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Abstract. We construct new multivariate polynomial interpolation schemes of
Hermite type. The interpolant of a function is obtained by specifying suitable
discrete differential conditions on the restrictions of the function to algebraic
hypersurfaces. The least space of a finite-dimensional space of analytic func-
tions plays an essential role in the definition of these differential conditions.

1 Introduction

An n-dimensional Hermite (or Birkhoff) interpolation scheme of degree d is
a collection H = {μs : s ∈ S} of discrete (differential) functionals μs such
that for every suitably defined function f there exists a unique polynomial p
of n variables and degree at most d satisfying μs(p) = μs( f ), s ∈ S. The
polynomial p is then called the H -interpolation polynomial of f . Classical
Lagrange-Hermite interpolation furnishes the most important general example
of a specific univariate Hermite scheme. In the multivariate case it is generally
difficult to check whether a given set of functionals H is a Hermite scheme,
even when every μs ∈ H is a point-evaluation functional, μs( f ) = f (us),
which corresponds to ordinary Lagrange interpolation. Actually, the sole multi-
variate case for which the verification that H is a Hermite scheme is absolutely
straightforward is obtained by taking H = { f → Dα( f )(a), |α| ≤ d}. In that
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case the H -interpolation polynomial is simply the Taylor polynomial of f at
a to the order d. Much work has been dedicated to the study of particular mul-
tivariate Hermite schemes. Noteworthy recent examples include the schemes
introduced by Bojanov and Xu in [1] and further studied in [7] and [8]. Older
results are referred to, for instance, in the work of Lorentz [9,10] .

In this note we construct new Hermite schemes based on the following
idea. We define local Taylor interpolation for the restrictions of an analytic
function to a general irreducible algebraic hypersurface ofCn . We then collect
the corresponding interpolation conditions (which reflect the local behavior
of the function restricted to the hypersurface) in a suitable manner to con-
struct an n-dimensional Hermite scheme that we naturally call a multipoint
Taylor interpolation. The same idea was previously used by Bos [5] to con-
struct multivariate unisolvent arrays for Lagrange interpolation. A simple and
probably well-known example of our multipoint Taylor interpolation scheme
— for which the hypersurfaces are merely lines — is illustrated in Figure 1.
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Fig. 1 A simple example of a bivariate multipoint Taylor interpolation scheme of degree 4

The paper is organized as follows. We first define and recall fundamental
properties of the least space of a finite-dimensional space of analytic functions.
It serves as a basic tool for defining the polynomial projectors that play the
role of Taylor interpolation on hypersurfaces and provide the interpolation
conditions which we want to consider. The definition and required properties
of these projectors are given in §3. Our main theorem is then easily derived in
the last section. We concentrate on the complex case but explain how to work
with real hypersurfaces.

We use standard multi-index notation. In particular |α| denotes the length
of α = (α1, . . . , αn) and Dα := ∂ |α|/∂zα1

1 . . . ∂zαn
n . The space of polynomials

of degree at most d in n complex variables is denoted by Pd(Cn). Recall that
its dimension Nd (n) is

(n+d
n

)
. For b ∈ C

n, a b-homogeneous polynomial of
b-degree d is an element ofHd

b (Cn) := span{Cn � z �→ (z −b)α : |α| = d}.
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2 The least space

We collect a few basic facts on the least space of a finite-dimensional space
of analytic functions. This space was introduced by de Boor and Ron and has
proved to be very useful in multivariate interpolation theory; see, e.g., [2–4].

Let n ≥ 1, b ∈ Cn and let F be a finite-dimensional vector space of analytic
functions on a neighborhood of b. Any f ∈ F can be uniquely expanded in a
power series about b, that is, f (z) = ∑∞

|α|=0 cα(z − b)α. If f is nonzero, the
order of f at b – or, for short, b-order –, denoted by ordb( f ), is the degree of
the lowest non-vanishing b-homogeneous term of this series, that is,

ordb( f ) = min

{
k : max

|α|=k
|cα | 	= 0

}
. (1)

The corresponding term is called the least (term) of f at b and denoted by
fb,↓; thus,

fb,↓(z) =
∑

|α|=ordb f

cα(z − b)α ∈ Hordb f
b (Cn). (2)

The least of the zero function at b is taken to be 0 and its b-order is +∞.
The least space of F at b is the vector space defined by

Fb,↓ := span{ fb,↓ : f ∈ F}. (3)

Thus, Fb,↓ is a space of polynomials spanned by b-homogeneous polynomials,
precisely,

Fb,↓ =
⊕
j∈J

Fb,↓ ∩ H j
b(C

n), (4)

where J = {j ≥ 0 : Fb,↓ ∩ H j
b(C

n) 	= {0}}.
By a theorem of de Boor and Ron [2, p. 291], F and Fb,↓ have the same

dimension,

dim Fb,↓ = dim F. (5)

The following simple properties help in computing least terms.

Lemma 2.1 Let λ ∈ C, f, g ∈ F. Then:

A. (λ f )↓ = λ f↓ and ( f g)b,↓ = fb,↓ · gb,↓. In particular, if g(b) 	= 0, then
( f g)b,↓ = g(b) fb,↓.

B. ordb( f ) = ordb(g) �⇒ ( f + g)b,↓ = fb,↓ + gb,↓ except if fb,↓ = −gb,↓.
C. If h is a nonzero b-homogeneous element of Fb,↓ then there exists f ∈ F

such that h = fb,↓ .
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Proof For the third claim we observe that, by definition (and (A)), we have
h = ∑

i∈I hi with hi = f i
b,↓ and I a finite set of indices. Since h is a

nonzero b-homogeneous polynomial, we may remove all the hi ’s whose b-
degrees are different from that of h (for their sum has to vanish) and there-
fore assume that ord f i is constant for i ∈ I . In view of (B), we then have
h = (

∑
i∈I f i)b,↓. ��

Lemma 2.2 If φ is a local complex diffeomorphism, that is, an analytic func-
tion on a neighborhood of b such that φ′(b), the first (Fréchet) derivative of φ
at b, is a linear automorphism of Cn, then

fφ(b),↓ ◦ Tφ = ( f ◦ φ)b,↓, (6)

where Tφ is the affine automorphism defined by Tφ(x) = φ(b)+φ′(b)(x −b).

It follows that if F is a space of analytic functions on a neighborhood of φ(b)
then

(F ◦ φ)b,↓ = Fφ(b),↓ ◦ Tφ. (7)

Proof Let ν = ordφ(b)( f ) and hν (z − φ(b)) = fφ(b),↓(z) with hν ∈ Hν
0(C

n)
so that

f (φ(z)) = hν(φ(z) − φ(b)) +
∑
k>ν

hk(φ(z) − φ(b)), hk ∈ Hk
0(C

n).

Since φ − φ(b) vanishes at b, the b-order of the second term is not smaller
than ν + 1. On the other hand, since

φ(z) − φ(b) = φ′(b)(z − b) + (terms of higher b-order),

we have

( f ◦ φ)(z) = hν(φ
′(b)(z − b)) + (terms of b-order not smaller that ν + 1).

Now, since φ′(b) is a linear automorphism, the b-order of hν(φ
′(b)(z − b)) is

equal to that of hν . It follows that hν(φ
′(b)(z − b)) is the least term of f ◦ φ

at b. ��

3 Taylor projectors on an algebraic hypersurface

3.1 Algebraic hypersurfaces

Let q be a (nonzero) polynomial in n + 1 complex variables and V = V (q)
the complex algebraic hypersurface {q = 0} in Cn+1. We may always assume
that q is square-free (that is, not divisible by the square of a non-constant
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polynomial). We denote by P(V ) the ring of polynomial functions on V and
by Pd(V ) the subspace of polynomial functions on V of degree at most d,

P
d(V ) = {p|V : p ∈ Pd(Cn+1)}. (8)

Use of the Nullstellensatz shows that, when q is square-free, the kernel of
the linear map

P
d(Cn+1) � p �→ p|V ∈ Pd(V )

is qPd−r(Cn+1), where r = deg q; this readily implies the following well-
known result.

Lemma 3.1 If q is a nonzero square-free polynomial of degree r ≥ 1 and
V = V (q) then the dimension Nd (V ) of Pd(V ) is given by

Nd (V ) = Nd (n + 1) − Nd−r (n + 1) (9)

with the convention that Nd−r (n + 1) = 0 when d < r.

We denote by V 0 the set of regular (smooth) points of V (q), that is, the set of
points a ∈ V (q) such that q ′(a) is not the zero linear form (not all the first
partial derivatives of q at a are equal to 0). We recall that V 0 is canonically
endowed with the structure of a complex analytic variety. The inverse of a
coordinate mapping of V 0 is called a local parametrization. Here is a precise
definition.

Definition 3.1 A local parametrizationof V (and of V 0) at a ∈ V 0 is a 3-tuple
L = (b, W, R), where b ∈ Cn, W is an open connected neighborhood of b in
Cn and R : W → Cn+1 an analytic function such that R(b) = a, R(W ) ⊂ V 0

and R is an homeomorphism from W to R(W ).

Local parametrizations are furnished by an application of the implicit func-
tion theorem. Note that the function R above satisfies rank(R′(b)) = n.

3.2 Local differential operators

We now define a class of operators acting on analytic functions on a neigh-
borhood (in Cn+1) of a point of V 0. These operators are to play the role of the
usual partial derivatives in ordinary multivariate Taylor interpolation.

Given a local parametrization L = (b, W, R) of V at a, we consider the
space of functions on W induced by the polynomials of degree at most d on V ,

P
d
L := P

d(Cn+1) ◦ R (= P
d(V ) ◦ R). (10)

This is a finite-dimensional space of analytic functions on a neighborhood of
b in Cn and we may therefore consider its least space at b,

P
d
L↓ ⊂ P(Cn).
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(We omit the subscript b in the notation of the least space as it is implied by
L.) The degree of a polynomial in Pd

L↓ may be (and usually is) greater than d;
see the examples in § 3.4.

To every polynomial Q in this least space we associate a (local) differential
operator QL(D) defined on the space of analytic functions on a neighborhood
of a by

QL(D)( f ) := Q(D)( f ◦ R), (11)

where the right-hand term is∑
α

aα Dα( f ◦ R)(b) if Q(z) =
∑

α

aα(z − b)α.

Definition 3.2 An operator QL(D) with Q ∈ Pd
L↓ is called an L-differential

operator at a and the linear space spanned by these operators is denoted by
Dif(L, d).

Since the spaces Pd
L↓ increase with d, we have

d1 < d2 �⇒ Dif(L, d1) ⊂ Dif(L, d2). (12)

Note also that Dif(L, 0) = { f → λ f (a), λ ∈ C}.
The restriction of an L-local differential operator to Pd(V ) is a linear form

on Pd(V ), that is, an element of its dual [Pd(V )]�.

Lemma 3.2 If the hypersurface V is irreducible (defined by an irreducible
polynomial q), then the map

Q ∈ Pd
L↓ −→ QL(D) ∈ [Pd(V )]� (13)

is a linear isomorphism. Equivalently,

Dif(L, d)|Pd (V ) = [Pd(V )]�. (14)

Moreover,
dim Dif(L, d) = Nd (V ). (15)

Proof We first show that both spaces have the same dimension. By (5), we just
need to verify that dimPd

L = dimPd(V ) or, equivalently, that the linear map
p ∈ Pd(V ) → p ◦ R ∈ Pd

L is one-to-one. This can be seen as follows. Since
q is irreducible the complex variety V 0 is connected [12, Chap. II, §8] and we
may apply the theorem of uniqueness of analytic continuation [12, Chap. II,
§5]. Thus, if p ◦ R = 0 on W , p vanishes on an open set of V 0, hence on
the whole of V 0. Since the set of singular points are nowhere dense in V [12,
Chap. II, §8], the continuity of p implies that p = 0 on V .
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Now to prove the lemma, it suffices to show that the map (13) is one-to-one.
We assume that for some nonzero Q ∈ Pd

L↓ we have

Q(D)(p ◦ R) = 0, p ∈ Pd(V ), (16)

and we look for a contradiction. Let

Q+(z) =
∑
|α|=k

aα(z − b)α

be the b-homogeneous part of Q of b-degree k. By (4) this is an element
of Pd

L,↓ and, in view of Lemma 2.1 (C), there exists T ∈ P
d(V ) such that

Q+ = (T ◦ R)↓. Applying (16) with p = T , we obtain

0 = Q(D)(T ◦ R) = Q(D)
(
Q+ + (terms of higher b-order)

)
= Q+(D)(Q+) =

∑
|α|=k

α!|aα|2.

Hence, all the coefficients of Q+ are equal to zero and this contradicts Q 	=
0. This concludes the proof of (13). Next, using the definition for the first
inequality and (13) for the third one, we have

dim Dif(L, d) ≤ dimPd
L↓ = Nd (V )

= dim(Dif(L, d)|Pd (V )) ≤ dim Dif(L, d), (17)

from which we deduce (15). ��
Examples of Dif(L, d) spaces are given in § 3.4.

3.3 L-Taylor interpolation

Lemma 3.2 and elementary linear algebra now lead to the definition of our
L-Taylor interpolation polynomials.

Theorem 3.1 Let q an irreducible non-constant polynomial and V = V (q).
If a is a smooth point of V and L a local parametrization of V at a then, for
every analytic function f on a neighborhood (inCn) of a, there exists a unique
polynomial p in Pd(V ) such that

( f − p) ⊥ Dif(L, d), (18)

that is, μ( f ) = μ(p) for every μ ∈ Dif(L, d).

This polynomial is called the L-Taylor interpolation polynomial of f at a
to the order d and denoted by Td

L( f ). Here is short list of immediate properties.
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A. The Taylor polynomial of order 0 at a is just the constant polynomial f (a).
B. For every p ∈ Pd(Cn+1), Td

L(p) = p|V .
C. L-Taylor projectors are invariant with respect to affine automorphisms.

The latter statement is to be understood as follows. Let A be an affine auto-
morphism of Cn+1 and VA = A(V ) = {q ◦ A−1 = 0}, where V = {q = 0}. If
L = (b, W, R) is a local parametrization of V at a then LA = (b, w, A ◦ R)
is a local parametrization of VA at A(a). Since A is an automorphism we have
Pd(Cn+1) = Pd(Cn+1) ◦ A and hence Pd

L = P
d
LA

and

P
d
L,↓ = P

d
LA ,↓,

from which we readily deduce

Dif(LA, d) = A ∗ Dif(L, d) and Td
LA

= A ∗ Td
L, (19)

where the notation A ∗ � is used for the operator defined by (A ∗ �)( f ) =
�( f ◦ A), f being an analytic function on a neighborhood of A(a) ∈ VA.

As emphasized by the notation, Td
L in general depends on L. However

it is easy to go from one parametrization to another. If L1 = (b1, W1, R1)
and L2 = (b2, W2, R2) are two local parametrizations of V at a ∈ V 0 then
φ = R−1

1 ◦ R2 is a complex diffeomorphism from a neighborhood of b2 onto
a neighborhood of b1 and the spaces Pd

L1,↓ and Pd
L2,↓ are related by Eq. (7).

Namely, in the notation of (7), if φ = R−1
2 ◦ R1 then

P
d
L1

= P
d
L2

◦ φ and P
d
L1,↓ = P

d
L2,↓ ◦ Tφ. (20)

In particular, the integer

max{deg p : p ∈ Pd
L↓}

does not depend on L. This integer gives the order of the highest derivatives
of the function f needed in order to compute μ( f ) for every μ ∈ Dif(L, d).
We call it the d-order of V at a and denote it by O(a, d, V ).

Note that, while the relation between the least spaces only involves the
first derivatives of φ, the relation between Dif(L1, d) and Dif(L2, d) generally
depends on the first O(a, d, V ) derivatives of φ. However, in some particular
but interesting cases (see below), theL-Taylor polynomialsare intrinsic, that is
to say, independent of the particular parametrization we use in their definition.

An algebraic formulation of the classical Leibniz formula for the compu-
tation of the derivatives of a product of two functions reads, in terms of Taylor
polynomials, as follows

Td
a( f g) ≡ Td

a ( f ) · Td
a(g) mod (z − a)α, |α| = d + 1.

As a (weak) consequence, if f is a polynomial of degree at most d, g(a) 	= 0
and Td

a ( f g) = 0, then f = 0. We prove a similar result for our L-Taylor
projectors.
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Lemma 3.3 (Weak Leibniz formula) Let V be an irreducible algebraic hy-
persurface, a ∈ V 0 and L = (b, W, R) a local parametrization of V at a.
If p ∈ Pd(Cn+1) and g is an analytic function on a neighborhood of a then
Td
L(pg) = 0 and g(a) 	= 0 imply that p = 0 on V .

Proof To say that Td
L(pg) = 0 means that QL(D)(pg) = 0 for every QL(D) ∈

Dif(L, d), or equivalently,

Q(D)(pg ◦ R) = 0, Q ∈ Pd
L,↓. (21)

On the other hand, in order to prove that p = 0 on V , it is enough to show that
(p ◦ R) = 0 on W (see the proof of Lemma 3.2) for which it suffices to show
that (p ◦ R)b,↓ = 0. We use (21) with

Q = (p ◦ R)b,↓ ∈ Pd
L.

Recall that, by assumption, deg p ≤ d. Then, using g(a) 	= 0 and Lemma 2.1
(A) (on the third line), we have

0 = Q(D)(pg ◦ R)

= Q(D)
(
(pg ◦ R)b,↓ + (terms of higher b-order)

)
= Q(D)

(
g(a)(p ◦ R)b,↓ + (terms of higher b-order)

)
= g(a)Q(D)

(
(p ◦ R)b,↓ + (terms of higher b-order)

)
= g(a)Q(D)

(
(p ◦ R)b,↓

)
(since Q ∈ Hb and deg Q = deg(p ◦ R)b,↓)

= g(a)Q(D)
(
Q

)
.

Using g(a) 	= 0 again, we deduce from the last equation (see the proof of
Lemma 3.2) that Q = (p ◦ R)b,↓ = 0, as was to be proved.

3.4 Examples

Hyperplanes. Let q be a linear polynomial of n +1 complex variables, q(z) =
α · z − b, where α 	= 0 and u · v = ∑n+1

i=1 uivi , and V the hyperplane V (q).
Every point a of V is regular and a standard (global) parametrization at a is
L = (0,Cn, R) with R(z1, . . . , zn) = a + ∑n

i=1 zi vi , where v = (v1, . . . , vn)
is a basis of the subspace {α · x = 0}. We have Pd

L = P
d
L↓ = P

d(Cn), and

Dif(L, d) = span
{

f → (∂ |α| f/∂vα)(a) : |α| ≤ d
}
, (22)

where ∂ |α| f/∂vα = ∂ |α| f/∂vα1
1 ∂vα2

2 . . . ∂vαn
n and ∂ f/∂vi is the usual derivative

along the vector vi . We therefore haveO(a, d, V ) = d as in the classical case.
In fact,

Td
L( f ) = Td

a ( f|V ),

where Td
a ( f|V ) is to be understood as the classical Taylor polynomial at a to

the order d of the restriction of f to the n-dimensional affine space V .
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First-order local derivatives. Let q ∈ P(Cn+1) be an irreducible polynomial
of degree d ≥ 2, V = V (q) and a ∈ V 0. We let L = (b, W, R) denote
any local parametrization of V at a. Since N1(V ) = n + 2, by Lemma 3.2,
Dif(L, 1) is spanned by n + 2 linearly independent operators. These are easily
described. Let R = (R1, . . . , Rn+1) and let ∇ Ri (b) be the gradient of Ri at b
so that

R′(b)(h) = (∇ R1(b) · h, . . . , ∇ Rn+1(b) · h), h ∈ Cn.

Since rank(R′(b)) = n, the space {λ ∈ C
n+1 :

∑n+1
i=1 λi∇ R′

i (b) = 0} is
of dimension 1 and therefore spanned by a nonzero n + 1 tuple μ. With this
notation, we have

P
1
L,↓ = span

{
1, z1, . . . , zn ,

n+1∑
i=1

μi R(k)
i (b)(z − b, . . . , z − b)

}
, (23)

where R(k)
i (b) denote the kth (total) derivative of Ri at b and k ≥ 2 is the

smallest integer such that
∑

μi R(k)
i (b)(z−b, . . . , z−b) does not vanish.Since

the range of R′(b) coincides with the kernel of q ′(a), it is not difficult to see
that the operators of Dif(L, 1) produced by the linear (non-affine) polynomials
which are members of the space (23) are the tangential derivatives

f → f ′(a)(t), t ∈ ker q ′(a).

It is important to note that, as soon as deg q > 1, O(a, 1, V (q)) > 1.

The curve V = {w = zm }, m ≥ 2. Using the canonical parametrization
at a = (0, 0) ∈ V 0, L = (0,C, z → (z, zm )), we find Pd

L = P
d
L↓ =

span
{

zα1+mα2 : α1 + α2 ≤ d
}

and

Dif(L, d)

= span
{

f → dk

dzk
f (z, zm )

∣∣∣
z=0

: k = α1 + mα2, α1 + α2 ≤ d

}
. (24)

In particular O(0, d, V ) = md. We note the presence of gaps in the basis of
P

d
L,↓ (and in the corresponding basis of operators) as soon as m > 2 for every

d > m. A precise description of the space span
{

zα1+mα2 : α1 + α2 ≤ d
}

is
given in [6, Prop. 1].
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Irreducible quadratic curves. Let V = {q = 0} be a quadratic irreducible
curve in C2. All points of such a curve are smooth. We describe Pd

L (hence
Dif(d,L)), where L is any local parametrization of V at a. First, in view of the
invariance property (3.3 (C)), we may restrict ourselves to the cases for which
q(z, w) = w − z2 or q(z, w) = z2 + w2 − 1. We only give the calculations in
the second case.

If a = (α, β) we take L = (b, W, R), where R(z) = (cos z, sin z), b, is
such that exp(ib) = α + iβ (and exp(−ib) = α − iβ) since 1 = α2 + β2 =
(α + iβ)(α − iβ)) and W is a sufficiently small disc centered at b. We claim
that

P
d
L = span

{
1, (z − b), · · · , (z − b)2d} = P

2d(C).

Since Pd
L is known to be spanned by dim Pd(V ) = 2d + 1 monomials, the

assertion is proved if we establish that, for k ≥ 1,

(z − b)k ∈ Pd
L �⇒ (z − b)k−1 ∈ Pd

L.

But, if (z − b)k ∈ Pd
L, one can find p ∈ Pd , p(x , y) = ∑

i+ j≤d ci j x i y j , such
that

(z − b)k + (terms of higher b-degree) = p(cos z, sin z).

Differentiating both sides, we get

k(z − b)k−1 + (terms of higher b-order)

=
∑

i+ j≤d

{−ici j cosi−1 z sin j+1 z + j ci j cosi+1 z sin j−1 z
}

. (25)

Since the left-hand side is still a polynomial of degree at most d in (cos z, sin z),
it follows that (z − b)k−1 ∈ Pd

L.
Now, if L′(c, X, S) is another parametrization of V at a, in view of (20),

for the affine automorphism Tφ of C, φ = R−1 ◦ S, we have

P
d
L′,↓ = P

d
L,↓ ◦ Tφ = P

2d(C) ◦ Tφ = P
2d(C).

Next, let Q(z) = zk , 1 ≤ k ≤ 2d, and let f be analytic on a neighborhood of
(α, β); use of the (ordinary) Leibniz formula yields

QL′(D)( f ) = Q(D)( f ◦ S) = Q(D)( f ◦ R ◦ φ) =
k∑

i=1

λi
di

dzi
( f ◦ R)

∣∣∣
z=b

,

where the λi’s only depend on the derivatives of φ at c. This shows that
QL′(D) ∈ Dif(d,L) and, since both spaces have the same dimension, it fol-
lows that Dif(d,L′) = Dif(d,L) . Summing up we have proved the following
result.
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Theorem 3.2 Let V be an irreducible quadratic hypersurface inC2. For every
a ∈ V and every d ≥ 0, the Taylor projector T d

L depends only on a, V and d,
that is to say, does not depend on the particular parametrization L used for
constructing it.

One may check that all the examples given in this section satisfy the same
property except the curve y = x m for m > 2 when a = (0, 0). This property,
which is equivalent in the bivariate case to

P
d
L,↓ = P

Nd (V )−1(C),

leads to other interesting results. We hope to return to this question in a further
paper.

3.5 Real case

For practical applications the real case is more interesting. It requires only a few
other observations.First, by “real case” we mean that we consider q ∈ P(Rn+1),
deg q ≥ 1 and

VR = VR(q) = {x ∈ Rn+1 : q(x) = 0}.
Lemma 3.1 remains true (for the space Pd(VR) of real polynomials on VR)
provided that q is irreducible and V 0 contains at least one point, since the
divisibility property used in the proof extends to this case [11, Lemma 2.5,
p. 14]. Here “irreducible” is to be understood as irreducible overC rather than
over R. Indeed, if q is irreducible over R but not over C, then there exists a
non-trivial polynomial r ∈ P(Cn+1) such that q = rr , where r(z) = ∑

aαzα

if r(z) = ∑
aαzα . We then have VR(q) ⊂ VC(p) ∩ VC(p) and we readily

check by differentiating q = rr that VR(q) contains no regular point, which is
contrary to assumption.

In the proof of Lemma 3.2 we needed the facts that V 0(q) is connected and
everywhere dense in V (q). Neither property remains true in the real case. For
example, if q(x , y) = x 3 − x 2 + y2 then V 0

R
(q) = VR(q) \ {(0, 0)} and has

three distinct components. On the other hand, if q(x , y) = x 3 + x 2 + y2 then
V 0
R
(q) is connected but (0, 0) is an isolated (singular) point of VR(q) so that

V 0
R
(q) fails to be everywhere dense in VR(q). To circumvent this difficulty, we

use the probably well-known Lemma 3.4 below.
Note that, as soon as it is non-empty, V 0

R
(q) is a real analytic variety of

dimension n (and so are its connected components), (see [11, Theorem 2.3,
p. 11]) and, substituting the word “analytic” by “real analytic” in Definition
3.1, we obtain the definition of a local (real analytic) parametrization of VR at
a ∈ V 0

R
.
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Lemma 3.4 Let q be a real non-constant and irreducible polynomial such
that V 0

R
(q) contains at least one point. If p ∈ P(Rn+1) is equal to zero on a

connected component of V 0
R
(q) then it must also be equal to 0 on the whole of

VR(q).

Proof Let a be any point in the component C of V 0
R
(q) on which p is known

to vanish. We also have a ∈ V 0
C
(q). We assume, without loss of generality,

that 0 	= ∂p(a)/∂xn+1(= ∂p(a)/∂zn+1). We let x ′ denote (x1, . . . , xn) so that
x = (x ′, xn+1). The implicit function theorem furnishes a real analytic local
parametrization RR : x ′ → (x ′, ρR(x ′)) of C at a and also a complex analytic
local parametrization RC : z′ → (z′, ρC(z′)) of V 0

C
(q) at a defined on a real,

respectively complex, neighborhood of a′. Since the coefficients of the power
series expansion of both ρR and ρC depend only on the coefficients of q which
are real, on a real neighborhood U of a′, we must have

RC|R = RR. (26)

From p = 0 on C we get p ◦ RR = 0 on U and hence all the (real) derivatives
of p ◦ RR at a′ vanish. But, since p is a real polynomial, in view of (26), the
real derivatives of p ◦ RR at a′ are equal to the complex derivatives of p ◦ RC
at a′. Now, the usual uniqueness theorem for complex analytic functions gives
p ◦ RC = 0 on a complex open neighborhood of a′; hence p = 0 on an open
neighborhood of a in V 0

C
(q). Since q is irreducible overC, V 0

C
(q) is connected

and it follows that p = 0 on V 0
C
(q), hence also on its closure VC(q), a fortiori,

on its subset VR(q). ��

The other properties we use in the complex case remain valid when we
work with real analytic functions and the modification of the definitions are
straightforward. For example, we change Q to Q in Definition 3.2 to obtain
DifR(L, d). From Lemma 3.4, we readily obtain a real version of Lemma 3.2
and the real version of Theorem 3.1 is as follows.

Theorem 3.3 Let q be a non-constant irreducible real polynomial such that
V 0
R
(q) is non-empty. Further, let a ∈ V 0

R
and L be a local parametrization

of VR at a. For every function f differentiable on a neighborhood of a, there
exists a unique polynomial p in Pd(VR) such that ( f − p) ⊥ DifR(L, d).

In the rest of the paper, apart from the illustrations, we no longer consider
the real case. With the same kind of modifications as above all the results
remain valid.
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4 Multipoint Taylor interpolation

4.1 The main theorem

As explained in the introduction, the idea is to collect sufficiently many in-
terpolation conditions in spaces Dif(L, d) in order to obtain an n-dimensional
Hermite scheme.

Theorem 4.1 Let n ≥ 1, m ≥ 2 and, for i = 1, 2, . . . , m, let Vi be the
hypersurface {qi = 0}, where qi is an irreducible polynomial of degree ri ≥ 1
in P(Cn+1). Let A = {ai , i = 1, . . .m} be a set of m pairwise distinct points
such that ai ∈ V 0

i . Each ai is associated to a local parametrizationLi of Vi .
We assume that ai 	∈ V j for j < i.

Let d ∈ N be such that

r1 + r2 + · · · + rm−1 < d ≤ r1 + r2 + · · · + rm−1 + rm . (27)

We define the integers si by the relation

{
s1 = d
si = d − r1 − r2 − · · · − ri−1 (i = 2, . . . , m).

(28)

A) In the case where

r1 + r2 + · · · + rm−1 < d < r1 + r2 + · · · + rm−1 + rm, (29)

for every suitably defined function f , there exists a unique polynomial p ∈
Pd(Cn+1) such that

T si
Li

( f − p) = 0 (i = 1, . . . , m). (30)

B) In the case where

r1 + r2 + · · · + rm−1 < d = r1 + r2 + · · · + rm−1 + rm, (31)

if a is any supplementary point outside the Vi’s (i = 1, . . . , m), then we may
conclude that, for every suitably defined function f , there exists a unique
polynomial p ∈ Pd(Cn+1) such that p(a) = f (a) and (30) holds true.

We give some very simple bivariate examples prior to the proof.
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4.2 Examples

We take n = 2 and d = 4 so that Nd (n) = 15. For i = 1, · · · , 4, Vi is a
line of direction ui which passes through ai such that ai 	∈ V j for j < i. We
assume that the four lines are pairwise distinct. The conditions associated to
the computation of Ts

L are given in § 3.4. The following table indicates the
various parameters involved in the theorem,

i ri si conditions for T si
L

1 1 4 5 conditions : ∂ j f
∂ j u1

(a1), j = 0 · · ·4

2 1 3 4 conditions : ∂ j f
∂ j u2

(a2), j = 0 · · ·3

3 1 2 3 conditions : ∂ j f
∂ j u3

(a3), j = 0 · · ·2

4 1 1 2 conditions : ∂ j f
∂ j u4

(a4), j = 0, 1∑4
i=1 ri = d → 1 extra condition : f (a5)

A total of 15 = N2(4) conditions.

The scheme given in Figure 1 corresponds to the (real version) of this table.
Note that the four lines need not be taken in general position. In Figure 1, u2

and u3 are collinear. We work with n = 2 and d = 5 so that Nd (n) = 21 and,
for i = 1, 2, 3, Vi is an irreducible quadratic curve passing through ai with
ai 	∈ V j for j < i. The conditions associated to the computation of Ts

L are
given in § 3.4. The corresponding table is as follows.

i ri si conditions for T si
L

1 2 5 2 × 5 + 1 = 11 conditions

2 2 3 2 × 3 + 1 = 7 conditions

3 2 1 2 × 1 + 1 = 3 conditions∑4
i=1 ri > d → no extra condition

A total of 21 = N2(5) conditions.

An example of a scheme corresponding to (the real version of) this table is
given in Figure 2.
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a1

a2

a3

C(α2, R2)

C(α1, R1)

C(α3, R3)

dk

dθk ( f ◦ S1)(θ1), k = 0 : 10

dk

dθk ( f ◦ S3)(θ3), k = 0 : 2

dk

dθk ( f ◦ S2)(θ2), k = 0 : 6

Fig. 2 An example of a bivariate multipoint Taylor interpolation scheme of degree 5. Here,
C(αi , Ri ) denotes the circle of radius Ri and center αi , ai = αi + Ri (cos θi , sin θi ) and
Si (θ) = αi + Ri (cosθ, sin θ).

4.3 Proof of Theorem 4.1

We first compute the number N of conditions imposed on p by the requirement
(30). Since T si

Li
( f − p) = 0 gives Nsi (Vi) conditions, we have

N = ∑m
i=1 Nsi (Vi)

= ∑m
i=1

(
Nsi (n + 1) − Nsi −ri (n + 1)

)
(by Lemma 3.1)

=
(∑m−1

i=1 Nsi (n + 1) − Nsi+1 (n + 1)
)

+Nsm (n + 1) − Nsm−rm (n + 1)

= Ns1 (n + 1) − Nsm −rm (n + 1)

=
⎧⎨
⎩

Nd (n + 1) − 0 = Nd (n + 1) if (29) holds true,

Nd (n + 1) − N0(n + 1) = Nd (n + 1) − 1 if (31) holds true.

Thus, in both cases, the number of conditions imposed on p matches the
dimension of Pd(C

n+1). To establish the theorem, it is therefore sufficient to
show that, if p ∈ Pd(C

n+1) is such that Tsi
Li

(p) = 0 for every i — and also, in
the case (31), such that p(a) = 0, then p must be the zero polynomial.

Let p be such a polynomial. Since p is of degree at most s1(= d) and
Ts1
L1

(p) = 0, we must have p|V1 = 0. Since q1 is irreducible this implies by
the Nullstellensatz that q1 divides p; thus, p = q1h1 with deg h1 = deg p −
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deg q1 ≤ s1 − r1 = s2, that is, h1 ∈ Ps2(C
n+1). Now the second condition

Ts2
L2

(p) = 0 translates into Ts2
L2

(q1h1) = 0. Since h1 ∈ Ps2(C
n+1) and, by

hypothesis, q1(a2) 	= 0, we may apply the weak Leibniz formula (Lemma 3.3)
to get h1 = 0 on V2 so that h1 = h2q2 with h2 ∈ Ps3(C

n+1). The third condition
now translates into Ts3

L3
(h2q1q2) = 0. Again, since q1(a3)q2(a3) 	= 0 (here we

use ai 	∈ V j for j < i) and deg h2 ≤ s3, an application of the weak Leibniz
formula yields h2 = 0 on V3, hence h2 = h3q3 Continuing in this way we
arrive at p = q1q2 . . . qmhm for a polynomial hm . When (29) holds, comparing
the degree of both sides, we deduce at once that hm must be zero which gives in
turn p = 0, whereas when (31) holds, hm must be a constant polynomial and
the use of the condition p(a) = 0 forces this constant to be zero (for no qi (a)
vanishes) which again permits us to conclude that p = 0 and this finishes the
proof.
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