
Abstract Glutamic acid decarboxylase (GAD) is the enzyme
that catalyses the production of GABA, a major neurotrans-
mitter of the central nervous system. Antibodies to GAD
(GAD-Ab) were first recognised in a patient affected by
stiff-person syndrome; subsequently they were reported in a
large number of cases with type 1 diabetes. Recently GAD-
Ab have been described in a number of patients affected by
chronic cerebellar ataxia, drug-resistant epilepsy and
myoclonus. These cases usually harbour other autoantibod-
ies or are affected by organ-specific autoimmune diseases.
The role of GAD-Ab is still unclear; the lack of experimen-
tal models makes it difficult to investigate their potential
pathogenetic role. However two mechanisms have been sug-
gested: the reduction by GAD-Ab of GABA synthesis in
nerve terminals or the interference with exocytosis of
GABA.
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Introduction

Autoantibodies (Ab) to neuronal antigens are usually detected
in the serum and cerebrospinal fluid (CSF) of patients with
paraneoplastic neurological disorders. However, anti-neuronal
Ab can also be found in a number of other disorders of the
central nervous system (CNS) of autoimmune origin, such as
stiff-person syndrome (SPS) [1]. In this case, Ab are directed
against the enzyme glutamic acid decarboxylase (GAD); this
group of anti-neuronal Ab is known as GAD-Ab.

GAD is the enzyme that catalyses the conversion of glu-
tamic acid in the inhibitory neurotransmitter gamma-
aminobutyric acid (GABA) and is present in GABAergic
neuronal cytoplasm and secretory vesicles. It is also
expressed in pancreatic β-cells [2], testis, fallopian tube,
liver, kidney and adrenal glands [3]. GAD is produced in
two isoforms of 65 and 67 kD, encoded by two different
genes localised on chromosomes 10 and 2; they probably
derive from a common ancestral gene [4, 5]. Both GAD
proteins are synthesised as soluble molecules, but only
GAD-65 is modified in the NH2-terminal domain and
bound to the GABA vesicle membrane [6]. GAD-65 and
-67 are similar in the median and carboxylic part of the pro-
tein, but are quite different in the aminic terminal, so they
recognise different intracellular targets [7]. Both isoforms
are detectable in the CNS while only GAD-65 is present in
pancreatic cells.

GAD autoantibodies

GAD-Ab were first reported in 1988 by Solimena et al. [8]
in a patient affected by SPS and epilepsy.

After the discovery of GAD-Ab in patients with SPS,
Baekkeskov et al. [9] found these Ab in the serum of
patients affected by type 1 diabetes without neurological
disorders [9, 10].
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At present, GAD-Ab are considered a marker of autoim-
mune diabetes since they can be found in the serum of the
majority of patients, even before clinical onset of the disease
[11, 12]. Indeed, GAD-65 is currently regarded as an impor-
tant β-cell antigen able to induce type 1 diabetes and is prob-
ably involved in the development of the disease in non-obese
diabetic mice [13, 14].

Although GAD-Ab can be detected in patients with SPS
and type 1 diabetes, the autoantibodies present different
characteristics in the two conditions. In SPS, Ab recognise
GAD epitopes in linear form as evidenced by denatured pro-
tein staining in immunoblotting, which is usually negative in
diabetic patients [9]. This is consistent with the different epi-
tope specificity in the two groups of diseases [15–17].
Indeed, further studies have shown that Ab from diabetic
patients recognise epitopes in the central and C-terminal
sites of the protein, while in SPS they react with the C- and
N-terminal sites of GAD-65 [16, 18]. Lastly, in SPS, Ab link
the active enzyme site since co-incubation of purified GAD
and SPS sera inhibits GAD enzymatic activity, as different
from diabetic sera [15]. 

Several methods have been developed to detect GAD-
Ab. To date, immunohistochemistry and radioimmunoassay
represent the most reliable procedures for their identification
in clinical practice.

Immunohistochemistry

Frozen sections of rat cerebellum are incubated with serial
dilutions of patients’ sera (and, when available, with CSF).
Subsequently the sections are incubated with peroxidase- or
FITC-conjugated rabbit anti-human IgG, IgA and IgM and
the reaction is developed with diaminobenzidine tetrahy-
drochloride and hydrogen peroxidase when the peroxidase
system is used. Positive sera stain the axon hillocks of
Purkinje cells and diffuse nerve terminals in the molecular
and granular layers of cerebellum [8, 19, 20].

Western Blot

Total homogenate of human cerebellum is separated by
sodium dodecylsulphate gel electrophoresis and trans-
ferred to nitrocellulose membrane. Strips are incubated
with patients’ sera and polyclonal anti-GAD antibody
(used as positive control) and then exposed to peroxidase-
conjugated rabbit anti-human IgG Fab’. Blots can also be
developed with chemiluminescent reagents. Immunoblot
can also be performed using recombinant human GAD-65
(rGAD-65) transferred to nitrocellulose and developed
with chemiluminescence. Positive sera recognise a band of
64 kD [21, 22].
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Radioimmunoassay

The assay is performed with a commercially available kit
following the manufacturer’s instructions. Serum samples
are incubated with 125I-labelled human rGAD-65 and protein
A-Sepharose is added. After centrifugation the precipitates
are counted for 125I with a gamma scintillation counter. The
results are interpolated in the standard curve constructed
using dilution of a positive control serum [23]. This method
is widely applied to detect GAD-Ab in diabetic patients and
it has the advantage to provide a useful quantification of
these Ab.

Enzyme-linked immunosorbent assay

Ezyme-linked immunosorbent assay (ELISA) is performed
using recombinant human GAD-65 (rGAD-65) reacting with
patients’ serum at different dilutions, developed with a col-
orimetric method and using an ELISA plate reader to calcu-
late the optical density [24].

Other methods

GAD-Ab may be detected with other methods such as
immunoprecipitation assay [25] and radiobinding assay,
which are highly sensitive for type 1 diabetes diagnosis but
rarely used owing to their difficult protocols [26, 27].

GAD autoantibodies and neurological disorders

A recent study has shown that the spectrum of neurological
disorders associated with GAD-Ab is wider than previously
believed [28]. In addition to SPS, these Ab have been found
in a series of cerebellar ataxia cases [29–32], in drug-resis-
tant epileptic patients [33, 34] and finally in a patient with
branchial muscle myoclonus [35]. We briefly reviewed the
clinical and immunological characteristics of these patients. 

Stiff-person syndrome

Clinical features
SPS is usually a sporadic disease (excluding rare familiar
cases); the autoimmune variant more commonly affects
women [36]. The syndrome is of insidious onset, usually
more frequent in middle age (30–60 years), and is charac-
terised by painful spasms in axial muscles that progress to
involve proximal leg muscles, usually asymmetrically in
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GAD-Ab-positive cases [36]. Patients sometimes show sym-
metric spine deformity, typically lordosis or loss of normal
spinal curvature.

Symptoms are initially intermittent and muscle contrac-
tions are exaggerated in response to sound, electrical stimula-
tion and touch. Stiffness and spasms later become continuous,
precipitated by voluntary movements and preventing normal
gait [37].

The disease is clinically elusive and should be considered
in patients with unexplained stiffness and spasms [38].

Several variants have recently been characterised and
divided according to the relative distribution of clinical signs
(Table 1) [39]. Progressive encephalomyelitis with rigidity is
characterised by a subacute course leading to death within
three years. Jerking stiff person syndrome presents a pre-
dominant brainstem involvement. Stiff limb syndrome is a
focal form with predominant involvement of the spinal cord
[40]. Within the autoimmune group a paraneoplastic variant
has been demonstrated and is associated with anti-
amphiphysin [41] and anti-gephyrin [42] Ab.

Pathophysiology
Electromyography (EMG) shows involuntary motor unit fir-
ing at rest; contraction of antagonist muscles fails to induce
motor unit relaxation in leg muscles. In some patients, con-
tinuous motor unit activity in paraspinal muscles at lumbar
levels presents a full interference pattern [43].

In 1963, Howard showed marked clinical improvement
after benzodiazepine administration, suggesting involvement
of the inhibitory system using GABA as neurotransmitter
[44]. Continuous motor unit activity is also suppressed by
epidural anaesthesia as well as by drugs with central action,
such as baclofen and tizanidine [45].

Floeter et al. proved that the clinical features of SPS were
compatible with dysfunction of the central inhibitory
GABAergic mechanism [46]. Not all spinal GABAergic
neurons are uniformly affected in SPS patients, whose dif-
ferences suggest a heterogeneous pathophysiologic mecha-
nism. Clinical variants of SPS (such as stiff-limb syndrome)
may represent different examples of this heterogeneity [46].

Immunology
The association of SPS with a number of autoimmune dis-
eases such as pernicious anaemia, autoimmune thyroid dis-
eases, vitiligo, myasthenia gravis and type 1 diabetes has
been already reported. Demonstration of GAD-Ab in the
serum of 60%–70% of patients (Table 1) [1] suggests that an
autoimmune mechanism of damage could be implicated in
this subgroup of SPS cases. The oligoclonal bands and
intrathecal synthesis of IgG usually detected in their CSF sup-
port this concept as recently stressed by Dalakas et al. [47].

Favourable responses to plasmapheresis [48], intravenous
administration of immunoglobulin [49, 50] and immunosup-
pressive therapy [51, 52] have also been reported.

Cerebellar ataxia

Clinical features
In the series recently reported by Honnorat and coworkers
[30], fourteen patients  (13 women) with chronic cerebellar
ataxia collected from different European centres showed
high titres of GAD-Ab in the serum. The patients had a
median age of 55 years at onset of disease. The cerebellar
symptoms progressed slowly in almost all these patients and
were clinically similar to familial (SCA2) or toxic cerebellar
degeneration. All these patients presented severe gait ataxia
while only a few exhibited limb ataxia; nystagmus and
dysarthria were observed in most cases. In ten patients, the
neurological symptoms prevented enjoyment of a complete-
ly independent way of life. The chronic evolution of symp-
toms and the follow-up excluded a paraneoplastic origin.

Brain magnetic resonance imaging (MRI) in some
patients showed cerebellar atrophy with no evidence of
brainstem involvement.

Immunology
Similarly to SPS, almost all these patients were also affected
by a polyglandular autoimmune disorder characterised by
type 1 diabetes (ten cases), thyroiditis, pernicious anaemia,
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Table 1 Stiff-person syndrome (SPS) and its clinical variants

Clinical features Autoantibodies Therapy
associated

Classic SPS Stiffness and rigidity in GAD-Ab (in 60%–70%) Improvement after benzodiazepine,
axial muscles and Anti-amphiphysin (5%) plasmapheresis or
superimposed spasms Idiopathic (35%) immunosuppressive therapies

Progressive  Widespread rigidity, myoclonus,    – Poorly responsive to therapy
encephalomielitis brainstem signs, (death within 3 years despite therapy)
with rigidity cognitive changes

Jerking SPS Brainstem myoclonus GAD-Ab Improvement after benzodiazepine,
in few cases plasmapheresis or immunosuppressive therapies

Stiff-leg syndrome Stiffness of one or both GAD-Ab Improvement after benzodiazepine,
legs sparing the trunk in few cases plasmapheresis or immunosuppressive therapies



myasthenia gravis and psoriasis in addition to several other
organ-specific autoantibodies in their serum. 

In ten patients, CSF analysis showed oligoclonal IgG
bands with an high IgG index. In the few patients in whom
both serum and CSF were analysed, the titre of GAD-Ab was
higher in the CSF, exhibiting intrathecal GAD-Ab synthesis.

Successful  treatment of these cases with plasmapheresis
or high dose of immunoglobulins  has been reported [53]
(and personal observation).

Epilepsy

Clinical features
GAD-Ab have recently been reported in patients with drug-
refractory epilepsy [33, 34]. A man affected by complex par-
tial seizures with temporal-lobe abnormalities on MRI, har-
bouring high levels of GAD-Ab in the serum and CSF, was
described in 1998 [33]. CSF examination showed an inflam-
matory pattern with a high IgG index and oligoclonal bands
[33]. The patient was also positive for islet-cell Ab (ICA) and
improved after immunosuppressive therapy.

Recently GAD-Ab have been found in sera from 8 of 51
patients with drug-refractory epilepsy. Interestingly, patients
with the highest GAD-Ab titre (measured by radiobinding
assay) had a history of temporal-lobe epilepsy. In some patients,
titres were as high as found in SPS cases [34]. MRI showed left
hippocampal sclerosis in one patient. Finally, it is noteworthy
that SPS cases sometimes present epileptic seizures [1].

Immunology
Few of these patients showed other autoimmune disorders,
but serological positivity for anti-cardiolipin Ab (ACA),
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anti-thyroid peroxidase Ab (TPO-Ab) and anti-gliadin Ab
was reported. One patient, with the second highest titre of
GAD-Ab, had a history of hypothyroidism and oligomenor-
rohea. CSF was negative for oligoclonal bands and the IgG
index was normal in most cases.

Myoclonus

A woman affected by palatal myoclonus and seizures, with
high titres of GAD-Ab in the serum  (in addition to ICA,
anti-nuclear Ab and anti-parietal-cell Ab) has been reported
[35]. She recovered after administration of benzodiazepine
and phenytoin.

In our series of neurological patients harbouring GAD-Ab,
a patient presented with myoclonus of floor of the mouth  mus-
cles. He was affected by type 1 diabetes and recovered after
benzodiazepine administration (unpublished observations).

Palatal myoclonus is characterised by rhythmic, uninten-
tional jerks of palatal muscles. Imbalance in the GABAergic
connection between the cerebellum and inferior olivary
nucleus is thought to underlie the disease.

Neurological diseases and polyglandular autoimmunity

Neurological disorders with GAD-Ab are usually associated
with organ-specific autoimmune diseases or other autoanti-
bodies. The association of two or more organ-specific
autoimmune disorders (clinically evident or latent) is usual-
ly known as polyglandular autoimmune disease (PGAD),
which is divided into four groups (Table 2) [54–56]. So far,
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Table 2 Classification of polyglandular autoimmune diseases (PGAD) 

Type 1 PGAD
Presence of at least two of:

Chronic mucocutaneous candidiasis
Idiopathic hypoparathyroidism
Addison’s disease

Type 2 PGAD
Presence of both

Addison’s disease
Thyroid autoimmune disease and/or type 1 diabetes

Type 3 PGAD
Thyroid autoimmune disease and/or other autoimmune diseases (excluding Addison’s disease and/or hypoparathyroidism):

Type 1 diabetes
Chronic atrophic gastritis (with or without pernicious anaemia)
Vitiligo, alopecia, or myastenia gravis
Hypergonadotropic hypogonadism
Non-organ specific (or intermediate) autoimmune diseases (e.g. SLE, Sjogren’s syndrome, rheumatoid arthritis)

Type 4 PGAD
Association not falling into any of the previous categories (e.g. alopecia and/or vitiligo and type 1 diabetes,                                  
myastenia gravis and type 1 diabetes)

SLE, systemic lupus erythematosus



SPS and myasthenia gravis have been the only neurological
disorders reported in PGAD. On the basis of data presented
in this review, we assume that ataxia, epilepsy and
myoclonus have to be included as possible neurological
manifestations of PGAD.

We stress the importance of identifying GAD-Ab in neu-
rological patients affected by other autoimmune organ-spe-
cific disorders; nevertheless, it is important to check for
other autoimmune diseases in GAD-Ab-positive neurologi-
cal patients. This may help recognise a subgroup of neuro-
logical patients in whom procedures capable of modifying
immunological derangement could be of some benefit.

Role of GAD autoantibodies

Specificity of GAD-Ab detection

Many arguments exclude the hypothesis that anti-GAD Ab
merely reflect the presence of type 1 diabetes. Indeed, sev-
eral reported cases were not affected by diabetes. In addi-
tion, GAD-Ab titres were significantly higher in neurologi-
cal patients than in diabetic cases and in two of our cases,
CSF titres were higher than in the serum, indicating
intrathecal synthesis [33, 57]. This finding, coupled with the
high IgG index and oligoclonal bands, supports the hypoth-
esis of an active autoimmune process in the CNS. The wide
range of neurological disorders associated with GAD-Ab is
noteworthy; interestingly, in all these clinical conditions the
GABAergic system appears to be involved. At present, we
do not know what underlies the different clinical manifesta-
tions; however, the finding that different neurological dis-
eases may be associated confirms a common pathogenetic
mechanism. Indeed, in the major series of SPS, some
patients were also affected by epilepsy [8], while the case
with palatal myoclonus presented generalised seizures [35].
Finally, a woman with SPS later developed ataxia [29].

Possible role of GAD-Ab

The role of GAD-Ab in neurological diseases is still unclear
and the lack of experimental models makes it difficult to
investigate their pathogenetic role. It has been postulated that
a humoral immune response to GAD could lead to function-
al impairment of GABAergic synaptic transmission in SPS
and subacute cerebellar ataxia (supported by the improve-
ment after benzodiazepine administration). Recently, two
mechanisms have been suggested for the Ab-induced sup-
pression of GABA release: reduction of GABA synthesis in
the nerve terminal or interference with exocytosis of GABA. 

Using neurophysiological methods, some authors have
shown a dose-dependent modulation of basket-cell-inhibito-

ry potentials by GAD-Ab. A down-regulation of GABA syn-
thesis in basket-cell terminals, with a reduction of GABA
release on postsynaptic Purkinje cells, has been demonstrat-
ed [58–60].

Other authors have shown that serum and CSF from SPS
patients  proved to reduce GABA synthesis in rat cerebellar
extracts in vitro. This effect was dose-dependent and strong-
ly correlated with the presence of GAD-65 Ab. Few GAD-
65-positive diabetic sera altered GABA production, with no
apparent correlation with the GAD-Ab titre [17, 61].

The GAD molecule is localised in the cytoplasm of neu-
rons and pancreatic beta cells and is never exposed to the
outer side of the cell membrane during GABA exocytosis.
GAD-Ab from serum and CSF are therefore  unlikely to have
access to their target molecule in intact cells. This finding
interferes with the hypothesis of in vivo inhibition of GABA
synthesis by GAD-Ab. However, Ab may penetrate living
cells, including neurons [62, 63].

We can also assume that GAD-Ab directed to the cat-
alytic site of molecule may not need to access GAD to dis-
play a function. The Ab could  mimic the structure of GABA
and cross-react with GABA binding sites accessible on the
neuronal surface, as anti-DNA Ab cross-react with DNA
binding sites in DNAse I [64].

Finally, it must be considered that type 1 diabetes associ-
ated with GAD-Ab is a T-cell mediated disease; this cellular
mechanism may even be implicated in the pathogenesis of
neurological disorders associated with GAD-Ab as suggest-
ed by the recognition of GAD-65 epitopes by peripheral
blood T cell of SPS patients [65].

Sommario La decarbossilasi dell’acido glutammico (GAD)
è l’enzima che catalizza la sintesi dell’acido gamma-amino-
butirrico (GABA). Anticorpi diretti contro tale enzima
(GAD-Ab) sono stati per la prima volta riscontrati in una
paziente affetta da stiff-person syndrome (SPS) e successiva-
mente riportati in un elevato numero di pazienti affetti da
diabete tipo 1.  Recentemente sono stati riscontrati GAD-Ab
in pazienti affetti da atassia cerebellare ad evoluzione croni-
ca, epilessia farmaco-resistente e mioclono del velo palati-
no. In tutti i casi i pazienti erano inoltre affetti da altre
malattie autoimmunitarie organo e non-organo specifiche e,
a livello sierologico, erano presenti altri autoanticorpi. Il
ruolo dei GAD-Ab rimane ancora dubbio; la mancanza di
modelli sperimentali rende difficoltoso stabilire l’eventuale
ruolo patogenetico. Due meccanismi sono recentemente stati
ipotizzati: la riduzione della sintesi di GABA da parte dei
GAD-Ab a livello delle terminazioni sinaptiche o l’interfe-
renza con l’esocitosi di GABA. 
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