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Abstract This short note proves that if A is accretive-dissipative, then the growth
factor for such A in Gaussian elimination is less than 4. If A is a Higham matrix,
i.e., the accretive-dissipative matrix A is complex symmetric, then the growth factor
is less than 2

√
2. The result obtained improves those of George et al. in [Numer.

Linear Algebra Appl. 9, 107–114 (2002)] and is one step closer to the final solution
of Higham’s conjecture.
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1 Introduction

Let Mn(C) be the set of n × n complex matrices. For any A = (ai j ) ∈ Mn(C), A∗
stands for the conjugate transpose of A. Similarly, x∗ means the conjugate transpose
of x for any x ∈ Cn . A ∈ Mn(C) is accretive-dissipative if it can be written as
A = B + iC , where B = A+A∗

2 and C = A−A∗
2i are both (Hermitian) positive definite.

If B, C are real symmetric positive definite, then A is called a Higham matrix.1

Consider the linear system

Ax = b (1)

1 In [2], accretive-dissipative matrix is called generalized Higham matrix.
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and let A(k) = (a(k)
i j ) be the matrix resulted from applying the first k (1 ≤ k ≤ n − 1)

steps of Gaussian elimination to A. The quantity

ρn(A) ≡ maxi, j,k |a(k)
i j |

maxi, j |ai j |
is called the growth factor (in Gaussian elimination) of A. For more information on
the numerical significance of investigating growth factor and its connection with the
stability of Gaussian elimination, we refer to [3] and references threrein. It is proved
in [3] that if A in (1) is a Higham matrix, then no pivoting is needed in Gaussian
elimination. Higham [3] also conjectured that ρn(A) ≤ 2 for such a matrix.

George et al. [2] made some progress concerning this conjecture. They obtained
the following result:

Theorem 1 Let A ∈ Mn(C) be accretive-dissipative. Then ρn(A) < 3
√

2. If A is a
Higham matrix, then ρn(A) < 3.

They proved Theorem 1 via a stronger result, viz,

Theorem 2 Let A ∈ Mn(C) be accretive-dissipative. Then

|a(k)
j j |

|a j j | < 3, j = 1, . . . , n; k = 1, . . . , n − 1. (2)

2 The Main Theorem

In this article, we show a tighter bound than (2). As a result, Theorem 1 is improved.
Our result can be read as follows:

Theorem 3 Let A ∈ Mn(C) be accretive-dissipative. Then

|a(k)
j j |

|a j j | < 2
√

2, j = 1, . . . , n; k = 1, . . . , n − 1. (3)

Consequently, ρn(A) < 4. If A is a Higham matrix, then ρn(A) < 2
√

2.

Proof Readers are assumed to have read [2]. The first few steps are the same as the
proof in [2], so we skip them. We start from a j j = b j j + ic j j and the fact that
b j j , c j j > 0.

Setting

a(k)
j j = β + iγ, β, γ ∈ R,

then we have

β = b j j − b∗ Xkb + c∗ Xkc − 2Re(b∗Ykc)
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and

γ = c j j + b∗Ykb − c∗Ykc − 2Re(b∗ Xkc),

where

Xk = (Bk + Ck B−1
k Ck)

−1 (4)

Yk = (Ck + BkC−1
k Bk)

−1 (5)

with
[

Bk b
b∗ b j j

]
and

[
Ck c
c∗ c j j

]
(6)

positive definite. It is known that β, γ > 0.
By the Cauchy-Schwarz inequality and the arithmetic mean-geometric mean

inequality, we have

±2Re(b∗Ykc) ≤ 2
√

(b∗Ykb)(c∗Ykc) ≤ b∗Ykb + c∗Ykc; (7)

±2Re(b∗ Xkc) ≤ 2
√

(b∗ Xkb)(c∗ Xkc) ≤ b∗ Xkb + c∗ Xkc. (8)

From (4) and (5) we have [2, Lemma 2.3]

Xk ≤ 1

2
C−1

k and Yk ≤ 1

2
B−1

k , (9)

where the inequality is in the sense of Loewner partial order. Also from (6), we know

b j j > b∗ B−1
k b and c j j > c∗C−1

k c (10)

Compute

|a(k)
j j | = |β + iγ |

≤ β + γ

= b j j − b∗ Xkb + c∗ Xkc − 2Re(b∗Ykc)

+c j j + b∗Ykb − c∗Ykc − 2Re(b∗ Xkc)

≤ b j j − b∗ Xkb + c∗ Xkc + (b∗Ykb + c∗Ykc) (by (7))

+c j j + b∗Ykb − c∗Ykc + (b∗ Xkb + c∗ Xkc) (by (8))

= b j j + 2b∗Ykb + c j j + 2c∗ Xkc

≤ b j j + b∗ B−1
k b + c j j + c∗C−1

k c (by (9))

< 2(b j j + c j j ) (by (10))

≤ 2
√

2|b j j + ic j j |
= 2

√
2|a j j |
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This completes the proof of (3). To show the remaining claims, we need the fol-
lowing facts:

Fact 1. [2, Corollary 2.3] The property of being an accretive-dissipative matrix is
hereditary under Gaussian elimination.

Fact 2. [2, Lemma 2.1, 2.2] If A = (al j ) ∈ Mn(C) is accretive-dissipative, then√
2 max

l
|all | ≥ max

l �= j
|al j |. If A is a Higham matrix, then max

l
|all | ≥ max

l, j
|al j |.

Suppose max j,k |a(k)
j j | = |a(k0)

j0 j0
| for some j0, k0, then

ρn(A) = maxi, j,k |a(k)
i j |

maxi, j |ai j | ≤
√

2 max j,k |a(k)
j j |

maxi, j |ai j | ≤
√

2|a(k0)
j0 j0

|
|a j0 j0 |

< 4.

Similarly, we can show that if A is a Higham matrix, then ρn(A) < 2
√

2. The proof
is thus complete. 	


We remark that Fact 2 in the preceding proof has been extended to norm inequalities
for accretive-dissipative operator matrices; see [4].

3 Conclusion

Compared with Theorems 1 and 2, it might look minor to improve the upper bound
from 3 to 2

√
2, but it is one step closer to the final solution of Higham’s conjecture.

Moreover, the approach in the previous proof may also apply to other related results;
see e.g. [1]. In [5], we have used a similar idea to improve a result on Fischer type
determinantal inequalities for accretive-dissipative matrices.
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