.,
z1 ∈ S1. Since by construction z|�reg

i
= z1|�reg

i
for i = 1, . . . , n, we conclude that

supp(z − z1) ⊂ �λpε and therefore zε := z − z1 ∈ Sε. The construction also shows
the uniqueness of the decomposition.

The inverse estimates (3.10), (3.11), (3.12) can be seen as follows. The estimate
(3.11) is an easy consequence of the assumptions on the element maps MA,i of the
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asymptoticmesh�A and the polynomial inverse estimates [12, Thm. 4.76]. In a similar
manner, the inverse estimate (3.10), which estimates the L2-norm on the boundary ∂�i

of�i by the L2-norm on�i follows from a suitable application of 1D inverse estimates
(cf. [12, eqn. (3.6.4)]).

For the estimate (3.12), we note that for an element �need
i , we can estimate for any

v ∈ Sε again with assumptions on the element maps MA,i

‖∇v‖0,�need
i

∼ ‖∇(v ◦ MA,i )‖0,Sneed ≤ C
p2

λpε
‖v ◦ MA,i‖0,Sneed ∼ C

p2

λpε
‖v‖0,Sneed ,

where we exploited that v ◦ MA,i is a polynomial of degree p and used the inverse
estimate [12, Thm. 3.91]. ��

We mention already at this point that we will quantify the contributions z1 and zε

of this decomposition in Lemma 3.9 ahead. We close this section by pointing out that
in our setting, one has very good control over the element maps: There exist C > 0
(depending solely on the asymptotic mesh �A) such that

‖M ′
A,i‖∞,SST + ‖(M ′

A,i )
−1‖∞,SST ≤ C, i = 1, . . . , N ′, (3.13a)

‖(Mreg
i )′‖∞,SST + ‖((Mreg

i )′)−1‖∞,SST ≤ C, i = 1, . . . , n, (3.13b)

‖(Mneed
i )′‖∞,SST + ‖((Mneed

i )′)−1‖∞,SST ≤ C
1

λpε
, i = 1, . . . , n. (3.13c)

3.2 Approximation properties of the Spectral Boundary Layer mesh

By construction, the resulting mesh (in the case λpε < 1/2)

�BL = �BL(λ, p) =
{
�need

1 , . . . , �need
n ,�

reg
1 , . . . , �

reg
n ,�n+1, . . . , �N

}

is a regular admissible mesh in the sense of [7]. Therefore, [7] gives that the space

S0(λ, p) := S p
0 (�BL(λ, p))

has the following approximation properties:

Proposition 3.3 ([7]) Let u be the solution to (3.3) and assume that (3.2) holds. Then
there exist constants λ0, λ1, C, β > 0 independent of ε ∈ (0, 1] and p ∈ N, such that
the following is true: For every p and every λ ∈ (0, λ0] with λp ≥ λ1 there exists
πpu ∈ S p

0 (�BL(λ, p)) such that

∥
∥u − πpu

∥
∥∞,�

+ ε
∥
∥∇(u − πpu)

∥
∥∞,�

≤ Cp2 (ln p + 1)2 e−βpλ.

We mention in passing that Proposition 3.3 provides robust exponential conver-
gence in the energy norm. However, as in the 1D case of Lemma 2.5, we can modify
the boundary layer part of the approximant of Proposition 3.3, so as to be able to
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approximate at a robust exponential rate in the balanced norm. This is achieved with
the following 2D analog of Lemma 2.4.

Lemma 3.4 Let v be defined on S = [0, 1]2, and let v be analytic on [0, d0] × [0, 1]
for some fixed d0 ∈ (0, 1]. Assume that for some Cv , γv > 0 and ε ∈ (0, 1], the
function v satisfies the following hypotheses:

(R1) For every ξ ∈ (0, d0), the stretched function v̂ξ : S → R given by v̂ξ (x, y) :=
u(xξ, y), satisfies

‖Dαv̂ξ‖∞,S ≤ Cvγ
|α|
v max{|α| + 1, ξ/ε}|α| ∀α ∈ N

2
0.

(R2) The function v satisfies

sup
y∈[0,1]

|∇nv(x, y)| ≤ Cvε
−ne−x/ε ∀x ∈ [0, 1], n ∈ {0, 1}.

Then there are constants C, β, η > 0 (depending only on γv) such that under the
assumption

ξ

pε
≤ η,

the following is true for the mesh �ξ = {Sneed
ξ , Sreg

ξ } with Sneed
ξ := [0, ξ ]×[0, 1] and

Sreg
ξ := [ξ, 1]×[0, 1]: There is a piecewise polynomial approximation Ipv ∈ S p(�ξ )

with the following properties:

(i) On the two edges x = 0 and x = 1 of S, the approximation Ipv coincides with
the Gauß–Lobatto interpolant of v. On the edge (0, ξ) × {0}, Ipv is given by the
Gauß–Lobatto interpolant corrected by (1− √

ε) x
ξ
v(ξ, 0) (so that (Ipv)(ξ, 0) =√

εv(ξ, 0)), and on the edge (ξ, 1)×{0}, Ipv is the linear polynomial interpolating
the values

√
εv(ξ, 0) and v(1, 0) at the endpoints. Ipv is defined analogously on

the edges (0, ξ) × {1} and (ξ, 1) × {1}.
(ii) The approximation Ipv satisfies

‖(v − Ipv)‖∞,Sneed
ξ

+ ξ‖∂x (v − Ipv)‖∞,Sneed
ξ

+ ‖∂y(v − Ipv)‖∞,Sneed
ξ

≤ CCv

[
e−βp + p2(1 + ln p)2e−ξ/ε

]
,

‖v − Ipv‖∞,Sreg
ξ

≤ CCv(1 + ln p)2e−ξ/ε,

‖v − Ipv‖0,Sreg
ξ

+ ε‖∇(v − Ipv)‖0,Sreg
ξ

≤ CCv p2(1 + ln p)2
√

εe−ξ/ε.

Proof As in the corresponding 1D result (Lemma 2.4), we construct Ipv in two steps.
In the first step, we study the approximation v1 which is given by the piecewise Gauß–
Lobatto interpolant. In the second step, we modify v1 to obtain the additional factor√

ε for the error in the L2-based norms on the large element Sreg
ξ .

123



124 J. M. Melenk, C. Xenophontos

Step 1: For ξ ∈ (0, d0), let v1 be the piecewise Gauß–Lobatto interpolant of v on
the mesh �ξ . For simplicity, we assume ξ ≤ 1/2. The error analysis for v − v1 can
be extracted from the proof of [7, Thm. 3.12]; we highlight here the main arguments
for completeness’ sake. The one-dimensional Gauß–Lobatto interpolation operator
i p : C([0, 1]) → �p has the stability property ‖i p‖∞,[0,1] ≤ C(1 + ln p) by [15].
Together with a polynomial inverse estimate (Markov’s inequality) we get on Sreg

ξ :

‖v1‖∞,Sreg
ξ

≤ C(1 + ln p)2‖v‖∞,Sreg
ξ

≤ CCv(1 + ln p)2e−ξ/ε,

‖∇v1‖∞,Sreg
ξ

≤ Cp2‖v1‖∞,Sreg
ξ

≤ Cp2(1 + ln p)2‖v‖∞,Sreg
ξ

≤ CCv p2(1 + ln p)2e−ξ/ε.

The error analysis for the Gauß–Lobatto interpolation on Sneed
ξ is achieved by

(anisotropically) scaling Sneed
ξ to the reference element S = [0, 1]2. In order to make

use of the regularity properties of the scaled function v̂, we first observe that for n ∈ N0

max{n + 1, ξ/ε}n = max

{
(n + 1)n,

1

n! (ξ/ε)nn!
}

≤ max
{
(n + 1)n, n!eξ/ε

}

≤ n!eξ/ε (n + 1)n

n! ≤ Cn!eneξ/ε,

for some C > 0, where the last inequality follows from Stirling’s formula. The tensor
product Gauß–Lobatto interpolant v̂1 of the stretched function v̂ξ satisfies on S

‖̂vξ − v̂1‖∞,S + ‖∇ (̂vξ − v̂1)‖∞,S ≤ CCveξ/εe−βp,

for some C , β > 0 that depend solely on γv . Returning to Sneed
ξ , we get for the

Gauß–Lobatto interpolation error

‖v − v1‖∞,Sneed
ξ

+ ξ‖∂x (v − v1)‖∞,Sneed
ξ

+ ‖∂y(v − v1)‖∞,Sneed
ξ

≤ CCveξ/εe−βp.

Step 2: We define Ipv as follows (thus correcting v1):

Ipv(x, y) :=
{

v1(x, y) − (1 − √
ε)v1(ξ, y) x

ξ
, (x, y) ∈ Sneed

ξ√
εv1(ξ, y) 1−x

1−ξ
+ x−ξ

1−ξ
v1(1, y), (x, y) ∈ Sreg

ξ .

We note

sup
y∈[0,1]

|v1(ξ, y)| ≤ CCv(1 + ln p)2e−ξ/ε,

sup
y∈[0,1]

|∂yv1(ξ, y)| ≤ CCv p2(1 + ln p)2e−ξ/ε,

sup
y∈[0,1]

|v1(1, y)| ≤ CCv(1 + ln p)2e−1/ε,

sup
y∈[0,1]

|∂yv1(1, y)| ≤ CCv p2(1 + ln p)2e−1/ε.
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From this, we get on Sneed
ξ

‖v − Ipv‖∞,Sneed
ξ

+ ξ‖∂x (v − Ipv)‖∞,Sneed
ξ

+ ‖∂y(v − Ipv)‖∞,Sneed
ξ

≤ CCv

[
eξ/εe−βp + p2(1 + ln p)2e−ξ/ε

]
.

The hypothesis ξ/ε ≤ ηp implies that eξ/εe−βp ≤ e(η−β)p, so that η < β guaran-
tees exponential convergence (in p). The claimed approximation properties on Sneed

ξ

follow.
The approximations on Sreg

ξ are achieved by the triangle inequality ‖v − Ipv‖ ≤
‖v‖ + ‖Ipv‖. The control of Ipv is easily achieved by observing

‖Ipv‖∞,Sreg
ξ

≤ CCv(1 + ln p)2
√

εe−ξ/ε,

‖∇ Ipv‖∞,Sreg
ξ

≤ CCv p2(1 + ln p)2
√

εe−ξ/ε.

Note that we suppressed the contributions arising from v1(1, ·) since our assumption
ξ ≤ 1/2 provides e−1/ε ≤ C

√
εe−ξ/ε for some C > 0. ��

The improved treatment of the boundary layer contribution allows us to sharpen
the approximation result of Proposition 3.3 in the balanced norm:

Corollary 3.5 Under the assumptions of Proposition 3.3, there exist constants λ0, λ1,
C, β > 0 independent of ε ∈ (0, 1] and p ∈ N, such that the following is true: For
every p and every λ ∈ (0, λ0] with λp ≥ λ1, there exists π̃pu ∈ S p

0 (�BL(λ, p)) such
that

‖u − π̃pu‖∞,� + ε1/2
∥
∥∇(u − π̃pu)

∥
∥
0,� ≤ Cp2 (ln p + 1)2 e−βpλ.

Proof In the case that themesh�BL(λ, p) consists of the asymptotic mesh�A, we set
π̃pu = πpu and the proof follows easily from Proposition 3.3, since ε ≥ 1/(2λp) ≥
1/(2λ1). Let, therefore, �BL(λ, p) have needle elements, i.e., the elements �i , i =
1, . . . , n of the asymptotic mesh �A are further subdivided into �need

i and �
reg
i . Our

starting point is the proof of Proposition 3.3 in [7]. There, the approximation is obtained
by a piecewise Gauß–Lobatto interpolation of the function u, which is decomposed
into a smooth (analytic) part w, a boundary layer part u BL , and a remainder r :

u = w + u BL + r.

The approximations of the smooth part w and the remainder r are taken to be those
of [7], i.e., the elementwise Gauß–Lobatto interpolants. The boundary layer part u BL ,
however, is not approximated by its elementwise Gauß–Lobatto interpolant but by the
elementwise Gauß–Lobatto interpolant on the elements�i with�i ∩∂� = ∅, with the
aid of the operator Ip of Lemma 3.4. Inspection of the procedure in [7] shows that the
regularity hypotheses (R1), (R2) of Lemma 3.4 are satisfied and that the approximation
result holds if ξ = λpε with λ ≤ λ0 and λ0 sufficiently small. ��
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3.3 Robust exponential convergence in balanced norms

The main result of the paper is the following robust exponential convergence in the
balanced norm:

Theorem 3.6 There is a λ0 > 0 depending only on the functions b, f and the asymp-
totic mesh �A such that for every λ ∈ (0, λ0], ε ∈ (0, 1], p ∈ N, the hp-FEM space
S p
0 (�BL(λ, p)) leads to a finite element approximation uF E M ∈ S p

0 (�BL(λ, p))

satisfying √
ε‖∇(u − uF E M )‖0,� + ‖u − uF E M‖0,� ≤ Ce−βp;

the constants C, β > 0 depend on the choice of λ but are independent of ε and p.

The proof is deferred to the end of the section. As a corollary, we get exponential
convergenence in the maximum norm.

Corollary 3.7 Let u be the solution of (3.3) and let uF E M ∈ S p
0 (�BL(λ, p)) be its

finite element approximation. Then there exist constants C, σ > 0 independent of
ε ∈ (0, 1] and p ∈ N such that

‖u − uF E M‖∞,� ≤ Ce−σ p.

Proof First we note that Corollary 3.5 provides an approximation πpu ∈ S p
0 (�BL

(λ, p)) with

∥
∥u − πpu

∥
∥∞,�

≤ Ce−βλp.

In view of the triangle inequality ‖u − uF E M‖∞,� ≤ ∥
∥u − πpu

∥
∥∞,�

+ ‖πpu

− uF E M‖∞,�, we may focus on the term
∥
∥πpu − uF E M

∥
∥∞,�

. It suffices to prove

the result in the layer region, i.e., for the elements �need
i , since outside �λpε standard

inverse estimates (bounding the L∞-norm of polynomials by their L2-norm up to
powers of p) yield the desired bound in view of (3.13a), (3.13b).

For a needle element �need
i we introduce π̃pu := πpu|�need

i
◦ MA,i and ũF E M :=

uF E M |�need
i

◦ MA,i . The polynomial inverse estimate of [12, Thm. 4.76] and an affine

scaling argument (between SST and Sneed ) yield

∥
∥πpu − uF E M

∥
∥∞,�need

i
= ∥
∥π̃pu − ũF E M

∥
∥∞,Sneed ≤ C

p2√
λpε

∥
∥π̃pu − ũF E M

∥
∥
0,Sneed

∼ p2√
λpε

∥
∥πpu − uF E M

∥
∥
0,�need

i
,

where in the last step we used the assumptions on the element maps MA,i . The triangle
inequality then gives

∥
∥πpu − uF E M

∥
∥∞,�need

i
≤ C

p2√
λpε

[∥
∥πpu − u

∥
∥
0,�need

i
+ ‖u − uF E M‖0,�need

i

]
.

(3.14)
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For the first term in (3.14) we obtain from the L∞-bound of Corollary 3.5 and the fact
that |�need

i | ∼ λpε, ∥
∥πpu − u

∥
∥
0,�need

i
�
√

λpεe−βp. (3.15)

For the second term in (3.14) we exploit the fact that uF E M = 0 = πpu on ∂� and a
1D Poincaré inequality. To that end, we note that for any function ṽ ∈ H1(Sneed)with
v = 0 on the edge {(0, y) | 0 ≤ y ≤ 1} of Sneed = {(x, y) | 0 ≤ x ≤ λpε, 0 ≤ y ≤ 1},
we obtain from a 1D Poincaré inequality

‖̃v‖0,Sneed ≤ C
√

λpε‖∂x ṽ‖0,Sneed ≤ C
√

λpε‖∇ṽ‖0,Sneed . (3.16)

Upon setting ṽ := (u − uF E M )|�need
i

◦ MA,i , we may use (3.16) together with the
properties of MA,i to get

‖u−uF E M‖0,�need
i

∼‖̃v‖0,Sneed ≤C
√

λpε‖∇ṽ‖0,Sneed ∼√λpε‖∇(u−uF E M )‖0,�need
i

.

(3.17)

Combining (3.14), (3.15), (3.17) gives the desired result. ��

3.4 Proof of Theorem 3.6

The proof of Theorem 3.6 parallels that of the 1D case in Sect. 2. We begin by defining
the bilinear form for the reduced problem,

B0(u, v) = 〈bu, v〉� . (3.18)

We also introduce the projection operator P0 : L2(�) → S p
0 (�BL(λ, p)) by the

condition
B0 (u − P0u, v) = 0 ∀v ∈ S p

0 (�BL(λ, p)).

Then, by reasoning as in (2.24) with Galerkin orthogonalities, we get

‖uF E M − P0u‖2E,� = ε2 〈∇ (u − P0u) ,∇ (uF E M − P0u)〉� .

Hence

ε ‖∇ (uF E M − P0u)‖0,� ≤ ‖uF E M − P0u‖E,� ≤ ε ‖∇ (u − P0u)‖0,� .

The key step towards showing robust exponential convergence in balanced norms is
therefore to show

‖∇ (u − P0u)‖0,� ≤ Cε−1/2e−σ p,

for some C and σ > 0 independent of ε and p. Completely analogous to the one-
dimensional case, we are therefore led to studying the H1-stability of the projection
operator P0 on the Spectral Boundary Layer mesh of Definition 3.1.
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128 J. M. Melenk, C. Xenophontos

Lemma 3.8 (Strengthened Cauchy–Schwarz inequality in 2D) Let B0 be given by
(3.18). Then,

|B0 (u, v)| ≤ C min{1,√λpεp} ‖u‖0,� ‖v‖0,�λpε
∀u ∈ S1, v ∈ Sε,

with S1, Sε given by (3.7) and (3.8), respectively. The constant C > 0 depends solely
on ‖b‖∞,�, inf x∈� b(x) > 0, and the element maps of the asymptotic mesh �A.

Proof We restrict our attention to the case λpε < 1/2 as the “1” in the minimum
is a simple consequence of the Cauchy–Schwarz inequality. With u ∈ S1, v ∈ Sε

there holds B0(u, v) = ∫∫
�λpε

buv. Fix �need
i and recall that it is obtained from an

element �i (i ∈ {1, . . . , n}) by a splitting, i.e., �i = �need
i ∪ �

reg
i . The construction

of �BL(λ, p) implies that the pull-back π1 := u|�i ◦ MA,i to SST is a polynomial of
degree p (in each variable) whereas the pull-back π2 := v|�i ◦ MA,i is a piecewise
polynomial of degree p (in each variable) with suppπ2 ⊂ Sneed . Upon setting b̂ :=
b|�need

i
◦ MA,i , which is uniformly bounded on Sneed , we calculate

∫∫

�i

buv dx dy =
∫∫

�need
i

buv dx dy=
∫∫

Sneed
π1(x, y)π2(x, y)̂b| detM ′

A,i | dx dy.

Since |det M ′
A,i | is bounded uniformly (in (x, y)), we obtain

∣
∣
∣
∣
∣

∫∫

�need
i

buv

∣
∣
∣
∣
∣
≤ C

∫∫

Sneed
|π1(x, y)||π2(x, y)|dxdy

= C
∫ 1

0

∫ λpε

0
|π1(x, y)||π2(x, y)|dxdy.

Now, fix y ∈ [0, 1] and consider

∫ λpε

0
|π1(x, y)||π2(x, y)|dx

≤ Cp
√

λpε

[∫ 1

0
|π1(x, y)|2dx

]1/2 [∫ λpε

0
|π2(x, y)|2dx

]1/2

by Lemma 2.8. Integrating in y from 0 to 1, gives

∫ 1

0

∫ λpε

0
|π1(x, y)||π2(x, y)|dxdy

≤ Cp
√

λpε

∫ 1

0

[∫ 1

0
|π1(x, y)|2dx

]1/2 [∫ λpε

0
|π2(x, y)|2dx

]1/2
dy.
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Using once more the Cauchy–Schwarz inequality, we arrive at

∫∫

Sneed
|π1(x, y)||π2(x, y)|dxdy ≤ Cp

√
λpε‖π1‖0,SST ‖π2‖0,Sneed .

The assumptions on the element map MA,i allows us to infer ‖π1‖0,SST ‖π2‖0,Sneed ∼
‖u‖0,�i ‖v‖0,�need

i
, which concludes the proof. ��

Lemma 3.9 (Stability of P0) There exist constants C, c > 0 depending solely on
‖b‖∞,�, infx∈� b(x) > 0, and the element maps of the asymptotic mesh �A such that
the following is true under the assumption

√
λpεp ≤ c : (3.19)

For each z ∈ L2(�), the (unique) decomposition

P0z = z1 + zε

into the components z1 ∈ S1 and zε ∈ Sε satisfies

‖z1‖0,� ≤ C‖z‖0,�, (3.20)

‖zε‖0,� ≤ C{‖z‖0,�λpε +√
λpεp‖z‖0,�}. (3.21)

Furthermore,

‖∇z1‖0,� ≤ Cp2‖z‖0,�, (3.22)

‖∇zε‖0,� ≤ C
p2

λpε

{
‖z‖0,�λpε +√

λpεp‖z‖0,�
}

. (3.23)

Proof The proof parallels that of Lemma 2.9. With Lemma 3.2 we can write P0z =
z1 + zε. We define the auxiliary function ψε on SST by

ψε(x, y) :=
{(

1 − 2x
λpε

)p
if (x, y) ∈ Sneed

0 otherwise.

Then supp ψε ⊂ Sneed , ψε(0, y) = 1 and ‖ψε‖0,SST
= ‖ψε‖0,Sneed ∼ p−1/2√λpε.

We define the function z̃ε ∈ Sε on the needle elements �need
i by prescribing its pull-

back to Sneed :

(̃zε|�need
i

◦ MA,i )(x, y)

:= (zε|�need
i

◦ MA,i )(x, y) + ψε(x, y)(z1|�i ◦ MA,i )(0, y), (x, y) ∈ Sneed;

here, �i and �need
i are related to each other by �i = �need

i ∪ �
reg
i . It is an effect

of the assumptions on the asymptotic mesh �A that the elementwise defined function
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z̃ε is in fact in H1(�) and therefore indeed zε ∈ Sε. By construction, z̃ε|∂� = (z1 +
zε)|∂� = (P0z)|∂� = 0 so that z̃ε ∈ Sε ∩ S0(λ, p). Noting the product structure of
(zε − z̃ε)|�need

i
◦ MA,i on Sneed and the above estimate on ‖ψε‖0,Sneed , we get for z̃ε

with the inverse estimate (3.10),

‖̃zε‖0,� = ‖̃zε‖0,�λpε
≤ C

{
‖zε‖0,�λε

+ p1/2
√

λpε ‖z1‖0,�
}

.

We also have in view of P0z = z1 + zε

B0(z1, v1) + B0(zε, v1) = B0(P0z, v1) ∀v1 ∈ S1, (3.24)

B0(z1, vε) + B0(zε, vε) = B0(P0z, vε) = B0(z, vε) ∀vε ∈ Sε ∩ S p
0 (�BL(λ, p)) ,

(3.25)

where in (3.25) we used the fact that P0 is the B0–projection onto S p
0 (�BL(λ, p)).

Taking v1 = z1 in (3.24) and vε = z̃ε ∈ Sε ∩S p
0 (�BL(λ, p)) in (3.25) yields, together

with the Strengthened Cauchy Schwarz inequality of Lemma 2.9, just like in the 1D
case,the bounds (3.20), (3.21). The final estimates (3.22), (3.23) follow from (3.20),
(3.21) with the aid of the inverse estimates (3.11), (3.12) of Lemma 3.2. ��

We are now in the position to prove the following

Lemma 3.10 Assume (3.2) and let u be the solution of (3.3). Let λ0 > 0 be given by
Corollary 3.5. Assume that λ ≤ λ0 and that λ, p, ε satisfy (3.19). Then, for constants
C, β > 0 independent of ε ∈ (0, 1] and p ∈ N (but depending on λ)

‖∇(u − P0u)‖0,� ≤ Cε−1/2e−βp. (3.26)

Proof By Corollary 3.5 we can find an approximation πpu ∈ S p
0 (�BL(λ, p)) with

(u − πpu)|∂� = 0 such that

√
ε
∥
∥∇(u − πpu)

∥
∥
0,� ≤ Cp2 (ln p + 1)2 e−βλp.

Since P0(u − πpu) ∈ S p
0 (�BL(λ, p)), we decompose P0(u − πpu) = z1 + zε and

use (3.22), (3.23),

|z1|1,� � p2‖u − πpu‖0,� � Ce−bp, (3.27)

|zε|1,� � p2

λpε

[
‖u − πpu‖0,�λpε +√

λpεp‖u − πpu‖0,�
]
. (3.28)

Let us treat the term ‖u − πpu‖0,�λpε above. Recall that �λpε = ∪n
i=1�

need
i ; from

(3.15) we therefore get ‖u − πpu‖0,�λpε �
√

λpεe−βp. Furthermore, from Corol-
lary 3.5 we readily have ‖u − πpu‖0,� � e−βp. Inserting these two estimates into
(3.27) produces

|zε|1,� � p2

λpε

√
λpεe−βp +√

λpεpe−βp � ε−1/2e−βp,
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where the constant β > 0 is suitably adjusted in each estimate. The result
follows. ��

Proof of Theorem 3.6. Again, we focus only on the control of
√

ε‖∇(u −uF E M )‖0,�.
We distinguish two cases:

Case 1Assume that (3.19) is satisfied. Then (3.26) and Lemma 2.10 yield the result.
Case 2 Assume (3.19) is not satisfied. Then ε ≥ c2 p−3λ−1 so that

√
ε‖∇(u − uN )‖0,� ≤ ε−1/2‖u − uN ‖E,� ≤ 1

c

√
λp3/2‖u − uN ‖E,� � e−bp.

3.5 Numerical example

We close with a numerical example in two dimensions: We consider the problem

−ε2�u + u = 1 in � :=
{
(x, y) | 0 ≤

( x

2

)2 + y2 < 1

}
⊂ R

2,

u = 0 on ∂�,

We approximate the solution to this problem on the mesh shown in Fig. 3 below, using
polynomials of degree 1, . . . , 7.

Fig. 3 Mesh used for the two-dimensional example
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Fig. 4 Maximum norm convergence of the hp-FEM. Left on ameshline within the layer. Right on a generic
line within the layer

123



132 J. M. Melenk, C. Xenophontos

In Fig. 4 we present the error

max
1≤i≤M

|u(ri ) − uF E M (ri )| , M := 20,

versus the polynomial degree p, in a semi-log scale. The M points ri were uniformly
distributed first on the mesh line connecting the points (8ε, 0), (1, 0), as highlighted
in Fig. 3, and second on the generic line, of width approximately 8ε, within the layer
starting from the boundary point (

√
2,

√
2/2) at a −45 degree angle. Figure 4 clearly

shows the robust exponential convergence in the L∞(�)-norm of the hp-FEM on the
Spectral Boundary Layer mesh.
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