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Abstract Wepropose and study an iterative substructuringmethod for anh-pNitsche-
type discretization, following the original approach introduced in Bramble et al. Math.
Comp. 47(175):103–134, (1986) for conforming methods. We prove quasi-optimality
with respect to the mesh size and the polynomial degree for the proposed precondi-
tioner. Numerical experiments assess the performance of the preconditioner and verify
the theory.
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1 Introduction

Discontinuous Galerkin (DG) interior penalty (IP) methods were introduced in the late
70’s for approximating second order [8,34,59] and fourth order problems [15]. They
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were arising as a natural evolution or extension of Nitsche’s method [51], and were
based on the observation that interelement continuity could be attained by penalization;
in the same spirit Dirichlet boundary conditions are weakly imposed for Nitsche’s
method. The use, study and application of DG IP methods was abandoned for a while,
probably due to the fact that they were never proven to be more advantageous or
efficient than their conforming relatives. The lack of optimal and efficient solvers for
the resulting linear systems, at that time, surely was also contributing to that situation.

However, over the last ten-fifteen years, there has been a considerable interest in
the development and understanding of DG methods for elliptic problems (see, for
instance, [9] and the references therein), partly thanks to their simplicity in handling
nonmatching grids and designing of hp-refinement strategies. The IP and Nitsche
approaches have also found some new applications; in the design of new conforming
and nonconformingmethods [10,11,31,46,47,49] and as away to handle nonmatching
grids for domain decomposition [17,40].

This has also motivated the interest in developing efficient solvers for DG meth-
ods. In particular, additive Schwarz methods are considered and analyzed in [3–
7,16,24,42]. Multigrid methods are studied in [25,44,48]. Two-level methods and
multi-level methods are presented in [26,33], and other subspace correction methods
are considered in [12–14]. It is worth noticing that, so far, most efforts have been
directed to develop solvers for the h-version of the DG methods. Only very recently,
some authors have considered the case of p and h-p discretizations. The first result
in this direction is given in [7] where the authors study two-level non-overlapping
Schwarz preconditioners for a class of h-p DG methods.

Still the development of preconditioners for DG methods based on domain decom-
position (DD) has beenmostly limited to classical Schwarzmethods. Research towards
more sophisticated nonoverlapping DD preconditioners, such as the Bramble Pasciak
Schatz (BPS), Neumann–Neumann, BDDC, FETI or FETI-DP is now at its inception.
Nonoverlapping DD methods typically refer to methods defined on a decomposition
of a domain made up of a collection of mutually disjoint subdomains, generally called
substructures. These family of methods are obviously well suited for parallel compu-
tations and furthermore, for several problems (like problems with jump coefficients)
they offer some advantages over their relative overlapping methods, and have already
proved their usefulness. Roughly speaking, these methods are algorithms for precon-
ditioning the Schur complement with respect to the unknowns on the skeleton of the
subdomain partition. They are generally referred to as substructuring precondition-
ers. While the theory for the conforming case is now well established and understood
for many problems [58], the discontinuous nature of the finite element spaces at the
interface of the substructures (in the case of Nitsche-type methods) or even within the
skeleton of the domain partition, poses extra difficulties in the analysis which preclude
from having a straight extension of such theory.Mainly, unlike in the conforming case,
the coupling of the unknowns along the interface does not allow for splitting the global
bilinear form as a sum of local bilinear forms associated to the substructures (see for
instance [42] and [3, Proposition 3.2]).Moreover the discontinuity of the finite element
space makes the use of standard H1/2-norms in the analysis of the discrete harmonic
functions difficult.
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For Nitsche-type methods, a new definition of discrete harmonic functions has been
introduced in [36] together with some tools (similar to those used in the analysis of
mortar preconditioners) that allow the authors to adapt and extend the general theory
[58] for substructuring preconditioners in two dimensions. More precisely, in [36–
38] the authors introduced and analyzed BDDC, Neumann–Neumann and FETI-DP
domain decomposition preconditioners for a first order Nitsche-type discretization of
an elliptic problem with jumping coefficients. For the discretization, a symmetric IP
DG scheme is used (only) on the skeleton of the subdomain partition, while piece-
wise linear conforming approximation is used in the interior of the subdomains. In
these works, the authors prove quasi-optimality with respect to the mesh-size and
optimality with respect to the jump in the coefficient. They also address the case of
nonconforming meshes.

More recently, several BDDC preconditioners have been introduced and analyzed
for some full DG discretizations [23,28,55], following a different path. In [55] the
authors consider the p-version of the preconditioner for an Hybridized IP DGmethod
[30,41], for which the unknown is defined directly on the skeleton of the partition.
They prove cubic logarithmic growth on the polynomial degree but also show numer-
ically that the results are not sharp. BDDC preconditioners for the IP-DG method
have been studied in [23] and [28]. In the former, the authors deal with first order
h-discretizations; in [28], the authors consider the more challenging h-p case. In both
works, the approach for the analysis differs considerably from the one taken in [36–
38] and relies on suitable space decomposition of the global DG space; using either
nonconforming or conforming subspaces together with the auxiliary space techniques
studied in [27]. As a consequence the analysis of the BDDC preconditioner for DG
discretizations can be reduced to the analysis of the corresponding BDDC for con-
forming, nonconforming or spectral methods.

In this work, we are interested in addressing h-p Nitsche-type methods and we
focus on the original substructuring approach introduced in [21] for a conforming dis-
cretization of two dimensional problems and in [22,39] for three dimensions (see also
[58,60] for a detailed description). Our approach differs substantially from the one in
[23,28] and hasmany similarities with the analysis in [36–38] but we consider the case
of h-p discretizations and the BPS preconditioner. We focus on the Bramble Pasciak
Schatz (BPS) preconditioner, with the aim of filling a gap (since this preconditioner
has not been studied for Nitsche or DGmethods) but also to provide a simpler analysis
of the substructuring preconditioner.

In the framework of nonconforming domain decomposition methods, this kind of
preconditioner has been applied to the mortar method [1,19,53,54] and to the three
fields domain decomposition method [18], always considering the h-version of the
methods. For spectral discretizations and the p version of conforming approximations
the preconditioner has been studied in [50,52]. For h-p conforming discretizations
of two dimensional problems the BPS preconditioner is studied in [2]. To the best of
our knowledge, this preconditioner has not been considered for Nitsche-type or DG
methods before.

In our analysis of the BPS preconditioner for an h-p Nitsche-type discretization,
we use some of the tools introduced in [36,37], such as their definition of the discrete
harmonic lifting that allows to define the discrete Steklov–Poincaré operator associ-
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ated to the Nitsche-type method. However, our construction of the preconditioners is
guided by the definition of a suitable norm on the skeleton of the subdomain partition,
that scales like an H1/2-norm and captures the energy of the DG functions on the
skeleton. This allow us to provide a much simpler analysis, proving quasi-optimality
with respect to the mesh size and the polynomial degree for the proposed precon-
ditioners. Furthermore, we demonstrate that unlike what happens in the conforming
case, to ensure quasi-optimality of the preconditioners a block diagonal structure that
de-couples completely the edge and vertex degrees of freedom on the skeleton is not
possible; this is due to the presence of the penalty term which is needed to deal with
the discontinuity. We show however that the implementation of the preconditioner can
be done efficiently and that it performs in agreement with the theory.

The rest of the paper is organized as follows. The basic notation, functional setting
and the description of the Nitsche-type method are given in next section; Sect. 2. Some
technical tools required in the construction and analysis of the proposed preconditioner
are revised in Sect. 3. The substructuring preconditioner is introduced and analyzed in
Sect. 4. Its practical implementation together with some variants of the preconditioner
are discussed in Sect. 5. The theory is verified through several numerical experiments
presented in Sect. 6.

Here and in the following, to avoid the proliferation of constants, we will use the
notation x � y to represent the inequality x ≤ Cy, where C > 0 might depend
on the shape regularity of the different partitions, but will be always independent
of the mesh sizes, the polynomial approximation order, and the size and number of
subdomains. Writing x � y will signify that there exists a constant C > 0 such that
C−1x ≤ y ≤ Cx .

2 Nitsche methods and basic notation

In this section, we introduce the basic notation, the functional setting and the Nitsche
discretization.

To ease the presentation we restrict ourselves to the following model problem. Let
� ⊂ R

2 be a bounded polygonal domain, let f ∈ L2(�) and let

{−�u∗ = f in �,

u∗ = 0 on ∂�.

The above problem admits the following weak formulation: find u∗ ∈ H1
0 (�) such

that:

a(u∗, v) = f (v) for all v ∈ H1
0 (�), (1)

where

a(u, v) =
∫

�

∇u · ∇v dx f (v) =
∫

�

f v dx, ∀ u, v ∈ H1
0 (�).
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2.1 Partitions

We now introduce the different partitions needed in our work. We denote by TH a
geometrically conforming subdomain partition of � into N nonoverlapping shape-
regular triangular or quadrilateral subdomains:

� =
N⋃

�=1

��, �� ∩ � j = ∅ � �= j.

We set

H� = min
j : �̄�∩�̄ j �=∅

H�, j where H�, j = ∣∣∂�� ∩ ∂� j
∣∣ , (2)

and we also assume that H� � diam(��) for each � = 1, . . . N . We finally define the
granularity of TH by H = min� H�.

We denote by � the skeleton of the subdomain partition TH

� =
N⋃

�=1

∂��

and we set

� =
N∏

�=1

∂��.

Observe that from the above definitions, we allow functions defined on � to be
double-valued while functions defined on � are singled valued.

The edges of the subdomain partition that form the skeleton will be denoted by E
and wewill refer to them asmacro edges or, when they refer to a particular subdomain,
as subdomain edges.

For each��, let
{
T �
h

}
be a family of fine partitions of�� into elements (triangles or

quadrilaterals) K with diameter hK . All partitions T �
h are assumed to be shape-regular

and we define a global partition Th of � as

Th =
N⋃

�=1

T �
h .

Observe that by construction Th is a fine partition of � which is compatible within
each subdomain�� but whichmay be nonmatching across the skeleton�. Throughout
the paper, we always assume that the following bounded local variation property
holds: for any pair of neighboring elements K+ ∈ T �+

h and K− ∈ T �−
h , �+ �= �−,

hK+ � hK− .
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Note that the restriction of Th to the skeleton � induces a partition of each subdo-
main edge E ⊂ �. We define the set of element edges on the skeleton � and on the
boundary of � as follows:

Eo
h := {e = ∂K+ ∩ ∂K−, K+ ∈ T �+

h , K− ∈ T �−
h , �+ �= �−} ,

E∂
h := {e = ∂K ∩ ∂�, K ∈ Th} ,

and we set Eh = Eo
h ∪ E∂

h .

2.2 Basic functional setting

For s ≥ 1, we define the broken Sobolev space

Hs(TH ) =
{
φ ∈ L2(�) : φ

∣∣
��

∈ Hs(��) ∀ �� ∈ TH

}
∼

∏
�

Hs(��),

whereas the trace space associated to H1(TH ) is defined by

	 =
∏
�

H1/2(∂��).

For u = (u�)N�=1 in H1(TH )wewill denote by u|� the unique element φ = (φ�)N�=1
in 	 such that

φ� = u�|∂��
.

We now recall the definition of some trace operators following [9], and introduce
the different discrete spaces that will be used in the paper.

Let e ∈ Eo
h be an edge on the interior skeleton shared by two elements K+ and

K− with outward unit normal vectors n+ and n−, respectively. For scalar and vector-
valued functions ϕ ∈ H1(TH ) and τ ∈ [

H1(TH )
]2
, we define the average and the

jump on e ∈ Eo
h as

{τ } = 1

2
(τ+ + τ−), [[ ϕ ]] = ϕ+n+ + ϕ−n−, on e ∈ Eo

h .

On a boundary element edge e ∈ E∂
h we set {τ } = τ and [[ ϕ ]] = ϕn, n denoting

the outward unit normal vector to �.
To each element K ∈ T �

h , we associate a polynomial approximation order pK ≥ 1,
and define the h-p finite element space of piecewise polynomials as

X�
h = {v ∈ C0(��) such that v|K ∈ P

pK (K ), K ∈ T �
h },
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wherePpK (K ) stands for the space of polynomials of degree atmost pK on K .We also
assume that the polynomial approximation order satisfies a local bounded variation
property: for any pair of elements K+ and K− sharing an edge e ∈ Eo

h , pK+ � pK− .
Our global approximation space Xh is then defined as

Xh = {v ∈ L2(�) : such that v|��
∈ X�

h} ∼
N∏

�=1

X�
h .

We also define X0
h ⊂ Xh as the subspace of functions of Xh vanishing on �, i.e.,

X0
h = {v ∈ Xh : such that v|� = 0}.

The trace spaces associated to X�
h and Xh are defined as follows

	�
h = {η� ∈ H1/2(∂��) : η� = w|∂��

for some w ∈ X�
h} ∀� = 1, . . . , N ,

	h =
N∏

�=1

	�
h ⊂ 	.

Notice that the functions in the above finite element spaces are conforming in the
interior of each subdomain but are double-valued on the skeleton. Moreover, any
function v ∈ Xh can be represented as v = (v�)N�=1 with v� ∈ X�

h .
Next, for each subdomain �� ∈ TH and for each subdomain edge E ⊂ ∂��, we

define the discrete trace spaces

	�(E) = 	�
h |E .

Note that, since we are in two dimensions, the boundary of a subdomain edge E is
the set of the two endpoints (or vertices) of E , that is if E = (a, b) then ∂E = {a, b}.

Finally, we introduce a suitable coarse space LH ⊂ 	, that will be required for the
definition of the substructuring preconditioner:

LH = {η = (η�)N�=1 ∈ 	 : η�|E ∈ P
1(E), ∀ E ⊂ ∂��, ∀�� ∈ TH }. (3)

2.3 Nitsche-type methods

In this section, we introduce the Nitsche-type method we consider for approximating
themodel problem (1). In suchmethod, first introduced in [57], weak continuity across
the skeleton is enforced in an analogous way to what is done at interelement edges in
the interior penalty discontinuous Galerkin method.

We introduce a mesh size function h ∈ L∞(�) defined as

h(x) =
{
hK if x ∈ ∂K ∩ ∂�,

min{hK+ , hK−} if x ∈ ∂K+ ∩ ∂K− ∩ �, K± ∈ T �±
h , �+ �= �−,

(4)
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and a polynomial degree function p ∈ L∞(�):

p(x) =
{
pK if x ∈ ∂K ∩ ∂�,

max{pK+ , pK−} if x ∈ ∂K+ ∩ ∂K− ∩ �, K± ∈ T �±
h , �+ �= �−.

(5)

For each subdomain ��, we also define h� and p� as the minimum (resp. the
maximum) of the restriction to ∂�� of the local mesh sizeh (resp. the local polynomial
degree function p), that is,

h� = min
x∈∂��∩�

h(x) and p� = max
x∈∂��∩�

p(x). (6)

Remark 2.1 A different definition for the local mesh size function h and the local
polynomial degree function p involving harmonic averages is sometimes used for the
definition of Nitsche or DG methods [36]. We point out that such a definition yields
to functions h and p which are of the same order as the ones given in (4) and (5), and
therefore result in an equivalent method.

We now define the following Nitsche-type discretization [17,57] to approximate
problem (1): find u∗

h ∈ Xh such that

Ah(u
∗
h, vh) = f (vh) for all vh ∈ Xh, (7)

where, for all u, v ∈ Xh,Ah(·, ·) is defined as

Ah(u, v) =
N∑

�=1

∫
��

∇u · ∇v dx −
∑
e∈Eh

∫
e
{∇u} · [[ v ]] ds

−
∑
e∈Eh

∫
e
[[ u ]] · {∇v} ds +

∑
e∈Eh

α

∫
e
p2 h−1[[ u ]] · [[ v ]] ds. (8)

Here, α > 0 is the penalty parameter that needs to be chosen α ≥ α0 for some
α0 � 1 large enough to ensure the coercivity of Ah(·, ·).

On Xh , we introduce the following seminorms:

|v|21,TH
=

N∑
�=1

‖∇v‖2L2(��)
, |v|2∗,Eh =

∑
e∈Eh

‖ph−1/2 [[ v ]]‖2L2(e), (9)

together with the natural norm induced by Ah(·, ·):

‖v‖2h = |v|21,TH
+ α|v|2∗,Eh ∀ v ∈ Xh . (10)
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Following [57] (see also [9]) it is easy to see the bilinear formAh(·, ·) is continuous
and coercive (provided α ≥ α0 ) with respect to the norm (10), i.e.,

Continuity : |Ah(u, v)| � ‖u‖h‖v‖h ∀ u, v ∈ Xh

Coercivity : Ah(v, v) � ‖v‖2h ∀ v ∈ Xh .

From now on we will always assume that α ≥ α0. Notice that the continuity and
coercivity constants depend only on the shape regularity constant of Th .

3 Some technical tools

We now revise some technical tools that will be required in the construction and
analysis of the proposed preconditioners.

We recall that, for γ being either an element edge or a macro edge or the boundary
of a subdomain, and for s ∈]0, 1[, we can define the Hs(γ ) seminorm and norm by

|η|2Hs (γ ) =
∫

γ

∫
γ

(η(x) − η(y))2

|x − y|2s+1 dsx dsy, ‖η‖2Hs (γ ) = ‖η‖2L2(γ )
+ |η|2Hs(γ ).

(11)

For E ⊂ ∂�� a subdomain edge, we will also consider the space H1/2
00 (E) of

functions whose extension by zero is in H1/2(∂��), which we will equip with the
norm

‖η‖2
H1/2
00 (E)

= |η|2H1/2(E)
+

∫
E

|η(x)|2
|x − a|2s dsx +

∫
E

|η|2
|x − b|2s dsx .

The following local inverse inequality holds (cf. [56], for example): for any η ∈
P
pK (K ) it holds

|η|Hr (e) � p2(r−s)
K hs−r

K |η|Hs(e), e ⊂ ∂K

for all s, r with 0 ≤ s < r ≤ 1. Using the above inequality for s = 0 and r = 1 and
space interpolation, it is easy to deduce that for a subdomain edge E ⊂ ∂�� and for
all s, r, 0 ≤ s < r ≤ 1, for all η ∈ X�

h |E it holds that

|η|Hr (E) � p2(r−s)
� hs−r

� |η|Hs(E), (12)

|η|Hr (∂��) � p2(r−s)
� hs−r

� |η|Hs(∂��), (13)

The next two results are a generalization to the h-p version of [21, Lemma 3.2,
3.4 and 3.5] and [18, Lemma 3.2], see e.g., [45]. For the sake of brevity the proof is
omitted.
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Lemma 3.1 For all ξ ∈ 	�
h and for all ζL ∈ H1/2(∂��) linear on each edge of ∂��

and such that ζL(a) = ξ(a) at all vertices a of ��, it holds

|ζL |2H1/2(∂��)
�

(
1 + log

(
H� p2�
h�

))
|ξ |2H1/2(∂��)

.

Lemma 3.2 For all ξ ∈ 	�
h such that ξ(a) = 0 at all vertices a of �� and for all

ζL ∈ H1/2(∂��) linear on each subdomain edge of ∂��, it holds

∑
E⊂∂��

‖ξ‖2
H1/2
00 (E)

�
(
1 + log

(
H� p2�
h�

))2

|ξ + ζL |2H1/2(∂��)
.

3.1 Norms on 	h

We now introduce a suitable norm on 	h that will suggest how to properly construct
the preconditioner. The natural norm that we can define for all η = (η�)N�=1 ∈ 	h is:

‖η‖	h = inf
u ∈ Xh

u|� = η

‖u‖h, (14)

where the inf is taken over all u ∈ Xh that coincide with η on �. We recall that the
identity η = u|� is to be intended as η� = u�|∂��

. Although (14) is the natural trace

norm induced on 	 by the norm (10), working with it might be difficult.
For this reason, we introduce another norm which will be easier to deal with and

which, as wewill show below, is equivalent to (14). The structure of the preconditioner
proposed in this paper will be driven by this norm. We define:

‖η‖2	h ,∗ =
∑

��∈TH
|η|2H1/2(∂��)

+ α
∑

e∈Eh
‖ph−1/2[[ η ]]‖2L2(e). (15)

The next result shows that the norms (14) and (15) are indeed equivalent:

Lemma 3.3 The following norm equivalence holds:

‖η‖	h � ‖η‖	h ,∗ � ‖η‖	h ∀η ∈ 	h

Proof We first prove that ‖η‖	h ,∗ � ‖η‖	h . Let η = (η�)N�=1 ∈ 	h and let u =
(u�)N�=1 such that u|� = η. Thanks to the trace inequality, we have

|η�|2H1/2(∂��)
� |u�|2H1(��)

,
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and, summing over all the subdomains �� ∈ TH we have

∑
��∈TH

|η�|2H1/2(∂��)
�

∑
��∈TH

|u�|2H1(��)
= |u|21,TH

.

Adding now the term α
∑

e∈Eh ‖ph−1/2[[ η ]]‖2
L2(e)

to both sides, and recalling the
definition of the norms (10), (14) and (15) we get the thesis.

We now prove that ‖η‖	h � ‖η‖	h ,∗. Given η = (η�)N�=1 ∈ 	h , let ǔ� ∈ X�
h

be the standard discrete harmonic lifting of η�, for which the bound |ǔ�|H1(��)
�

|η�|H1/2(∂��)
holds (see e.g. [21]) and let ǔ = (ǔ�)N�=1. Summing over all the subdo-

mains �� and adding the term α
∑

e∈Eh ‖ph−1/2[[ η ]]‖2
L2(e)

we get

‖η‖	h ≤ ‖ǔ‖h � ‖η‖	h ,∗.

��
4 Substructuring preconditioners

In this section we present the construction and analysis of a substructuring precondi-
tioner for the Nitsche method (7–8).

The first step in the construction is to split the set of degrees of freedom into
interior degrees of freedom (corresponding to basis functions identically vanishing
on the skeleton) and degrees of freedom associated to the skeleton of the subdomain
partition.

Then, the idea of the “substructuring” approach (see [21]) consists in further dis-
tinguishing two types among the degrees of freedom associated to �: edge degrees of
freedom and vertex degrees of freedom. Therefore, any function u ∈ Xh can be split
as the sum of three suitably defined components: u = u0 + u� = u0 + uE + uV .

We first show how to eliminate the interior degrees of freedom and introduce the
discrete Steklov–Poincaré operator associated to (8), acting on functions defined on
�.

We then propose a preconditioner of substructuring type for the discrete Steklov–
Poincaré operator and provide the convergence analysis.

4.1 Discrete Steklov–Poincaré operator

Following [36,37], we now introduce a discrete harmonic lifting that allows to defining
the discrete Steklov–Poincaré operator associated to (8). We also show that such a
discrete Steklov–Poincaré operator defines a norm that is equivalent to the one defined
in Lemma 5.2.

Let X0
h ⊂ Xh be the subspace of functions vanishing on the skeleton of the decom-

position. Given any discrete function w ∈ Xh , we can split it as the sum of an interior
function w0 ∈ X0

h and a suitable discrete lifting of its trace. More precisely, following
[36,37], we split

w = w0 + Rh(w|�), w0 ∈ X0
h,
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where, for η ∈ 	h, Rh(η) ∈ Xh denotes the unique element of Xh satisfying

Rh(η)|� = η, Ah(Rh(η), vh) = 0 ∀vh ∈ X0
h . (16)

The following proposition is easy to prove (see [36,37]).

Proposition 4.1 For η = (η�)N�=1 ∈ 	h, the following identity holds:

Rh(η)|��
= w�

H + w�
0,

with w�
H ∈ X�

h denoting the standard discrete harmonic lifting of η�

w�
H = η� on ∂��,

∫
��

∇w�
H · ∇v�

h = 0 ∀v�
h ∈ X�

h ∩ H1
0 (��),

and w�
0 ∈ X�

h ∩ H1
0 (��) being the solution of

∫
��

∇w�
0 · ∇v�

h =
∫

∂��

[[ η� ]] · ∇v�
h, ∀v�

h ∈ X�
h ∩ H1

0 (��).

The space Xh can be split as direct sum of an interior and a trace component, that
is

Xh = X0
h ⊕ Rh(	h).

Using the above splitting, the definition of Rh(·) and the definition ofAh(·, ·), it is
not difficult to verify that,

Ah(w, v) = Ah(w
0, v0) + Ah(Rh(w|� ), Rh(v|� ))

= a(w0, v0) + s(w|� , v|� ), ∀w, v ∈ Xh

where the discrete Steklov–Poincaré operator s : 	h × 	h → R is defined as

s(ξ, η) = Ah(Rh(ξ), Rh(η)) ∀ ξ, η ∈ 	h . (17)

We have the following result:

Lemma 4.2 Let Rh be the discrete harmonic lifting defined in (16). Then,

‖Rh(η)‖h � ‖η‖	h ,∗ ∀ η ∈ 	h .

Proof If we show that ‖Rh(η)‖h � ‖η‖	h , then the thesis follows thanks to the
equivalence of the norms shown in Lemma 3.3. First, we prove that ‖Rh(η)‖h �
‖η‖	h ; let η ∈ 	h , then from the definition of the inf, we get that

∃u ∈ Xh : u|� = η such that ‖u‖h ≤ 2‖η‖	h .
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Then, we can write Rh(η) = u + v with v ∈ X0
h , and (16) reads

Ah(v,w) = −Ah(u, w) ∀w ∈ X0
h .

Setting w = v ∈ X0
h in the above equation, leads to

Ah(v, v) = −Ah(u, v).

Then, using the coercivity and continuity of Ah(·, ·) in the ‖ · ‖h norm we find

‖v‖2h � Ah(v, v) = |Ah(u, v)| � ‖u‖h‖v‖h .

Hence, ‖v‖h � ‖u‖h , and so this bound together with the triangle inequality gives

‖Rh(η)‖h ≤ ‖u‖h + ‖v‖h � ‖u‖h � ‖η‖	h .

The other inequality ‖η‖	h � ‖Rh(η)‖h follows from the trace theorem. ��
From the above result, the following result for the discrete Steklov–Poincaré oper-

ator follows easily.

Corollary 4.3 For all ξ ∈ 	h, it holds

s(ξ, ξ) � ‖ξ‖2	h ,∗.

Proof Let ξ ∈ 	h then from the definition of s(·, ·), the continuity and coercivity of
Ah(·, ·) and applying Lemma 4.2 we have

s(ξ, ξ) = Ah(Rh(ξ), Rh(ξ)) � ‖Rh(ξ)‖2h � ‖ξ‖2	h ,∗.

��4.2 The preconditioner

Following the approach introduced in [21], we now present the construction of a
preconditioner for the discrete Steklov–Poincaré operator s(·, ·). We split the space
of skeleton functions 	h as the sum of vertex and edge functions. We observe that
independently of whether the two dimensional mesh Th consists of triangles or quad-
rangles, the trace 	�

h of the space X�
h contains the space of piecewise linear functions

on the one dimensional mesh induced on �� by T �
h . Therefore LH ⊂ 	h .

We then introduce the space of edge functions 	E
h ⊂ 	h defined by

	E
h = {η ∈ 	h, η�(a) = 0 at all vertex a of �� ∀�� ∈ TH }

and we immediately get

	h = LH ⊕ 	E
h . (18)
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The preconditioner that we consider is built by introducing the bilinear forms

ŝ E : 	E
h × 	E

h → R ŝV : LH × LH → R

acting respectively on edge and vertex functions. We assume that ŝ E and ŝV satisfy:

ŝ E (ηE , ηE ) �
∑

��∈TH

∑
E⊂∂��

‖ηE‖2
H1/2
00 (E)

∀ ηE ∈ 	E
h , (19)

ŝV (ηV , ηV ) �
∑

��∈TH

∣∣∣ηV
∣∣∣2
H1/2(∂��)

∀ ηV ∈ LH , (20)

and we define ŝ : 	h × 	h → R as

ŝ(η, ξ) = ŝ E (ηE , ξ E ) + ŝV (ηV , ξV ) + q(η, ξ), (21)

where

q(η, ξ) =
∑
e∈Eh

α

∫
e
p2 h−1[[ η ]][[ ξ ]] ds ∀ η, ξ ∈ 	h . (22)

Finally, we can state the main theorem of the paper.

Theorem 4.4 Let s(·, ·) and ŝ(·, ·) be the bilinear forms defined in (17) and (21),
respectively. Then, we have:

min
�

(
1 + log

(
H� p2�
h�

))−2

ŝ(η, η) � s(η, η) � ŝ(η, η) ∀ η ∈ 	h .

The proof of Theorem 4.4 follows the analogous proofs given in [18,21] for con-
forming finite element approximations. We give it here for completeness.

Proof We start proving that s(η, η) � ŝ(η, η). Let η ∈ 	h , then, η = ηV + ηE with
ηE ∈ 	E

h and ηV ∈ LH . By using Corollary 4.3, properties (19–20) of the edge and
vertex bilinear forms, as well as the definition of q(·, ·), we get

s(η, η) � ‖η‖2	h ,∗ =
∑

��∈TH

|ηE + ηV |2H1/2(∂��)
+ α

∑
e∈Eh

‖ph−1/2[[ η ]]‖2L2(e)

�
∑

��∈TH

|ηE |2H1/2(∂��)
+

∑
��∈TH

|ηV |2H1/2(∂��)
+ q(η, η)

� ŝ E (ηE , ηE ) + ŝV (ηV , ηV ) + q(η, η),

and hence

s(η, η) � ŝ(η, η) ∀ η ∈ 	h .
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We next prove the lower bound. We shall show that

ŝ(η, η) � max
�

(
1 + log

(
H� p2�
h�

))2

s(η, η) ∀ η ∈ 	h . (23)

For η ∈ 	h , we have η = ηV + ηE with ηE ∈ 	E
h and ηV ∈ LH . Then, from the

definition of ŝ(·, ·) we have
ŝ(η, η) = ŝ E (ηE , ηE )+ŝV (ηV , ηV )+q(η, η)

�
∑

��∈TH

∑
E⊂∂��

‖ηE‖2
H1/2
00 (E)

+
∑

��∈TH

∣∣∣ηV
∣∣∣2
H1/2(∂��)

+α
∑
e∈Eh

‖ph−1/2[[ η ]]‖2L2(e).

Applying Lemma 3.2 with ξ = ηE and ζL = ηV , we obtain

∑
E⊂∂��

‖ηE‖2
H1/2
00 (E)

�
(
1 + log

(
H� p2�
h�

))2

|η|2H1/2(��)
,

which implies

ŝ E (ηE , ηE ) �
∑

��∈TH

(
1 + log

(
H� p2�
h�

))2

|η|2H1/2(∂��)
.

To bound ŝV (ηV , ηV ), we apply Lemma 3.1 with ζL = ηV and ξ = η, and we get

ŝV (ηV , ηV ) �
∑

��∈TH

|ηV |2H1/2(∂��)
�

∑
��∈TH

(
1 + log

(
H� p2�
h�

))2

|η|2H1/2(∂��)
,

and hence

ŝ E (ηE , ηE ) + ŝV (ηV , ηV ) �
∑

��∈TH

(
1 + log

(
H� p2�
h�

))2

|η|2H1/2(∂��)
.

Adding now the term α
∑

e∈Eh ‖ph−1/2[[ η ]]‖2
L2(e)

to both sides and recalling the
definition of q(·, ·) we have:
ŝ(η, η) = ŝ E (ηE , ηE )+ŝV (ηV , ηV )+q(η, η)

� max
�

(
1 + log

(
H� p2�
h�

))2
⎛
⎝ ∑

��∈TH

|η|2H1/2(∂��)
+α

∑
e∈Eh

‖ph−1/2[[ η ]]‖2L2(e)

⎞
⎠

= max
�

(
1 + log

(
H� p2�
h�

))2

‖η‖2	h ,∗.
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Finally, using the norm equivalence given in Corollary 4.3, we obtain (23) and the
proof of the Theorem is completed. ��

As a direct consequence of Theorem 4.4 we obtain the following estimate for the
condition number of the preconditioned Schur complement.

Corollary 4.5 Let S and P be the matrix representation of the bilinear forms s(·, ·)
and ŝ(·, ·), respectively. Then, the condition number of P−1S, κ(P−1S), satisfies

κ(P−1S) � max
�

(
1 + log

(
H� p2�
h�

))2

. (24)

Unfortunately, the splitting (18) of 	h is not orthogonal with respect to the ŝ(·, ·)-
inner product given in (21), and therefore the preconditioner based on ŝ(·, ·) is not
block diagonal, in contrast to what happens in the full conforming case. Furthermore
the off-diagonal blocks in the preconditioner cannot be dropped without loosing the
quasi-optimality. The reason is the presence of the q(·, ·) bilinear form in the definition
(21), and the fact that the two components in the splitting (18) of 	h scale differently
in the seminorm that q(·, ·) defines. In fact, it is possible to show that, if for some
constant κ(h), it holds

‖ηV ‖2	h ,∗ ≤ κ(h)‖η‖2	h ,∗ ∀η = ηV + ηE ∈ 	h, (25)

then such κ(h) must verify κ(h) � H/h, which implies that, if we use a fully block
diagonal preconditioner based on the splitting (18) of 	h an estimate of the form
(23) would no be longer true. In order to show this, consider linear finite elements on
quasi uniform meshes with meshsize h in all subdomains, and let η = (η�)N�=1 be the
function identically vanishing in all subdomains but one, say �k , and let ηk be equal
to 1 in a single vertex of �k and zero at all other nodes. With this definition, we have
|[[ η ]]| = |ηk | on ∂�k and [[ η ]] = 0 on � \ ∂�k . Then, by a direct calculation, and
recalling the definition of the seminorm | · |∗,Eh in (9), we easily see that

|η|2∗,Eh � 1, but |ηV |2∗,Eh � Hk

hk

or equivalently

q(ηV , ηV ) � Hk

hk
, q(η, η) � 1. (26)

Therefore the energy of the coarse interpolant ηV exceeds that of η by a factor of
Hk/hk . Hence, bounding ηV alone in the ‖ · ‖	h ,∗-norm would result in an estimate
of the type (25)

q(ηV , ηV ) � ‖ηV ‖2	h ,∗ � κ(h)q(η, η), (27)
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which in view of (26) would imply

κ(h) � Hk

hk
.

Remark 4.1 We point out that the lack of the block-diagonal structure of the precondi-
tioner associated to ŝ(·, ·) defined in (21), will not affect its computational efficiency,
see Sect. 6.

5 Realizing the preconditioner

We start by deriving the matrix form of the discrete Steklov–Poincaré operator s(·, ·)
defined in (17). We choose a Lagrangian nodal basis for the discrete space Xh , and we
take care of numbering interior degrees of freedom first (grouped subdomain-wise),
then edge degrees of freedom (grouped edge by edge and in such a way that the
degrees of freedom corresponding to the common edge of two adjacent subdomains
are ordered consecutively), and finally the degrees of freedom corresponding to the
vertices of the subdomains.

We letni,ne and nv be the number of interior, edge and vertex degrees of freedom,
respectively, and set n = ne +nv. Problem (7) is then reduced to looking for a vector
u ∈ R

ni+n with u = (ui,ue,uv) solution to a linear system of the following form

⎛
⎝Aii Aie Aiv

AT
ie Aee Aev

AT
iv AT

ev Avv

⎞
⎠

⎛
⎝ui
ue
uv

⎞
⎠ =

⎛
⎝Fi

Fe

Fv

⎞
⎠ .

Here, ui ∈ R
ni (resp.Fi ∈ R

ni ) represents the unknown (resp. the right hand side)
component associated to interior nodes.Analogously,ue,Fe ∈ R

ne anduv,Fv ∈ R
nv

are associated to edge and vertex nodes, respectively. We recall that for each vertex
we have one degree of freedom for each of the subdomains sharing it. For each macro
edge E , we will have two sets of nodes (some of them possibly physically coinciding)
corresponding to the degrees of freedom of 	�+

h (E) and of 	�−
h (E).

As usual, we start by eliminating the interior degrees of freedom, to obtain the
Schur complement system

S
(
ue
uv

)
= g,

with

S =
(
Aee − AT

ieA
−1
iiAie Aev − AT

ieA
−1
iiAiv

AT
ev − AT

ivA
−1
iiAie Avv − AT

ivA
−1
iiAiv

)
, g =

(
FE − AT

ieA
−1
iiFi

FV − AT
ivA

−1
iiFi

)
.

The Schur complement S represents the matrix form of the Steklov–Poincaré oper-
ator s(·, ·). Remark that in practice we do not need to actually assemble S but only to
be able to compute its action on vectors.
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In order to implement the preconditioner introduced in the previous sectionwe need
to represent algebraically the splitting of the trace space given by (18). As defined in
(3), we consider the space LH of functions that are linear on each subdomain edge,
and introduce thematrix representation of the injection ofLH into	h . More precisely,
we let � = {xi , i = 1, . . . ,ne,ne + 1, . . . ,ne + nv} be the set of edge and vertex
nodes.

For any vertex node x j , j = ne + 1, . . . ,ne + nv , let ϕ j (·) be the piecewise
polynomial that is linear on each subdomain edge and that satisfies

ϕ j (xk) = δ jk j, k = ne + 1, . . . ,ne + nv.

The matrix RT ∈ R
n×nv realizing the linear interpolation of vertex values is then

defined as

RT (i, j − ne + 1) = ϕ j (xi ), i = 1, . . . ,ne, j = ne + 1, . . . ,ne + nv.

Next, we define a square matrix R̃T ∈ R
n×n as

R̃T =
(
Ie RT

0 Iv

)
,

Ie ∈ R
ne×ne and Iv ∈ R

nv×nv being the identity matrices. Let now S̃ be the matrix
obtained after applying the change of basis corresponding to switching from the stan-
dard nodal basis to the basis related to the splitting (18), that is

S̃ = R̃SR̃T =
(
S̃ee S̃ve
S̃Tve S̃vv

)
. (28)

Our problem is then reduced to the solution of a transformed Schur complement
system

S̃ ũ = g̃, (29)

where ũ = R̃−Tu and g̃ = R̃g.
The preconditioner P. The preconditioner P that we propose is obtained as the

matrix counterpart of (21). In the literature it is possible to find different ways to build
bilinear forms ŝ E (·, ·), ŝV (·, ·) that satisfy (19) and (20), respectively. The choice that
we make here for defining ŝ E (·, ·) is the one proposed in [21] and it is based on an
equivalence result for the H1/2

00 norm.
We revise now its construction. Let l0(·) denote the discrete operator defined on

	0
�(E) associated to the finite-dimensional approximation of −∂2/∂s2 on E . It is

defined by:

〈l0ϕ, φ〉E = (ϕ′, φ′)E ∀φ ∈ 	0
�(E), (30)

where the prime superscript refers, as usual, to the derivative ∂/∂s with respect to the
arc length s on E . Notice that, since l0(·) is symmetric and positive definite, its square
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root can be defined. Furthermore, it can be shown that for all ϕ ∈ 	0
�(E)

‖ϕ‖
H1/2
00 (E)

� (l1/20 ϕ, ϕ)
1/2
E ,

see [21].
Then, we define

ŝ E (ηE , ξ E ) =
∑

��∈TH

∑
E⊂∂��

(l1/20 ηE , ξ E )E ∀ ηE , ξ E ∈ 	0
�(E). (31)

For ηE ∈ 	0
�(E)we denote by ηE its vector representation. Then, it can be verified

that, for each subdomain edge E ⊂ ∂��, we have (see [20] pag. 1110 and [35])

(l1/20 ηE , ηE )E = ηE T
K̂EηE

where K̂E = M1/2
E (M−1/2

E REM
−1/2
E )1/2M1/2

E , and where ME and RE are the mass
and stiffness matrices associated to the discretization of the operator −d2/ds2 (in
	0

�(E)) with homogeneous Dirichlet boundary conditions at the extrema a and b of
E .

Observe, that for each macro edge E shared by the subdomains ��+ and ��− , K̂E

is a two by two block diagonal matrix of the form

K̂E =
(
K̂+

E 0
0 K̂−

E

)
,

where K̂±
E are the contributions from the subdomains ��± sharing the macro-edge

E . Due to the small dimension of K̂E , its computation can be performed by classical
techniques such as the singular values decomposition (SVD), without influencing the
efficiency of the whole process also for relatively high values of p.

As far as the vertex bilinear form ŝV (·, ·) is concerned, we choose [21,60]:

ŝV (ηV , ηV ) =
∑

��∈TH

∫
��

∇(H�η�) · ∇(H�η�) dx, (32)

where H(·) denotes the continuous harmonic lifting. We observe that if the ��’s are
rectangles, for η ∈ LH we have that H�η� is the Q1(��) polynomial that coincides
withη� at the four vertices of��. Computing ŝV (ηV , ξV ) for ηV , ξV ∈ LH is therefore
easy, since it is reduced to compute the local (associated to ��) stiffness matrix for
Q

1(��) polynomials.

Remark 5.1 A similar construction also holds for quadrilaterals which are affine
images of the unit square and for triangular domains. In fact, if �� is a triangle then
for η ∈ LH we have thatH�

hη
� is the P1(��) function coinciding with η� at the three

vertices of ��. If �� is the affine image of the unit square, we work by using the
harmonic lifting on the reference element.
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The preconditioner P can then be written as:

P=

⎛
⎜⎜⎜⎜⎜⎝

KE1 0 0 0 0
0 KE2 0 0 0

0 0
. . . 0 0

0 0 0 KEM 0
0 0 0 0 Pvv

⎞
⎟⎟⎟⎟⎟⎠

+ Q̃ , (33)

where for each macro edge Ei ,

KEi =
(

(K̂+
Ei

)1/2 0
0 (K̂−

Ei
)1/2

)
.

In (33) Pvv is defined as the matrix counterpart of (32) whereas

Q̃ = R̃QR̃T , Q̃ =

⎛
⎜⎜⎜⎝

QE1 0 0 Q̃E1V

0 QE2 0 Q̃E2V

0 0
. . .

...

Q̃T
E1V

Q̃T
E2V

· · · Q̃vv,

⎞
⎟⎟⎟⎠

is the matrix counterpart of (22). Then P has the following structure

P=

⎛
⎜⎜⎜⎝
KE1 + QE1 0 0 0

0
. . . 0 0

0 0 KEM + QEM 0
0 0 0 Pvv + Q̃vv

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

0 0 0 Q̃E1V

0
. . . 0

.

.

.

0 0 0 Q̃EMV

Q̃T
E1V

· · · Q̃T
EMV 0,

⎞
⎟⎟⎟⎠ .

(34)

In view of definition (32) and of Remark 5.1, we observe that the coarse precondi-
tioner Pvv + Q̃vv is a standard discontinuous Galerkin problem defined on a coarse
mesh with P1 (respectively Q1) elements in the case of triangular (respectively quadri-
lateral) subdomains. The global matrix P is a low-rank perturbation of an invertible
block diagonal matrix. From (34) it can be easily seen that P has an “arrow” structure
that makes it particularly well suited for direct methods. Indeed it is possible to show
that for matrices with such a structure, LU decomposition has minimum fill-in and
therefore is particularly efficient. The action of P−1 can therefore be easily computed,
see e.g. [29, pag. 86] and [32, sec. 2.7.4, p. 83].

The preconditioner P�. For comparison we introduce a preconditioner P� with the
same block structure of P but with the elements of the non-zero blocks coinciding with
the corresponding elements of S̃. We expect this preconditioner to be the best that can
be done within the block structure that we want our preconditioner to have. In order
to do so, we replace the S̃ee component of S̃ with the matrix obtained by dropping
all couplings between the degrees of freedom corresponding to nodes belonging to
different macro edges, and use the resulting matrix as preconditioner. More precisely,
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for any subdomain edge Ek of the subdomain partition, k = 1, . . . , M , letJk ∈ R
ne×ne

be the diagonal matrix that extract only the edge degrees of freedom belonging to the
macro edge Ek , i.e.,

Jk(i, j) =
{
1 if i = jand xi ∈ Ek

0 otherwise
i, j = 1, . . . ,ne.

Then, we define

P̃ee =
m∑

k=1

JTk S̃eeJk .

This provides our preconditioner

P� =
(
P̃ee S̃ev
S̃Tev S̃vv

)
. (35)

Building this preconditioner implies the need of assembling at least part of the
Schur complement; this is quite expensive and therefore this preconditioner is not
feasible in practical applications.

Remark 5.2 Note thatwe cannot drop the coupling between edge and vertex points, i.e.
we cannot eliminate the off-diagonal blocks QEi V ,QT

Ei V
. Indeed, as already pointed

out at the end of Sect. 4.2, with the splitting (18) of 	h it is not possible to design
a block diagonal preconditioner without losing quasi-optimality. In Sect. 6 we will
present some computations that show that the preconditioner

PD =
(
P̃ee 0
0 S̃vv

)
, (36)

is not optimal.

6 Numerical results

In this section we present some numerical experiments to validate the performance of
the proposed preconditioners.

We set � = (0, 1)2, and consider a sequence of subdomain partitions made of
N = 4� squares, � = 1, 2, . . ., cf. Fig. 1a for � = 1, 2, 3, 4. For a given subdomain
partition, � = 1, 2, . . ., we have tested our preconditioners on a sequence of structured
and unstructured triangular grids made of n = 2 ∗ 4r elements with r = �, � + 1, . . ..
Notice that the corresponding coarse and fine mesh sizes are given by H ≈ 2−�, � =
1, 2, . . ., and h ≈ 2−r , r = �, � + 1, . . ., respectively.

In Fig. 1a we have reported the initial structured grids, on subdomain partitions
made by N = 4s squares, s = 1, 2, 3, 4. Figure 1b shows the first four refinement
levels of unstructured grids on a subdomain partition made of N = 4 squares.
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(a)

(b)

Fig. 1 Top initial structured grids on subdomains partitions made by N = 4� squares, � = 1, 2, 3, 4.
Bottom first four refinement levels of unstructured grids on a subdomain partition made of N = 4 squares
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Fig. 2 Condition number estimate of the Schur complement matrix S versus 1/h on different subdomains
partitions made by N = 4� squares, � = 1, 2, 3, 4, 5. Structured (left) and unstructured (right) triangular
grids. Piecewise linear elements (p = 1)

We solved the (preconditioned) linear system of equations by the Preconditioned
ConjugateGradient (PCG)methodwith a relative tolerance set equal to 10−9. The con-
dition number of the (preconditioned) Schur complement matrix has been estimated
within the PCG iteration by exploiting the analogies between the Lanczos technique
and the PCG method (see [43, Sects. 9.3, 10.2] for more details). Finally, we choose
the source term in problem (1) as f (x, y) = 1, and set the penalty parameter α equal
to 10.

We first present some computations that show the behavior of the condition number
of the Schur complement matrix S, cf. (5).

In Fig. 2 (log-log scale) we report, for different subdomain partitions made by N =
4� squares, � = 1, 2, 3, 4, 5, the condition number estimate of the Schur complement
matrix S, κ(S), as a function of the mesh-size 1/h. We clearly observe that κ(S)

increases linearly as the mesh size h goes to zero.
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Table 1 Preconditioner P (top) and P� (bottom). Condition number estimates and ratio between the condi-
tion number of the preconditioned systemand (1 + log(H/h))2 (between parenthesis). Structured triangular
grids, piecewise linear elements (p = 1)

N ↓ n → n = 128 n = 512 n = 2,048 n = 8,192 n = 32,768

Preconditioner P
N = 16 3.11 (0.74) 4.88 (0.65) 7.50 (0.64) 10.84 (0.64) 14.79 (0.64)
N = 64 – 3.30 (0.79) 5.25 (0.70) 8.00 (0.68) 11.42 (0.67)
N = 256 – – 3.35 (0.81) 5.36 (0.72) 8.16 (0.70)
N = 1,024 – – – 3.37 (0.81) 5.39 (0.72)

Preconditioner P�

N = 16 2.26 (0.54) 4.04 (0.54) 7.01 (0.60) 11.00 (0.65) 15.83 (0.68)
N = 64 – 2.42 (0.58) 4.49 (0.60) 7.85 (0.67) 12.28 (0.72)
N = 256 – – 2.47 (0.59) 4.60 (0.62) 8.07 (0.69)
N = 1,024 – – – 2.48 (0.60) 4.63 (0.62)

Next, we consider the preconditioned linear system of equations

P−1S̃ ũ = P−1̃g,

and test the performance of the preconditioners P and P� [cf. (33) and (35), respec-
tively]. Throughout all our tests, the action of the preconditioner was computed with
a direct solver.

In the first set of experiments, we consider piecewise linear elements (p = 1), and
compute the estimated condition number when varying the number of subdomains and
the mesh size. Table 1 shows the behaviour of the estimated condition number when
increasing the number of subdomains N and the number of elements n of the finemesh.
In Table 1we also report (between parenthesis) the ratio between the condition number
of the preconditioned system and (1 + log(H/h))2. These results have been obtained
on a sequence of structured triangular grids like the ones shown in Fig. 1a. Results
reported in Table 1 (top) refers to the performance of the preconditionerP, whereas the
analogous results obtained with the preconditioner P� are shown in Table 1 (bottom).

We have repeated the same set of experiments on the sequence of unstructured
triangular grids (cf. Fig. 1b). The computed results are shown in Table 2. As before,
between parenthesis we report ratio between the condition number of the precon-
ditioned system and (1 + log(H/h))2. As expected, a logarithmic growth is clearly
observed for both preconditioner P and P�.

Next, once again with p = 1, we present some computations that show that the
preconditionerPD defined in (36), i.e., the block-diagonal versionof the preconditioner
P�, is not optimal (cf. Remark 5.2). More precisely, in Table 3 we report the estimated
condition number of the preconditioned system for decreasing values of H and h.
Table 3 also shows (between parenthesis) the ratio between κ(PDS̃) and Hh−1. We
can clearly observe that on both structured and unstructured mesh configurations, the
ratio between κ(PDS̃) and Hh−1 remains substantially constant as H and h vary,
indicating that the preconditioner PD is not optimal.

Finally, we present some computations obtained with high-order elements. As
before, we consider a subdomain partition made of N = 4� squares, � = 1, 2, . . .,
(cf. Fig. 1 for � = 1, 2, 3). In this set of experiments, the subdomain partition coin-
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Table 2 Preconditioner P (top) and P� (bottom). Condition number estimates and ratio between the con-
dition number of the preconditioned system and (1 + log(H/h))2 (between parenthesis). Unstructured
triangular grids, piecewise linear elements (p = 1)

N ↓ n → n = 128 n = 512 n = 2,048 n = 8,192 n = 32,768

Preconditioner P

N = 16 2.87 (0.69) 4.69 (0.63) 7.35 (0.63) 10.68 (0.63) 14.62 (0.63)

N = 64 – 3.05 (0.73) 5.01 (0.67) 7.75 (0.66) 11.13 (0.66)

N = 256 – – 3.09 (0.74) 5.08 (0.68) 7.89 (0.67)

N = 1,024 – – – 3.11 (0.75) 5.11 (0.68)

Preconditioner P�

N = 16 1.84 (0.44) 3.24 (0.43) 5.51 (0.47) 8.44 (0.50) 12.00 (0.52)

N = 64 – 2.01 (0.48) 3.77 (0.50) 6.35 (0.54) 9.76 (0.58)

N = 256 – – 2.04 (0.49) 3.90 (0.52) 6.58 (0.56)

N = 1,024 – – – 2.05 (0.49) 3.93 (0.53)

Table 3 Preconditioner PD . Condition number estimates and ratio between κ(PD S̃) and Hh−1 (between
parenthesis). Structured (top) and unstructured (bottom) triangular grids, piecewise linear elements (p = 1)

N ↓ n → n = 128 n = 512 n = 2,048 n = 8,192 n = 32,768

Structured triangular grids
N = 16 11.51 (4.07) 23.19 (4.10) 47.40 (4.19) 95.21 (4.21) 190.69 (4.21)
N = 64 – 11.58 (4.09) 23.03 (4.07) 47.16 (4.17) 95.02 (4.20)
N = 256 – – 11.55 (4.08) 22.96 (4.06) 47.12 (4.16)
N = 1,024 – – – 11.44 (4.04) 22.88 (4.04)

Unstructured triangular grids
N = 16 9.45 (3.34) 18.63 (3.29) 39.13 (3.46) 75.38 (3.33) 148.93 (3.29)
N = 64 – 8.93 (3.16) 18.30 (3.24) 38.88 (3.44) 78.82 (3.48)
N = 256 – – 8.80 (3.11) 17.85 (3.15) 38.59 (3.41)
N = 1,024 – – – 8.75 (3.10) 17.64 (3.12)

Table 4 Condition number estimates κ(S) and CG iteration counts (between parenthesis). Cartesian grids

N = n p = 2 p = 3 p = 4 p = 5 p = 6

N = 4 5.1e+1 (5) 2.7e+2 (8) 6.2e+2 (13) 1.4e+3 (18) 3.4e+3 (28)
N = 16 3.2e+2 (22) 8.4e+2 (42) 2.0e+3 (69) 4.6e+3 (101) 1.1e+4 (153)
N = 64 1.2e+3 (90) 3.2e+3 (150) 7.6e+3 (231) 1.8e+4 (312) 4.3e+4 (446)
N = 256 4.7e+3 (195) 1.3e+4 (294) 3.0e+4 (462) 7.0e+4 (634) 1.7e+5 (886)

cides with the fine grid, i.e., H = h , and on each element we consider the space of
polynomials of degree p = 2, 3, 4, 5, 6 in each coordinate direction. Table 4 shows
the estimated condition number of the non-preconditioned Schur complement matrix
and the CG iteration counts. We have run the same set of experiments employing the
preconditioners P and P�, and the results are reported in Table 5. We clearly observe
that, as predicted, for a fixed mesh configuration the condition number of the pre-
conditioned system grows logarithmically as the polynomial approximation degree
increases.
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Table 5 Preconditioner P (top), P� (bottom). Condition number estimates and ratio between the condition

number of the preconditioned system and
(
1 + log(p2)

)2
(between parenthesis). Cartesian grids

N = n p = 2 p = 3 p = 4 p = 5 p = 6

Preconditioner P
N = 4 7.14 (1.25) 9.04 (0.88) 12.06 (0.85) 14.15 (0.79) 16.48 (0.78)
N = 16 9.24 (1.62) 9.93 (0.97) 15.25 (1.07) 15.99 (0.90) 20.25 (0.96)
N = 64 10.03 (1.76) 10.14 (0.99) 16.34 (1.15) 16.57 (0.93) 21.53 (1.02)
N = 256 10.24 (1.80) 10.19 (1.00) 16.61 (1.17) 16.71 (0.94) 21.84 (1.04)

Preconditioner P�

N = 4 1.88 (0.33) 2.56 (0.25) 3.75 (0.26) 4.64 (0.26) 5.70 (0.27)
N = 16 4.60 (0.81) 5.23 (0.51) 8.71 (0.61) 9.38 (0.53) 12.25 (0.58)
N = 64 6.18 (1.09) 6.03 (0.59) 10.35 (0.73) 10.79 (0.61) 14.33 (0.68)
N = 256 6.55 (1.15) 6.25 (0.61) 10.83 (0.76) 11.20 (0.63) 14.94 (0.71)

Table 6 Nonoverlapping Schwarz preconditioner Pad. Condition number estimates and ratio between the
condition number of the preconditioned system and p2 (between parenthesis). Cartesian grids

N = n p = 2 p = 3 p = 4 p = 5 p = 6

N = 4 15.58 (3.9) 36.68 (4.1) 101.26 (6.3) 160.09 (6.4) 230.70 (6.4)
N = 16 28.30 (7.1) 64.13 (7.1) 117.27 (7.3) 183.50 (7.3) 264.34 (7.3)
N = 64 31.52 (7.9) 70.60 (7.8) 128.12 (8.0) 200.20 (8.0) 288.35 (8.0)
N = 256 32.28 (8.1) 71.89 (8.0) 130.42 (8.2) 203.69 (8.1) 292.14 (8.2)

Finally, we compare the performance of the proposed preconditioner with that of
the nonoverlapping Schwarz preconditioner Pad analyzed in [7] (cf. also [6]) for h-p
-discontinuous Galerkin finite element methods. More precisely, we define

Pad =
N∑

�=1

RT
� A

−1
� R� + RT

0 A
−1
0 R0.

Here, for � = 1, . . . , N , the subdomains local solvers are defined as the restriction
of the global bilinear form onto X�

h , i.e., A� = R�ART
� , being RT

� the extension by
zero operator. For the coarse solver, we define the coarse space X0 as the space of
piecewise discontinuous bilinear functions defined on each subdomain ��, denote by
RT
0 the classical injection operator from X0 onto Xh , and setA0 = R0ART

0 . As shown
in [7], we expect that the condition number of the preconditioned system behaves as
κ(PadA) � p2Hh−1. We ran the same set of experiments as the previous one (that is
the subdomain partition coincides with the fine grid), employing the nonoverlapping
Schwarz preconditionerPad. Thenumerical results are reported inTable 6 togetherwith
the ratio between κ(PadA) and p2 (between parenthesis). Comparing these results with
the analogous ones shown in Table 5, we can conclude that, for high order polynomial
approximation degrees, the preconditioner P is more efficient than the nonoverlapping
Schwarz solver.
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