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Abstract The two-dimensional Navier—Stokes equations, when subject to
non-standard boundary conditions which involve the normal component of
the velocity and the vorticity, admit a variational formulation with three in-
dependent unknowns, the vorticity, velocity and pressure. We propose a dis-
cretization of this problem by spectral element methods. A detailed numerical
analysis leads to optimal error estimates for the three unknowns and numerical
experiments confirm the interest of the discretization.

K. Amoura - S. Saadi

Université Badji-Mokhtar, Faculté des Sciences, Département de Mathématiques, B.P. 12,
23000 Annaba, Algérie.

E-mail: amouradz @yahoo.fr, E-mail: signor_2000@yahoo.fr

M. Azaiez

Laboratoire TREFLE (UMR C.N.R.S. 8508), Site E.N.S.C.P.B., 16 avenue Pey Berland, 33607
Pessac Cedex, France.

E-mail: azaiez@enscpb.fr

C. Bernardi

Laboratoire Jacques-Louis Lions, C.N.R.S. & Université Pierre et Marie Curie, B.C. 187, 4
place Jussieu, 75252 Paris Cedex 05, France.

E-mail: bernardi@ann.jussieu.fr

N. Chorfi

Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 1060
Tunis, Tunisie.

E-mail: nejmeddine.chorfi @fst.rnu.tn

@ Springer



166 K. Amoura et al.

1 Introduction

Let Q be a bounded connected domain in R?. We introduce the unit outward
normal vector n to £ on 0€2 and we consider the nonlinear problem

veurlo+ow xu+gradp =f inQ,

divu =0 in Q,

w = curlu in Q, (1.1)
u-n=0 on 0Q,

w=0 on 0Q.

Indeed it is readily checked that this system is equivalent to the full Navier—
Stokes equations when subject to boundary conditions on the normal compo-
nent of the velocity and the vorticity. Such conditions appear for a large number
of flows, for instance, in the case of a fluid on both sides of a membrane or for
the well-known Green—Taylor flow; see [16].

In system (1.1), the unknowns are the vorticity of the fluid w, its velocity u
and its pressure p. This formulation with three unknowns was first proposed
in [11] and [17] (see also [12] and [1]) and seems the most appropriate for
handling the type of boundary conditions we are interesred in, both for the
Stokes and Navier—Stokes problems. We have decided to treat only the case of
a two-dimensional domain. Indeed, the variational spaces are rather different
in dimension 2 (where the vorticity is a scalar function) and in dimension 3
(where the vorticity is a vector field). Moreover, the existence of a solution
in the three-dimensional case is, to our knowledge, only proved for a smooth
domain Q when the viscosity is sufficiently large enough; see [4]. Thus we
first check the existence of a solution and its stability in the case of a possibly
multiply-connected bidimensional domain.

We are interested in the spectral element discretization of system (1.1).
The numerical analysis of discretizations of the Stokes problem relying on this
formulation was first carried out for finite element methods; see [17] and its
references. It has recently been extended to the case of spectral methods in
[5] and of spectral element methods in the [2]. We also refer to [4] for the
first work concerning the discretization of the Navier-Stokes equations (1.1)
by spectral methods. The main idea of this paper is to extend these results to
the case of spectral element methods.

We first describe the discrete problem and prove that it admits at least
a solution. Next, relying on the arguments presented in [2], we perform its
numerical analysis. By using the theory introduced in [8], we prove optimal
error estimates for the three unknowns. It can be noted that this is a special
property of the formulation that we use, since the approximation of the pressure
for other formulations of the Stokes or Navier—Stokes problem is most often
not optimal (see [7, §§24-26]).
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Spectral element discretization of the Navier-Stokes problem 167

We describe the Newton-type iterative algorithm that is used to solve the
nonlinear discrete problem. Relying once more on the arguments in [8], we
check its convergence. We also describe a possible algorithm for exhibiting
an appropriate initial guess in order to initiate Newton’s method. We conclude
with numerical experiments which confirm the optimality of the discretization
and justify the choice of this formulation.

An outline of the paper is as follows.

e In Sect. 2, we present the variational formulation of system (1.1) and recall
from previous work the existence of a solution.

e Sect. 3 is devoted to the description of the spectral element discrete problem.
We also prove the existence of a solution.
Optimal error estimates are derived in Sect. 4.
In Sect. 5, we describe the iterative algorithm that is used for solving the
discrete problem and prove its convergence.

e Numerical experiments are presented in Sect. 6.

2 The velocity, vorticity and pressure formulation

In order to describe the variational formulation of problem (1.1) and for the
sake of precision, we first recall the definition of the scalar and vector curl
operators in dimension 2. For any vector field v = (v,, v,) and any scalar
function ¢,

curlv = d,0, — dyv,,  curlp = (‘zyg’(p) , 2.1)

where all derivatives in the previous line are taken in the distribution sense.
We also recall that, for any vector field v = (v,, v,) and any scalar function ¢,
the product ¢ x v means the vector with components v, and —¢uo,.

We note that the boundary conditions in this problem are not sufficient
to guarantee the uniqueness of the solution in the case of multiply-connected
domains even for the Stokes problem, see [2, §2] for more details. We need
the following notation.

Notation 2.1 Let £;, 1 < j < J, be connected open curves, called “cuts”,
such that

(i) each X; is an open part of a smooth curve;

(i) each X;,1 < j < J,is contained in Q and its two endpoints belong to
two different connected components of 0€2;

(iii) the intersectionof X;and X, 1 < j < j' < J, is empty;

(iv) the open set Q° = Q\ U/J.: 1 2 is simply-connected.
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168 K. Amoura et al.

The existence of such X ; is clear. We make the further assumption that the
domain Q° is pseudo—Lipschitz, in the sense that, for each point x of 9Q2°, the
intersection of Q° with a smooth neighborhood of x has one or two connected
components and each of them has a Lipschitz—continuous boundary (we refer
to [3, §3.a] for a more precise definition). Then, the further conditions read

(u‘n11>2j205 15]5‘]1 (22)

where (-, -)5; stands for the duality pairing between H -3 (X;)and H 3 (Z)).

We consider the standard spaces L”(Q), 1 < p < +00, and also the full
scale of Sobolev spaces H*(Q) and H;(€2), s > 0. We introduce the domain
H (div, Q) of the divergence operator, namely,

H (div, Q) = {v e L*(Q)%; divv e L*(Q)}. (2.3)

Since the normal trace operator: v — v - n can be defined from H (div, Q)
into H_% (0Q), see [13, Chap. I, Thm. (2.5)], we also consider its kernel

Hy(div, Q) = {v € H(div, Q); v - n =00n0Q}. (2.4)

Finally, let L2(€) stand for the space of functions in L?(€2) with a null integral
on Q.

In view of conditions (2.2) and according to [6, §2.5], we introduce the
space

D(Q) = {v € Hy(div, Q); (v-n, 1)z, =0,1<j < J} (2.5)
We now consider the variational problem:
Find (w, u, p) in Hy () x D(Q) x L{ () such that

Vv e D(Q), a(w,u;v) + K(w,u;v) +b(v, p) = {f, v),
Vg € Li(Q), b(u,q) =0, (2.6)
Vo € H(Q), c(w,u;¢9)=0,

where (-, -) denotes the duality pairing between H(div, Q) and its dual space.
The bilinear forms a(-, -3-), b(-, -) and c(-, -; -) are defined by
a(w,u;v) =v [ (curlw)(x) - v(x)dx,
Q

b(v,q) = —/Q(div v)(x)q (x) dx, (2.7)

c(w,u; p) = / w@x)p(x) dx — / u(x) - (curlp)(x)dx.
Q Q
The trilinear form K (-, -; -) is given by

K(w,u;v) = /(a) xu)(x) - v(x)dx. (2.8)
Q
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Spectral element discretization of the Navier-Stokes problem 169

As a consequence of the density of the space of inﬁnitely differentiable func-
tions with a compact supportin Q in Hy(div, Q) and H, () (see [13, Chap. I,
§2]), we derive the following statement. It involves the solutlons q 1<j<J,
of the problem (see [3, Prop. 3.14] for more details on these functlons)

(—Ag; =0 in Q°,
c’;’nq; =0 on 0Q,
[‘1;]‘/./ =constant, 1< j < J, (2.9)
[0:q7], =0, l<j <,
(Ong V)5, = 0jyrs 1<j <,

where [-];; denotes the jump through 2 (making its sign precise is not
needed in what follows). Note that each grad q; belongs to Hy(div, ), where

—

grad stands for the gradient defined in the distribution sense on Q°, and that

Hy(div, Q) is the direct sum of D(Q) and of the space spanned by the g/r;l q;,
1<j<J. ‘

Proposition 2.2 For any data f in the dual space of Hy(div, Q) satisfying

(f,gradgl) =0, 1<j<J, (2.10)

problems (1.1) — (2.2) and (2.6) are equivalent, in the sense that any triple
(w, u, p)in H'(Q) x H (div, Q) x L§(Q) is a solution of problem (1.1) — (2.2)
if and only if it is a solution of problem (2.6).

We briefly recall from [17], [5, §2], [6, §2.5] and [4, §2] the main arguments
for proving the existence of a solution of problem (2.6). It is readily checked
that the kernel

— {v e D(Q); Vg € L2(Q), b(v, q) =0} @.11)

coincides with the space of divergence-free functions in D(Q2). Similarly, the
kernel

W ={(6,w) € Hy(Q) x V; Vg € Hy(Q), c(0,w; p) =0} (2.12)

coincides with the space of pairs (6, w) in H; () x V such that § is equal to
curl w in the distribution sense. We observe that, for any solution (w, u, p) of
problem (2.6), the pair (w, u) is a solution of the following reduced problem:

Find (w, u) in VV such that
YveV, a(w,u;v)+ K(w,u;v) = {f,v). (2.13)
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170 K. Amoura et al.

We recall from [5, Lemma 2.3] and [6, Props. 2.5.3 & 2.5.4] the following
properties (which require the further conditions that appear in the definition of
D(€)). There exists a positive constant o such that

Yv e V \ {0}, SUP(y, 1) a(w, u;v) > 0,

1
u: L (2.14)
V@, u) €W, supyey HRER > a (ol g+ l#l7gp)

This last property is derived from the more precise inequality
(C(), u) € W, (l(C(), u,u + Clll'lC!)) 2 2a (”a)”ill(g) + ”u”?‘Z(Q)Z)a

which is used in the proof of the existence result below.

The next statement is an easy consequence of the imbedding of W into
H'Y(Q) x H %(Q)2 (see [10]) and of the Sobolev imbeddings of H'(Q) into
L(Q) for any ¢ < 400 and of H 3 (Q) into L*(Q).

Lemma 2.3 The form K (-, -; -) is continuous on W x L*(Q)?. Moreover; for

any (w,u) in W, the operators: (0, w) = o x wand (0,w) — 0 x u are
compact from W into L*(Q)>.

We note the further antisymmetry properties
V(w,u) e W, K(w,u;u) = K(w, u; curl w) =0, (2.15)

which allow us to establish a priori estimates on any solution of problem (2.13).
Thus, the existence of a solution for this problem is derived from Brouwer’s
fixed point theorem in a standard way; see [4, Prop. 2.5] for a detailed proof.

Proposition 2.4 For any data f in the dual space of Hy(div, Q), problem (2.13)
has a solution (w, u) in V.

We also recall the standard inf-sup condition on the form b(-, -). There
exists a positive constant £ such that

b
Vg € L(z)(Q), sup M

> Bllgl o)
veHodiv,) vl H@iv,0)

When applying this result with Q replaced by Q°, we easily derive that

b(v, q)
Vg € Ly(Q),  sup —=——— > flqll 20 (2.16)
ved(@) IVl H@iv,0)
Combining this with Proposition 2.4 leads to the main result for problem (2.6).

Theorem 2.5 For any data f in the dual space of Hy(div, Q), problem (2.6)
has a solution (w, u, p) in Hy(Q) x D(Q) x L3(Q). Moreover this solution
satisfies

loll g + lulla@v.e) + 1121 2@) < ¢ Il Hy@iv,oy - (2.17)
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Spectral element discretization of the Navier-Stokes problem 171

Remark 2.6 Asusual for the Navier-Stokes equations, the solution of problem
(2.6) is unique only if the viscosity v is sufficiently large as a function of the
data, see [4, Thm 2.9]. We prefer to avoid this overly restrictive assumption in
what follows.

We conclude with some regularity properties of the solution of problem
(2.6) which can easily be derived from [2, §2] thanks to a boot-strap argument.
The mapping:f — (w, u, p), where (w, u, p) is the solution of problem (2.6)
with data f, is continuous from H*(Q)? into H**'(Q) x H*(Q)? x H**(Q)
for:

1) alls < % in the general case,
(i) all s < 1 when Q is convex,
(iii) all s < Z when Q is a polygon with largest angle equal to a.

3 The spectral element discrete problem

From now on, we assume that {2 admits a partition without overlap into a finite
number of subdomains

Q=Uf o and QNQ =0, 1<k<k <K, (3.1)
which satisfy the further conditions

(i) each €y, 1 <k < K, is arectangle;

(i1) the intersection of two subdomains Qrand Qp, 1 <k <k < K, if not
empty, is either a vertex or a whole edge of both €, and €Qy/;

(iii) the f/, 1 < j < J,introduced in Notation 2.1, are the union of whole
edges of some €.

The discrete spaces are constructed from the finite elements proposed by
Nédélec on cubic three-dimensional meshes; see [15, §2]. In order to describe
them, for any pair (m, n) of nonnegative integers, we introduce the space
P, (€1) of restrictions to € of polynomials with degree < m with respect to
x and < n withrespect to y. When m is equal to n, this space is simply denoted
by P,(€2). Using these definitions, for an integer N > 2, we introduce the
local spaces.

Dy =Py y_1(Q) x Py_i v (1),  Ch =Py(), My, = Pyn_1 ().

The space Dy which approximates D(Q) is then defined by o
Dy = {vy € D(Q); vylo, € Dy, 1 <k < K}. 3.3)
The space Cy which approximates H, (Q) is defined by
Cy = {on € Hy(Q); pnlo, € Cy, 1 <k < K}. (3.4)
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172 K. Amoura et al.

Finally, for the approximation of L3(L2), we consider the space
My = {qn € L§(Q): qnla, € My, 1 <k < K}. (3.5)

It can be noted that the functions in Dy have continuous normal traces through
the interfaces €; N Qp while the functions in Cy have continuous traces.
Thanks to the previous choice, the discretization that we propose is perfectly
conforming.

According to the approach suggested in [14] and in order to handle the
nonlinear term, we use over-integration. For a fixed real number p,0 < u < 1,
we associate with each value of N the quantity m(N) equal to the integer part
of (1 + u)N. Setting & = —1 and &, vy = 1, we introduce the m(N) — 1
nodes &;, 1 < j <m(N) — 1, and the m(N) + 1 weights p;, 0 < j < m(N),
of the Gauss-Lobatto quadrature formula on [—1, 1]. Denoting by P, (—1, 1)
the space of restrictions to [—1, 1] of polynomials with degree < n, we recall
that the following equality holds:

m(N)

1
VO € P11, [ 0@ =2 oG G6)

Jj=0

We also recall [7, (13.20)] the following property, which is useful in what
follows:

m(N)
Yon € Puny (=L 1), llowlPaypy < D 03 pj < 3 llonla -
Jj=0
(3.7)
Denoting by F; the affine mapping that sends ] — 1, 1[? onto €, we intro-
duce the local discrete products, defined on continuous functions # and » on
ﬁk by

( )k—%%% F@n&vo B &) pipy. (B8)
U,0)y = 2 - /:0’/‘0 k\GCi, Gj)V O L'k\Gi» Gj) PiP- :

The global product is then defined on continuous functions x and v on Q by

K
((w, )y = D (o vla)k- (3.9)

k=1

We also need the local Lagrange interpolation operators Z5;. For each function
¢ continuous on Q;, T} ¢ belongs to P,y (€) and is equal to ¢ at all nodes
Fi(&, &), 0 < i, j < m(N). Finally, for each function ¢ continuous on Q,
Zy¢ denotes the function equal to Zk¢|q, on each Q, 1 < k < K.
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Spectral element discretization of the Navier-Stokes problem 173

The discrete problem is now constructed from (2.6) by using the Galerkin
method combined with numerical integration. It reads:

Find (wy,uy, py) inCy x Dy x My such that

Voy € Dy,  ay(on,un; vy) + Ky(oy, uy; vy)
+bN('UN, pN):((f: vN))N: (3 10)
quEMNa bN(uNan):Oa '
V¢NE(CNa CN(C!)N,uN;goN):O,
where the bilinear forms ay (-, -; -), by (-, -) and ¢y (-, -; -) are defined by

ay(oy,uy;vy) =v ((curl oy, vy))w,
by(vy, gn) = —((divy, gn))w, (3.11)
cn(on, un; on) = ((on, n))v — ((un, curlpy))y,

while the trilinear form Ky (-, -; -) is now given by

Ky (on,uy;vy) = ((oy X uy, vy))n- (3.12)
As a consequence of the exactness property (3.6), the forms a(-, -; -) and
ay(-,+;+),and also c(-, -; -) and ¢y (-, -; -) coincide on ((CN X DN) x Dy and

((CN X DN) x Cpy, respectively, when m(N) > N. Moreover, the forms b(-, -)
and by (-, -) coincide on Dy x My even for m(N) = N. In any case, it fol-
lows from (3.7) combined with the Cauchy—Schwarz inequality that the forms
ay(,+;+),by(-,-)and cy (-, -; -) are continuous on ((CN X DN) XDy, Dy x My
and ((C N xD N) x Cy, respectively, with norms bounded independently of N.
In order to perform the numerical analysis of problem (3.10), we first recall
from the finite element analogous result [15] that the range of Dy by the
divergence operator is contained in My . So, if Vy denotes the kernel

Vy = {vy € Dy; Vgy € My, by(vy, gv) =0}, (3.13)

it is readily checked by taking gy equal to div vy in the previous line that Vi
is the space of divergence-free functions in Dy, i.e., coincides with Dy N V.
Similarly, we introduce the discrete kernel

Wy = {(On, wy) € Cy x Vy; Yoy € Cy, exOy, wy; on) =0} (3.14)

We observe that, for any solution (wy, uy, py) of problem (3.10), the pair
(wn, uy) is a solution of the reduced problem:

Find (wy, uy) in Wy such that
Yoy € Vy, an(oy,uy;vy) + Ky(oy,uy;vy) = ((f, vy))y.  (3.15)

We first recall the next result which is proved in [2, Prop. 3.3].
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174 K. Amoura et al.

Lemma 3.1 For each vy in Vy, there exists a unique yy in Cy such that
vy = curl yy and which satisfies

lwnllzz@) < ¢ llvvll2@p- (3.16)
Using (3.16), we prove the following property.
Lemma 3.2 There exists a constant a., such that

V(ioy,uy) € Wy, an(on,uy;uy) > o. (”a)NHiZ(Q) + ||uN||iz(Q)z).

3.17)
Proof From the definitions of the form ay (-, -; -) and the space Wy, we have
ay(oy,uy;uy) =v ((curloy, uy))y = v (on, on)) N,
whence, owing to (3.7),
ay(oy, uysuy) > v oyl g, (3.18)

On the other hand, associating with u the function y exhibited in Lemma
3.1 and using once more the definition of Wy, we have

((uy,un))nv = ((curl yy,uy))v = ((on, Yn))N-

Combining (3.7) with (3.16) yields

2
lunllz2qp < 9 lovllig llyn g < 9cllovllag llun iz q)p,
whence
lunllr2@p2 < 9cllonll2g)-

This last inequality and (3.18) give the desired property.
We are now in a position to prove the existence of a solution to problem
(3.15). ]

Proposition 3.3 For any function f continuous on Q, problem (3.15) has a
solution (wy, uy) in Wy. Moreover this solution satisfies, for a constant c,
independent of N,

lovllz2q) + llun 2@ < ¢ IZnfll 2@ (3.19)
Proof We introduce the mapping @y defined from Wy into its dual space by

V(ioy,uy) € Wy, YOy, wy) € Wy,
(On(on,uy), On, wN)) =an(on,uy;wy) + Ky (on,uy; wy) — (f, Wy)N-

The space Wy is here provided with the weak norm

2 2 2
(”a)N ||L2(Q) + ”uN ”LZ(Q)Z) ’.
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Spectral element discretization of the Navier-Stokes problem 175

Since Wy is finite-dimensional, it is readily checked that @ is continuous.
Next, noting that Ky (wy, uy; uy) is zero (indeed, the product (wy X uy) -uy
vanishes at all nodes F (&, £;)), we have

(O (N, uy), (wy,uy)) = ay(oy, uy;uy) — (f, un)n,

whence, owing to Lemma 3.2,

(On(own,uy), (on, uy)) > o (||CUN||iz(Q) + ||uN||iz(Q)z) —(f,un)n.

On the other hand, we derive from (3.7) that

(foun)n = @nfun)n < 3IInfll2@ellunllL2@)2s

which leads to

Ok

9
(@ (N, un), @y, un)) > = (lon 172 + 1en 72 g2) = 55 1IN 1722

Thus, setting
3
Iy = IZnf 225

we observe that (O y (wy, uy), (wy, uy)) is nonnegative on the sphere of Wy
with radius uy. So applying Brouwer’s fixed point theorem (see [13, Chap.
IV, Cor. 1.1]) gives the existence result together with estimate (3.19).

To go further, we recall from [2, Lemma 3.8] the inf-sup condition on the
form by (-, -). There exists a positive constant . independent of N such that
the form by (-, -; -) satisfies the inf-sup condition

by(vy, qn)
Vgy € My, sup ——— > B.llgnll2)- (3.20)
vyedy N Il H div,0)

The final existence result is derived from this condition and Proposition 3.3 in
a standard way; see, e.g., [13, Chap. I, Lemma 4.1].

Theorem 3.4 For any function f continuous on Q, problem (3.10) has a so-
lution (wy, uy, py) in Cy x Dy x My. Moreover the part (oy, uy) of this
solution satisfies (3.19).

Note that all the results in this section hold without over-integration, i.e.,

for 4 = 0 and m(N) = N. However, the choice of a # > 0 is needed in what
follows.
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176 K. Amoura et al.

4 Error estimates

As already hinted, the error analysis of the discrete problem relies on the theory
of Brezzi, Rappaz and Raviart [8]. In order to apply it, we first express both
problems (2.13) and (3.15) in a different form.
We set
X =H;(Q) x V.

Owing to the characterization of V, this space is equipped with the norm

1
10, w)llx = (101710 + lwl720y) - (4.1)

Let S denote the following Stokes operator. For any data f in the dual space
of Hy(div, Q), Sf denotes the solution (w, u) of the reduced problem:

Find (w, u) in VV such that
YveV, alw,u;v)={f,v). 4.2)

The fact that S is well-defined is easily derived from properties (2.14). We also
introduce the mapping G defined from WV into the dual space of Hy(div, Q)
by

V(w,u) € W, Vv € Hy(div, Q), (G(w,u),v) = K(w,u;v)—{f,v). (4.3)
Then, problem (2.13) can equivalently be written as
(w,u) + SG(w,u) = 0. “4.4)

Similarly, we set
XN = (CN x Vy,

and note, since Vy is contained in V, Xy is a finite-dimensional subspace of
X. Itis still provided with the norm defined in (4.1). We thus define the discrete
Stokes operator. For any data f in the dual space of Hy(div, Q), Syf denotes
the solution (wy, uy) of the problem:

Find (wy, uy) in Wy such that
Yoy € Vi, an(oy,uy;vy) = {f,vy). 4.5)

The well-posedness of such a problem is proved in [2, Cor. 3.6] for a slightly
different right-hand side. Finally we consider the mapping G defined from
X into the dual space of Dy by

V(on, uy) € Xy, Yoy € Dy,
(Gy(oy,un), vw) = Kn(oy, uy; vy) — ((F, vy))n.  (4.6)
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Spectral element discretization of the Navier-Stokes problem 177

Then, problem (3.15) can equivalently be written as
(wn,uy) + SnGn(oy,uy) = 0. 4.7

Using analogous arguments to those in [2, Cors. 3.6 & 4.9], we easily derive
the following results.

(i) The operator Sy satisfies the stability property

,'U
ISufllx < ¢ sup —L=2V)

vvevy lovllzz@ye

(4.8)

(ii) The following error estimate holds for all f such that Sf belongs to
HsTH Q) x H*(Q)?,s >0,

1S = Sx)fllx < N7 ISF s+ apmrscar- 4.9)

We need further properties of the form K (-, -; -). The following result is derived
in [4, Lemma 3.4] in the case of one subdomain Q; and relies on the inverse
inequality

Von € Pu(Q0),  llowlli=wy < cllog NI* lonllmiy.  (410)
Applying the same arguments on each €, leads to the next statement.
Lemma 4.1 The following property holds:

Yoy € Cy,Vuy € Dy, Yoy € Dy,
|K(wy,uy;vy)| < cllog Nlé lonllaiollunlizellvnllizzge.  (4.11)

Remark 4.2 Similar arguments yield that estimate (4.11) still holds when at
most two of the three functions wy, #y and vy are replaced by their analogues
o in Hy (Q), u and v in D(Q).

We need the analogous result for the form Ky (-, -; -).
Lemma 4.3 The following property holds:
Yoy € Cy,Vuy € Dy, Yoy € Dy,
|Ky(on, uy;vy)| < cl|log Nlé lovllav@llunlizellvv gz (4.12)

Proof We have, with obvious notation,

Kn(on, uy;vy) = (Oyuny, One))v — ((Ontny, Ony))n
= ((IN(wNuNy)s DNX))N - ((IN(CUNMNX): UNy))N.
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By combining the Cauchy—Schwarz inequalities with (3.7), we obtain

|[Kn(oy, un; vy)| < c | Znv(ovun) 2@ llvvll2g)2-

The following result can easily derived from its one-dimensional analogue (see
[7, (13.28)]).

M
k P
Vou € Py(Qr), 1 Zxomlli2qy < c(1+ WN)) loamll L2y

Since both products (wyuyy) o, and (wyuny) o, belong to Pry (L) and the

. 2N . . .
ratio 755 18 smaller than 2, this gives

|Kn(oy,uy; vn)| < cllovuy|l 2@z llovllzg)2-

We conclude by using the inequality

lovun|l 2@ < llovlize@llunlli2@)2s

together with (4.10).
We are led to make the following assumptions. Here, D stands for the
differential operator.

Assumption 4.4 The triple (w, u, p) is a solution of problem (2.6) such that
the operator Id + SDG (w, u) is an isomorphism of X’

Note that this assumption can equivalently be written as follows (this
requires the inf-sup condition (2.16)). For any data g in the dual space of
Hy(div, Q), the linearized problem

Find (0, w, r) in Hy (Q) x Ho(div, Q) x L%(Q) such that

Vv € Hy(div, Q), a0, w;v) + K(w, w; v)+K (0, u; v)+b(v, r)=(g, v),
Vg € L}(Q), b(w,q) =0,
Vo e H(Q), ¢, w;p) =0,

(4.13)
has a unique solution with norm bounded by a constant times ||g || g, (div,qy - It
yields the local uniqueness of the solution (w, u, p) butis much less restrictive
than the conditions for its global uniqueness; see Remark 2.6.

Assumption 4.5 The solution (®, u, p) of problem (2.6) introduced in As-
sumption 4.4 belongs to H**1(Q) x H*(Q)? x H*(Q), s > 0.

Relying on this last assumption and taking N equal to the integer part of
2u N — 1, we can also construct from the arguments in [2, §4] a pair (@, Uy)
in Cy x Vj (with obvious definitions for these new spaces) which satisfies

(@ — @y, u—ay)llx < ¢ N7 (@, )|l gy m@p- (4.14)

Note that estimate (4.14) makes sense only when N >2.
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Let £L(Xy) denote the space of endomorphisms on Xy. We are now in a
position to state and prove the following lemma.

Lemma 4.6 If Assumptions 4.4 and 4.5 are satisfied, there exists an integer
Ny such that, for all N > Ny, the operator Id + SyDG (@, ty) is an
isomorphism of Xy. Moreover the norm of its inverse operator is bounded
independently of N.

Proof We write the expansion

Id + SyDGy(@y, iy) =1d+ SDG(w,u) — (S — Sy)DG(w, u)
—SN (DG(C(), u) - DG(CT)N, ﬂN)) —SN (DG(CT)N, itN) - DGN(CT)N, ﬂN))
(4.15)

Moreover, it follows from the definition of G and G y that, for all (fy, wy) in
XN and UN in VN,

(DG(&)NaﬁN) : (0N,WN),'UN> = K(CT)N,WN;UN)"I‘K(QN,E?N;UN),
(DG (o, uy) - Oy, wy), vy) = Ky(on, wy; vy) + KO, ty; vy).

Owing to the choice of (@, ty), all products ((ch X wy) - 'UN)lgk and
((Oy x @ty) - vn)lo, belong to Pay,v)—1(€), so that the last term in (4.15)
vanishes. By combining (4.8) and Lemma 4.1, we also have
ISy (DG (@, u) — DG (@, ity)) - On, wy)llx
1 ~ ~
< c|log N|? (llo — &l giqllwy | 12 + 1081l g1l — iy [l 120y2)-

Thus, applying estimate (4.14) yields

Jm 1Sy (DG (@, u) = DG @y, in) o = 0. (4.16)

Finally, it follows from Assumption 4.5 that, when (6, w) runs through the unit
ball of X, DG(w, u).(0, w) belongs to a compact subset of L?(€)?, so that the
next property is derived from (4.8) and (4.9) by standard arguments

Jim[(S = 8x) DG @, W)z =0, (4.17)
Thanks to Assumption 4.4, if y denotes the norm of the inverse of Id +
SDG(w, u), choosing N large enough for the quantities in (4.16) and (4.17)
to be smaller than j gives the desired property with the norm of the inverse
of Id + SyDG y(@y, ) smaller than 27y .
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Lemma 4.7 The following Lipschitz property holds:
V(wyn,uy) € Xy,

L 1o y
ISy (DG (@n,in) — DG (), uy))llgixy) < cllog N|2 [[(@n — o), iy —uy)l x-
(4.18)

Proof We have
(DG N(@n,liy) — DGy (@i, uy)) - On, wy), vy)
= Kn(@n — oy, wy; vy) + Kn(O, iy — uy; vy).
So combining (4.8) and Lemma 4.3 leads to the desired property.

Lemma 4.8 Assume that the data f belong to H° (Q)?, o > 1. If Assumption
4.5 is satisfied, the following estimate holds:
(o, ) + SnGn(@n, un)llx
< c(w,u) (N~ (@, W)l gs+1@xas@? + N7 Wflao@pr) (4.19)
for a constant c(w, u) only depending on the solution (w, u).

Proof From Eq. (4.4), we derive

l(@n,aN) + SNGn(@n, an)llxy < (@ —dy,u—ay)|xy + 1(S —Sy)Glw,u) x
+ 1SN (G(w,u) — G(on,ay))llx + ISy (Gl@n, ay) — Gy (on, an))|l x-

The bound for the first term in the right-hand side obviously follows from
(4.14). By combining estimate (4.9) and Assumption 4.5, we also derive

(S = Sn)G(w,w)llx < ¢ N~* (@, w) || gs+10yx s (22
On the other hand,
K(w,u;vy) — K(oy, uy; vy)
= K(w—dn,u;vy) + K(o,u—uy;vy) — K(ow— oy, u — lty; vy).

Moreover it follows from Assumption 4.5 that (w, u) belongs to L>(Q) x
L4(Q)? for some g > 2. So, combining (4.8) and (4.14) with Remark 4.2 and
a modified version of it taking into account this further regularity yields, with
obvious notation for c(w, u),

ISy (G(w, u) — G(@n, ay))llx < c(w,u) N~
s 1
(I+ N7 [log NI2) (@, ) || gs+10)x s ()2-

Finally, it follows from the exactness property (3.6) and the choice of (W, #y)
that, for all vy in Dy, the quantities K (oy, ty; vy) and Ky(oy, iy; vy)
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coincide. Thus, if ITy_ | denotes the orthogonal projection operator from L?(£2)
onto the space of functions such that their restrictions to all {, 1 < k < K,
belong to Py_;(€X), adding and subtracting the quantity [1y_,f in the last
term and using (4.8) and (3.7) lead to

ISy (G@n, an) =Gy (@n, an)) I x <c (I =Tn-1f 2@+ If = Infll2qp)-

The standard approximation properties of the operators I1y_; and Z [7, Thms.
7.1 & 14.2] yield

ISy (G(@n, iin) — Gy(@n, wn))llx < ¢ N7 f | o -
The desired bound is then derived by combining the previous estimates.
We are now in a position to prove the error estimate.

Theorem 4.9 Assume that the data f belong to H° (Q)?, ¢ > 1, and that the
solution (w, u, p) of problem (2.6) satisfies Assumptions 4.4 and 4.5. Then,
there exist an integer N,, and a constant c, such that, for all N > N,, problem
(3.10) has a unique solution (wy, uy, py) such that
1
o —onllgiq) + le —uyllH@v.e < collog N|72. (4.20)

Moreover this solution satisfies the following error estimate:

o — onllgig) + 4 —unlla@v.o + 1P — Pyl

< c(@,w) (N7 (ol g + 1@l g@p + 1Plrs@) + N7 i)
4.21)

for a constant c(w, u) only depending on the solution (w, u).

Proof Combining Lemmas 4.6—4.8 with the Brezzi—Rappaz—Raviart theorem
[8] (see also [13, Chap. IV, Thm 3.1]) yields that, for N sufficiently large,
problem (3.15) has a unique solution (wy, uy) which satisfies (4.20) and the
first part of (4.21). Moreover, thanks to the discrete inf-sup condition (3.20),
there exists a unique py in My such that

Voy € Dy,  by(vy, py) =, vn)v—an(on, uy; vv) — Ky(oy, uy; vy),
whence the existence and local uniqueness result follows. Moreover, we have,
for any gy in My,

by(vn, py — qn) = b(vy, p —gn) — {fsvn) + (F, vn)w
ta(w — oy, u —uy;vy) + (@ — ay)(oy, uy; vy)
+K(w,u; vy) — Kn(on, uy; vy),

so that the estimate for || p — pn || .2(q) follows from (3.20), a triangle inequality
and the same arguments as in the proof of Lemma 4.8.
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Estimate (4.21) is fully optimal and justifies both the choice of the dis-
cretization and the use of over-integration.

5 The iterative algorithm and its convergence

Applying Newton’s method to problem (4.7) consists in solving iteratively the
equation

(a)N, uN) = i/ l’ ug/ !
— (Id + Sy DGy (@5, 1l ) ™ (@4, 4l + SvG (@l ul ).

(5.1)

Multiplying both sides of this equation by Id +Sy DG y (0%, N ,u N ") and using
the inf-sup condition (3.20), we observe that this equation can equivalently be
written as follows. Given an initial guess (a)?v, u?v) in Cy x Dy, we solve the
following problem for ¢ > 1:

Find (a)i,, uﬁ,, pf;,) inCy x Dy x My such that

Yoy € Dy, aN(a)N, uﬁ,, vy) + KN(a)N ,uN, vy) + KN(a)N, uﬁ, Loy
—Ky(@y ' uy " on) + by (on, piy) = ((F, o))y, (5.2)
Vgy € My, by (y, qn) =0,
Voy € Cy, en (o), uy; o) =0
Itisreadily checked that, for each value of ¢, problem (5.2) results into a square
linear system.

The convergence of this method can easily be derived from [8] (see [13,
Chap. IV, Thm. 6.3]) owing to Lemmas 4.6 and 4.7.

Theorem 5.1 Assume that the solution (w, u, p) of problem (2.6) satisfies
Assumption 4.4. Then there exist an integer N, and a constant c, such that,
forall N > N, and for any initial guess (o3, u%) in Cyy x Dy such that

_1
o — o | ety + 1 — w1 5 @iv.a) < c.|log N|72, (5.3)

problem (5.2) for each € > 1 has a unique solution (a)i,, uﬁ,, pf;,). Moreover
the sequence (a)i,, uﬁ,, pf;,)g converges in a quadratic way towards the unique
solution (wy, uy, py) of problem (3.10) satisfying (4.20), in the sense that

(o, uly) = (n, )l < c @y, uy ) = (@y, uy)ll%, (5.:4)

for a constant ¢ < 1.
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As standard for Newton’s method, the key point is to exhibit an initial guess
(a)?v, u?v) satisfying (5.3). In order to do that, we decided to use a continuation
method. For simplicity, we set 1 = % and define the modified bilinear form

1
~ 4 € 4 €
aN(CUNs Uy, vy) = ; aN(CUNs Uy, vy).

We also introduce a pseudo-pressure pi, = % pY- Thus, problem (5.2) can
equivalently be written as:

Find (a)i,, uﬁ,, ﬁf;,) inCy x Dy x My such that

VUNEDNa ClN(C()N,uN,'UN)-i‘lKN(CUN 1uN5UN)+lKN(a)N1ug]ly UN

—) Kn@5 " ul s on) + by (o, p5) = 2 ((F, vn)w,s
Vgy € My, by, gn) =0, (5.5)

Voy € Cy, en (@), uy; on) =0
Next, we fix a sample of parameters (4,,)o<m<m such that
0= <A <---<Ay=4~1 (5.6)

We denote by (wn(An)’, un(An)’, P (An)?) the solution of problem (5.5)
with A replaced by 4,,. We also fix an integer L > 1. Next, we use the following
algorithm.

(i) Initial step. For 1o =0, we observe that the solution (wy(0), uy (0), py(0))
of the Stokes problem is zero.

(i) Iterative step. Assuming that (wy (A,—1)", uy (An_1)¥) is known, we take
the intermediate initial guess (wy (4,)°, uy (4,)°) equal to (wy (A1),
uy (Am—1)") and solve problem (5.5) with 1 equal to 4, for{ =1, ..., L

The iterative step is performed untilm = M — 1 and the initial guess (%, u%)
is taken equal to (wy (Ay—1)E, uy(Ay—1)").

The mapping: 1 +— (wny(4),un(1), py(1)), where (wy(4), un(1),
pn(4)) is the solution of problem (3.10) with v = %, is clearly Lipschitz-
continuous on any bounded interval of R, . So it can be checked that, when
maxj<m<m Am — Am—1 is sufficiently small and for L sufficiently large, the
previous algorithm provides an initial guess (0%, u%) satisfying (5.3) for one
of the solutions (w, u, p) of problem (2.6). However, for the numerical exper-
iments, we work with low values of M and L, and also smaller values of N
than the final one. But, in any case, convergence seems likely.

@ Springer



184 K. Amoura et al.

6 Numerical experiments

Problem (5.2) is very similar to a discrete Stokes problem. So we refer to [2,
§5] for a detailed description of its implementation. As also explained in this
reference, the global system (which is not symmetric) is solved viaa GMRES
method with local preconditioners, so that it need not be assembled.

We first check the convergence of the discretization in the case of Taylor—
Green flow. The domain is the square Q =]— 1, 1[? divided into two rectangles
Q =]—1,0[x]—1, 1[and ©, =]0, 1[x] — 1, 1[. The exact solution is given
by

—sin(z x) cos(my)
cos(zx) sin(zy)

u(x,y) = ( ) . px,y) = cos’(mx) + cos’(n y),

(6.1)
and the viscosity v is taken equal to 1072, Figure 1 presents the log of the three
errors

o — onlla1@) lu — un |l @iv,0)» P — prll2)s

as a function of N, for N varying from 5 to 20, after L = 6 Newton itera-
tions. When compared with finite element results for a similar test (see [9]),
these curves confirm the exponential accuracy of spectral element methods for
smooth solutions.

—%—  pressure
— © — velocity
S —&— vorticity

log(error)

10° |

10 "

-10 | |

5 10 15 20
N

10

Fig. 1 The error curves for a Taylor—-Green flow
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Fig. 2 The isovalues of the vorticity, velocity and pressure for the L-shaped domain

In the numerical experiments that we now present, the homogeneous bound-
ary conditions on the velocity are replaced by

u-n=%k onoQ, (6.2)

where the datum k satisfies the compatibility condition

k(z)dz = 0. 6.3)

0Q

In the discrete case, this condition becomes

uy -n=ky onoQ, (6.4)
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2 5

Qo Q3 [y

—

Fig. 3 The U-shaped domain and its partition

where ky is defined in the following way: €2 is the union of several segments
I';, and each I, is the union of one or several edges of the €, that we denote
by I'r;, 1 < i < I({); then each kyr, is defined as the image of kjr, by the
orthogonal projection operator from L?(I';) onto the space

T(Te) = {gn € €°(T0); gmir,, € Pyoi(Tey), 1<i < 1(0)).  (6.5)

A detailed analysis of the corresponding discrete problem is given in [5, §5]
for the Stokes problem. In particular, it is explained in [5, Rem. 5.4] that the
function ky still satisfies condition (6.3), so that the corresponding discrete
velocity uy is exactly divergence-free. Of course, extending this analysis to
the Navier—Stokes equations requires a Hopf lemma, which is rather technical
(see [13, Chap. IV, Lemma 2.3] for instance). We prefer to skip this analysis
for brevity.

We now consider the L-shaped domain Q =] — 1, 1[?\[0, 1[?, divided
into three equal squares in the obvious way. We denote by I'; the segment
{—1} x [—1, 1] and by I'; the segment {1} x [—1, 0], and we take the data f
and k defined by

£ =0,0) K-l = [P0 (=2 h
k(1,y)=—=y(14+y) onl,, k=0 onoQ)\ (I'yUTl).

(6.6)
Note that the function k satisfies (6.3) and moreover that its restriction to each
I'; belongs to the T(I';) introduced in (6.5), so that ky is equal to k on 0Q. We
take the viscosity v equal to 1072, Figure 2 presents, from top to bottom, the
values of the vorticity, the two components of the velocity, and the pressure
for the discrete solution obtained with N = 23.

on I,
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Fig. 4 The isovalues of the vorticity, velocity and pressure for the U-shaped domain

Finally, we consider the U-shaped domain Q =]—2, 2[x]—2, 1[\[—1, 1[2,
partitioned into two squares and three rectangles (see Fig. 3); when turning
counterclockwise,

Qp =]=2,-1[x]=LI1[, Q=]-2,-1[x]=2,-1[, Q3=]-11[x]=2,—-1[,
Q4 =]1,2[x] =2, -1, Qs =]1,2[x] =L 1[.
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The datum f is taken equal to zero, while the datum k is given by

—x sin(rx) when —2<x < —1,y=-2,
k(x,y) =1 y sin(zy) whenx =2, -2 <y < —1, (6.7)
0 elsewhere.

Accordingly it still satisfies (6.3) and vanishes on 62 but in parts of 0€2, and
2y (as indicated in Fig. 3). Still with v equal to 1072, Fig. 4 presents, from
top to bottom, the values of the vorticity, the two components of the velocity,
and the pressure for the discrete solution obtained with N = 23.
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