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Abstract We propose general spectral and pseudo-spectral Jacobi—Galerkin meth-
ods for fractional order integro-differential equations of Volterra type. The fractional
derivative is described in the Caputo sense. We provide rigorous error analysis for
spectral and pseudo-spectral Jacobi—Galerkin methods, which show that the errors of
the approximate solution decay exponentially in L° norm and weighted L2-norm.
The numerical examples are given to illustrate the theoretical results.

Keywords Jacobi spectral Galerkin methods - Fractional order integro-differential
equations - Caputo derivative

Mathematics Subject Classification 65M12 - 65M70

1 Introduction

Many phenomena in engineering, physics, chemistry, and other sciences can be
described very successfully by models using mathematical tools from fractional cal-
culus, i.e., the theory of derivatives and integrals of fractional order. This allows one
to describe physical phenomena more accurately. Moreover, fractional calculus was
applied to model the frequency dependent damping behavior of many viscoelastic
materials, economics and dynamics of interfaces between nanoparticles and substrates.
Recently, several numerical methods to solve fractional differential equations (FDEs)
and fractional integro-differential equations (FIDEs) have been proposed.
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520 Y. Yang

In this article, we are concerned with the numerical study of the following fractional
integro-differential equation:

t
DY y(t) = y(1) +/ K@, t)y(tdt+ f@), 0<y <1, tel0,T],
0
y(0) = yo, (1.1

where source function f and the kernel function K are given, the function y(¢) is the
unknown function and y(0) € R. Here, the given functions f, K are assumed to be
sufficiently smooth on their respective domains [0, 7] and 0 <t <t < T,ie. f(t) €
C"(0, T, K, t) e C"(),m>1,Q=:{(t,7) : 0 <t <t < T} Suchkind of
equations arises in the mathematical modeling of various physical phenomena, such
as heat conduction in materials with memory [1]. In recent years, the analytic results
on existence and uniqueness of solutions to fractional integro-differential equations
have been investigated by many authors [12].

In Eq.(1.1), DY denotes the Caputo fractional derivative of order y. When y = 1,
(1.1) is the classical integro-differential equation:

t
Y =y +/0 K, o)y(tydr + f(t), t€][0,T],
y(0) = yo. (1.2)

Let I'(-) denote the Gamma function. For any positive integern andn—1 < y < n,
the Caputo derivative is defined as follows:

! P A
DY f(t) = o=y ) G- T)(y_nﬂ)dr, t €la,b], (1.3)

Here 17 denotes the Riemann—Liouville fractional integral of order y and is defined
as

" F ) = L/ta — o (e (14)
T Ja ' '
We note that
n—1 [k
1Y (DY f(1)) = f(t) — ;) f“”(a)a. (1.5)

In order to simplify the notations and without lose of generality, we consider the
case y(0) = 0 in the scheme construction and its numerical analysis. From (1.5),
fractional integro-differential equation (1.1) can be described as
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t
DY y(t) = y(1) +/ K@ vymydr+ f@), 0<y <1, te[0,T],
0

1
L'(y)

t
y(t) =z / (t — )’ "'D” y(v)dr. (1.6)
0

Spectral methods have been proposed to solve fractional differential equations,
such as the Legendre collocation method [9], tau and pseudo-spectral methods[7],
shifted Legendre spectral methods [3], shifted Chebyshev operational matrix [2].
However, very few theoretical results were provided to justify the high accuracy
numerically obtained. Chen and Tang [5] developed a novel spectral spectral Jacobi-
collocation method to solve second kind Volterra integral equations with a weakly
singular kernel and provided a rigorous error analysis which theoretically justifies the
spectral rate of convergence, Recently, in [16, 17], the authors provided general spectral
and pseudo-spectral Jacobi—Petrov—Galerkin approaches for the second kind Volterra
integro-differential equations. Inspired by the work of [16], we extend the approach
to fractional order integro-differential equations and provide a rigorous convergence
analysis for the spectral and pseudo-spectral Jacobi—Galerkin methods, which indi-
cates that the proposed methods converge exponentially provided that the data in the
given fractional integro-differential equation is smooth.

This paper is organized as follows. In Sect.2, we demonstrate the implementation
of the spectral and pseudo-spectral Galerkin approaches for fractional order integro-
differential equation. Some lemmas useful for establishing the convergence result will
be provided in Sect. 3. The convergence analysis for both spectral and pseudo-spectral
Jacobi—Galerkin methods will be given in Sect.4. Numerical results will be carried
out in Sect. 5, which will be used to verify the theoretical results.

2 Spectral and pseudo-spectral Galerkin methods

For the sake of applying the theory of orthogonal polynomials, we use the change of
variable

r= i rdan, x= 20 = tragy, =2
=3 X, x= L T=5 8, 8= ,

and let
1 1
u(x) zy(zT(ler)), DYu(x) = D"y (ET(I—}—x)),

1
gx)=f (ET(l +X)) ,

T 1 1
k(x,s) = EK (ET(I + x), ET(I ~|—s)) .
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The fractional integro-differential equation in one dimension (1.6) is of the form

X

DY u(x) = u(x) +/ k(x,)u(s)ds +g(x), 0<y <1, xeA:=[-1,1],
1

Y X
M(X)ZL(Z) / (x — )" D u(s)ds, @.1)
romo\2) /.,

with —pu =y — 1€ (—1,0).

To propose the Jacobi-spectral Galerkin scheme and investigate the global con-
vergence properties for the problem (2.1), we first define a linear integral operator
G:C(A) — C(A) by

(Go)(x) : /]k(x,S)¢>(S)ds,

o =—— (L) [ e (s)d
(G'$)(x) "W(E) /_1<x—s> ¢ (s)ds.

Then, the problem (2.1) reads: find u = u(x) and D¥u = DY u(x) such that

D”u(x) = u(x) + (Gu)(x) + g(x), x € A,
u(x) = (G'D"u)(x), (2.2)

and its weak form is to find u € L%(A) such that

(D”u,v) = (u,v) + (Gu,v) + (g,v), V veL*A),
(u,v) = (G'D"u, v), (2.3)

where (-, -) denotes the usual inner product in the L>-space.

Firstly, let us demonstrate the numerical implementation of the spectral Jacobi—
Galerkin approach . Denote by N the set of all nonnegative integers. Forany N € N, Py
denotes the set of all algebraic polynomials of degree at most N in A, ¢ (x) is the j-th
Jacobi polynomial corresponding to the weight function o*B(x) = (1 —x)%(1 +x)B.
As a result,

Py = span{go(x), ¢1(x), ..., dn(x)}.

Our spectral Jacobi—Galerkin approximation of (2.2) is now defined as: Find uy €
Py and uz € Py such that

(WUl VN = UN, UN) gt + (GUN, UN) gt + (8, UN) b, YUN € Py,
(uNa UN)wot.ﬂ = (G/sz UN)Q)‘YUB7 (24)
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where

1
(, V) b =/ u(x)v(x)w®P (x)dx

1

is the continuous inner product. Set uy(x) = Z;-V:O &i¢j(x) and u]}i,(x) =
Z;V:O E}/ ¢;(x). Substituting it into (2.4) and taking vy = ¢;(x), we obtain

N N N
D E (i bt = D Ej (i )t + D Ej (D Ghurs + (B @)

j=0 j=0 j=0

N N
D Ej i bt = D E (i G et 25)
j=0 j=0

which leads to quations of the matrix form

AEY = (A+ B)E + GV,
A& = CE&Y, (2.6)

where

E=lk.&,....6n1", €V =1E].& ... &1, Aij= (i, ¢))uus
Bij= (i,Ghj)par, Cij=bi,Gd)pus, GV = (bi,8)pus-
Now we turn to describe the pseudo-spectral Jacobi—Galerkin method. Set

1+ x x—1
0 ,
+ 2

s(x,0) = -1=<0=<1,

it is clear that

X 1
Gu(x) :/lk(x,s)u(s)ds :/1Ig(x,s(x,e))u(s(x,e))de,

1 (T vorl
G'D u(x) =——o (M) / (1 —80)""DYu(s(x, 0))do, 2.7
L) 4 —1
with Iz(x, s(x,0)) = l%k(x, s(x, 0)). Using (N + 1)-point Gauss quadrature formula
to approximation (2.7) yields

N
Gu(x) ~ Gyu(x) = D k(x, s(x, 0)us(x. 6))wy”, (2.8)
k=0
, , 1 (TOU+0) <= -0
G'D"u(x) =~ GyD"u(x) := TJ/) (T) ZDyu(s(x, 0w, (2.9)
k=0
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where {01(},1(\7:0 and {6; },1:’:0 are the (N + 1)-degree Jacobi—Gauss points corresponding

to the weights {a)g’o}llfzo and {w,:”‘o},ivzo, respectively.

On the other hand, instead of the continuous inner product, the discrete inner product
will be implemented in (2.4) and (2.5), i.e.
N
WU V)t X (U, Vgt y = D u(xvwp” (), (2.10)
k=0

where {xk},ivzo and {a)g’ﬁ },ivzoare the (N + 1)-degree Jacobi—Gauss points and their
corresponding Jacobi weights, respectively. As a result,

(U, v)yop = (u, U)wa,,s’N, ifuv € Pyy+1.

Substitute (2.8), (2.9), and (2.10) into (2.4), the pseudo-spectral Jacobi—Galerkin
method is to find

N N
in () =D Eigi(x), iy (x) =D E¢;x)
=0 =0

such that

(i VN by = (N, UN) ety +(GNUN, UN) by + (8. UN) b . YUN E Py,

(I/_lNa vN)wO‘vﬁ’N - (G;Vﬁy[vv vN)th,ﬁ’N, (2'11)

where {£ j}yzo are determined by

N _ N _
D @i dDumen = D E (i d)un
Jj=0

j=0
N -
+ D Ej (i GNP ups y + (i @)t
j=0
N _ N ~
D Ej @i sy = D EV (i) Gy s - 2.12)
Jj=0 j=0

which can be written in the following matrix form

AgY = (A+ B)t + GV,
At = Cg, (2.13)
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with

. - - Sy =
E=k0.&r.... &1, & =15LE ... 80, Al = (B0 0)ues N

Bij = $1.Go)ous N, Cij= (i, G Doy, G = (@i, 8ot n-
3 Some useful lemmas
In this section, we will provide some elementary lemmas, which are important for the
derivation of the main results in the subsequent section.

First we define the Jacobi orthogonal projection operator Iy : Lz) — Py which
satisfies

2
(HNM’ vN)th,ﬁ = (l/l, UN)a)”-ﬁa Vl/l € Lwa,ﬂv UN S PNv

Limﬂ (A) = {u, u is measurable and ||u|| .« < 00},
1

1 2
]l s = (/ uz(x)w""ﬂdx) : (3.1)
—1

Furthermore, we define

H" ,(A) = {u:D'ue L2, ,(A),0<k<m)

m 3
lullm, ) = (Z ) :
0

Lemma 3.1 (see [16]) Suppose that u € H’" s(AN) andm <1, then

equipped with the norm

dxk

lu — Myullyep < CN" (3.2)

| | ’"N(A)a

”u_HNM”OO <CN4 m|u|H’"N(A)7 (33)

where |u| ,m:~n , ., denotes the seminorm defined by

Hwo"/g (A)

172

m 2

|”|H ) T Z

k=min(m,N+1)

d*u

k

P

Lemma 3.2 (see [8]) Suppose that u € Lim 5 (A), then

ITvullyep < Cllullges,  ITutlloo < Cllulloo-
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Lemma 3.3 (see [4]) Assume that an (N +1)-point Gauss quadrature formula relative
to the Jacobi weight is used to integrate the product ug, where u € H™ (1) for some
m > 1 and ¢ € Py. Then there exists a constant C independent of N such that

1
‘/ u(x)(p(x)a)“’ﬁ(x)dx — (U, @) o N| < CN_m|M|Hm.I\é(A)”§0”wa,f3. (3.4)
-1 %

Lemma 3.4 (see [4]) Assume that u € szlﬁ (A), m > 1, Iﬁ’ﬁu denotes the interpo-
lation operator of u based on (N + 1)-degree Jacobi—-Gauss points corresponding to
the weight function P (x) with —1 < a, B < 1, then

lu — 12Pu)l s < CN™ (3.52)

m
] ymv s
"N (A)

—l<ap<-1

CNz—™ log Nl s L

CN"H (u] v )

[5)

(A)?

lu — I9Pu) o0 < (3.5b)

otherwise, v = max(a, B),

1 1
where w° = w™ 272 denotes the Chebyshev weight function.

Lemma 3.5 (see [11]) For every bounded function u, there exists a constant C, inde-
pendent of u such that

NP U s < Clelloos

where Iﬁ;’ﬂ u(x) = z;\;o u(x;)Fj(x) is the Lagrange interpolation basis function
associated with (N + 1)-degree Jabobi-Gauss points corresponding to the weight
function w®P (x).

Lemma 3.6 (see [11]) Assume that {F; (x)}j-v:() are the j —th degree Lagrange basis

polynomials associated with the Gauss points of the Jacobi polynomials. Then,

OdogN), —1<a, B=<-3,

O(N‘H'%), v = max(«, B), otherwise.

(3.6)

N
1P )loo < > | Fix) |=
1Ty ||oo_x€rP_311’fl]‘0| () | [
j:

Lemma 3.7 (see [14]) For a nonnegative integer r and k € (0, 1), there exists a con-
stant Cy.,. > 0 such that for any function v € C"*([—1, 1]), there exists a polynomial
Sfunction Tyv € Py such that

lv = Tyvlloo < Cre N~ vl e, 3.7

where || - ||y« is the standard norm in C™*([—1, 11), Tn is a linear operator from
C"*([—1, 1]) into Py, as stated in [14,15].
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Lemma 3.8 (see [6]) Let k € (0, 1) and let M be defined by
(Mv)(x) = / (x — 1) "K(x, t)v(r)dr.
-1

Then, for any function v € C([—1, 1]), there exists a positive constant C such that

IMv(x') = Mou(x")]

|x/ _x//|

<C max |v(x)|

under the assumption that 0 < k < 1 — u, forany x', x" € [—1, 1] and x' # x". This
implies that

||Mv||0K<C max |v(x)| O<k<l—pn

Here and below, C denotes a positive constant which is independent of N, and
whose particular meaning will become clear by the context in which it arises.

4 Convergence analysis for spectral and pseudo-spectral Jacobi—Galerkin
method

According to (2.4) and the definition of the projection operator Iy, the spectral
Legendre-Galerkin solution uy and u% satisfies

uly = uy + MyGuy + Iyg,
v = TyGul, 4.1

Theorem 4.1 Suppose that uy is the spectral Jacobi—-Galerkin solution determined

by (2.4), if the solution u of (2.1) satisfies u € H::f;g(A), then we have the following
error estimates

lu — unlloo < CN3™"Vy,

1D”u — ulloc < CN3 ™"V,

lu = unlyor = CNT" (CNI* 1) Vi, k€ (0. 7),

1D 1t — || o < N (CN%—K + 1) Vi, ke,y), (4.2)
where V| = |u|H:};f>;(A) + |Dyu|H:&ﬁg(A).
Proof Subtracting (4.1) from (2.2), yields

D”u—uﬁl\, =u—uy+Gu—TyGuy +g—Tlyg,
u—uy=GD"u—TyGul,. 4.3)
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528 Y. Yang

Sete=u—uy,e’ =D"u — uz Direct computation shows that

Gu — HNGMN
=Gu —TIyGu+TING(u —uy)
=Gu—TIIyGu+Gu—un) —[Gu—uy) —TIyGu —un)]
=D'u—u—g —TnD"u—u—g) +Gu—uy)
=[G —un) —TNG(u —un)]
=D"u—u—g)—TMyD"u—u—g)+ Ge —[Ge —TIyGel. (4.4)

Similarly,
G'D"u —TING'ul, =u — yu+ G'e¥ —[G'e’ —TIyG'e"]. (4.5)

The insertion of (4.4) and (4.5) into (4.3) yields

X

e’ (x) = e(x) +/ k(x,s)e(s)ds +DYu —TIyDYu +u — Myu + [[IyGe — Ge]
1

X
=e(x) +/ k(x,s)e(s)ds + 11 + I + Is,
1

0= £ (102

Y X
) ) /_1 (x — )L (s)ds + I + L, (4.6)

where
L=D"u —TnyD"u, L=u—Tyu, L=INGe—Ge, L=IIyGe" —G'e".

Using the Dirichlet’s formula which states that

/x /r D (7, s)dsdt = /x /x (7, s)dtds, 4.7)
—1J-1 —1Js

provided the integral exists, we obtain

e’ (x) =e(x) + /x (/X Lk(x, s)ds) (x — 1) "V (t)dr
1 \Je T(»)

+ / k(e $) (I (s) + 1a(s)) ds + 11 () + D (x) + I3(x)
1

X

<le()|+ C/l(x =) Hle’[(T)dT + |11 (x)] + [ 12(x)]

+ Cli3(x)| + ClI4(x)]. 4.8)
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It follows from the Gronwall inequality that

4
e (x) lloo< C(II e(x) lloo +Z Il 1 IIOO),

i=1

4
I e(x) lloo=< C(II e’ (x) lloo +Z Il Zi IIOO),

i=1

then we have

4
e (%) oo € D I i lloos

i=1

4
le@) lloo< €D~ 11 i oo - (4.9)
i=1
By Lemma 3.1,
3_
1loe < CN A 1D ul
3_
2]l < CN4 m|u|H{:2,I>’3(A)’ (4.10)
X
il =N | [ K etsyds <N el @D
-1 g (M)
In the virtue of Lemmas 3.2, 3.7 and 3.8,
I 14 lloo= || (My — DHMe” |l
= | My = H(Me” —TyMe”) |l
< | Iy(Me" =Ty MeY) [loo + | Me” —TyMe” |l
<C | Me" —TyMe" ||lx
<SCN | M o k€0, 1 —p)=(0,y)
<CN e lloo - 4.12)

Combining (4.9), (4.10), (4.11), and (4.12), when N is large enough, we obtain
3_
lu = unlloo < CNET" ('”'H:;f,ém) * 'Dy”'H;”cifEW) ’
v 3_
IDYu = ulyllo < CNF™" ('“'ng%w + 'Dy“'ﬂfé,’é<A>) '

Now we investigate the || - || ,«.s-error estimates. It follows from (4.8) and Gronwall
inequality that
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530 Y. Yang
4
1e? () llyas < C DN i ll g
i=1
4
1 e@) lyos < C DI i s - (4.13)
i=1
Due to Lemma 3.1, we have
1 Eillges < CN 7"l gy )
| 2llges < CNT"IDYul o . (4.14)
X
113l es < CN™! / K (x.s)e(x) <CN el  (415)

— LN
1 Hwﬂtﬂ (A)

It follows from Lemmas 3.2, 3.7 and 3.8 that

I 14 lloewr = I My — DMe” |lo=] (Iy — I)(Me" = TyMe") ||o
< | Iy(Me” =Ty Me") |lo + | Me” = TyMe” |l
= C | Me" =TyMe” |

SCN [ Me” lox= CNT 1€ lloos Kk € (0,1 —p)=(0,y).

The combination of (4.13), (4.14), (4.15), and (4.16) yields,

It — uplyep < CN™ (1 + N%”‘) VL.

107 =l pes < CNT" (14 N3) 1y,

provided N is large enough. Hence, the theorem is proved.

(4.16)

O

As IIO\;”S is the interpolation operator which is based on the (N + 1)-degree Jacobi—
Guass points, in terms of (2.11), the pseudo-spectral Galerkin solution iy satisfies

(i, V) ot = (N, UN) p + (Iﬁ’ﬂGNﬁN, UN) et + (Iﬁ;ﬁg, UN) .8 5

(N, U)ot = (TSP G, uN) s, Vun € Py.
Let

I(x) = GIZN — GNIZN
N

1
=/ ke, s(x,0)u(s(x,0)d0 — D> kx, s(x, G)uls(x, 0oy,
-1

k=0
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Note that ﬁ%(x) € Py,

1 N
(1, ul, (s(x, 0))) 1.0 :/ 1(1 —0) Mul, (s(x, 0))do = ZDyu(s(x, e,g))wk‘“’o
- k=0

=(1, uy (50, 0))) 10y

so we have

rY Y
NuN_GuN.

Combing (4.17) and (4.18), yields

@y UN s = (N, Nt + (TP Gy — 1P 1(x), un) s + (TP g, o) g,

(AN, UN) o = (1,‘3"36’%, UN) b, YUN € Py. (4.19)
which gives rise to
i, =i + 1P G — 18P 1) + 187 g,
(4.20)

=N _ qaB v
u’ =I1y"Guy.
We first consider an auxiliary problem, i.e., find 2" € Py, such that

(@, V) gty = (AN, V) oty + (GilN, UN) gos v + (8, UN) o s YUN € Py,

(AN, V) oty = (G, UN) gy - (4.21)
In terms of the definition of I[‘f,’ﬁ , (4.21) can be written as
(@, VN et = (AN, UN) g + (I;’ﬂGﬁN, UN) b+ (szﬁg, UN) B s
(ln, U)o = TSP G, uN) s, Von € Py, 4.22)
which is equivalent to
Wl =iy + 157 Gay + 157,
iy =196 (4.23)

Lemma 4.9 Suppose aN s determined by (4.23), —1 < v = max(«, f) < min(0, y —
%) and 0 < k < y, if the solution u of (2.1) satisfies u € HZ:;]»;] (A), we have
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CN2 MlogNV,, —1<v< —5,

lu —inlloo <
CNVHI-my, otherwise,

IDYu — iy lloo <
N CNVHI-my, otherwise,

CN—™ (V1+10gNN2 KVZ) —1<v<—7,

CN™™ (Vi + N" 1% v,) otherwise,

[CN2 MlogNV,, —1<v< —5,
lu —iin | yos <{

CN—™ (V1 +10gNN§_KV2), —-1<v< —%,

DY u — 4% | yes <
N N—™ (Vl + NVtl-k V2) , otherwise,

where V2=|M|HmN +|D M|HmCN(A)
(1)

Proof Subtracting (4.23) from (2.2), yields

D”u—ft%=u—ﬁN+Gu—I§l,’ﬁGuN+g— ]‘f,ﬁg,
u—iy=GD"u a’ﬂG/uyN
N

Sete =u — i, &¥ = DYu — it},. Direct computation shows that

Gu — 12 GV

= Gu— 12" Gu + (Gu — GV — [(Gu — Gy — 19 (Gu — GﬁN)]

= (D'u—u—g)— I¥P(DYu—u— )+ Ge — [Ge — [P Gs]

(4.24)

(4.25)

=D u -1 D u+ 13Pu —u+ 19Pg — g + Ge — [Ge — 137 Gel (4.26)

G'D'u— 13 G, =u— 13 u+G's” —[G's” —13PGe"].

The insertion of (4.26) and (4.27) into (4.25) yields

X
g’ :£+/ k(x,s)e(s)ds + J1 + Jr + J3,
—1

F(ly)( ) /(x ) "LV ()ds + Iy + Ja,

where

B=u—-I3"w, Hh=D"u—-12"D"u, J5=1"Ge - G,
Jy = I;;’ﬁG’sy —G'e?.

4.27)

(4.28)

A similar procedure of (4.6)—(4.8) in Theorem 4.1, and using the Dirichlet’s formula

(4.7), we have
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X
e <e+ c/ (x — )Y 'Y (s)ds + J1 + Jo + J3 + Ja, (4.29)
-1
it follows from Gronwall inequality that
6" ) lloo = € (11 lloo + 12lloe + 13 ll00 + [ alloo)

lle@)lloo = € (1M1 lloe + 12lloo + [ alloo + [ /alloo) - (4.30)

Due to Lemma 3.4,

1_
CN27""log N|u|Ha,:1L.,N(A), -

1
B
[1lloo = llu — Iy ulloo <
J— 1_ ] 9
CNVT m|M|H(Zn(;N(A), -5 <v <0,

IA
<
A
|
-

(A
CN =" DY u| oy —
€

1
CN27™ 10gN|DyM| m,N -
12lloe = IDYu — I9P DY ull oo < Hok

= =
IA
<
A
=)

(A)’
4.31)

By virtue of Lemma 3.4 with m = 1, we obtain

13000 = 15 Ge — Gelloo
CN~%log N||Gell v, —1
CNY|[Ge| in, -1<v

_1
S{CN 2log Nlle()loos — 4.32)

1
CN"lle() oo —%
It follows from Lemmas 3.7, 3.8 and 3.6 that

I Jg loo= Il ISP = DHMe? ||
= | 2P — H(Me” =Ty Me?) ||l
< | Iy (MY — Ty Me?) oo + || Me? — TyMe? ||

_[otog Ny | Me? - TyMe? oo, —1<v =1,
o) | Me? — TyMe” oo, —) <v <min, y — by,
ClogNN™ | Me" Jo.. —1<v=<-—3,
CNVFIF | Me? o, —1 <v <min(0, y — ),

S[
<[ClogNN_" e los —1<v<-1
S[

0<k <y,

- : 0<k <y,
CN" 27 || &7 oo, —1 <v <min(,y — }),

Clog NN (I1lloo + I12lloc + 1 M4lloo + [ /alloo) ,

S (4.33)
CN 27 (IMilloo + 12lloo + 1 /alloo + 1 4lloo) -
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Combining (4.30), (4.31), (4.32) and (4.33), when N is large enough, we obtain

1_
CN3 ™ log N (|u|H:éN(A) + |DVM|HZ,[,N(A)), “l<v<-1

i8]

lu —iinlloo < '

CNVHLI-m (|u|Hm(,N(A) + |DVu\HmC.N(A)) s —% <v <min(0, y — %),

1_
CN?~"1log N (|u|H;ﬂéN(A) + |DVu|H;,;,N(A)), “1<v<-1

IDYu — iy lloe < ot lem I : |
CN (|u|Hﬁ;N(A) + |DVM|HL/:C.N(A)) , —3 = v <min(0,y — 3).

Now we investigate the | - || ,«.s-error estimate. It follows from (4.28), (4.29) and
the Gronwall inequality that

le” )l < € (11l e + 12l + 131l + 1alles)
le@ s < C (11wt + 120lges + 130lges + [ Jallgos) . (4.34)

By Lemma 3.4, we have
1l = e = 7Pl < CN™" it ey
|21l yes = [|1DY 1 — If\;’ﬁD”una,ﬁ < CN_”’|DVu|Hma;/2. (4.35)
By virtue of Lemma 3.4 with m = 1, we obtain
1 3les =N Ge = Gellyan < CN ™V IGell oy

=CN~!

/X k(x,t)e(s)ds
1

o SONTUHe@lges.  (4.36)
H'

It follows from Lemmas 3.5, 3.7 and 3.8 that

I Jg lpes= | UZP = DMe? || pup=I (TP = D(Me? — Ty Me?) ||yt
< || IyP(Me? — Ty Me?) [l yup + | Me? — TyMeY |l s
< C | Me” —TyMe” [oo< CN™* || 6 |loo - (4.37)

Combining (4.34), (4.35), (4.36), and (4.37) we obtain, when N is large enough,

CN—™ (Vl +10gNN%_"V2) , —l<v< —%,

”u - ﬁN”wa’ﬁ = { —m v+1—k 1 : 1
CN (V1+N Vz), —5 =<V <m1n(0,y—§),

CN—™ (vl +1ogNN%—Kv2), “1<v<-1,

IDY u — i || yop < : : |
CN™™ (Vi + N" 1% y,) —5 <v <min0,y — 3).

This completes the proof of the lemma. O
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Theorem 4.2 Suppose that the solution u of (2.1) satisfies u € H(Zf;g A),-1<v=

max(«, ) < min(0, y — %) and 0 < k < y, for the pseudo spectral Jacobi—Galerkin
solution uy, such that (2.11) holds, we have

lu — inlloo
CN=" [log NK*|lull 00 + log NN%VZ], —1<v<-1
CN= | N"*2 K*|lul o0 + N““Vg], otherwise,

IA

=Y
I1D”u — ity lloo

CN " [log NK* ull oo +log NN3 V2], =1 v < — 1,

= CN—™ -N”+%K*||u||wo<o + N”+1V2] , otherwise,
llu — il s
N [(1 4+ log NN=%) K*[lufl 00 + Vi +1ogNN%*KV2] L ol=v<-l
=en—n '(1 + N”+%—K) K*[lull 00 + Vi + NVF1¥ Vz] . otherwise,

=Y
IDY u — ity [l et

CN=" [ (1+10g NN~¥) K*lullypo + Vi +1og NNE V3], =1 = v < =4,

CN—™ (1 ¥ N”+%*K) K*[lull o0 + Vy + NVFI=* Vg] , otherwise,
) (4.38)

IA

where K* = max,e(—1,1) [k(x, s(x, '))|Hm0;l(\)/.

Proof Now subtracting (4.20) from (4.23) leads to

iy — iy = 120G}, — G'ik), (4.39)
by setting E = ity — at™, EV =iy, — iy

E" =E+IYPGE-18"1x) =E+ GE - GE+ IVPGE - 1371 (x)
—E+GE+ 0 —I2P1(0),
E=1Y"G'E" =G'E" —G'EY + IY"G'EY = G'E” + 0>, (4.40)
which yields
E" =G'E” + 02+ G(G'E” + Q1) + 01 — I3 1 (x), (4.41)
with Q; = I;‘,’ﬁGE — GE, Q) = Ig,’ﬁG’EV — G'EY. It follows from a similar
procedure of (4.6)—(4.8) in Theorem 4.1, the Dirichlet’s formula (4.7) and the Gronwall

inequality that
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1E oo = 11 Q1lloo + 1Q2lloo + I3 T () o
1Elloo = 11 Q1lloo + 11Q2llo + 115" 1 (1) lc- (4.42)

By virtue of Lemma 3.4 withm = 1,

_1 1
B CN7Zlog N| E|loo, I<v<-—3,
101l = 1y"GE — GE|loo <
o i (e Vo —i<v<o
Similarly to (4.33), we have
CN™logN[|E” |0, —1<p<—1,
10200 = IIIZ”SG/EV —G'E" | < vl e = 1 ; !
CN" T2 EY oo, —5 v <min(0,y — 3).

Using Lemmas 3.3 and 3.6, we have

Clog N maxye(—1.1y I (x), —1<v<—l,
NPT )l < | € BN Maetp T, =S v <=
CN" Imaxie1,1(x), —5 <v <0,
CN™"log N maxye(—1,1) [k(x, s(x, -))IHmd%/IIﬁNllwo,o, —1<v<-1,
f l [Ohal _
CN™"N""2 maxye—1,1) [k(x, s(x, -))IHng_glluNIIwo,o, —1=<v<o,
CN™log N maxye(—1,1) [k(x, s(x, '))|Hm0:g (lullyoo + I1Eloc) s, —1<v < —1,
=< 1 @
CN™" N 2 max,e(—1.1y |k(x, s(x, .))|H,,,0;g (lll oo + I Ellos) . —% <v <O0.

Set K* = maxye(—1,1) lk(x, s(x, '))|Hm;N, we now obtain the estimate E by using
0,0
(4.42)

CN™log NK*|[u]l 00, —1<v < —1,
||E||oosl gN K ullyp0. —L=v <=3

CN"FI ™ K* ul 00,  —% <v<min(0,y — 1),
CN~"log NK*|lul| 00, —1 <v<—1,
IE oo <7 oy | 2 1 (4.43)
CN" 27" K*|lu 40.0, —5 <v <min(0, y — 3).
Next, we will give the error estimation in || - || .. It follows from (4.41) and the

Gronwall inequality that

IE s = 11011l + 1 Q2ll ot + 157 1)yt
1l o5 = 1101 s + Q2 + 1157 106 ] s - (4.44)

Due to Lemma 3.4,
TR 2 -1
1Q1llpes =y " GE — GE||yop < CN™ | E|| -
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|Q2 ||« can be established in a similar way as (4.37),
1Q2ll s = 113" G'EY — G'EY |yt < CNTFEY || s
Using Lemmas 3.3 and 3.5, we have

NP 1) s < CIT e < CNTK* ([lull o0 + 1 Elloo) -

We obtain
E CN™™ (1 4+1log NN~) K*[lull 00, —1<v<—3,
. <
1E ot <7 ¢ py-m (1 n NV+%—K) K*lull 00, —1<v<o,
CN™™ (1 4+1log NN~) K*[lull 00, —1<v<—3,
IEY | gap < m o) o : (4.45)
CN (14 N ) Ko ful00, —4 < v

when N is large enough.
Finally, it follows from triangular inequality, Lemma 4.9, (4.43) and (4.45), that

llu — ity lloo

IA

lu —dinlloo + llitn — iin oo
CN=" [log NK*[lull 00 +1ogNN%v2], l<v<—1

| N [N K g0 + NIV =4 < v <min@,y = b,

=

D7 u — it} oo
<UD u— i lloe + litly — it oo

[CN—'" [log N K*|[ull 0.0 + log NN%VZ], l<v<-—

CN=™ [ N3 K o0 + N“+‘v2], _1l <y <min@©,y — .

=

lu —iinll o < lu —iinllpos + iy — N op
N[ (1 4 log NN=%) K*[lull oo + V) +1ogNN%*Kv2], l<v<-1
CN—™ (1 n N”+%—K) K*[lull o0 + Vi + N 1% V2] , ~1<v<min©,y - b,

IA

=Y ~Y ~Y =Y
DY u — MN”wa,B <|D"u — u}v”w‘*ﬁ + H"‘N - u}v”wavﬂ

N [(1+1og NN=%) K*||ul o0 + Vi +log NNT~* Vg], l<v<-1

CN—™ (1 + N”+%*") K*[lull 00 + Vi + N+ vz], —1 < v <min@©,y - 1.

IA

We obtain the desired estimated (4.38). O

5 Numerical experiments
We give some numerical examples to confirm our analysis. To examine the accuracy

of the results, || - || and || - || .5 errors are employed to assess the efficiency of the
method. All the calculations are supported by Matlab.
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4 6
——— Approximate solution,y=0.25 “£  Approximate ‘derivative
3.5 —— Approximate solution,y=0.5 Exact derivative
) Approximate solution,y=0.75 5
Exact solution y=1
%  Approximate solution y=1
4
3
2
1
0.5 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 1 Example 5.1: Approximation solutions of spectral Jacobi—Galerkin method with different y and
exact solution of y(r) with y = I(left). Comparison between approximate solution of spectral Jacobi—
Galerkin method and exact solution of y’(¢)(right)

Example 5.1 Consider the following fractional integro-differential equation

t
DY y(1) :1+2t—y(t)+t(1+2t)/ Ty (1)dr,
0

y(0) =1 (5.1

when y = 1, the exact solution of (5.1) is y(¢) = e’ (the only case for which we
know the exact solution).

We have reported the obtained numerical results of spectral Jacobi—Galerkin method
for N = 20 and y = 0.25,0.5,0.75 and 1 in Fig. 1(left). We can see that, as y
approaches 1, the numerical solutions converges to the exact solution y(¢) = e’z, ie.
in the limit, the solution of fractional integro-differential equations approaches to that
of the integer order integro-differential equations. When y = 1, (5.1) is an integro-
differential equation, y’(t) = 2te’2, Fig. 1(right) illustrates the numerical result of
spectral Jacobi—Galerkin approximation solution for N = 20 and exact solution of
y'(@).

For y = 1, we adopt the spectral and pseudo-spectral Jacobi—Galerkin methods
with Jacobi weight o’ 17" 1(x) = ©%0(x). First we implement the numerical scheme
(2.4) based on the spectral Jacobi—Galerkin method to solve this example. Figure 2(left)
illustrates || - ||o and || - || ,«.p errors of spectral Jacobi—Galerkin method versus the
number N of the steps. Next the || - [|oc and || - || s errors of the pseudo-spectral
Jacobi—Galerkin method are demonstrated in Fig. 2(right). Clearly, these figures show
the exponential rate of convergence predicted by the proposed method.

In practice, many Volterra equations are usually nonlinear. However, the nonlinear-
ity adds rather little to the difficulty of obtaining a numerical solution. The methods
described above remain applicable. Below we will provide a numerical example using
the spectral technique proposed in this work.
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10° &’:n 107 E
NS TR -k-L]]
10” ~:g, 100w A
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10° g 10° X A
-8 NS o% 8 % A
10 o 10 NN
-10 e _10 % A
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AN -12 ~
10 RS 10 . >
AN * A
10-14 N \/@,\ 10—14 AN ~.
o0 b
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 18 20
2<N<20 2<N<20

Fig. 2 Example 5.1: L*° and L(%) errors of spectral Jacobi—Galerkin method versus N (left). L and Lz)
norms errors of pseudo-spectral Jacobi—Galerkin method versus N (right)

Example 5.2 Our second example is about a nonlinear problem in one-dimension.
Consider the following fractional integro-differential equation,

t
DOSy(t) = f()y(1) + (1) + V7 /0 Vo),
¥(0) =0 (5.2)

with

2 inh(+/t
arcsin h(y/7) o

f(t):2\/;+2[%—(\/;-f-t%)ln(l-i-t)’ g(t) = Jr(l+0) :

The exact solution is y(¢) = In(1 4 ¢).

This is a nonlinear problem. The numerical scheme leads to a nonlinear system, and
a proper solver for the nonlinear system (e.g., Newton method) should be used. Figure 3
presents the approximate and exact solution, which are found in excellent agreement.
Next, Fig.4(left) illustrates the L°° and qu errors of the spectral Jacobi—Galerkin
method, Fig. 4(right) illustrates the L* and Lf) errors of the pseudo-spectral-Galerkin
method. These results indicate that the spectral accuracy is obtained for this problem,
although the given functions f(¢) and g(¢) are not very smooth.

Example 5.3 Following Odibat and Momani [13], we consider fractional Riccati equa-
tion

DYy(t) =2y(t) —y®)*+1, O<a<l1, 0<r<2 (5.3)
subject to the initial state y(0) = 0, which is studied by Odibat [13] by using the
modified homotopy perturbation method and Li [10] by using the Chebyshev wavelet
operational matrices method. Here we use pseudo-spectral Galerkin method to solve

it.
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0.7

Exact solution
0.6 ¥  Approximate solution E

0 . . . .
0 0.2 0.4 0.6 0.8 1

Fig. 3 Example 5.2: Comparison between approximate solution and exact solution of y(#)

@ @
163 ‘\ O L:1 10’3 "; "O"L:1
“ ol » Bl
_4 " 10*4 \_‘,\
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10 8\8 oy ©
-8 - 107 oL T
8 '~,8: - Q. - -4
10 814 10° %6
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
2<N<20 2<N<20

Fig. 4 Example 5.2: L*° and Li errors of spectral Jacobi—Galerkin method versus N. L® and Lg, norms
errors of pseudo-spectral Jacobi—Galerkin method versus N

This is a nonlinear system of algebraic equations. The numerical solution, for
N = 20, is shown in Fig. 5. The exact solution of this problem, when o = 1, is

V2-1

1
(1) = 1+ 2tanh | V2t + =In| ~——
Y 2 \V2+1

and we can observe that, ast — oo, y(¢t) — 1+ V2. Figure 5 shows that our numerical
solution is very good agreement with the exact solution when « = 1. When o = 0.5
and o = 0.75, the numerical solution is very good agreement with the result in [10].
Therefore, we hold that the solution for « = 0.5 and @ = 0.75 is also credible.
Table 1 shows the comparison of the numerical approximations of [10, 13] and this
paper on the discrete points in [0, 1]. We think our results are better than that in [13]
fora = 0.5 and @ = 0.75, because in [13] only the fourth-order term of the homotopy
perturbation solution were used in evaluating the approximate solutions. While the
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*
0 0.5 1 15 2
t
Fig. 5 The behavior of the exact and approximate solution of example with N = 20 of Example 5.3
Table 1 Numerical results with comparison to Refs. [10] and [13] for Example 5.3
t a=0.5 o =0.75 a=1.0
Ref. [13] Ref. [10] Ours Ref. [13] Ref. [10] Ours Ref. [13] Ref.[10] Ours Exact
0.1 0.3217  0.5957 0.5550 0.2168  0.3107  0.2343 0.1102  0.1103 0.1103 0.1103
0.2 0.6296  0.9331 0.9120 0.4288  0.5843  0.4692 0.2419  0.2419  0.2420 0.2420
0.3 0.9409 1.1739 1.1533 0.6546  0.8221 0.7031 0.3951 0.3951 0.3952 0.3951
0.4 0.2507 1.3466 1.3265 0.8914 1.0249  0.9289 0.5681 0.5678  0.5678 0.5678
0.5 1.5494 1.4738 1.4575 1.1327 1.1986 1.1383 0.7575  0.7560  0.7560 0.7560
0.6 1.8254 1.5705 1.5600 1.3702 1.3491 1.3250 0.9582  0.9535 0.9536 0.9536
0.7 2.0665 1.6461 1.6412 1.5942 1.4814 1.4855 1.1634 1.1529 1.1529 1.1529
0.8 2.2606 1.7068 1.7058 1.7948 1.5992 1.6194 1.3652 1.3463 1.3465 1.3464
0.9 2.3968 1.7566 1.7571 1.9622 1.7053 1.7287 1.5549 1.5269 1.5269 1.5269
1.0 2.4660 1.7982 1.7986 2.0873 1.8017 1.8170 1.7281 1.6894 1.6895 1.6895

Chebyshev wavelet operational matrices method in [10] used 192 degrees of freedom,
our method reached the same accuracy with only 20 degrees of freedom.

6 Conclusions and future work

The fractional derivatives are global dependence problems, they are definite by the
integral in [0, T], from this point, the global methods spectral methods is more suit to
solve the FIDEs than the local method, such as finite difference methods. This work has
been concerned with the spectral and pseudo-spectral Jacobi—Galerkin analysis of the
fractional order integro-differential equations of Volterra type with Caputo derivatives.
The most important contribution of this work is that we are able to demonstrate rig-
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orously that the errors of spectral approximations decay exponentially in both infinity
and weighted norms, which is a desired feature for a spectral method.

Although in this work our convergence theory does not cover the nonlinear case,
the methods described above remain applicable, it will be possible to extend the results
of this paper to nonlinear case which will be the subject of our future work. We only
investigated the fractional derivatives are described in the Caputo sense, in our future
work, the case other definitions of fractional derivatives (Riemann-Liouville, Riesz,
Grnwald-Letnikov), the spectral Jacobi—Galerkin methods will be studied.
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