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Abstract We consider linear ill-posed problems in Hilbert space with noisy data. The
noise level may be given exactly or approximately or there may be no information
about the noise level. We regularize the problem using the Landweber method, the
Tikhonov method or the extrapolated version of the Tikhonov method. For all three
cases of noise information we propose rules for choice of the regularization parame-
ter. Extensive numerical experiments show the advantage of the proposed rules over
known rules, including the discrepancy principle, the quasioptimality criterion, the
Hanke-Raus rule, the Brezinski-Rodriguez-Seatzu rule and others. Numerical com-
parison also shows at which information about the noise level our rules for approxi-
mately given noise level should be preferred to other rules.

Keywords Ill-posed problem · Noise level · Regularization · Tikhonov method ·
Extrapolated Tikhonov method · Landweber method · Regularization parameter
choice
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1 Introduction

Let A : X → Y be a linear bounded operator between real Hilbert spaces. We are
interested in finding the minimum norm solution x∗ of the equation

Ax = y∗, y∗ ∈ R(A). (1)
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Approximation and Applications, 2009.
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We do not assume the range R(A) to be closed or the kernel N (A) to be trivial,
so in general this problem is ill-posed. For solving ill-posed problems regularization
methods are used [8, 28, 30–32]. As usual in studying ill-posed problems, we assume
that instead of exact data y∗, noisy data y are given. We consider the knowledge about
the noise level in one of the following forms.

1. Noise level is known fully: given is δ with ‖y − y∗‖ ≤ δ.
2. Noise level is not known.
3. Noise level is known approximately: δ is given but it is not known whether the

inequality ‖y − y∗‖ ≤ δ holds or not. For example, it may be known that with
high probability δ/‖y − y∗‖ ∈ [1/10,10].
Typically only the cases 1, 2 are considered. Investigation of the case 3 is moti-

vated by the fact that classical parameter choice rules that use the noise level (e.g.
the discrepancy principle) need exact noise level: they fail in case of underestimated
noise level and give large error in case of very moderate overestimation of the noise
level. On the other hand, for heuristic rules that do not use the noise level, the con-
vergence of approximate solutions as ‖y − y∗‖ → 0 can not be guaranteed (see
[1]). To our opinion, the knowledge about the noise level is often between the ex-
treme cases 1 (full information) and 2 (no information) and thus the case 3 needs
the attention. In [14, 15] we proposed the rule DM for the case 3, guaranteeing the
convergence of approximate solutions to the exact solution, as δ → 0, provided that
limδ→0

‖y−y∗‖
δ

≤ C, where C is an unknown constant. This rule contains two parame-
ters about which in [14, 15] only general recommendations were given. In this paper
we consider regularization by the Landweber iteration method, the Tikhonov method
and the extrapolated variant of the Tikhonov method (see also [10, 12, 25], where
conjugate gradient type methods are included as well) and optimize the parameters
of the DM rule over the test problems of [20]. We find out numerically, what is the
extent of over- or underestimation of the noise level at which the results in the rule
DM are better than in heuristic rules (the quasioptimality criterion [28, 29] (see also
[2–4, 9, 21, 22, 24]), the Hanke-Raus rule [18, 21], the Brezinski-Rodriguez-Seatzu
rule [7] and our modifications [12] of these rules) and in the discrepancy principle
(and in other, proposed rules).

2 Regularization methods

For the solution of the problem Ax = y∗ we consider basic regularization methods.
In Landweber method (cf. [8, 32]) the approximations are computed iteratively as

xn = xn−1 − μA∗(Axn−1 − y) (n = 1,2, . . . )

with μ ∈ (0,2/‖A∗A‖) and with some x0 = x ∈ X, typically x = 0. Many papers
note that the Landweber method is not practical, since it needs too many iterations.
If possible, we strongly recommend to implement this method by the operator form
of iterations (also recommended in [30, 32]), which allows to compute xn = (I −
A∗ACk)x + CkA

∗y for the indices n = 2k (k = 1,2, . . .), using the operators

C0 = μI, Ck = Ck−1(2I − A∗ACk−1) (k = 1,2, . . .).
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The m-iterated Tikhonov method (m = 1,2, . . . ; cf. [8, 32]) is defined as follows.
Take x0;α = x and compute x1;α, . . . , xm;α iteratively from

αxn;α + A∗Axn;α = αxn−1;α + A∗y (n = 1, . . . ,m); (2)

the approximate solution of (1) is then xm;α . In case m = 1 (ordinary Tikhonov
method) we use the notation xα := x1;α .

We also use extrapolated Tikhonov approximations, which are linear combina-
tions of xα with different α. Let xα1 , . . . , xαm be Tikhonov approximations with pair-
wise different parameters α1, . . . , αm. The m-extrapolated Tikhonov approximation
is given by

xα1,...,αm =
m∑

i=1

dixαi
, di =

m∏

j=1
j �=i

(
1 − αi

αj

)−1

(3)

(see [11, 13]; other algorithms for extrapolation can be found in [5, 6]). The coeffi-
cients di are chosen in such a way that the leading terms in the error expansion are
eliminated. It is easy to see that

∑m
i=1 di = 1 but the coefficients have alternating

signs, so xα1,...,αm is not a convex combination of xαi
. As shown in [11], the approx-

imations (3) coincide with the nonstationary iterated Tikhonov approximations [17],
using αn instead of α on the step n in (2). For large m and similar α’s this way is
computationally more stable than the formula (3). We use logarithmically uniform
mesh of parameters αn = qn−1 (q < 1; n = 1, 2, . . . ).

The use of the extrapolated Tikhonov method is motivated by Theorems 3, 4 of
Sect. 4, which indicate high accuracy. Compared with the iterated Tikhonov method
the amount of computations is less: in a posteriori parameter choice at transition xm;αi

to xm;αi+1 we need to solve m equations in case of m-iterated Tikhonov method but
only one equation in case of extrapolated approximation with m terms.

3 Rules for choice of the regularization parameter

An important problem, when applying regularization methods, is the proper choice
of the regularization parameter. We consider parameter choice depending on the in-
formation about the noise level.

3.1 Rules for known noise level

In this subsection we assume that δ with ‖y − y∗‖ ≤ δ is given.
Discrepancy principle (rule D) [23, 30–32]; see Theorem 1. Let C ≥ 1 be a fixed

constant. In (iterated) Tikhonov method the regularization parameter α = αD is the
solution of the equation ‖rm;α‖ = Cδ, rm;α := Axm;α − y. In iterative methods the
regularization parameter n = nD is chosen as the first n for which ‖rn‖ ≤ Cδ, rn :=
Axn − y.

Monotone error rule (ME-rule) [27]; see Theorem 1. In m-iterated Tikhonov
method the ME-rule chooses α = αME from the equation

dME(α) = (rm;α, rm+1;α)/‖rm+1;α‖ = δ, rm;α = Axm;α − y,
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where (·, ·) denotes the scalar product. The monotone error rule guarantees d
dα

‖xm;α −
x∗‖ ≥ 0 for all α ∈ [αME,∞).

In case of iterative methods of the form

xn+1 = xn − A∗zn, zn ∈ Y (n = 0,1, . . .)

the ME-rule [10, 16] chooses the regularization parameter (the stopping index) n =
nME as the first n for which

dME(n) = (rn + rn+1, zn)/(2‖zn‖) ≤ δ.

This guarantees the monotonicity property ‖xn − x∗‖ ≤ ‖xn−1 − x∗‖ for all n = 1, 2,
. . . , nME.

Rule R2. In [26] (see Theorem 2) it was proposed to choose α = αR2 in (m-
iterated) Tikhonov method as the smallest solution of the equation

dR2(α) =
√

α‖xm;α − xm+1;α‖2κ(α)

(xm;α − xm+1;α, xm+1;α − xm+2;α)1/2
= Cmδ, (4)

where κ(α) = (1 +α‖A‖−2), C1 = 0.3, C2 = 0.2. In this paper we choose αR2 as the
largest solution of (4), which is better in case of inexactly given noise level.

Estimated parameters. Sometimes it is known either theoretically or practically
that a parameter choice rule typically chooses a too large or too small parameter. Then
it is reasonable to post-estimate the computed parameter, by decreasing or increasing
it. We found the values of various constants in post-estimation by optimization on
the test problems [20] with normalized operator (solving the equation ‖A‖−1Ax =
‖A‖−1y∗). We emphasize that these constants occurred to be good also for other test
problems [7].

In (iterated) Tikhonov method we always have αME ≥ αopt = argmin{‖xα −
x∗‖, α > 0}. Our numerical experiments suggested to use the estimated parameter
αMEe = min(c1αME, c2α

c3
ME) or αMEe’ = c4αME instead of αME, where c1 = 0.53,

c2 = 0.6, c3 = 1.06, c4 = 0.44 (here the letter “e” refers to estimation). Our numeri-
cal tests showed that in most cases (especially for smaller α’s) also αR2 ≥ αopt. The
estimated parameter αR2e = 0.5αR2 is usually better than αR2.

By comparing the parameters αMEe and αR2e numerically, we found that typi-
cally αMEe is the better of the two, when δ/‖y − y∗‖ ∈ [1,1.05] but αR2e is bet-
ter, when δ/‖y − y∗‖ > 1.05. In both cases αMe = min(αMEe, αR2e) or αMe’ =
min(αMEe’, αR2e) typically chooses the best of these parameters.

In Landweber method nD and nME are close: nD − 1 ≤ nME ≤ nD (see [16]), so
nME and typically also nD are smaller than the optimal stopping index n∗. There-
fore it makes sense to use the estimated indices nDe = round(cnD) and nMEe =
round(cnME) instead of nD and nME, respectively, with c > 1. Computations sug-
gested the value c = 2.3.

For shifted parameters cαME, cαR2, cnME, cnD with fixed c > 0 the same conver-
gence and convergence rate results hold as for parameters αME, αR2, nME, nD (see
Theorems 1, 2). Theoretically the parameter αMEe’ is more justified than αMEe but
αMEe worked slightly better in tests.
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3.2 Parameter choice rules for unknown noise level

If the noise level is unknown, then, as shown by Bakushinskii [1], no rule for choos-
ing the regularization parameter can guarantee the convergence of the regularized
solution to the exact one as δ → 0. Nevertheless, some heuristic rules that don’t use
δ are rather popular, because they often work well in practice and because in applied
ill-posed problems the exact noise level is often unknown.

A classical heuristic rule is the quasioptimality criterion. In m-iterated Tikhonov
method it chooses α = αQ as the global minimizer of the function ϕQ(α) = ‖xm;α −
xm+1;α‖. Neubauer [24] proposed to minimize the function ϕQN(α) = ‖xm;α −
x2m;α‖ for α ∈ [mσmin,1], where σmin is the smallest eigenvalue of discretized ver-
sion of the operator A∗A (we assume ‖A‖ = 1), in m-iterated Tikhonov method, and
the function {‖xn − x2n‖, n ≥ 1} in the Landweber method.

The Hanke-Raus rule [18] in m-iterated Tikhonov method finds the regular-
ization parameter α = αHR as the global minimizer of the function ϕHR(α) =
(rm;α, rm+1;α)1/2/

√
α. In Landweber method the Hanke-Raus rule minimizes

ϕHR(n) = n1/2‖rn‖ for n ≥ 1.
The paper [7] by Brezinski, Rodriguez, and Seatzu proposed to minimize the

function ϕBRS(n) = ‖rn‖2/‖A∗rn‖ in iteration methods and the function ϕBRS(α) =
‖rα‖2/(α‖xα‖) in Tikhonov method. In GCV-rule [33] and L-curve rule [19, 20]
functions of other types are minimized of maximized. Our numerical experiments of
Section 6 do not contain the results for L-curve rule and GCV-rule, since the rules
presented in tables gave essentially better results.

We combined the functions ϕHR(α) and ϕR2(α) and found α = αHR2 and α = αBR2
as the global argmins of

ϕHR2,τ (α) = ϕR2(α)(ϕR2(α)/ϕHR(α))τ ϕHR(α)1−(ϕR2(α)/ϕHR(α))τ (5)

and ϕBR2,τ (α), respectively, where ϕR2(α) = dR2(α)/
√

α and ϕBR2,τ (α) is derived
from (5) by substituting ϕHR(α) with ϕBRS(α). Here τ ∈ (0,1).

To consider different regularization methods in parallel, in the following we use
the common parameter λ = 1/n for iteration methods and λ = α for (iterated)
Tikhonov method.

The abovementioned heuristic rules take the global minimizer of a certain function
ϕ(λ) to be the regularization parameter. Heuristic rules often give good results but
sometimes fail, especially if the global minimizer of function ϕ(λ) is a very small λ

with very large error. Our proposal is to use a local minimizer at larger λ instead of
the global minimizer, if there is a large maximum between them.

Based on numerical evidence, we propose the following strategies [12] to stop the
computations. We make computations for decreasing sequence of λ’s, starting from
a certain initial value (usually λ = 1).

1. Climbing approach. Stop the computation at the point, where the value of the func-
tion ϕ(λ) has become C or more times larger than its currently found minimal
value. Take λ at which the function has minimal value as the regularization para-
meter. Suitable values of C for functions that we used are around 3 in Tikhonov
method, and 20–50 in Landweber method.
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2. First local minimum. Stop the computation at the first local minimum of a certain
function ψ(λ). We often used ψ(λ) = ϕ(λ)λc with c ≈ 1/3.

Note also that in iteration methods the original heuristic rules HR, QN, BRS often
stopped at too small n. In our modifications HRmC, QNmC, BRSC the minimum
was shifted towards larger n.

3.3 Parameter choice rules for approximate noise level

In case of approximate noise level we follow a two-step strategy. The corresponding
rule is denoted by DM, where D refers to the first step (that uses δ), and M refers to
the minimization on the second step.

Rule DM for m-iterated Tikhonov method. 1) Find α as the maximal solution of
α1/2‖xm;α −xm+1;α‖ = c1δ with c1>(2m+2)−m/(2m+2) ((2m+1)/(2m+2))m+1/2.
2) Find α = αDM as the minimizer of ϕR2(α)αc2 on [α,1], where ϕR2(α) =
dR2(α)/

√
α, c2 ∈ (0,1/2). This is a slight modification of the rule DM0 [14, 15]

(see Theorem 5), where the function ϕHR(α)αc2 is minimized on the second step.
In our computations the best parameters were produced by small constants c1 ∈

[0.001,0.02] and c2 ∈ [0.03,0.14].
Rule DM for Landweber method [14, 15]. 1) Find N as the first n for which

n1/2‖A∗rn‖ ≤ c1δ with c1 > 1/
√

2μe. 2) Find n = nDM as the minimizer of nc2‖rn‖
on [1,N ], where c2 ∈ (0,1/2). In this paper we obtain better results by minimizing
nc2(‖xn − x2n+100‖) in the second step.

4 Convergence and convergence rate

If the noise level of the data is known exactly or approximately, then the following
theoretical results are known for the parameter choice rules considered here.

Theorem 1 [27, 31, 32] Let y ∈ R(A), ‖y −y∗‖ ≤ δ. If in Landweber approximation
or in m-iterated Tikhonov approximation the regularization parameter λ = λ(δ) is
chosen by one of the rules D, ME, then ‖xλ(δ) − x∗‖ → 0 as δ → 0 and for source-
like solutions

x∗ − x = R
(
(A∗A)p/2), (6)

the error estimate

‖xλ − x∗‖ ≤ const δp/(p+1) (7)

holds true in Landweber method for all p > 0 and in m-iterated Tikhonov method for
p ≤ 2m − 1 in case of rule D or for p ≤ 2m in case of rule ME.

Theorem 2 [26] Let A∗y ∈ R(A∗A), ‖y − y∗‖ ≤ δ. If the regularization parameter
α = α(δ) in m-iterated Tikhonov method is chosen by the rule R2, then ‖xα(δ) −
x∗‖ → 0 as δ → 0 and for source-like solutions (6) the error estimate (7) holds true
with p ≤ 2m − 1.



Comparison of parameter choices in regularization algorithms 53

Theorem 3 [11] Let y ∈ R(A), ‖y − y∗‖ ≤ δ. Let xm = xα1,...,αm be an extrapo-
lated Tikhonov approximation. If m = mD is the first number with dD(m) = ‖Axm −
y‖ ≤ Cδ, then ‖xm − x∗‖ < ‖xm−1 − x∗‖ (m = 1, 2, . . . , mD − 1). For m = mD
‖xm − x∗‖ → 0 as δ → 0 and for source-like solutions (6) for λ = m = mD the error
estimate (7) holds for all p > 0.

Theorem 4 [11] Let y ∈ R(A), ‖y − y∗‖ ≤ δ. Let xα = xα1,...,αm be an extrapolated
Tikhonov approximation with αn = qnα; m and qn fixed (n = 1, . . . , m + 1). Let
C > 1. If α is chosen as the solution of (Axα1,...,αm − y,Axα1,...,αm+1 − y)1/2 = Cδ,
then ‖xα − x∗‖ → 0 as δ → 0 and for source-like solutions (6) the error estimate (7)
with λ = α holds for all p ≤ 2m.

Theorem 5 [14, 15] Let the parameter α = α(δ) in (iterated) Tikhonov method be
chosen by the rule DM0. If ‖y − y∗‖/δ ≤ const as δ → 0, then the rule DM0 guar-
antees the convergence ‖xα(δ) − x∗‖ → 0 as δ → 0 and the following error estimates
hold true. 1) If ‖y − y∗‖ ≤ max{δ, δ0}, where δ0 = 1

2 (rm;α(δ), rm+1;α(δ))
1/2, then

‖xα − x∗‖ ≤ C inf
α≥0

(‖x0
α − x∗‖ + √

mα−1/2δ
)

(8)

holds with C = 1/(1 − 2c2), where x0
α is an (iterated) Tikhonov approximation with

y∗ instead of y. 2) If max(δ, δ0) < ‖y − y∗‖ ≤ 1
2 (rm;1, rm+1;1)1/2, then (8) holds with

C = const(‖y − y∗‖/δ0)
1/(2c2).

5 Test problems

Our tests are performed on the well-known set of test problems by Hansen [20]:
baart, deriv2, foxgood, gravity, heat, ilaplace, phillips, shaw, spikes, wing (problems
1–10). In all tests we used discretization parameter 100.

Since the performance of methods and rules generally depends on the smoothness
p of exact solution in (6), we complemented the standard solutions x∗ of (now dis-
crete) test problems with smoothened solutions |A|px∗, p = 2 (computing the right-
hand side as A(|A|px∗)). After discretization all problems were scaled (normalized)
in such a way that the Euclidean norms of the operator and the right-hand side were
1. On base of exact data y∗ we formed the noisy data y, where ‖y − y∗‖ had val-
ues 0.5, 10−1, . . . , 10−6. In most cases the noise y − y∗ added to y∗ had uniform
distribution, where components of the noise were uncorrelated. Besides this we used
correlated noise, where the components of noise vector had nonzero correlation. As in
[4], the amount of correlation was determined by randomly choosing the parameter
ω ∈ [−0.5,0.5], where negative and positive ω correspond to noise that has domi-
nantly higher or lower frequencies in the frequency domain. Results for correlated
noise are given only in Table 2, since in iteration methods and in rules that do not use
δ, the correlation influenced the results only a little. We also made computations with
normally distributed noise, the results were similar.

We generated 10 noise vectors and used these vectors in all problems. The prob-
lems were regularized, using different methods, choosing the regularization para-
meters by the rules that we wanted to compare. In our experiments we also took
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into account the possibility of over- or underestimation of the noise level: we used
δ = d‖y − y∗‖ with d ∈ [1/64,64]. Thus d = 1 corresponds to the exact noise level.

Since in model equations the exact solution is known, it is possible to find
the regularization parameter λ = λ∗, which gives the smallest error: ‖xλ∗ − x∗‖ =
minλ>0{‖xλ − x∗‖}. For every rule R the error ratio ‖xλR − x∗‖/‖xλ∗ − x∗‖ describes
the performance of the rule R on this particular problem. To compare the rules or
to present their properties, the following tables show averages A and medians M of
these error ratios over various parameters of the data set (problems 1–10, smoothness
indices p, noise levels δ, runs).

6 Numerical results

Comparing the methods, we found that in Landweber method (we used μ = 1) the
minimal errors were slightly smaller in case p = 0 and 3–5 times smaller in case
p = 2 than in Tikhonov method.

In tables below we compare different parameter choice rules. If the noise level
is known, we use the rules T1–T4 below in Tikhonov method and rules T5, T6 in
extrapolated Tikhonov method.

(T1) Discrepancy principle: αD is the solution of ‖rm;α‖ = δ.
(T2) Rule MEe: take αMEe = min(0.53αME,0.6α1.06

ME ).
(T3) Rule R2e: take αR2e = 0.5αR2.
(T4) Rule Me: using T2, T3, take αMe = min(αMEe, αR2e).
(T5) Rule 2Me is the rule from T4, applied to the extrapolated Tikhonov method

with m = 2.
(T6) Rule maxDe. Let m = mD be the first number with dD(m) = ‖Axα1,...,αm −y‖ ≤

δ. Take mmaxDe = round(1.1mD).

Tables 1, 2, 3, 5 contain the averages and medians of error ratios for Tikhonov
method, Tables 2, 4, 5 for extrapolated Tikhonov method. For better comparison of
these tables also in Tables 4, 5 and in columns 2Me, maxDe of Table 2 the denomi-
nators of the error ratios are the errors of the best single Tikhonov approximations.

Table 1 confirms the disadvantages of the discrepancy principle: saturation for
p ≥ 1 (see large error ratios for p = 2) and sensitivity to inexact noise level (discrep-
ancy principle totally fails in case of underestimated noise level; results for 1.05–2
times overestimated noise level are much larger than for d = 1). The rule R2e is much
more accurate than the discrepancy principle in smooth case (p ≥ 1) and/or in case

Table 1 Results in Tikhonov method for discrepancy principle (upper part) and rule R2e (lower part) for
various d ; p = 0 (left), p = 2 (right)

d 0.6 0.8 0.9 1 1.05 1.1 1.3 2 0.6 0.8 0.9 1 1.05 1.1 1.3 2

A 1.19 1.44 1.56 1.83 2.25 2.77 2.29 2.25 2.39 2.79

M � 1 1.05 1.17 1.25 1.42 1.67 � 1 1.87 1.60 1.65 1.76 1.91

A 1.75 1.36 1.37 1.39 1.40 1.42 1.47 1.60 1.50 1.13 1.11 1.11 1.10 1.10 1.11 1.19

M 1.09 1.08 1.09 1.10 1.10 1.11 1.15 1.28 1.11 1.07 1.06 1.05 1.05 1.04 1.04 1.04



Comparison of parameter choices in regularization algorithms 55

Table 2 Results in Tikhonov method in case of uncorrelated noise (upper part) and correlated noise (lower
part); p = 0 (left), p = 2 (right)

MEe Me 2Me maxDe MEe Me 2Me maxDe

d 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

A 1.15 2.02 1.16 1.59 1.24 1.51 1.17 2.25 1.11 2.82 1.12 1.19 0.68 0.67 0.52 2.67

M 1.03 1.54 1.03 1.28 1.03 1.17 1.03 1.66 1.07 2.25 1.07 1.04 0.66 0.62 0.48 1.95

A 1.18 2.18 1.18 1.70 1.28 1.61 1.19 2.42 1.11 4.70 1.14 1.59 0.73 1.01 0.50 4.37

M 1.03 1.56 1.04 1.29 1.04 1.21 1.04 1.75 1.05 2.51 1.09 1.08 0.66 0.71 0.44 2.16

of overestimated noise level. In contrast to the discrepancy principle and other rules,
the rule R2e also allows moderate underestimation of the noise level. In case of ex-
act noise level (d = 1) the discrepancy principle was better than R2e but as Table 2
shows, MEe is even better. The rule Me is good in both cases d = 1, d = 2. Note that
the errors in rules R2 and ME are typically 10–15% larger than in post-estimated ver-
sions R2e and MEe respectively; in rules MEe’ and Me’ (see page 50) they are about
1–2% larger than in rules MEe and Me. Note also that in rule Me the dependence of
the error on the precision of noise level information is much less significant in case
of smooth solution (p = 2). If p = 2, then the rule 2Me in 2-extrapolated Tikhonov
approximation gave the average that is typically better than the average of the best
single Tikhonov approximation for both exact noise level and 2 times overestimated
noise level. The nonstationary iterated Tikhonov method with the rule maxDe was
better than 2Me in case of exact noise level but essentially worse in case of overesti-
mated noise level.

The lower part of Table 2 is the analog of its upper part for correlated noise of
data (the correlation parameter ω is chosen randomly from [−0.5,0.5] with uniform
distribution). The medians in the lower part are similar to the medians in the upper
part but the averages are 3–6% larger in case p = 0 and 10–60% larger in case p = 2
(an exception is the rule MEe).

Heuristic rules T7–T11 for Tikhonov method and its extrapolated version are de-
scribed below.

(T7) Rules HR and BRS: αHR and αBRS are the global minimizers of the functions
ϕHR(α) and ϕBRS(α), respectively.

(T8) Rule QN: αQN = argmin{ϕQN(α), α ∈ [mσmin,1]}.
(T9) The rules R2C, QC, BRSC choose the parameter by the climbing approach in

the functions ϕR2(α), ϕQ(α), and ϕBRS(α) with C = 3.1, C = 2.7, and C = 3,
respectively.

(T10) Rules Q1, DR21 and BRS1 choose the regularization parameter as the first (i.e.
the largest) local minimum of the functions ϕQ(α)α1/3, ϕD(α)1/4ϕR2(α)3/4

α1/3 (ϕD(α)0.9ϕR2(α)0.1α0.4 in extrapolated Tikhonov method), and
ϕBRS(α)α0.56 (ϕBRS(α)α0.66 in extrapolated Tikhonov method). Here, ϕD(α) =
‖rm,α‖/√α‖.

(T11) Rules HR2 and BR2 choose the parameters as the global minimizers of the
functions ϕHR2,τ (α) with τ = 0.06 and ϕBR2,τ (α) with τ = 0.05, respectively.
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Table 3 Results in Tikhonov method for heuristic rules, p = 0

HR QN QC R2C BRS BRSC Q1 DR21 BRS1 HR2 BR2

A 1e+4 1e+3 1.39 1.38 1e+4 2.10 1.49 1.44 1.67 1.49 1.46

M 2.21 1.13 1.08 1.09 1.84 1.59 1.12 1.10 1.30 1.12 1.11

Table 4 Results in 2-extrapolated Tikhonov approximation

p = 0 p = 2

QC R2C BRSC DR21 BRS1 QC R2C BRSC DR21 BRS1

A 1.47 1.46 2.34 1.61 1.81 0.79 0.85 1.54 0.68 0.90

M 1.09 1.08 1.67 1.14 1.35 0.65 0.69 1.11 0.62 0.71

Table 5 Results in Tikhonov method (upper part) and in 2-extrapolated Tikhonov method (lower part) for
Rule DM, c1 = 0.001, c2 = 0.03

p = 0 p = 2

d 1/64 1/16 1/4 1 4 16 64 1/64 1/16 1/4 1 4 16 64

A 1.42 1.37 1.34 1.32 1.29 1.29 1.48 1.49 1.49 1.49 1.49 1.41 1.28 1.31

M 1.07 1.07 1.07 1.06 1.06 1.07 1.11 1.20 1.20 1.20 1.20 1.19 1.18 1.16

A 3.41 1.96 1.82 1.41 1.41 1.36 1.54 2.96 0.88 0.88 0.88 0.83 0.74 0.71

M 1.07 1.07 1.07 1.07 1.07 1.08 1.11 0.71 0.70 0.70 0.70 0.68 0.66 0.64

Table 4 shows that heuristic rules in extrapolated Tikhonov approximations gave
good results and these approximations were more accurate than best single Tikhonov
approximation in case p = 2.

If we compare the results of the rule DM in Tikhonov method in Table 5 with
the results of the best heuristic rules QC, R2C in Table 3, we may conclude that
taking into account the information about approximate noise level improves results,
if d ∈ [1/16,16].

The stopping index in Landweber method in case of known noise level was chosen
by the rules L1, L2 below.

(L1) Discrepancy principle: nD is the first n≥1 for which dD(n)≤δ.
(L2) Rule De: find nD from L1 and take nDe = round(2.3nD).

Table 6 shows that in Landweber method the error typically continued to decrease
monotonically long after the discrepancy reached the level δ: an about twice larger
index gave smaller errors. As the right part of the table shows, continuing iterations
after the discrepancy reaches the level δ is especially essential in case of smooth
solution and/or if the noise level is overestimated.

The following heuristic rules L3–L8 stop Landweber iterations without using the
noise level.

(L3) Hanke-Raus rule: nHR = argmin{√n‖rn‖, n ≥ 1}.
(L4) Rule HRmC: nHRmC chooses n ≥ 1 in the function

√
n(‖rn‖ − ‖r2n+100‖) by

the climbing approach with C = 50.
(L5) Rule QN: nQN = argmin{‖xn − x2n‖, n ≥ 1}.
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Table 6 Results in Landweber method for p = 0 (left), p = 2 (right)

D De D De

d 1 1.1 2 1 1.1 2 1 1.1 2 1 1.1 2

A 1.36 1.85 2.50 1.22 1.58 2.06 1.73 5.31 13.1 1.74 2.64 4.67

M 1.20 1.45 1.98 1.05 1.21 1.62 1.33 2.48 5.42 1.14 1.14 2.10

Table 7 Results in Landweber method for p = 0 (left), p = 2 (right)

HR HRmC QN QNmC BRS BRSC HR HRmC QN QNmC BRS BRSC

A 2e+4 2.41 2e+4 1.77 2e+4 1.75 5e+4 6.86 6e+4 3.98 5e+4 3.43

M 2.17 1.11 1.55 1.12 2.26 1.17 4.47 1.31 1.96 1.20 6.68 1.20

Table 8 Results in Landweber method for Rule DM, c1 = 0.1, c2 = 0.001

Case p = 0 Case p = 2

d 1/27 1/9 1/3 1 2 3 9 27 1/27 1/9 1/3 1 2 3 9 27

A 5.35 4.88 1.63 1.63 1.74 1.84 2.39 3.06 41.2 40.4 2.45 2.49 3.11 3.41 10.3 17.4

M 1.14 1.14 1.12 1.12 1.24 1.32 1.68 2.20 1.33 1.26 1.18 1.12 1.16 1.27 2.08 4.00

(L6) Rule QNmC (modification of rule QN): nQNmC chooses n ≥ 1 in the function
‖xn − x2n+100‖ by the climbing approach with C = 20.

(L7) Rule BRS: nBRS is the global minimizer of ϕBRS(n).
(L8) Rule BRSC: nBRSC chooses n ≥ 1 in function ‖rn‖·(‖rn‖−‖r2n+100‖)/‖A∗rn‖

by the climbing approach with C = 15.

From Tables 3, 7 we see that the modifications of known heuristic rules are essen-
tially better than the original rules. Note that the medians of error ratios of modified
heuristic rules in Table 7 are better than the medians of the discrepancy principle at
exact noise level in Table 6. Heuristic rules HR, QN, and BRS in Landweber method,
and HR and BRS in Tikhonov method failed in weakly ill-posed problems deriv2 and
phillips. In Tikhonov method the quasioptimality criterion failed in severely ill-posed
problem heat but gave reasonably good results in problems deriv2 and phillips.

Comparing the results of Landweber method for the rule DM in Table 8 with the
results of best heuristic rules QNmC, BRSC in Table 7, we see that the rule DM is
better, if d ∈ [1/3,2].

The best heuristic rules (not using the noise level) performed only slightly worse
than non-heuristic rules at the exact noise level but better than the same rules at 1.1
times (in Tikhonov method 1.05 times) overestimated noise level. The Rule DM that
uses the approximate knowledge about the noise level often gave better results in
case of d1 times overestimated and underestimated noise level than the discrepancy
principle in case of essentially smaller d2 times overestimated noise level—this holds
in Tikhonov method for d1 = 50, d2 = 1.05 (for d = 50, average and median error
ratios were 1.43 and 1.09 in DM rule) and in Landweber method for d1 = 3, d2 = 1.1.

We made numerical experiments of Tables 2, 3, 4 also for p = 1, then the ex-
trapolated Tikhonov approximation with a posteriori parameter choice typically gave
better results than the best single Tikhonov approximation.
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Similar computations were made on problems of [7] and the results were similar,
except the problem pascal, where the error ratios were essentially smaller for p = 0
and essentially larger for p = 2.

Much more numerical examples can be found in [25], where also conjugate gra-
dient type methods and the truncated singular value decomposition method are in-
cluded.

The conclusion of this work are the following recommendations. If there is some
reason to assume that the solution is smooth, then we strongly recommend to use the
extrapolated Tikhonov method instead of Tikhonov method. The choice of the reg-
ularization parameter depends on the information about the noise level ‖y − y∗‖. If
there is some guess δ of noise level ‖y − y∗‖, then the value of d = δ/‖y − y∗‖ is
essential. We recommend to use the rule Me, if we are sure that d ∈ [1,1.3] (or the
smoothness index p ≥ 2 and d ∈ [1,3]), and the rule DM in case of more approxi-
mate information d ∈ [1/16,16]. Otherwise we recommend to use the rules QC or
R2C but if ‖rm;αQC‖ or ‖rm;αR2C‖ is evidently less than the noise level, we recom-
mend to reduce the constant C in the climbing approach (for example, replacing C

by (C + 1)/2). In Landweber method we recommend the rule De in case d ∈ [1,1.1]
and the rule DM in case d ∈ [1/3,2]. Otherwise the rules QNmC, BRSC can be rec-
ommended but if ‖rnQNmC‖ or ‖rnBRSC‖ is evidently less than the noise level, reducing
the constant C is advisable.

In the future we plan to consider wider class of test problems and other noise
distributions.
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