
Calcolo (2012) 49:193–219
DOI 10.1007/s10092-011-0051-z

Computation of the signed distance function
to a discrete contour on adapted triangulation

Charles Dapogny · Pascal Frey

Received: 6 May 2011 / Accepted: 7 December 2011 / Published online: 5 January 2012
© Springer-Verlag 2011

Abstract In this paper, we propose a numerical method for computing the signed
distance function to a discrete domain, on an arbitrary triangular background mesh. It
mainly relies on the use of some theoretical properties of the unsteady Eikonal equa-
tion. Then we present a way of adapting the mesh on which computations are held
to enhance the accuracy for both the approximation of the signed distance function
and the approximation of the initial discrete contour by the induced piecewise affine
reconstruction, which is crucial when using this signed distance function in a context
of level set methods. Several examples are presented to assess our analysis, in two or
three dimensions.

Keywords Signed distance function · Eikonal equation · Level set method ·
Anisotropic mesh adaptation · P

1-finite elements interpolation

Mathematics Subject Classification (2000) 65M25 · 65M50 · 35F20

1 Introduction

The knowledge of the signed distance function to a domain Ω ⊂ R
d (d = 2,3 in our

applications) has proved a very valuable information in various fields such as collision

The first author is partially supported by the Chair “Mathematical modelling and numerical
simulation, F-EADS, Ecole Polytechnique, INRIA”.

C. Dapogny (�)
Centre de Mathématiques Appliquées (UMR 7641), Ecole Polytechnique 91128 Palaiseau, France
e-mail: dapogny@ann.jussieu.fr

C. Dapogny
Renault DREAM-DTAA, Guyancourt, France

P. Frey
Laboratoire J.-L. Lions, UPMC Univ Paris 06, UMR 7598, 75005 Paris, France

mailto:dapogny@ann.jussieu.fr

194 C. Dapogny, P. Frey

detection [19], shape reconstruction from an unorganized cloud of points [11, 43], and
of course when it comes to level set methods, introduced by Sethian and Osher [33]
(see also [37] or [32] for multiple topics around the level set method), where ensuring
the property of unitary gradient of the level set function is especially relevant.

We intend here to devise a numerical algorithm that allows the computation of
the signed distance function to a polyhedral domain Ω , with minimal assumptions or
requirements. We only rely on the knowledge of a triangular mesh S of its boundary
∂Ω , which we suppose orientable (if not, the interior Ω is ill-defined on the sole
basis of its boundary). Making this assumption, we imply here that we do not rely on
any knowledge of the exterior normal to the surface, nor do we suppose the mesh S
to be conformal. We do not want to make any kind of assumption on the triangular
background mesh T on which the computations are performed either, even if, of
course, the quality of the solution may depend on it, as will be seen.

Regarding the computation of the signed distance function, there exist mainly two
types of approaches, both of them being based on an approximation of the solution of
the Eikonal equation (1). The first one consists in treating this equation as a stationary
boundary value problem, starting from the knowledge of the distance in the elements
of the computational grid or mesh which are close to the interface ∂Ω , and propa-
gating the information throughout the whole domain. The most notorious methods—
such as the Fast Marching Method [26, 35, 36] or the Fast Sweeping Method [42],
[31]—belong to this category, and rely on a local solver for the Eikonal equation, and
on a marching method, meant to enforce the natural causality embedded in the equa-
tion. Another way of addressing the problem is to consider it as an unsteady problem
and then to devise a propagation method for extending the signed distance field from
the boundary of Ω—see [8, 39, 40]. This is the point of view which is at stake in this
paper. This leads to an efficient, easy to implement, and easy to parallelize method
for computing the signed distance function to Ω . The proposed method is presented
in dimensions 2 and 3, but naturally extends to the general case.

What is more, when we want to use the signed distance function as an implicit
function defining the initial domain Ω from which we intend to evolve, the discrete
interface obtained as the 0 level set of the discrete signed distance function can turn
out to be quite different from the true interface ∂Ω . Following the work presented in
[15], we intend here to present an adaptation scheme, based on the signed distance
function, to produce a background mesh adapted to the boundary ∂Ω so as to improve
in the meantime, the computation of the signed distance function to Ω—at least in the
areas of the computational domain where it is relevant—and the discrete numerical
reconstruction of Ω .

The remainder of this paper is organized as follows. In Sect. 2, we review some
general properties of the signed distance function, and among other things recall how
it can be seen as the stationary state of the solution of the unsteady Eikonal equa-
tion, which leads us to studying the dynamics of this equation in Sect. 3. From this
study, we infer a numerical scheme for approximating the signed distance function in
Sect. 4. We then show in Sect. 5.1 how the background triangular mesh on which the
computation is held can be adapted so that both the approximation of the signed dis-
tance function and the discrete isosurface resulting from the process can be controlled
and improved. We briefly discuss two interesting extensions of this work, to the prob-
lem of reinitialization of a level set function in Sect. 6, and to the computation of the

Computation of the signed distance function to a discrete contour 195

signed distance function to a domain in a Riemannian space in Sect. 7. Numerical
examples are eventually provided in Sect. 8 to emphasize the main features of our
approach.

2 Some preliminaries about the signed distance function

So as to get a better intuition about the signed distance function and the various
difficulties it raises, let us briefly recall some ‘classical’ results around the topic.

Definition 1 Let Ω ⊂ R
d a bounded domain. The signed distance function to Ω is

the function R
d � x �→ uΩ(x) defined by:

uΩ(x) =
⎧
⎨

⎩

−d(x, ∂Ω) if x ∈ Ω,

0 if x ∈ ∂Ω,

d(x, ∂Ω) if x ∈ cΩ,

where d(., ∂Ω) denotes the usual Euclidean distance function to the set ∂Ω .

When studying the distance to such a bounded domain Ω , the fundamental notion
of skeleton plays a major role:

Definition 2 The skeleton of ∂Ω is the set of points x ∈ R
d such that the minimum

in

d(x, ∂Ω) = min
y∈∂Ω

‖x − y‖

is achieved for at least two distinct points of ∂Ω .

Being 1-Lipschitz, and owing to Rademacher’s theorem [16], the function uΩ

is almost everywhere differentiable. Actually, the following interesting proposition
delivers a geometric characterization of the regularity of uΩ [14].

Theorem 1 Let Ω ⊂ R
d be a bounded open set with smooth boundary; then uΩ is

smooth in a tubular neighbourhood U of ∂Ω . Moreover, for any point x ∈ R
d ,

– either x ∈ ∂Ω , and then uΩ is differentiable at x, with

∇uΩ(x) = n(x), the unit normal vector to ∂Ω at x

– or x ∈ R
d \ ∂Ω , then uΩ is differentiable at x if and only if x belongs to the

complementary of the skeleton of ∂Ω . In such a case, there exists a unique point
px ∈ ∂Ω such that d(x, ∂Ω) = ‖px − x‖, and the gradient of uΩ at x reads

∇uΩ(x) = px − x

uΩ(x)
.

In particular, uΩ satisfies the so-called Eikonal equation at every point x where it is
differentiable:

‖∇uΩ(x)‖ = 1. (1)

196 C. Dapogny, P. Frey

Unfortunately, theory happens to be scarce as for functions being solutions of a
PDE almost everywhere. For this reason—and many others—it is much more conve-
nient from a theoretical point of view to see uΩ as a viscosity solution of the Eikonal
equation (see [16] again).

Proposition 1 uΩ is a solution of the Eikonal equation (1) in the sense of viscosity.

For the sake of completeness, let us mention that several approaches exist when
it comes to studying the very degenerated equation (1); further developments lead to
taking into account the boundary condition

uΩ(x) = 0 on ∂Ω

in the sense of viscosity (see [12]), but even so, (1) turns out to get ‘too much solu-
tions’.

Another way of thinking of uΩ consists of seeing it as the result of a propagation
by means of an evolution equation: suppose Ω is implicitly known as

Ω =
{
x ∈ R

d;u0(x) < 0
}

and ∂Ω =
{
x ∈ R

d;u0(x) = 0
}

, (2)

where u0 is a continuous function. Note that, in the theoretical framework, such a
function u0 exists and is quite easy to construct by means of partitions of unity tech-
niques. Then the function uΩ can be considered as the steady state of the so-called
redistancing equation or unsteady Eikonal equation

{
∂u
∂t

+ sgn(u0)(‖∇u‖ − 1) = 0 ∀t > 0, x ∈ R
d

u(t = 0, x) = u0(x) ∀x ∈ R
d .

(3)

Formally speaking, this equation starts with an arbitrary (continuous) function u0 im-
plicitly defining the domain Ω and straightens it to the “best” function which suits
that purpose—uΩ . For this reason, this equation was first introduced in [41] for re-
distancing a very stretched level set function arising in a calculus. The following
important theorem (a proof can be found in [5] and [24]) makes these statements
more precise:

Theorem 2 Let Ω a bounded domain of R
d implicitly defined by a continuous func-

tion u0 such that (2) holds. Define function u, ∀x ∈ R
d, ∀t ∈ R+,

u(t, x) =
{

sgn(u0(x)) inf‖y‖≤t (sgn(u0(x))u0(x + y) + t) if t ≤ d(x, ∂Ω)

sgn(u0(x))d(x, ∂Ω) if t > d(x, ∂Ω).
(4)

Let T ∈ R+. Then u is the unique uniformly continuous viscosity solution of (3) such
that, for all 0 ≤ t ≤ T , u(t, x) = 0 on ∂Ω .

Note that the exact formula (4) expresses the idea of a propagation of information
from the boundary with constant unit speed. This feature will later be exploited to
devise our numerical algorithm for computing the signed distance function to Ω .

Computation of the signed distance function to a discrete contour 197

3 A short study of some properties of the solution to the unsteady Eikonal
equation

So as to build a resolution scheme for the unsteady Eikonal equation (3), let us take a
closer look to its dynamic in view of the previous section.

The main idea is to start with a function u0 which implicitly defines domain Ω in
the sense that (2) holds and that we suppose continuous over R

d , then to regularize
it thanks to (3), considering the exact solution u, provided by formula (4), for the re-
sulting Cauchy problem. For the sequel, it will prove convenient to assume moreover
that the initial function u0 is an overestimation of the signed distance function uΩ to
Ω , except on a tubular neighbourhood U of ∂Ω , where it is exactly uΩ , that is:

∀x ∈ U,u0(x) = uΩ(x); ∀x ∈ R
d \ U, |u0(x)| ≥ |uΩ(x)|. (5)

We then have the following small result:

Lemma 1 Assume Ω is a bounded open set, with smooth boundary ∂Ω . For any
small enough time step dt > 0, denote tn = ndt , n ∈ N. Suppose the initial function
u0 satisfies (5) and denote u the solution of (3) provided by Theorem 2. Then

∀x ∈ R
d \ Ω u(tn+1, x) = inf‖z‖≤dt

(
u(tn, x + z) + dt

)
,

∀x ∈ Ω u(tn+1, x) = sup
‖z‖≤dt

(
u(tn, x + z) − dt

)
.

(6)

Proof First, thanks to the exact formula (4), it is clear that assumption (5) on u0

implies that for all t > 0 and x ∈ R
d

|u(t, x)| ≥ |uΩ(x)|. (7)

By symmetry, we restrict ourselves to showing the lemma in the case x ∈ R
d \ Ω .

Assume first that tn+1 < d(x, ∂Ω). Then,

u(tn+1, x) = inf
‖y‖≤tn+1

(
u0(x + y) + tn+1

)

= inf‖y‖≤tn , ‖z‖≤dt

(
u0(x + y + z) + tn + dt

)

= inf‖z‖≤dt

(
u(tn, x + z) + dt

)
,

the last equality holding because d(x, ∂Ω) > tn+1 implies that for all ‖z‖ ≤ dt , d(x+
z, ∂Ω) > tn.

Suppose now that tn+1 ≥ d(x, ∂Ω), and suppose dt is smaller than the half-width
of the tubular neigbourhood U of ∂Ω (on which uΩ is assumed to be smooth, ac-
cording to Theorem 1). We then have:

inf‖z‖≤dt

(
u(tn, x + z) + dt

) ≥ inf‖z‖≤dt
(uΩ(x + z) + dt)

= uΩ(x)

= u(tn+1, x).

198 C. Dapogny, P. Frey

Conversely, either ‖x‖ ≤ dt , then there exists ‖z0‖ ≤ dt such that (x + z0) ∈ U ∩ Ω

and

inf‖z‖≤dt

(
u(tn, x + z) + dt

) = u(tn, x + z0) + dt = uΩ(x)

and the result follows thanks to the above arguments, or we can choose ‖z0‖ ≤ dt so
that

inf‖z‖≤dt
(d(x + z, ∂Ω)) = d(x + z0, ∂Ω) = d(x, ∂Ω) − dt

and given that d(x + z0, ∂Ω) ≤ tn, we get eventually

inf‖z‖≤dt

(
u(tn, x + z) + dt

) ≤ u(tn, x + z0) + dt

= d(x + z0, ∂Ω) + dt

= uΩ(x)

= u(tn+1, x),

which concludes the proof. �

Suppose our computation is restricted to a bounded domain D enclosing Ω .
We aim at computing function u(tN , .) over D for N big enough so that tN ≥
supx∈D |uΩ(x)|. To this end, we use the iterative formulae provided by the previ-
ous lemma, transforming them a bit so as to get a decreasing sequence of functions,
using the overestimation inequality (7): introduce, for n = 0,1, . . . , the sequence ũn

of continuous functions over D, iteratively defined by ũ0 = u0, and

∀x ∈ D \ Ω, ũn+1(x) = inf
(
u(tn+1, x), ũn(x)

)
, (8)

∀x ∈ Ω, ũn+1(x) = sup
(
u(tn+1, x), ũn(x)

)
. (9)

From the above arguments, it follows that ũn is a sequence of continuous functions
over D which converges pointwise to uΩ . Furthermore, from its definition, it is clear
that for x ∈ D \ Ω , ũn(x) decreases from u0(x) to uΩ(x) and that for x ∈ Ω , ũn(x)

increases from u0(x) to uΩ(x). This sequence of functions—computed thanks to the
iterative process expressed in lemma 1—is the one we will try and approximate in
the next section so as to end up with the desired signed distance function.

4 A numerical scheme for the signed distance function approximation

In this section, we propose a method for computing the signed distance function.
The algorithm consists of two steps; the first one is purely geometric and amounts to
identifying the simplices of the background mesh which intersect contour ∂Ω , and
the second one is purely analytical and is based on an explicit numerical scheme for
solving the unsteady Eikonal equation (3).

Computation of the signed distance function to a discrete contour 199

Algorithm 1 Extending the signed distance function field

1: Initialize the signed distance function u0 with:
{

u0(x) = exact signed distance function to Ω if x belongs to a simplex of K
u0(x) = uMAX otherwise

2: for n = 1, . . . until convergence do
3: un(x) = un−1(x) for each node x of T
4: for each simplex T of T do
5: for each node x of T which does not belong to a simplex in K do
6: if x /∈ Ω then

7: un(x) = min

(

un(x),un−1
(

x − ∇(un−1|T)

‖∇(un−1|T)‖dt

))

+ dt (10)

8: else

9: un(x) = max

(

un(x),un−1
(

x + ∇(un−1|T)

‖∇(un−1|T)‖dt

))

− dt (11)

10: end if
11: end for
12: end for
13: end for
14: return un

4.1 Extending the signed distance function from the boundary

Given a polyhedral domain Ω , known by means of a simplicial mesh S of its
boundary ∂Ω , we intend to compute the signed distance function to Ω at ev-
ery node x of a simplicial mesh T of a bounding box D. More accurately, call
K := {K ∈ T ;K ∩ ∂Ω = ∅} the set of the simplices of T which intersect the bound-
ary ∂Ω . We suppose that the signed distance function is initialized to its exact value
in the nodes of those simplices K ∈ K, and to a great value in the other nodes so that
the initialization of the algorithm satisfies (5), at least in a discrete way; see Sect. 4.2
for the implementation of this initialization. We then expect to devise an iterative nu-
merical scheme on basis of formulae (6) to extend this signed distance function to the
whole bounding domain.

To achieve this, we propose to approximate uΩ by means of a P
1 finite element

function on mesh T . Let dt be a time-step, tn = ndt (n = 0, . . .) and un be a P
1

function intended as an approximation of the unique viscosity solution u of (3) at
time tn. We then iteratively compute un thanks to Algorithm 1.

This algorithm needs some clarifying comments: for each step tn → tn+1, we
intend to mimic formulae (6), except that the infimum and supremum appearing there
are difficult to compute in a discrete way. Assuming time step dt to be small enough,
given for example a node of T , x ∈ D \ Ω and n ≥ 0 the simplest approximation of
inf‖z‖≤dt (u

n(x + z) + dt) is achieved considering the gradient of un at x. However,
this gradient is a constant-per-simplex vector, and is obviously discontinuous at the
interface between two adjacent simplices of T . In particular, it is irrelevant to talk

200 C. Dapogny, P. Frey

Fig. 1 At a given iteration n, the proposed numerical scheme amounts to ‘regularize’ the value of un

at point x from its value at point y0 such that un(y0) = infy∈B(x,dt) un(y) with the property of unitary

gradient, (a) e.g. for a point x at distance dt from ∂Ω , u1(x) = u0(y0) + dt = dt = d(x, ∂Ω). (b) The
property of unit gradient ‘propagates’ from the boundary ∂Ω , near which values of un are ‘regularized’ at
an early stage

about its value at a node x of T . The most natural way to discretize formula (6) is
then

inf‖z‖≤dt

(
un(x + z) + dt

) ≈ inf
T ∈ Ball(x)

un

(

x − ∇(un−1|T)

‖∇(un−1|T)‖dt

)

+ dt (12)

where Ball(x) is the set of simplices of mesh T containing x as vertex.
The rest of Algorithm 1 is merely a discrete version of formulae (8) and (9). See

Fig. 1 for a visual intuition of the process.

Remark 1 Actually, a formal study of the characteristic curves of (1) and (3) would
have brought more or less the same numerical scheme. In that scope, the points x ∈ D
where uΩ fails to be smooth can be interpreted as the crossing points of different
characteristic curves of Eikonal equation (1); see Fig. 2. At nodes x of mesh T close
to such kinks of the signed distance function, the discretization (12) expresses the
idea that each one of these crossing characteristic curve is backtracked.

4.2 Initialization of the signed distance function near ∂Ω

Before extending the signed distance function field from the boundary ∂Ω , we need
first to detect those simplices K ∈ T which intersect ∂Ω . This is achieved by scan-
ning each surface triangle T ∈ S in three dimensions (segment in two dimensions),
storing a background mesh simplex K ∈ T containing one of the three nodes of T ,
then travelling the background mesh from K by adjacency, advancing only through
faces which intersect T . Figure 3 illustrates this step. A computationally efficient al-
gorithm for the three-dimensional triangle-triangle overlap test, relying only on pred-
icates, developed in [21] is used to this end.

Then, at each node of K which belongs to such an intersecting simplex, we initial-
ize the (still unsigned) distance function to its exact value. See [25] for an efficient

Computation of the signed distance function to a discrete contour 201

Fig. 2 (a) Continuity of the gradient in the areas where the signed distance function is regular; (b) dis-
continuity of the gradient at a node close to the skeleton

Fig. 3 Recovery of the background simplices intersecting a triangle T = (pqr) ∈ S : (a) one starts with
a simplex K of T containing one of the points p, q or r then (b) marches through the faces of K which
intersect T and (c) goes on, stopping when there is no more simplex of K to add

algorithm computing a point-triangle distance in three dimensions. In all the other
nodes of T , we assign an arbitrary large value (e.g. larger than the domain size).

This leaves us with initializing the sign. Surprisingly enough, this stage happens
to be the most tedious one of the initialization process, all the more so as it is barely
considered in the literature (see nevertheless [39] for another approach, based on
an octree grid refinement). We propose here a purely logical Algorithm 2 based on
a progression by “layers”, which relies on two piles Layer and Boundary, and an
integer Sign. It is very similar to the classical coloring techniques used to recover the
connected components of a configuration in a Delaunay meshing context [17]; see
Fig. 4.

So as to enhance the numerical efficiency of the proposed method, several im-
provements have been proposed to this algorithm. Note that the propagating scheme
(1) is inherently parallel: at a given step, the operations carried out in a background
simplex K are independent from those carried out in another such simplex. Further-
more, the time step dt must be chosen small enough at the beginning of the process,
so that going back along the characteristic lines does not lead to crossing the interface
∂Ω and picking irrelevant values. But after a certain amount of iterations, we can ob-

202 C. Dapogny, P. Frey

Fig. 4 (Color online) Signing the unsigned initial distance field; (a) A contour ∂Ω , (b) start from a triangle
of the computational mesh T that is known to be in the exterior to the domain Ω , travel T by adjacency
and recover the first (outer) layer (in red), and the simplices of T intersecting the part of ∂Ω connected to
this first layer (in blue) (c) Get all the triangles of T (in pale blue) that are the different starting points for
the new (now interior) layer, (d) travel again by adjacency to get this new layer (in orange), as well as the
new simplices of T intersecting the part of ∂Ω connected to this layer (in blue)

viously increase this time step. Eventually, note that Theorem 2 expresses the fact that
the information propagates from ∂Ω to the whole space with a unitary velocity—that
is to say that, on the theoretical framework, at a given point x ∈ R

d , u(s, x) = uΩ(x)

for all time s > d(x, ∂Ω). According to this observation, we decided to fix the values
computed at a node x when these values are smaller than the current total time of the
propagation (with a security margin).

5 Mesh adaptation for a sharper approximation of the signed distance function

We approximate the signed distance function to Ω by means of a P
1 finite elements

function; therefore it seems natural to attempt to decrease the interpolation error of
this function on the background mesh T . Moreover, if we intend to use the signed
distance function to Ω as the initial implicit function defining Ω when using level set
methods, we may want the 0 level set of the approximated signed distance function

Computation of the signed distance function to a discrete contour 203

Algorithm 2 Signing the unsigned initial distance field
1: Initialize pile Layer with a simplex K ∈ T which is in the “most external” con-

nected component of the configuration (for instance a simplex in the corner of
the bounding box).
Initialize Sign to +1.

2: while an element K in pile Layer as not been inspected do
3: Consider every neighbour K ′ of K : if K ′ has not yet been inspected, and does

not belong to K, put K ′ in Layer; if K ′ belongs to K, put it into pile Boundary.
4: end while
5: while an element K in Boundary has not yet been inspected do
6: Consider every neighbour K ′ of K : if K ′ has not yet been inspected, and be-

longs to K, put K ′ in pile Boundary (this step ensures pile Boundary contains
all the boundary elements corresponding to the ongoing layer).

7: end while
8: Put the current sign of Sgn in each vertex of each element of pile Stratum.
9: Sign ← −Sign.

10: Clean pile Layer.
11: for K is in pile Boundary do
12: Consider every neighbour K ′ of K : if K ′ has not yet been inspected, put it into

pile Layer: then we get all the new starting points of the new layer (possibly
associated to different connected components of Ω .

13: end for
14: Clean pile Boundary.
15: Go back to step 2.

(which is intended to be close to the P
1 interpolant of this function) to match as much

as possible the true boundary ∂Ω . Thus it can be interesting to couple the computa-
tion of the signed distance function with a process of adaptation of the background
mesh T . Actually, we will see that adapting T the same way leads to an improvement
as regards both problems.

5.1 Anisotropic mesh adaptation

Mesh adaptation basically lies on the fact that the most efficient way to refine a mesh
so as to increase the efficiency of computations is to adjust the directions and sizes
of its elements in agreement with the variations of the functions under consideration.
Thus, significant improvements can be achieved in accuracy, while the cost of the
computations (related to the total number of elements of the mesh) is kept minimal,
and conversely.

Numerous methods exist as regards the very popular topic of mesh adaptation,
some of them relying on the concepts of Riemannian metric [22]: the local desired
size, shape and orientation related information at a node x of mesh T is stored in
a metric tensor field M(x), prescribed by an error indicator or an error estimate
which can arise from various possible preoccupations: a posteriori geometric error
estimates, analytic error estimates, etc. . . . (see for instance [2, 4, 23]).

204 C. Dapogny, P. Frey

Given a metric tensor field M(x) defined at each point x ∈ R
d , (notice that in

practice, M(x) is defined only at the nodes of T and then interpolated from these
values [17]) we consider respectively the length lM(γ) of a curve γ : [0,1] → R

d

and the volume VM(K) of a simplex K in the Riemannian space (Rd ,M):

lM(γ) =
∫ 1

0

√〈M(γ (t))γ ′(t), γ ′(t)〉dt, VM(K) =
∫

K

√
det(M(x))dx

and aim at modifying the mesh T so as to make it quasi-unit with respect to the
metric M(x), that is to say all its simplices K have edges lengths lying in [1√

2
,
√

2]
and an anisotropic quality measure:

QM(K) := αd

VM(K)2

(
∑na

i=1lM(ei)2)d

close to 1 (where na = d(d+1)/2 is the number of edges of a d-dimensional simplex,
ei are the edges of K and αd is a normalization factor). For instance, in the particular
case when M(x) is constant over R

d , M can be characterized by the ellipsoid

�M(1) = {
v ∈ R

d/ lM(v) = 1
}

of unit vectors with respect to M , and a simplex K with unit edges is simply a simplex
enclosed in this ellipsoid.

Several techniques have been devised for generating anisotropic meshes accord-
ing to a metric tensor field, that can be roughly classified into two categories. On
the one hand, global methods, such as Delaunay-based methods and advancing-front
methods, perform the same kind of operations as in the classical case with adapted
notions of length and volume. On the other hand, local mesh modification methods
[18] start from an existing non-adapted mesh and adapt it so that it fits at best the
above conditions. The approach used in this paper belongs to the second category.

5.2 Computation of a metric tensor associated to the minimization of the P
1

interpolation error

Let us recall the following result (whose proof lies in [3, 13]) about the interpolation
error of a smooth function u on a simplicial mesh by means of a P

1 finite elements
function, in L∞ norm.

Theorem 3 Let T a simplicial mesh of a polyhedral domain D ⊂ R
d (d = 2 or 3)

and u a C 2 function on D. Let VT the space of continuous functions on D whose
restriction to every simplex of T is a P

1 function, and denote by πT : C(D) → VT
the usual P

1 finite elements interpolation operator. Then for every simplex K ∈ T ,

‖u − πT u‖L∞(K) ≤ 1

2

(
d

d + 1

)2

max
x∈K

max
y,z∈K

〈|H(u)|(x)yz, yz〉
where, for a symmetric matrix S ∈ Sd(R), which admits the following diagonal shape
in orthonormal basis

S = P

⎛

⎜
⎝

λ1 0 · · · 0
...

...
. . .

...

0 · · · 0 λd

⎞

⎟
⎠

tP ,

Computation of the signed distance function to a discrete contour 205

we denote

|S| := P

⎛

⎜
⎝

|λ1| 0 · · · 0
...

...
. . .

...

0 · · · 0 |λd |

⎞

⎟
⎠

tP .

Relying on this theorem, we build a metric tensor field M(x) on D that allows an
accurate control of the L∞ interpolation error of u (recall the main feature of this
interpolation error is that it is an upper bound for the approximation error of u by
means of a finite elements calculus with the space VT , at least in the case of elliptic
problems [10]): so as to get

∀K ∈ T , ‖u − πT u‖L∞(K) ≤ ε

for a prescribed margin ε > 0. We urge the shape of an element K of T to behave in
such a way that

max
y,z∈K

〈H̃yz, yz〉 ≤ cε

where c is a constant which only depends on the dimension, stemming from Theo-
rem 3 and H̃ is the mean value (or an approximation) of the metric tensor |H(u)| over
element K . This leads to defining the desired metric tensor M(x) at each node x of
T by (see [1, 2]):

M(x) = P(x)

⎛

⎝
λ̃1 0 0
0 λ̃2 0
0 0 λ̃3

⎞

⎠ tP (x) (13)

where

λ̃i = min

(

max

(
c|λi |

ε
,

1

hmax
2

)

,
1

hmin
2

)

,

|̃H(u)|(x) = P(x)

⎛

⎝
|λ1| 0 0

0 |λ2| 0
0 0 |λ3|

⎞

⎠ tP (x)

being an approximation of the Hessian of u around node x, written here in diagonal
form in an orthonormal basis, hmin (resp. hmax) being the smallest (resp. largest) size
allowed for an element in any direction, and c being the above constant.

5.3 Mesh adaptation for a geometric reconstruction of the 0 level set of a function

In this section, we consider a bounded domain Ω ⊂ R
d , implicitly defined by a func-

tion u—that is, Ω = {x ∈ R
d/u(x) < 0} and ∂Ω = {x ∈ R

d/u(x) = 0}—and we
want to adapt the background mesh T so that the 0-level set of the function πT uΩ

obtained from u by P
1 finite elements interpolation, say ∂ΩT , is as close as possible

to the 0-level set of the true function u, in terms of the Hausdorff distance (for a re-
view of the various methods for discretizing an implicit surface, see [20]). Then we
will apply these results to the particular case when u is the signed distance function
to Ω . Throughout this section, we follow the previous work in [15].

206 C. Dapogny, P. Frey

Definition 3 Let K1, K2 two compact subsets of R
d . For all x ∈ R

d , denote
d(x,K1) = infy∈K1 d(x, y) the Euclidean distance from x to K1. We define:

ρ(K1,K2) := sup
x∈K1

d(x,K2)

and call Hausdorff distance between K1 and K2, denoted by dH (K1,K2), the non-
negative real number

dH (K1,K2) := max(ρ(K1,K2), ρ(K2,K1)).

The following small lemma will come in handy when we have to measure the
distance to Ω thanks to u:

Lemma 2 Let u a C 1 function on a tubular neighbourhood W of ∂Ω , without any
critical point on W , so that the set ∂Ω is a submanifold of R

d , and Ω is a bounded
subdomain of R

d with C 1 boundary. For any point x ∈ W we have the estimate:

d(x, ∂Ω) ≤ supz∈Rd ‖∇u(z)‖
infz∈Rd ‖∇u(z)‖2

|u(x)|. (14)

Proof The proof consists in ‘going backwards’ following the velocity field ∇u until
going against ∂Ω , then to estimate the distance between x and the contact point with
∂Ω . To achieve this, introduce the characteristic curve γ associated to the field ∇u

and starting from x, defined as a solution of the EDO:
{

γ (0) = x

γ ′(s) = ∇u(γ (s)).
(15)

Owing to classical arguments concerning ODE, the curve s �→ γ (s) is defined for all
real values s—including negative ones—and there exists a real number s0, positive
or negative if, respectively x ∈ Ω or x ∈ cΩ , such that y := γ (s0) belongs to ∂Ω ,
because u has no critical point on W . We then have:

u(x) = u(x) − u(y)

=
∫ 0

s0

〈∇u(γ (s)), γ ′(s)ds〉

=
∫ 0

s0

‖∇u(γ (s))‖2ds

and thus obtain

|s0| inf
z∈Rd

‖∇u(z)‖2 ≤ |u(x)|. (16)

On the other hand, we also get

x − y =
∫ 0

s0

∇u(γ (s))ds

and

‖x − y‖ ≤ |s0| sup
z∈Rd

‖∇u(z)‖. (17)

Computation of the signed distance function to a discrete contour 207

Note that, in practice, the computational domain R
d is restricted to a bounding box

containing Ω , so that taking supremum or infimum in this framework does not pose
any problem. Eventually, with (16) and (17), we conclude that:

d(x, ∂Ω) ≤ ‖x − y‖ ≤ supz∈Rd ‖∇u(z)‖
infz∈Rd ‖∇u(z)‖2

|u(x)|. �

Note that formula (15) expresses the idea that the closer u is to the signed distance
function to Ω (or a fixed multiple of it), the more we can rely on the evaluation of u

to estimate the Euclidean distance to the boundary ∂Ω .
We are now ready to estimate the Hausdorff distance between ∂Ω and ∂ΩT . Take

a point x ∈ ∂ΩT , which belongs to a simplex K of the background mesh T . With
Lemma 2 we have

d(x, ∂Ω) ≤ supy∈Rd ‖∇u(y)‖
infy∈Rd ‖∇u(y)‖2

|u(x)|

= supy∈Rd ‖∇u(y)‖
infy∈Rd ‖∇u(y)‖2

|u(x) − πT u(x)|

and it yields, thanks to Theorem 3

d(x, ∂Ω) ≤ c
supy∈Rd ‖∇u(y)‖
infy∈Rd ‖∇u(y)‖2

max
x∈K

max
y,z∈K

〈|H(u)|(x)yz, yz〉

where c is a scalar constant which only depends on d . Thus, we find

ρ(∂ΩT , ∂Ω) ≤ c
supy∈Rd ‖∇u(y)‖
infy∈Rd ‖∇u(y)‖2

max
K∈T

max
x∈K

max
y,z∈K

〈|H(u)|(x)yz, yz〉.

By the same token, applied to a point x ∈ ∂Ω , we have

ρ(∂Ω,∂ΩT) ≤ c
supK∈T ‖∇uT |K‖
infK∈T ‖∇uT |K‖2

max
K∈T

max
x∈K

max
y,z∈K

〈|H(u)|(x)yz, yz〉.

Eventually, neglecting the discrepancy between ‖∇u‖ and ‖∇uT ‖ yields:

dH (∂Ω,∂ΩT) ≤ c
supy∈Rd ‖∇u(y)‖
infy∈Rd ‖∇u(y)‖2

max
K∈T

max
x∈K

max
y,z∈K

〈|H(u)|(x)yz, yz〉.

We observe that this estimate is very similar to the result given by Theorem 3, and
especially that it involves the Hessian matrix of u; thus, with the same metric tensor
field (13) as the one associated to the control of the P

1-interpolation error on T , we
achieve control of the Hausdorff distance between the exact boundary ∂Ω and its
piecewise affine reconstruction ∂ΩT . Of course, depending on where we need the
accuracy, we can restrict ourselves to prescribing metric (13) only in certain areas of
R

d (e.g. in a level set context, in a narrow band near the boundary, or in the vicinity
of a particular isosurface of u).

This result admits a rather interesting geometric interpretation in the case when
u = uΩ , i.e. when u is a signed distance function. In that case, it is well-known [6]
the second fundamental form reads, for any point x ∈ ∂Ω :

∀ξ ∈ Tx∂Ω, IIx(ξ, ξ) = −〈Hu(x)ξ, ξ 〉

208 C. Dapogny, P. Frey

Fig. 5 P
1-reconstruction of ∂Ω with (a) a regular background mesh T and (b) an adapted anisotropic

background mesh T

where 〈., .〉 denotes the usual Euclidean scalar product of R
d . Hence, up to the sign,

the eigenvalues of Hu(x) are the two principal curvatures of the surface ∂Ω , asso-
ciated with the two principal directions at point x. In such case, the above estimates
mean that, understandingly enough, so as to get the best reconstruction of ∂Ω , we
have to align the circumscribed ellipsoids of the simplices of the background mesh T
with the curvature of this surface (see Fig. 5).

6 A remark about level-set redistancing

When evolving an interface by means of the level set method—e.g. when dealing with
multi-phase flow systems—a crucial issue is to maintain the level set function φn =
φ(tn, .) (tn = ndt , where dt is the time step of the process) as close as possible to
the signed distance function to the zero level set ∂Ωn so defined, while it tends to get
very far from it in few iteration steps (see e.g. [28] for the relevance of this feature in
the context of multi-phase flows). To achieve this, a redistancing step must be carried
out [9]. Unfortunately, it is worth emphasizing this problem is ill-posed since it is
impossible to “regularize” function φn to make it close to a distance function φ̃n—
i.e. ‖∇φ̃n‖ ≈ 1—without changing the zero level-set which then becomes ∂̃Ωn :=
{x ∈ R

d/φ̃n(x) = 0}. Several approaches exist to address this issue, depending on the
applications they are suited for and thus on the features of the interface ∂Ωn which
must be retained (see e.g. [29, 32, 40, 41]).

Given an iteration n when this process is to be carried out, most of these ap-
proaches consist in solving the unsteady Eikonal equation (3), with initial data φn

and over a short time period, so that the obtained solution enjoys the unitary gradient
property, at least in a neighborhood of the tracked interface. To this end, in [8, 38, 40],
an approximation of the sign function that appears in (3) by a smooth, steep function
is introduced. The overall process is very fast, since the only performed operations
are a few iterations of an often explicit scheme for (3). In particular, this trick of
approximating the sign function enables not to regenerate an exact distance function
near the boundary as we explained in Sect. 4.2, which can be costly if the compu-
tational mesh is big (see Sect. 8). The drawback is that the shift in the considered
interface is not controlled.

Hence, we limit ourselves to the case of an adaptation process, where at each step,
the background mesh T is adapted to the zero level-set of function φn, by prescribing
the metric tensor field (13) at least in a narrow band near the interface (see [7] for

Computation of the signed distance function to a discrete contour 209

an example). Here, implementing the redistancing step φn → φ̃n by taking for φ̃n

the signed distance function to Ωn, computed by means of the algorithm devised in
Sect. 4, provides a true signed distance function φ̃n, while ensuring the movement of
the interface is controlled by:

dH (∂Ωn, ∂̃Ωn) ≤ ε.

Of course, this process is slower than the one discussed above, but we believe it can be
of interest when an close control of the change in interfaces ∂Ωn → ∂̃Ωn is sought.

7 Extension to the computation of the signed distance function in a
Riemannian space

The proposed method admits a straightforward extension in the case we want to com-
pute the signed distance function uM

Ω from a subdomain Ω of R
d , R

d being endowed
with a Riemannian metric M , that is,

uM
Ω (x) =

⎧
⎨

⎩

−dM(x, ∂Ω) if x ∈ Ω,

0 if x ∈ ∂Ω,

dM(x, ∂Ω) if x ∈c Ω,

where dM(x, y) = infγ (0)=x ; γ (1)=y lM(γ) is the distance from x to y in the space
(Rd ,M) and dM(x, ∂Ω) = infy∈∂Ω dM(x, y) is the unsigned distance function from
x to ∂Ω . For another approach, based on the Fast Marching Method, see [26, 34].

Indeed, the function uM
Ω is a solution of the Eikonal equation in the space (Rd ,M)

in the sense of viscosity [27]:
√

〈M−1(x)∇u(x),∇u(x)〉 = 1.

Considering a continuous function u0 which implicitly defines Ω in the sense that
(2) holds, we have the corresponding unsteady equation:

⎧
⎨

⎩

∂u

∂t
(t, x) + sgn(u0(x))(

√

〈M−1(x)∇u(t, x),∇u(t, x)〉 − 1) = 0

u(t = 0, x) = u0(x)

and the same study as in Sect. 3 yields the following approximation formulae for
computing the solution u of this equation: for t > 0, a small time step dt , and x ∈ cΩ :

u(t + dt, x) ≈ u

(

t, x − dt
M−1(x)∇u(t, x)

√〈M−1(x)∇u(t, x),∇u(t, x)〉

)

+ dt

and, by symmetry, for x ∈ Ω :

u(t + dt, x) ≈ u

(

t, x + dt
M−1(x)∇u(t, x)

√〈M−1(x)∇u(t, x),∇u(t, x)〉

)

− dt

which raises a numerical scheme similar to the scheme presented in Sect. 4 (see Fig. 9
for an example).

210 C. Dapogny, P. Frey

Table 1 Computation of the signed distance function to the contour 6(a) on non-adapted, unstructured
meshes

Number of
vertices

‖e‖L∞ Order ‖e‖
L1 Order ‖e‖

L2 Order CPU time
(s)

2601 0.013723 – 0.000924 – 0.002474 – 0.167

10201 0.008922 0.63 0.000644 0.53 0.001687 0.56 0.462

40401 0.004971 0.74 0.000340 0.73 0.000932 0.71 1.362

74310 0.001731 1.23 0.000204 0.90 0.000476 0.98 2.974

296740 0.001790 0.86 0.000095 0.96 0.000232 0.99 10.293

8 Numerical examples

Now, we provide several examples to assess the main theoretical issues presented in
the previous sections. All the following computations are held on contours embedded
in a bounding box which is a unit square in two dimensions, or a unit cube in three
dimensions, and are scaled if need be.

Example 1 We give a 2-dimensional example of the computation of the signed dis-
tance function to the contour represented in Fig. 6, and carry out two numerical ex-
periments.

We first hold computations on unstructured, yet non-adapted simplicial computa-
tional meshes T of bounding box D, of increasing sizes, so as to assess both con-
vergence and scaling of the method. For all these examples, a time step dt = 0.001
(according to the smallest mesh size among the presented meshes) is used for the
steps 1 ≤ n ≤ 80, and the computation is finished with a time step dt = 0.004. Ta-
ble 1 displays several features of the computation (number of vertices of the mesh,
CPU time) as well as errors measured in several norms, and an inferred approxi-
mate order for the scheme. The exact signed distance function (or more accurately its
P

1-interpolate on the mesh at stake) is computed by a brute force approach—i.e. by
computing the minimum distance to a segment of the mesh of the contour at every
node of the background mesh T . All our computations are held on an OPTERON
6100, 2 GHz. Figure 6 displays the result of the computation held on the finest grid—
identification of the connected components, initialization of the sign and computation
of the signed distance function.

Let us make some comments at this point. We solve the time-dependent Eikonal
equation, so that at first glance, it could be relevant to investigate both time and spatial
accuracy of the proposed numerical scheme. Actually, it turns out that the spatial ac-
curacy of the scheme is by far the most critical issue as regards convergence inasmuch
as, provided time step dt is small enough (and in all the test-cases we implemented,
taking dt of the order of the mesh size proved sufficient), the quality of the final result
only depends on the closeness of spatial approximation.

As far as spatial convergence of this scheme is concerned, one observes that, un-
derstandably enough, it happens to be at most first-order. Is seems to behave com-
parably to the algorithm presented in [29] or to the simplicial version of the Fast

Computation of the signed distance function to a discrete contour 211

Fig. 6 (Color online) 2D example on a regular mesh; (a) the 2D contour, (b) the connected components
of the contour, (c) sign of these components: red for positive, blue for negative, green for the boundary,
(d) some isolines of the signed distance function

Marching algorithm proposed in [26] or of the Fast Sweeping algorithm, described
in [31]. Note however that the two latter schemes are probably a bit faster as regards
computational time, given they achieve convergence within a fixed (or very limited)
number of iterations that are linear in the number of vertices of the mesh. However,
we believe that differences in the architectures of the computers used to run the pro-
posed examples are tremendous and do not allow for a meaningful comparison be-
tween the execution times of the proposed algorithms. This scheme is also bound to
be slower than the ones devised in the case of Cartesian computational grids [35, 39,
40, 42], which enjoy immediate standard operation algorithms (e.g. search of the el-
ement in which a given point dwells, etc. . . .). What is more, higher-order distancing
or redistancing numerical schemes are available in this Cartesian frame [8], whereas,
to our knowledge, it is not this case in the unstructured case, which we believe to be
of independent relevance.

Now, we adapt the background mesh T to the computation of the signed distance
function to the same contour, relying on the principles enunciated in Sect. 5.1, in
the vicinity of the boundary ∂Ω . Therefore, we are only interested in getting a close
approximation of this signed distance function near the boundary. We use parameters

212 C. Dapogny, P. Frey

Table 2 Computation of the
signed distance function to the
contour 6(a) on an adapted mesh

Number of
iterations

Number of
nodes

Number of
elements

CPU time
(seconds)

236 8,030 16,006 0.42

Fig. 7 2D example on an adapted mesh; (a) the associated adapted mesh (b) some isolines of the signed
distance function on this mesh (c) a detail in the background mesh (d) the corresponding detail among
the isolines (e) the piecewise affine reconstructed contour and (f) a zoom on a corner of the reconstructed
contour

ε = 0.001 and hmin = 0.001. This yields the results of Fig. 7, whose features (on one
CPU) are reported in Table 2.

Computation of the signed distance function to a discrete contour 213

Table 3 Computation of the signed distance function to several subdomains of R
3

Number of
faces

Number of
iterations

Number of
nodes

Number of
elements

CPU Time
(seconds)

Cimplex 4,160 227 39,593 208,676 4.13

Wheel 19,972 194 367,236 2,065,767 46.641

Happy Buddha 1,085,477 160 549,818 3,218,519 1,294

Venus (isotropic) 63,940 212 2,265,359 13,482,983 225

Venus (anisotropic) 63,940 238 120,404 670,746 605

Example 2 We now turn to the three-dimensional case. Some details about the mesh
sizes and CPU times are to be found in Table 3. We tested our algorithm with the same
procedure as before as regards the choice of the time step, and with a parallel imple-
mentation on 10 CPU, with a shared memory architecture. Note that only the stage
corresponding to the propagation of the distance throughout the domain has been par-
allelized, and that the initialization step—which could also be easily parallelized—
actually takes most of the computation time (Table 3 provides the number of faces of
each initial contour so as to emphasize this feature). However, we thought it better to
report in Table 3 the total computation time. First, we considered a mechanical part
called cimplex. Figure 8 shows the original boundary, its reconstruction as the 0 level
set of the computed approximation of the signed distance function to this contour, a
level set of the computed function, and some cut in the adapted mesh. Note that the
anisotropic feature of the background mesh T allows a good approximation of the
ridges of the contour, even though we did not apply any special process to achieve
so. Actually, it is worth mentioning that some post-treatment could be implemented
so as to recover exactly those sharp features in the reconstruction of the interface ∂Ω

[30], but we believe this goes beyond the scope of this paper.

The next example, hereafter named wheel (Fig. 10), emphasizes another difficulty
that may arise, especially when it comes to mechanical devices, exhibiting very fine
structures (or more generally, very fine details). They are very difficult to track accu-
rately when the background mesh T is regular, the reason being the suitable size of a
regular mesh for this purpose would be tremendous. Independently, note that the sur-
face mesh of the 0 level set of the computed signed distance function reconstructed
by means of intersections with the background mesh T may be very irregular and
contain two much surface elements to allow any further calculation on it. To this end,
it is often necessary to proceed to a surface remeshing step in order to generate a
suitable computational mesh (see [17]). An example is provided in Fig. 10.

Then, Fig. 11 gives another example, this of the computation of the signed distance
function to the Stanford Happy Buddha, and of the approximation of this contour as
the 0 level set of the computed function.

Eventually, in several cases, for very detailed contours, we thought necessary to
perform an isotropic adaptation of the background mesh, and to make an intermediate
computation of the signed distance function on it before indulging in an anisotropic
adaptation of the background mesh, so as to make sure to capture any close detail of
the contour. See Fig. 12 and Table 3 for a comparison between both meshes.

214 C. Dapogny, P. Frey

Fig. 8 Computation of the signed distance function to the ‘cimplex’; (a) left—the initial domain, cen-
ter—the reconstructed domain, right—isovalue 0.01 of the computed signed distance function, (b) A cut
in the adapted mesh

Fig. 9 (a) Level sets of the signed distance function to three disks embedded in the Poincaré half-plane.
(b) 3D graph of the function

Example 3 So as to illustrate the idea hinted at in Sect. 7, our last example concerns
the computation of the signed distance function to a domain Ω ⊂ R

2, R
2 being en-

Computation of the signed distance function to a discrete contour 215

Fig. 10 Piecewise affine reconstruction of the wheel. (a) The original wheel (b) its reconstruction (c) a cut
in the original wheel (d) a cut in the reconstruction (e) surface triangulation before remeshing (f) and after
remeshing

216 C. Dapogny, P. Frey

Fig. 11 Computation of the signed distance function to the Stanford “Happy Buddha”; (a) The initial
Buddha (b) isovalue 0.001 of the computed signed distance function (c) isovalue 0.01 (d)–(e) Two cuts in
the adapted mesh

dowed with the hyperbolic metric of the Poincaré half-plane: let Ω be a union a 3
disks, embedded in the half-plane H := {(x, y) ∈ R

2|y > 0} endowed with the so-
called Lobachevsky metric defined by

∀(x, y) ∈ H, M(x, y) := 1

y2
I2

where I2 stands for the unitary matrix of dimension 2. Figure 9 then show some level
sets of the signed distance function to Ω with respect to metric M .

Computation of the signed distance function to a discrete contour 217

Fig. 12 Reconstruction of the “Venus”: (a) The original Venus (b) Its reconstruction with isotropic mesh
adaptation (3093941 surface triangles) (c) Its reconstruction with anisotropic mesh adaptation (300968
surface triangles) (d) zoom on the original Venus (e) zoom on its reconstruction with isotropic mesh
adaptation (f) zoom on its reconstruction with anisotropic mesh adaptation

218 C. Dapogny, P. Frey

References

1. Alauzet, F., Frey, P.: Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl.
Mech. Eng. 194, 5068–5082 (2005)

2. Alauzet, F., Frey, P.: Estimateur d’ erreur géometrique et métriques anisotropes pour l’ adaptation de
maillage. Partie I: aspects théoriques. INRIA, Technical Report, p. 4759 (2003)

3. Anglada, M.V., Garcia, N.P., Crosa, P.B.: Directional adaptive surface triangulation. Comput. Aided
Geom. Des. 16, 107–126 (1999)

4. Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Series of Advances in Nu-
merical Mathematics. B.G. Teubner, Stuttgart, Leipzig (1999)

5. Aujol, J.F., Auber, G.: Signed distance functions and viscosity solutions of discontinuous Hamilton-
Jacobi equations. INRIA, Technical Report, p. 4507 (2002)

6. Berger, M., Gostiaux, B.: Differential Geometry: Manifolds, Curves and Surfaces. Graduate Texts in
Mathematics. Springer, Berlin (1987)

7. Bui, T.T.C., Frey, P., Maury, B.: A coupling strategy for solving two-fluid flows. Int. J. Numer. Meth-
ods Fluids (2010). doi:10.1002/fld.2730

8. Cheng, L.-T., Tsai, Y.-T.: Redistancing by flow of time dependent eikonal equation. J. Comput. Phys.
227, 4002–4017 (2008)

9. Chopp, D.: Computing minimal surfaces via level-set curvature flow. J. Comput. Phys. 106, 77–91
(1993)

10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)
11. Claisse, A., Frey, P.: Level set driven smooth curve approximation from unorganized or noisy point

set. In: Proceedings ESAIM (2008)
12. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial dif-

ferential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)
13. D’Azevedo, E.F., Simpson, R.B.: On optimal triangular meshes for minimizing the gradient error.

Numer. Math. 59, 321–348 (1991)
14. Delfour, M.C., Zolesio, J.-P.: Shapes and Geometries. SIAM, Philadelphia (2001)
15. Ducrot, V., Frey, P.: Contrôle de l’approximation géometrique d une interface par une métrique

anisotrope. C. R. Acad. Sci., Ser. 1 Math. 345, 537–542 (2007)
16. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1997)
17. Frey, P.J., George, P.L.: Mesh Generation: Application to Finite Elements, 2nd edn. Wiley, New York

(2008)
18. Dobrzynski, C., Frey, P.: Anisotropic Delaunay mesh adaptation for unsteady simulations. In: Proc.

of the 17th IMR, pp. 177–194 (2008)
19. Fuhrmann, A., Sobottka, G., Gross, C.: Abstract distance fields for rapid collision detection in physi-

cally based modeling. In: Proceedings of International Conference Graphicon (2003)
20. Gomes, A.J.P., Voiculescu, I., Jorge, J., Wyvill, B., Gallsbraith, C.: Implicit Curves and Surfaces:

Mathematics, Data Structures and Algorithms. Springer, Berlin (2009)
21. Guigue, P., Devillers, O.: Fast and robust triangle-triangle overlap test using orientation predicates.

J. Graph. GPU Game Tools 8, 25–42 (2003)
22. Vallet, M.G., Hecht, F., Mantel, B.: Anisotropic control of mesh generation based upon a Voronoi type

method. In: Numerical Grid Generation in Computational Fluid Dynamics and Related Fields (1991)
23. Huang, W.: Metric tensors for anisotropic mesh generation. J. Comput. Phys. 204, 633–665 (2005)
24. Ishii, H.: Existence and uniqueness of solutions of Hamilton-Jacobi equations. Funkc. Ekvacioj 29,

167–188 (1986)
25. Jones, M.W.: 3D distance from a point to a triangle. Department of Computer Sciences, University of

Wales Swansea, technical report (1995)
26. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95,

8431–8435 (1998)
27. Mantegazza, C., Mennucci, A.C.: Hamilton-Jacobi equations and distance functions on Riemannian

manifolds. Appl. Math. Optim. 47, 1–25 (2003)
28. Marchandise, E., Remacle, J.-F., Chevaugeon, N.: A quadrature free discontinuous Galerkin method

for the level set equation. J. Comput. Phys. 212, 338–357 (2005)
29. Mut, F., Buscaglia, G.C., Dari, E.A.: A new mass-conserving algorithm for level-set redistancing on

unstructured meshes. Mec. Comput. 23, 1659–1678 (2004)
30. Page, D.L., Sun, Y., Koschan, A.F., Paik, J., Abidi, M.A.: Normal vector voting: crease detection and

curvature estimation on large, noisy meshes. Graph. Models 64, 199–229 (2004)

http://dx.doi.org/10.1002/fld.2730

Computation of the signed distance function to a discrete contour 219

31. Qian, J., Zhang, Y.T., Zhao, H.: Fast sweeping methods for Eikonal equations on triangular meshes.
SIAM J. Numer. Anal. 45, 83–107 (2007)

32. Osher, S.J., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2002)
33. Osher, S.J., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on

Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)
34. Memoli, F., Sapiro, G.: Fast computation of weighted distance functions and geodesics on implicit

hyper-surfaces. J. Comput. Phys. 173, 730–764 (2001)
35. Sethian, J.A.: Fast marching methods. SIAM Rev. 41, 199–235 (1999)
36. Sethian, J.A.: A fast marching method for monotonically advancing fronts. Proc. Natl. Acad. Sci.

USA 93, 1591–1595 (1996)
37. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational

Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press,
Cambridge (1999)

38. Osher, S.J., Smereka, P., Sussman, M.: A level set approach for computing solutions to incompressible
two-phase flow. J. Comput. Phys. 114, 146–159 (1994)

39. Strain, J.: Fast tree-based redistancing for level set computations. J. Comput. Phys. 152, 664–686
(1999)

40. Sussman, M., Fatemi, E.: An efficient, interface-preserving level set redistancing algorithm and its
applications to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20, 1165–1191 (1999)

41. Sussman, M., Fatemi, E., Smereka, P., Osher, S.: An improved level-set method for incompressible
two-phase flows. Comput. Fluids 27, 663–680 (1997)

42. Zhao, H.: A fast sweeping method for eikonal equations. Math. Comput. 74, 603–627 (2005)
43. Zhao, H., Osher, S.J., Fedkiw, R.: Fast surface reconstruction using the level set method. In: Proceed-

ings of IEEE Workshop on Variational and Level Set Methods in Computer Vision (2001)

	Computation of the signed distance function to a discrete contour on adapted triangulation
	Abstract
	Introduction
	Some preliminaries about the signed distance function
	A short study of some properties of the solution to the unsteady Eikonal equation
	A numerical scheme for the signed distance function approximation
	Extending the signed distance function from the boundary
	Initialization of the signed distance function near Omega

	Mesh adaptation for a sharper approximation of the signed distance function
	Anisotropic mesh adaptation
	Computation of a metric tensor associated to the minimization of the P1 interpolation error
	Mesh adaptation for a geometric reconstruction of the 0 level set of a function

	A remark about level-set redistancing
	Extension to the computation of the signed distance function in a Riemannian space
	Numerical examples
	References

