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Abstract This paper studies explicit multi-frequency symmetric extended Runge–
Kutta–Nyström (ERKN) integrators tailored to numerically computing the multi-
frequency and multidimensional oscillatory reversible second-order differential equa-
tions q ′′(t)+Mq(t) = f

(
q(t)

)
. We establish the symmetry conditions in a simplified

way for multi-frequency ERKN integrators. Five explicit multi-frequency symmetric
ERKN integrators are derived based on the simplified symmetry conditions. The arbi-
trary high-order explicitmulti-frequency symmetricERKNintegrators canbe achieved
by the application of the symmetric composition. The stability and phase properties of
the new integrators are discussed. Five numerical experiments are carried out and the
numerical results demonstrate the remarkable numerical behavior of the new explicit
multi-frequency symmetric integrators when applied to the multi-frequency and mul-
tidimensional oscillatory reversible second-order differential equations.
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1 Introduction

Reversible systems have the property that inverting the initial direction of the velocity
vector and keeping the initial position only inverts the direction of motion but it does
not change the solution trajectory. In applications, it is quite natural to search for the
numerical methods that produce a reversible numerical flow when they are applied to
a reversible differential equation [10]. The structure of time reversibility is preserved
by symmetric integrators. Moreover, for Hamiltonian systems, when the long-term
energy preservation of numerical methods is considered, the symmetry of numerical
methods plays an essential role as pointed out by the authors in [2]. Hence the design
and analysis of symmetric integrators is an important aspect in geometric numerical
integration. This paper is concerned with multi-frequency symmetric integrators for
the following multi-frequency and multidimensional oscillatory reversible differential
equations

q ′′(t) + Mq(t) = f
(
q(t)

)
, q(t0) = q0, q ′(t0) = q ′

0, t ∈ [t0, tend], (1)

where M is a d × d symmetric and positive semi-definite matrix which implicitly
preserves the dominant frequencies of the system (1) and f : Rd → R

d is sufficiently
smooth. The solution of (1) is a nonlinear multi-frequency oscillator given by the
linear term Mq. These kind of problems arise in a wide variety of applications such
as mechanics, astronomy, quantum physics, molecular dynamics, theoretical physics,
semi-discrete wave equations via the method of lines.

Over the last one decade and earlier, some novel approaches to modifying the
classical Runge–Kutta–Nyström (RKN) methods have been proposed for the single-
frequency problem

q ′′(t) + ω2q(t) = f
(
q(t)

)
, q(t0) = q0, q ′(t0) = q ′

0, t ∈ [t0, tend], (2)

where the main frequency ω > 0 may be known or accurately estimated in
advance. For the related work to this topic, readers are referred to [1,3–6,8,
15,16,18] and references contained therein. All these methods have coefficients
which are analytic functions of ν2 (ν = hω) and thus they cannot be applied
to the multi-frequency and multidimensional oscillatory system (1). This point
can be shown by the following nonlinear oscillator with two different frequencies
[19]

q ′′
1 + q1 = 2εq1q2, q1(0) = 1, q ′

1(0) = 0,
q ′′
2 + 2q2 = εq21 + 4εq32 , q2(0) = 1, q ′

2(0) = 0.
(3)

It can be observed that such oscillators with coupled frequencies do not fit the scheme
of (2) and thence all themethods for single-frequency problems given in previous pub-
lications are not directly applicable to the coupled oscillators. Moreover, the analysis
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Explicit multi-frequency symmetric extended RKN integrators 209

and conclusions of the methods for single-frequency problems cannot be directly
extended to multi-frequency integrators, which will be shown further by Remark 2.6
of this paper.

In order to solve (1) effectively, many researches have been done and readers are
referred to [2,12,20–23,26–29] for example. Among them, a standard form of multi-
frequency extended Runge–Kutta–Nyström (ERKN) integrators is formulated in [28]
and the corresponding order conditions are also derived in that paper based on a tri-
colored rooted tree theory. Multi-frequency ERKN integrators exactly preserve the
oscillatory feature of the unperturbed multi-frequency oscillators q ′′(t)+Mq(t) = 0,
not only for the updates but also for the internal stages. Therefore, multi-frequency
ERKN integrators are deserved to behave better than the classical RKN methods
when applied to the multi-frequency and multidimensional oscillatory reversible sys-
tem (1) and this point has been shown numerically by the numerical results in [28].
Symplectic and symmetric ERKN integrators are formulated in [29]. However, it
should be noted that requiring a multi-frequency ERKN method to be symplectic and
symmetric simultaneously brings many restrictions in the construction of numerical
methods, which weakens the variety of symmetric multi-frequency ERKN integra-
tors for the multi-frequency and multidimensional oscillatory reversible system (1).
Moreover, symmetric methods themselves have excellent longtime behaviour when
applied to reversible differential equations and a theoretical explanation of this prop-
erty has been given in [10]. Therefore, symmetric integrators play a central role in
geometric numerical integration of reversible differential equations. However, multi-
frequency symmetric ERKN integrators have not been especially and well developed
so far, and the research is required for the application of multi-frequency ERKN
integrators as an efficient approach to solving the multi-frequency and multidimen-
sional oscillatory reversible system (1). Motivated by the point stated above, this
paper is devoted to the construction of explicit multi-frequency symmetric ERKN
integrators.

We proceed as follows. We briefly overview the main results of multi-frequency
ERKN integrators and derive the symmetry conditions of multi-frequency ERKN
integrators in Sect. 2. Section 3 is devoted to proposing five novel practical explicit
multi-frequency symmetricERKN integrators based on the symmetry conditions of the
multi-frequencyERKN integrators. In Sect. 4, we carry out five numerical experiments
and the numerical results demonstrate the remarkable efficiency of the new integrators
in comparison with some existing methods in the scientific literature. The concluding
comments of this paper are presented in Sect. 5.

2 Multi-frequency symmetric ERKN integrators

2.1 Multidimensional ERKN integrators

In [28], multi-frequency ERKN integrators for solving (1) are formulated and their
order conditions are also derived. Here we restate the main results of multi-frequency
ERKN methods [28].

123



210 B. Wang, X. Wu

Definition 2.1 An s-stage multi-frequency ERKN integrator for solving (1) is defined
by

Qi = φ0(c
2
i V )qn + hciφ1(c

2
i V )q ′

n + h2
s∑

j=1
āi j (V ) f (Q j ), i = 1, . . . , s,

qn+1 = φ0(V )qn + hφ1(V )q ′
n + h2

s∑

i=1
b̄i (V ) f (Qi ), (4)

q ′
n+1 = −hMφ1(V )qn + φ0(V )q ′

n + h
s∑

i=1
bi (V ) f (Qi ),

where ci , i = 1, . . . , s are real constants, bi (V ), b̄i (V ), i = 1, . . . , s, and
āi j (V ), i, j = 1, . . . , s are matrix-valued functions of V ≡ h2M , and

φ j (V ) :=
∞∑

k=0

(−1)kV k

(2k + j)! , j = 0, 1, . . . . (5)

Usually, the coefficients of (4) can be displayed in a Butcher tableau:

c Ā(V )

b̄T (V )

bT (V )

=

c1 ā11(V ) . . . ā1s(V )
...

...
. . .

...

cs ās1(V ) · · · āss(V )

b̄1(V ) · · · b̄s(V )

b1(V ) · · · bs(V )

It is noted that when V = 0d×d , (4) reduces to the classical s-stage RKN method
represented by the Butcher tableau

c Ā

b̄T

bT

=

c1 ā11 . . . ā1s
...

...
. . .

...

cs ās1 · · · āss

b̄1 · · · b̄s

b1 · · · bs

It can be observed from (4) that multi-frequency ERKN methods revise both the
internal stages and updates of the classical RKN methods.

The next theorem gives the order conditions of multi-frequency ERKN methods
[28].

Theorem 2.2 The necessary and sufficient conditions for an s-stage multi-frequency
ERKN integrator to be of order r are given by

b̄T (V )�(τ) = ρ(τ)!
γ (τ)

φρ(τ)+1(V ) + O(hr−ρ(τ)), ρ(τ ) = 1, . . . , r − 1,
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Explicit multi-frequency symmetric extended RKN integrators 211

bT (V )�(τ) = ρ(τ)!
γ (τ)

φρ(τ)(V ) + O(hr+1−ρ(τ)), ρ(τ ) = 1, . . . , r, (6)

where τ is an extended Nyström tree associated with an elementary differential
F(τ )(qn) of the function f (q) at (qn).

The analysis of the order conditions based on a tri-colored rooted tree theory for the
multi-frequency ERKN integrators can be found in [28].

In what follows, we are concerned with the stability and phase properties of the
multi-frequency ERKN integrators. This has been analyzed in [24] and thence we just
briefly recall here the definitions.

Consider the revised test equation:

y′′(t) + ω2y(t) = −εy(t) with ω2 + ε > 0, (7)

where ω represents an estimation of the dominant frequency λ and ε = λ2 −ω2 is the
error of that estimation. Applying a multi-frequency ERKN integrator to (7) produces

(
qn+1
hq ′

n+1

)
= S(V, z)

(
qn
hq ′

n

)
,

where the stability matrix S(V, z) is given by

S(V, z) =
(

φ0(V ) − zb̄T (V )N−1φ0(c2V ) φ1(V ) − zb̄T (V )N−1
(
c · φ1(c2V )

)

−Vφ1(V ) − zbT (V )N−1φ0(c2V ) φ0(V ) − zbT (V )N−1
(
c · φ1(c2V )

)
)

with V = h2ω2, z = h2ε and N = I + z Ā(V ).

Definition 2.3 (See [24].) Rs = {(V, z)| V > 0 and ρ(S) < 1} is called the stability
region of a multi-frequency ERKN integrator and Rp = {(V, z)| V > 0, ρ(S) =
1 and tr(S)2 < 4 det(S)} is called the periodicity region of a multi-frequency ERKN
integrator.

Definition 2.4 (See [24].) The quantities

φ(η) = η − arccos

(
tr(S(V, z))

2
√
det(S(V, z))

)
, d(η) = 1 − √

det(S(V, z))

are called the dispersion error and the dissipation error of the multi-frequency ERKN
integrators, respectively, where η = hλ. Accordingly, a method is said to be dispersive
of order r and dissipative of order s, if φ(η) = O(ηr+1) and d(η) = O(ηs+1),
respectively. If φ(η) = 0 and d(η) = 0, then the method is said to be zero dispersive
and zero dissipative, respectively.
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2.2 Symmetry conditions of multi-frequency ERKN integrators

In this subsection, we analyze and derive the symmetry conditions of multi-frequency
ERKN integrators.

An integrator yn+1 = �h(yn) is symmetric if exchanging yn ↔ yn+1 and h ↔ −h
does not change the integrator.

Theorem 2.5 An s-stage multi-frequency ERKN integrator for integrating (1) is sym-
metric if its coefficients satisfy

ci = 1 − cs+1−i , i = 1, 2, . . . , s,

b̄i (V ) = φ1(V )bs+1−i (V ) − φ0(V )b̄s+1−i (V ), i = 1, 2, . . . , s,

āi j (V ) = φ0(c
2
s+1−i V )b̄ j (V ) − cs+1−iφ1(c

2
s+1−i V )b j (V ) + ās+1−i,s+1− j (V ),

i, j = 1, 2, . . . , s. (8)

Proof (a) For an s-stage multi-frequency ERKN integrator (4), exchanging (qn, q ′
n)

↔ (qn+1, q ′
n+1) and replacing h by −h yields

Q̂i = φ0(c2i V )qn+1 − hciφ1(c2i V )q ′
n+1 + h2

s∑

j=1
āi j (V ) f (Q̂ j ), i = 1, 2, . . . , s,

qn = φ0(V )qn+1 − hφ1(V )q ′
n+1 + h2

s∑

i=1
b̄i (V ) f (Q̂i ),

q ′
n = hMφ1(V )qn+1 + φ0(V )q ′

n+1 − h
s∑

i=1
bi (V ) f (Q̂i ). (9)

It follows from (5) that φ0(V )+ Vφ2
1(V ) = I . According to this property and (9), we

obtain

Q̂i = φ0((1 − ci )
2V )qn + h(1 − ci )φ1((1 − ci )

2V )q ′
n + h2

s∑

j=1

[
φ0(c

2
i V )

(
φ1(V )b j (V )

−φ0(V )b̄ j (V )
) − ciφ1(c

2
i V )

(
Vφ1(V )b̄ j (V ) + φ0(V )b j (V )

) + āi j (V )
]
f (Q̂ j ),

qn+1 = φ0(V )qn + hφ1(V )q ′
n + h2

s∑

i=1

[
φ1(V )bi (V ) − φ0(V )b̄i (V )

]
f (Q̂i ),

q ′
n+1 = −hMφ1(V )qn + φ0(V )q ′

n + h
s∑

i=1

[
Vφ1(V )b̄i (V ) + φ0(V )bi (V )

]
f (Q̂i ). (10)

Replace all indices i and j in (10) by s + 1− i and s + 1− j , respectively, and then
an s-stage multi-frequency ERKN integrator is symmetric if its coefficients satisfy the
following conditions

ci = 1 − cs+1−i , i = 1, 2, . . . , s,

b̄i (V ) = φ1(V )bs+1−i (V ) − φ0(V )b̄s+1−i (V ), i = 1, 2, . . . , s,

bi (V ) = Vφ1(V )b̄s+1−i (V ) + φ0(V )bs+1−i (V ), i = 1, 2, . . . , s,
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Explicit multi-frequency symmetric extended RKN integrators 213

āi j (V ) = φ0(c
2
s+1−i V )b̄ j (V ) − cs+1−iφ1(c

2
s+1−i V )b j (V ) + ās+1−i,s+1− j (V ),

i, j = 1, 2, . . . , s. (11)

(b) We now show that the second condition in (11) implies the third one.
For the symmetric and positive semi-definite matrix M , there exists an orthogonal

matrix P and a positive semi-definite diagonal matrix M̃ such that

M = PTM̃ P.

Then we have

b̄i (V ) = φ1(V )bs+1−i (V ) − φ0(V )b̄s+1−i (V ) ⇔ b̄i (Ṽ )

= φ1(Ṽ )bs+1−i (Ṽ ) − φ0(Ṽ )b̄s+1−i (Ṽ ),

bi (V ) = Vφ1(V )b̄s+1−i (V ) + φ0(V )bs+1−i (V ) ⇔ bi (Ṽ )

= Ṽφ1(Ṽ )b̄s+1−i (Ṽ ) + φ0(Ṽ )bs+1−i (Ṽ ),

where i = 1, 2, . . . , s and Ṽ = h2M̃ .
With this result, in order to prove that the second condition in (11) implies the

third one for the matrix V , we just need to verify that conclusion is true when V is a
nonnegative real number.

In fact, let V = x ≥ 0. When V = x > 0, the second condition in (11) becomes

b̄i (x) = φ1(x)bs+1−i (x) − φ0(x)b̄s+1−i (x), i = 1, 2, . . . , s, (12)

which delivers

b̄s+1−i (x) = φ1(x)bi (x) − φ0(x)b̄i (x)

= φ1(x)bi (x) − φ0(x)
(
φ1(x)bs+1−i (x) − φ0(x)b̄s+1−i (x)

)
(13)

= φ1(x)bi (x) − φ0(x)φ1(x)bs+1−i (x)+φ2
0(x)b̄s+1−i (x), i = 1, 2, . . . , s.

Using φ2
0(x) + xφ2

1(x) = 1, it follows from (13) that

φ1(x)bi (x) − φ0(x)φ1(x)bs+1−i (x) = (
1 − φ2

0(x)
)
b̄s+1−i (x)

= xφ2
1(x)b̄s+1−i (x), i = 1, 2, . . . , s,

which can be simplified as (the third condition in (11) when V = x)

bi (x) = xφ1(x)b̄s+1−i (x) + φ0(x)bs+1−i (x), i = 1, 2, . . . , s. (14)
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On the other hand, it follows from the condition (14) that

bs+1−i (x) = xφ1(x)b̄i (x) + φ0(x)bi (x)

= xφ1(x)b̄i (x) + φ0(x)
(
xφ1(x)b̄s+1−i (x) + φ0(x)bs+1−i (x)

)

= xφ1(x)b̄i (x)+xφ0(x)φ1(x)b̄s+1−i (x)+φ2
0(x)bs+1−i (x), i=1, 2, . . . , s.

Therefore, we obtain

xφ2
1(x)bs+1−i (x) = xφ1(x)b̄i (x) + xφ0(x)φ1(x)b̄s+1−i (x), i = 1, 2, . . . , s,

which give (12). The above analysis shows that the second condition in (11) is equiv-
alent to the third one when V = x > 0.

When V = x = 0, the second condition in (11) becomes

b̄i (0) = bs+1−i (0) − b̄s+1−i (0), i = 1, 2, . . . , s (15)

and the third one is

bi (0) = bs+1−i (0), i = 1, 2, . . . , s. (16)

It follows from (15) that

bs+1−i (0) = b̄i (0) + b̄s+1−i (0), bi (0) = b̄s+1−i (0) + b̄i (0), i = 1, 2, . . . , s.

This shows bi (0) = bs+1−i (0), namely, the second condition in (11) implies the third
one when V = x = 0.

In conclusion, the symmetry conditions in (11) can be simplified as (8). The proof
is complete. ��
Remark 2.6 Wenote that [1] gives the symmetry conditions of single-frequencymeth-
ods for the single-frequency problem (2). However, it is very important to note that
the symmetry conditions of multi-frequency ERKN integrators when applied to a
multi-frequency problem and their proof are different from those of single-frequency
methods in [1]. This fact shows that the analysis and conclusions of single-frequency
methods cannot be directly applied to multi-frequency integrators. It is also noted that
the symmetry conditions (11) are derived in [29] but they can be simplified as (8) as
shown in the proof of Theorem (2.5).

2.3 Approximate energy conservation

If f (q) in (1) is the negative gradient of a differentiable functionU (q), then the system
(1) is a multi-frequency and multidimensional oscillatory Hamiltonian system with
the Hamiltonian

H(q, q ′) = 1

2
q ′T q ′ + 1

2
qT Mq +U (q).
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Explicit multi-frequency symmetric extended RKN integrators 215

With regard to the approximate energy conservation of multi-frequency ERKN inte-
grators, we have the following result.

Theorem 2.7 Under the local assumptions of qn−1 = q(tn−1) and q ′
n−1 = q ′(tn−1),

the energy of a rth order multi-frequency ERKN integrator satisfies

H(qn, q
′
n) = H(q0, q

′
0) + O(hr+1). (17)

Proof A r th order multi-frequency ERKN integrator means

qn − q(tn) = O(hr+1), q ′
n − q ′(tn) = O(hr+1).

Accordingly, we have

H(qn, q
′
n) = 1

2
q ′T
n q ′

n + 1

2
qTn Mqn +U (qn)

= 1

2

(
q ′(tn) + O(hr+1)

)T (
q ′(tn) + O(hr+1)

)

+1

2

(
q(tn) + O(hr+1)

)T
M

(
q(tn)+O(hr+1)

) +U
((
q(tn)+O(hr+1)

))

= 1

2
q ′(tn)T q ′(tn) + 1

2
q(tn)

T Mq(tn) +U
(
q(tn)

) + O(hr+1)

= H(q(tn), q
′(tn)) + O(hr+1) = H(q0, q

′
0) + O(hr+1).

��

3 Practical explicit multi-frequency symmetric ERKN integrators

In this section we only consider explicit multi-frequency symmetric ERKN integrators
since explicit integrators avoid the necessity of solving a system of nonlinear equations
at each step.

3.1 One-stage explicit symmetric integrators

Consider the one-stage explicit multi-frequency ERKN integrator displayed in a
Butcher tableau

c1 0d×d

b̄1(V )

b1(V )

It follows from the symmetry conditions (8) that this integrator is symmetric if

c1 = 1/2, b̄1(V ) = φ1(V )b1(V ) − φ0(V )b̄1(V ),

φ0(c
2
1V )b̄1(V ) − c1φ1(c

2
1V )b1(V ) = 0d×d . (18)
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By (6), the necessary and sufficient conditions for this method of order two are

b1(V ) = φ1(V ) + O(h2), b1(V )c1 = φ2(V ) + O(h), b̄1(V ) = φ2(V ) + O(h).

(19)

By (19), we choose b1(V ) = φ1(V ). Then solving the second condition in (18) yields
that b̄1(V ) = φ2(V ) and under the results of b1(V ) and b̄1(V ), it is verified that the
third condition in (18) is satisfied. This gives an explicit multi-frequency symmetric
ERKN method of order two presented by

Q1 = φ0(V/4)qn + h

2
φ1(V/4)q ′

n,

qn+1 = φ0(V )qn + hφ1(V )q ′
n + h2φ2(V ) f (Q1),

q ′
n+1 = −hMφ1(V )qn + φ0(V )q ′

n + hφ1(V ) f (Q1),

which is denoted by MSERKN1s2. It is noted that MSERKN1s2 reduces to the
Störmer-Verlet formula when V → 0d×d .

3.2 Two-stage explicit symmetric integrators

We turn to considering the two-stage explicit multi-frequency symmetric ERKN inte-
grator denoted by the Butcher tableau

c1 0d×d 0d×d

c2 ā21(V ) 0d×d

b̄1(V ) b̄2(V )

b1(V ) b2(V )

It follows from (6) that the necessary and sufficient conditions for two-stage explicit
multi-frequency ERKN integrators of order two are

b1(V ) + b2(V ) = φ1(V ) + O(h2), b1(V )c1 + b2(V )c2 = φ2(V ) + O(h),

b̄1(V ) + b̄2(V ) = φ2(V ) + O(h). (20)

Solving the symmetric conditions (8) of this two-stage explicit integrator as well as
the first condition in (20) yields

c1 = 1 − c2,

b1(V ) = b̄1(V )φ0(c
2
2V )

(
c2φ1(c

2
2V )

)−1
, b2(V ) = b̄2(V )φ0(c

2
1V )

(
c1φ1(c

2
1V )

)−1
,

b̄2(V ) = −c1c2φ1(V )φ1(c
2
1V )φ1(c

2
2V )

(
c1φ0(V )φ0(c

2
2V )φ1(c

2
1V ) − φ0(c

2
1V )

(
φ0(c

2
2V )φ1(V ) + c2φ1(c

2
2V )

))−1
,

b̄1(V ) = b2(V )φ1(V ) − b̄2(V )φ0(V ),
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Explicit multi-frequency symmetric extended RKN integrators 217

ā21(V ) = φ0(c
2
1V )b̄1(V ) − c1φ1(c

2
1V )b1(V ). (21)

A careful calculation can verify that the integrators determined by (21) are a family
of explicit multi-frequency symmetric ERKN integrators of order two, where c2 is a
free parameter. We note that the coefficients b1(V ), b2(V ), b̄2(V ) are well-defined
even for a singular matrix V and their Taylor series expansions are

b1(V ) = 1

2
I + 6c1 − 5

24
V + 1 + 10c1 − 30c21 + 20c31

240
V 2 + · · · ,

b2(V ) = 1

2
I + 1 − 6c1

24
V + 1 − 10c1 + 30c21 − 20c31

240
V 2 + · · · ,

b̄2(V ) = c1
2
I + c1(1 − 6c1 + 4c21)

24
V + c1(3 − 30c1 + 100c21 − 120c31 + 48c41)

720
V 2 + · · · .

We give an example. We chose c2 such that the coefficient of the first term in the
Taylor expansion of the dissipation error d(η) of this integrator is minimal. This

yields c2 = 3+√
3

6 and this case gives a practical multi-frequency symmetric ERKN
integrator of order two, which is denoted by MSERKN2s2.

We then are concerned with two-stage explicit multi-frequency symmetric ERKN
integrator with FSAL properties (the last evaluation at any step is the same as the first
evaluation at the next step), which can be expressed in Butcher tableau as

c1 0d×d 0d×d

c2 ā21(V ) 0d×d

b̄1(V ) = ā21(V ) b̄2(V ) = 0d×d

b1(V ) b2(V )

According to the symmetric conditions (8) and the second order conditions (20), we
choose

c1 = 0, c2 = 1, ā21(V ) = φ2(V ), b̄1(V ) = φ2(V ), b̄2(V ) = 0d×d ,

b1(V ) = φ0(V )φ2(V )φ1(V )−1, b2(V ) = φ2(V )φ1(V )−1, (22)

which gives the following multi-frequency symmetric ERKN integrator of order two
(denoted by FMSERKN2s2)

qn+1 = φ0(V )qn + hφ1(V )q ′
n + h2φ2(V ) f (qn),

q ′
n+1 = −hMφ1(V )qn + φ0(V )q ′

n + hφ2(V )φ1(V )−1(φ0(V ) f (qn) + f (qn+1)
)
.
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It is noted that the coefficients b1(V ), b2(V ) are well-defined even for a singular
matrix V and their Taylor series expansions are

b1(V ) = 1

2
I − 5

24
V + 1

240
V 2 − 5

8064
V 3 + · · · ,

b2(V ) = 1

2
I + 1

24
V + 1

240
V 2 + 17

40320
V 3 + · · · .

3.3 Three-stage explicit symmetric integrators

A three-stage explicit multi-frequency ERKN integrator can be denoted by

c Ā(V )

b̄T (V )

bT (V )

=

c1 0d×d 0d×d 0d×d

c2 ā21(V ) 0d×d 0d×d

c3 ā31(V ) ā32(V ) 0d×d

b̄1(V ) b̄2(V ) b̄3(V )

b1(V ) b2(V ) b3(V )

Solving the symmetric conditions (8) of this three-stage explicit integrator yields

c3 = 1 − c1, c2 = 1/2,

b̄1(V ) = c3b1(V )φ1(c
2
3V )

(
φ0(c

2
3V )

)−1
,

b̄2(V ) = c2b2(V )φ1(c
2
2V )

(
φ0(c

2
2V )

)−1
,

b̄3(V ) = c1b3(V )φ1(c
2
1V )

(
φ0(c

2
1V )

)−1
,

b3(V ) = c3b1(V )φ0(c
2
1V )φ1(c

2
3V )

(
φ0(c

2
3V )

×(
φ0(c

2
1V )φ1(V ) − c1φ0(V )φ1(c

2
1V )

))−1
,

ā21(V ) = φ0(c
2
2V )b̄1(V ) − c2φ1(c

2
2V )b1(V ),

ā31(V ) = φ0(c
2
1V )b̄1(V ) − c1φ1(c

2
1V )b1(V ),

ā32(V ) = φ0(c
2
1V )b̄2(V ) − c1φ1(c

2
1V )b2(V ). (23)

The necessary and sufficient conditions for this integrator of order four are given by
(6)

bT (V )(e ⊗ I ) = φ1(V ) + O(h4), bT(V )(c ⊗ I ) = φ2(V ) + O(h3),
bT(V )

(
(c2) ⊗ I

) = 2φ3(V ) + O(h2), bT(V )
(
(c3) ⊗ I

) = 6φ4(V ) + O(h),

bT (V )
(
Ā(0)(e ⊗ I )

) = φ3(V ) + O(h2), bT (V )
(
Ā(0)(c ⊗ I )

) = φ4(V ) + O(h),

bT (V )
(
(c ⊗ I ) · ( Ā(0)(e ⊗ I ))

) = 3φ4(V ) + O(h), b̄T (V )(e ⊗ I ) = φ2(V ) + O(h3),
b̄T (V )(c ⊗ I ) = φ3(V ) + O(h2), b̄T (V )

(
(c2) ⊗ I

) = 2φ4(V ) + O(h),

b̄T (V )
(
Ā(0)(e ⊗ I )

) = φ4(V ) + O(h),

(24)

where I is a d × d identity matrix and e = (1, 1, 1)T .
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3.3.1 Case one

We solve the first two equations with the terms O(h4), O(h3) ignored

bT (V )(e ⊗ I ) = φ1(V ), bT(V )(c ⊗ I ) = φ2(V )

and obtain

b1(V ) = c2b3(V )−c3b3(V )−c2φ1(V )+φ2(V )
c1−c2

, (25)

b2(V ) = c1b3(V )−c3b3(V )−c1φ1(V )+φ2(V )
c2−c1

. (26)

Based on the formula (25) and the result of b3(V ) in (23), we obtain

b1(V ) = φ0(c
2
3V )(φ0(c

2
1V )φ1(V ) − c1φ0(V )φ1(c

2
1V ))(φ1(V ) − 2φ2(V ))

×
(
c1(−1 + 2c1)φ0(V )φ0(c

2
3V )φ1(c

2
1V ) + φ0(c

2
1V )

×(
(1 − 2c1)φ0(c

2
3V )φ1(V ) + (1 − 2c3)c3φ1(c

2
3V )

))−1
. (27)

Inserting (23), (26) and (27) into the order conditions (24) gives that c1 = 4+2 3√2+ 3√4
12 .

Then the value of c1 as well as (23), (26) and (27) determines a three-stage
explicit multi-frequency symmetric ERKN integrator of order four (denoted by
1MSERKN3s4).

Let a = 3
√
2, b = 3

√
4 and the Taylor series expansions (the first four terms) of

b1(V ), b3(V ), b̄1(V ), b̄2(V ), b̄3(V ) are

b1(V ) =
(

143 a

4,665,600
+ 359 b

6,531,840
− 2,431

16,329,600

)
V 3 +

(
271

45,360
− 137

90,720 b
− b

560

)
V 2

+
(

b

60
− a

120
− 41

360

)
V + 4 + 2a + b

6
I,

b3(V ) =
(

− 3,859 a

32,659,200
− 613 b

6,531,840
− 2,431

16,329,600

)
V 3 +

(
871 a

181,440
+ 19 b

5,040
+ 271

45,360

)
V 2

+
(

−11 a

120
− b

15
− 41

360

)
V + 4 + 2a + b

6
I,

b̄1(V ) =
(

139 a

32,659,200
+ 481 b

65,318,400
− 619

32,659,200

)
V 3 +

(
37

36,288
− b

2,880
− 13 a

72,576

)
V 2

+
(

a

720
+ b

144
− 7

240

)
V + 4 + a

12
I,

b̄2(V ) =
(

11 a

1,020,600
+ 149 b

32,659,200
+ 107

8,164,800

)
V 3 −

(
b

3,360
+ 23

18,144 b
+ 59

90,720

)
V 2

+
(

a

45
+ b

90
+ 1

60

)
V − (a + 1)2

6
I,

b̄3(V ) =
(

− 491 a

32,659,200
− 779 b

65,318,400
− 619

32,659,200

)
V 3 +

(
59 a

72,576
+ 13 b

20,160
+ 37

36,288

)
V 2

+
(

−17 a

720
− 13 b

720
− 7

240

)
V + 4 + 3a + b

12
I.
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3.3.2 Case two

Similarly, according to the result of b3(V ) in (23) and the following two equations
[obtained by modifying some conditions in (24)]

bT (V )(e ⊗ I ) = φ1(V ), bT(V )(c2 ⊗ I ) = 2φ3(V ),

we obtain

b1(V ) = −φ0(c
2
3V )(φ0(c

2
1V )φ1(V ) − c1φ0(V )φ1(c

2
1V ))(c22φ1(V ) − 2φ3(V ))

×
(
(c21 − c22)(−1 + c3)φ0(V )φ0(c

2
3V )φ1(c

2
1V ) + φ0(c

2
1V )

×(
(c21 − c22)φ0(c

2
3V )φ1(V ) + c3(c

2
3 − c22)φ1(c

2
3V )

))−1
,

b2(V ) = (c23 − c21)b3(V ) + c21φ1(V ) − 2φ3(V )

c21 − c22
. (28)

Inserting (23) and (28) into the fourth order conditions (24) yields that c3 = 8−2 3√2− 3√4
12

and then we obtain a three-stage explicit multi-frequency symmetric ERKN integrator
of order four determined by (23) and (28). Let a = 3

√
2, b = 3

√
4 and the Taylor series

expansions (the first four terms) of b1(V ), b3(V ), b̄1(V ), b̄2(V ), b̄3(V ) are

b1(V ) =
(

− 247 a

60,480
− 73 b

48,384
− 7

1,440

)
V 3 +

(
17 a

1,890
+ 25 b

12,096
+ 523

30,240

)
V 2

+
(

b

120
− a

40
− 2

15

)
V + 4 + 2a + b

6
I,

b3(V ) =
(

− 953 a

181,440
− 2377 b

725,760
− 1

162

)
V 3 +

(
31 a

1,890
+ 643 b

60,480
+ 593

30,240

)
V 2

−
(
13 a

120
+ 3 b

40
+ 2

15

)
V + 4 + 2a + b

6
I,

b̄1(V ) =
(

− 20,681 a

14,515,200
− 8,843 b

43,545,600
− 6,913

4,354,560

)
V 3

+
(

199 a

60,480
+ b

8,640
+ 299

60,480

)
V 2

+
(
5 b

864
− 11 a

2,160
− 79

2,160

)
V + 4 + a

12
I,

b̄2(V ) =
(

881 a

226,800
+ 3,629 b

1,814,400
+ 8,171

1,814,400

)
V 3

−
(
5 a

504
+ 5 b

1,008
+ 29

2,520

)
V 2 +

(
7 a

180
+ 7 b

360
+ 13

360

)
V − (a + 1)2

6
I,

b̄3(V ) =
(

− 3,967 a

1,612,800
− 11,179 b

6,220,800
− 64,027

21,772,800

)
V 3
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+
(

401 a

60,480
+ 293 b

60,480
+ 481

60,480

)
V 2

+
(

− 73 a

2,160
− 109

2,160 a
− 89

2,160

)
V + 4 + 3a + b

12
I.

3.4 Stability and phase properties

The stability regions for the new integrators are depicted in Fig. 1 and it can be observed
that the stability region of MSERKN2s2 is smaller than those of the others.

The dissipation errors and dispersion errors of the new integrators are as follows.

• MSERKN1s2:

d(η) = 0, φ(η) = ε(−2ε + ω2)

48(ε + ω2)2
η3 + O(η5).

• MSERKN2s2:

d(η) = 0, φ(η) = − ε2

24(2 + √
3)(ε + ω2)2

η3 + O(η5).

• FMSERKN2s2:
d(η) = 0, φ(η) = − ε

24(ε + ω2)
η3 + O(η5).

• 1MSERKN3s4:

d(η) = 0,

φ(η) = −
ε
(
48(10 − 13 3

√
2 + 4 3

√
4)ε2 − 4(46 − 49 3

√
2 + 10 3

√
4)εω2 + (250 − 17 3

√
2 − 144 3

√
4)ω4

)

320(−2 + 2 3
√
2 + 3

√
4)4(−26 + 3 3

√
2 + 14 3

√
4)(ε + ω2)3

η5

+ O(η6).

0 5000 10000
−100
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100
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V

z

0 5000 10000
−100

−50
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100
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z

0 5000 10000
−100

−50

0

50

100
Stability region of 2MSERKN3s4

V

z

Fig. 1 Stability regions (shaded regions) for the obtained integrators
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• 2MSERKN3s4:

d(η) = 0,

φ(η) = −ε
(
48(−1658 + 215 3

√
2 + 871 3

√
4)ε2 − 12(−12634 + 907 3

√
2

+7241 3
√
4)εω2 + 5(4878 − 22165 3

√
2 + 14519 3

√
4)ω4

)

/(
1920(−1 + 2 3

√
2)(28 − 22 3

√
2 + 3

√
4)3(ε + ω2)3

)
η5 + O(η6).

Remark 3.1 It is noted that when V → 0d×d , the multi-frequency symmetric ERKN
integrators derived in this section reduce to the classical symmetric RKN methods
for solving the important second-order ODEs q ′′ = f (q). For example, as pointed
out in Sect. 3.1 when V → 0d×d , the the integrator MSERKN1s2 reduces to the
Störmer-Verlet formula

Q1 = qn + h

2
q ′
n,

qn+1 = qn + hq ′
n + h2

2
f (Q1),

q ′
n+1 = q ′

n + h f (Q1), (29)

which iswildly employed in practice.WhenV → 0d×d , the integrators 1MSERKN3s4
and 2MSERKN3s4 become the same symmetric RKN method displayed in the fol-
lowing Butcher tableau:

1 − c3 0 0 0
1/2 1

24c3−12 0 0

c3
1

12c3−6
1−6c3+6c23

6c3−3 0

c3
6(2c3−1)2

(1−6c3+6c23)
3(2c3−1)2

(1−c3)
6(2c3−1)2

1
6(2c3−1)2

2(1−6c3+6c23)
3(2c3−1)2

1
6(2c3−1)2

with c3 = 8−2 3√2− 3√4
12 . This method has been given in [11,14] and we denote it by

SSRKN3s4.

Remark 3.2 We note that the order conditions together with the symmetry conditions
for a higher-order multi-frequency ERKN integrator are huge. Therefore, the deriva-
tion of a high-order multi-frequency symmetric ERKN integrator based on the order
conditions and the symmetry conditions is not easy. However, high-order symmetric
integrators are easily obtained by symmetric composition methods. We do not discuss
it further in this paper and refer the reader to V.3 of Chapter V in [10] for the details.

Remark 3.3 We do not discuss the non-autonomous problem q ′′(t) + Mq(t) =
f (t, q(t)) in this paper because by appending the equation t ′′ = 0, it can be trans-
formed into the autonomous form
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u′′(t) + M̃u(t) = g
(
u(t)

)
,

where

u(t) =
(
t, qT (t)

)T
, g

(
u(t)

) =
(
t, f T

(
t, q(t)

))T

and

M̃ =
(
1 01×d

0d×1 M

)
.

Therefore, all the analysis and the proposed integrators in this paper are applicable to
the non-autonomous problem q ′′(t) + Mq(t) = f

(
t, q(t)

)
.

4 Numerical experiments

This section presents five numerical experiments and the numerical results show the
remarkable efficiency of the new integrators as compared with some existing methods,
The integrators for comparisons are:

• C: the symmetric and symplectic method of order two given in [7];
• E: the symmetric method of order two given in [9];
• ARKN3s4: the three-stage ARKN method of order four given in [25];
• SSRKN3s4: the three-stage symmetric and symplectic RKN method of order four
given in [11,14];

• MSERKN1s2: the one-stage multi-frequency symmetric ERKN integrator of order
two derived in Sect. 3.1;

• MSERKN2s2: the two-stage multi-frequency symmetric ERKN integrator of order
two derived in Sect. 3.2;

• FMSERKN2s2: the two-stage multi-frequency symmetric ERKN integrator of
order two derived in Sect. 3.2;

• 1MSERKN3s4: the three-stage multi-frequency symmetric ERKN integrator of
order four derived in Sect. 3.3;

• 2MSERKN3s4: the three-stage multi-frequency symmetric ERKN integrator of
order four derived in Sect. 3.3.

In the numerical experiments, we use Taylor expansions (the first four terms) to evalu-
ate the coefficients of the new integrators. In each experiment, we show the efficiency
curve (accuracy versus the computational cost measured by the number of function
evaluations required by each method), as well as the energy conservation for a Hamil-
tonian system. Since the exact solutions of some problems are not available, a reference
solution is obtained by choosing a very small stepsize.

Problem 1. Consider a nonlinear wave equation (see [17])

∂2u

∂t2
− gd(x)

∂2u

∂x2
= 1

4
λ2(x, u)u, 0 < x ≤ b, t > 0,
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∂u

∂x
(t, 0) = ∂u

∂x
(t, b) = 0, u(0, x) = sin

(πx

b

)
, ut (0, x) = −π

b

√
gd(x) cos

(πx

b

)
,

where d(x) is the depth function given by d(x) = d0
[
2 + cos(

2πx

b
)
]
, g denotes the

acceleration of gravity, and λ(x, u) is the coefficient of bottom friction defined by

λ(x, u) = g|u|
C2d(x)

with Chezy coefficient C .

By using second-order symmetric differences, this problem is converted into a
system of ODEs

d2U

dt2
+ MU = F(t,U ), 0 < t ≤ tend .

U (0) =
(
sin

(πx1
b

)
, . . . , sin

(πxN
b

))T
,

U ′(0) =
(

− π

b

√
gd(x1) cos

(πx1
b

)
, . . . ,−π

b

√
gd(xN ) cos

(πxN
b

))T
, (30)

where xi = i�x with �x = 1
N , U (t) denotes the N -dimensional vector with entries

ui (t) ≈ u(xi , t),

M = g

�x2

⎛

⎜⎜⎜
⎜⎜
⎝

−2d(x1) d(x1)
d(x2) −2d(x2) d(x2)

. . .
. . .

. . .

d(xN−1) −2d(xN−1) d(xN−1)

d(xN ) −2d(xN )

⎞

⎟⎟⎟
⎟⎟
⎠

,

and

F(t,U ) =
(
1

4
λ2(x1, u1)u1, . . . ,

1

4
λ2(xN , uN )uN

)T

.

We choose b = 100, g = 9.81, d0 = 10, C = 50 for solving this problem. It is
integrated in the interval [0, 100]with N = 32 and the stepsizes h = 1/(2 j ×3) for the
methods C, E, MSERKN1s2, FMSERKN2s2, h = 1/(2 j−1 × 3) for MSERKN2s2,
and h = 1/(2 j ) for the other methods, where j = 2, 3, 4, 5. The global errors are
shown in Fig. 2a. The matrix M is diagonalizable and its smallest eigenvalue is about
0.00 and the largest eigenvalue is about 10,472.80. It is noted that some errors of some
methods are quite large and we do not plot the corresponding points in the figure.
Similar situation occurs in the following problems.

Problem 2. Consider the wave equation

∂2u

∂t2
− a(x)

∂2u

∂x2
+ 92u = f (t, x, u), 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, u(x, 0) = a(x), ut (x, 0) = 0,
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Fig. 2 Results for Problem 1 (a) and Problem 2 (b). The logarithm of the global error (GE) over the
integration interval against the logarithm of the number of function evaluations

with a(x) = 4x(1− x), f (t, x, u) = u5 −a2(x)u3 + a5(x)

4
sin2(20t) cos(10t). The

exact solution is u(x, t) = a(x) cos(10t).
Using semi-discretization on the spatial variable with second-order symmetric dif-

ferences, we obtain

d2U

dt2
+ MU = F(t,U ), U (0) = (

a(x1), . . . , a(xN−1)
)T

,

U ′(0) = 0, 0 < t ≤ tend, (31)

where U (t) = (
u1(t), . . . , uN−1(t)

)T with ui (t) ≈ u(xi , t), xi = i�x , �x = 1/N ,
i = 1, . . . , N − 1,

M = 92IN−1 + 1

�x2

⎛

⎜⎜⎜
⎜⎜
⎝

2a(x1) −a(x1)
−a(x2) 2a(x2) −a(x2)

. . .
. . .

. . .

−a(xN−2) 2a(xN−2) −a(xN−2)

−a(xN−1) 2a(xN−1)

⎞

⎟⎟⎟
⎟⎟
⎠

,

and

F(t,U ) = (
f (t, x1, u1), . . . , f (t, xN−1, uN−1)

)T
.
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The system is integrated in the interval [0, 20] with N = 40 and the integration
stepsizes h = 1/(2 j × 30) for the methods C, E, MSERKN1s2, FMSERKN2s2,
h = 1/(2 j × 15) for MSERKN2s2, and h = 1/(2 j × 10) for the other methods,
where j = 0, 1, 2, 3. The efficiency curves are shown in Fig. 2b. We note that the
matrix M is diagonalizable and its smallest eigenvalue is about 100.00 and the largest
eigenvalue is about 6,332.00.

Problem 3. Consider the nonlinear Klein–Gordon equation [13]

∂2u

∂t2
− ∂2u

∂x2
= −u3 − u, 0 < x < L , t > 0,

u(x, 0) = A

(
1 + cos

(
2π

L
x

))
, ut (x, 0) = 0, u(0, t) = u(L , t),

where L = 1.28, A = 0.9. Carrying out a semi-discretization on the spatial variable
by using second-order symmetric differences yields

d2U

dt2
+ MU = F(t,U ), 0 < t ≤ tend,

where U (t) = (
u1(t), . . . , uN (t)

)T with ui (t) ≈ u(xi , t), i = 1, . . . , N ,

M = 1

�x2

⎛

⎜
⎜⎜⎜⎜
⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎞

⎟
⎟⎟⎟⎟
⎠

N×N

with�x = L/N , xi = i�x, F(t,U ) = (−u31 −u1, . . . ,−u3N −uN
)T and N = 32.

The corresponding Hamiltonian of this system is

H(U ′,U ) = 1

2
U ′TU ′ + 1

2
UT MU + 1

2
u21 + 1

4
u41 + · · · + 1

2
u2N + 1

4
u4N .

We solve this problem in [0, 500] with N = 32 and stepsizes h = 1/(2 j × 150) for
the methods C, E, MSERKN1s2, FMSERKN2s2, h = 1/(2 j ×75) for MSERKN2s2,
and h = 1/(2 j ×50) for the other methods, where j = 0, 1, 2, 3. Figure 3a shows the
error in the positions at tend = 10 versus the computational effort. Then this problem
is integrated with a fixed stepsize h = 1/50 in the interval [0, tend], tend = 10i , i =
0, 1, 2, 3. The results of energy conservation are presented in Fig. 3b. The smallest
eigenvalue of the matrix M is about 0.00 and the largest eigenvalue is about 2,500.00.

Problem 4. Consider the sine-Gordon equation with periodic boundary conditions
([12])
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Fig. 3 Results for Problem 3. a The logarithm of the global error (GE) over the integration interval against
the logarithm of the number of function evaluations. b The logarithm of the maximum global error of
Hamiltonian GEH = max |Hn − H0| against log10(tend)

⎧
⎨

⎩

∂2u

∂t2
= ∂2u

∂x2
− sin u, −1 < x < 1, t > 0,

u(−1, t) = u(1, t).

We carry out a semi-discretization on the spatial variable by using second-order sym-
metric differences and obtain the following system of second-order ODEs in time:

d2U

dt2
+ MU = F(t,U ), 0 < t ≤ tend,

where U (t) = (u1(t), . . . , uN (t))T withui (t) ≈ u(xi , t), i = 1, 2, . . . , N , �x =
2/N , xi = −1 + i�x, F(t,U ) = − sin(U ) = −(

sin u1, . . . , sin uN
)T

,

M = 1

�x2

⎛

⎜⎜⎜⎜⎜
⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎞

⎟⎟⎟⎟⎟
⎠

.

The Hamiltonian of this system is

H(U ′,U ) = 1

2
U ′TU ′ + 1

2
UT MU − cos(u1) − cos(u2) − · · · − cos(uN ).
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Fig. 4 Results for Problem 4. a The logarithm of the global error (GE) over the integration interval against
the logarithm of the number of function evaluations. b The logarithm of the maximum global error of
Hamiltonian GEH = max |Hn − H0| against log10(tend)

The initial conditions are chosen as

U (0) = (π)Ni=1, Ut (0) = √
N

(
0.01 + sin

(
2π i

N

))N

i=1

with N = 32. The problem is integrated in the interval [0, 500] with stepsizes h =
1/(30 × 2 j ) for the methods C, E, MSERKN1s2, FMSERKN2s2, h = 1/(15 × 2 j )

for MSERKN2s2, and h = 1/(10 × 2 j ) for the other methods, where j = 0, 1, 2, 3.
Figure 4a shows the global errors. We integrate this problem with a fixed stepsize
h = 1/40 in the interval [0, tend], tend = 10i , i = 0, 1, 2, 3. The results of energy
conservation are presented in Fig. 4b. The smallest eigenvalue of thematrixM is about
0.00 and the largest eigenvalue is about 1,024.00.

Problem 5. Consider a Fermi-Pasta-Ulam Problem [10].
Fermi-Pasta-Ulam Problem is a Hamiltonian system with the Hamiltonian

H(y, x) = 1

2

2m∑

i=1
y2i + ω2

2

m∑

i=1
x2m+i + 1

4
[(x1 − xm+1)

4

+
m−1∑

i=1
(xi+1 − xm+i−1 − xi − xm+i )

4 + (xm + x2m)4],

where xi is a scaled displacement of the i th stiff spring, xm+i represents a scaled
expansion (or compression) of the i th stiff spring, and yi , ym+i are their velocities (or
momenta).
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Fig. 5 Results for Problem 5. a The logarithm of the global error (GE) over the integration interval against
the logarithm of the number of function evaluations. b The logarithm of the maximum global error of
Hamiltonian GEH = max |Hn − H0| against log10(tend)

Therefore, we have

x ′′(t) + Mx(t) = −∇U (x), t ∈ [t0, tend],

where

M =
(
0m×m 0m×m

0m×m ω2 Im×m

)
,

U (x) = 1

4

[
(x1 − xm+1)

4 +
m−1∑

i=1
(xi+1 − xm+i−1 − xi − xm+i )

4 + (xm + x2m)4
]
.

Following [10], we choose

m = 3, x1(0) = 1, y1(0) = 1, x4(0) = 1

ω
, y4(0) = 1,

with zero for the remaining initial values and ω = 50. The system is integrated in the
interval [0, 10] with stepsizes h = 1/(120× 2 j ) for the methods C, E, MSERKN1s2,
FMSERKN2s2, h = 1/(60 × 2 j ) for MSERKN2s2, and h = 1/(40 × 2 j ) for the
other methods, where j = 0, 1, 2, 3. The efficiency curves are shown in Fig. 5a. We
integrate this problem with a fixed stepsize h = 1/500 in the interval [0, tend], tend =
10i , i = 0, 1, 2, 3. The results of energy conservation are presented in Fig. 5b.
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It follows from the numerical results that our novel integrators are very promising
as compared with the classical RKN methods, ARKN methods, and Gautschi-type
trigonometric or exponential integrators.

5 Conclusions and discussions

In this paper, in order to solve multi-frequency and multidimensional oscillatory
reversible differential Eq. (1) efficiently, we first present the symmetry conditions for
multi-frequency ERKN integrators in a simplified way. Then five novel explicit multi-
frequency symmetric ERKN integrators are derived based on the simplified symmetry
conditions. The stability and phase properties of the new multi-frequency symmetric
ERKN integrators are discussed. Furthermore, the remarkable efficiency of the new
integrators are shown by the numerical results from five numerical experiments in
comparison with existing methods in the literature.

Acknowledgments The authors are sincerely thankful to the anonymous reviewers for the valuable sug-
gestions, which help the improvement of the manuscript.
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