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Abstract

Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease, which is characterized by
the selective loss of the upper and lower motor neurons. The pathogenesis of ALS remains to be elucidated and has been
connected to genetic, environmental and immune conditions. Evidence from clinical and experimental studies has suggested
that the immune system played an important role in ALS pathophysiology. Autoantibodies are essential components of the
immune system. Several autoantibodies directed at antigens associated with ALS pathogenesis have been identified in the
serum and/or cerebrospinal fluid of ALS patients. The aim of this review is to summarize the presence and clinical signifi-
cance of autoantibodies in ALS.
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significance

Introduction

Amyotrophic lateral sclerosis (ALS) is a relentlessly pro-
gressive and universally fatal disease, which is the most
common phenotype of motor neuron disease (MND). It is
characterized by the selective degeneration of upper and
lower motor neurons within the brain and spinal cord. The
clinical manifestations of ALS are heterogeneous regarding
age and site of disease onset, progression rate, and survival
time. Efficacious treatments to significantly slow the pro-
gression of ALS are still lacking. The etiology of ALS has
not been completely clarified despite extensive research.
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Epidemiological investigation revealed that about 10% of
total ALS cases were familial ALS, of which 20% were
linked to a point mutation of Cu/Zn superoxide dismutase
(SOD1) [1]. The remaining 90% are sporadic ALS without
apparent genetic abnormalities. Numerous environmental
and occupational factors have been associated with ALS,
including exposure to metals, chemicals, pesticides, and
unhealthy lifestyles, such as smoking and excessive physical
exercise [1]. It is becoming increasingly evident that various
cellular and molecular processes mediate the neurodegenera-
tion of ALS, including glutamatergic excitotoxicity, RNA
and protein metabolism, mitochondrial dysfunction, oxida-
tive stress, and immune response [2-5].

Understanding how the immune system participates in
the pathogenesis of ALS has attracted substantial attention.
Both peripheral and central immune systems are activated
in the progression of ALS, which leads to a chronic proin-
flammatory microenvironment [6]. The chronic proinflam-
matory microenvironment is characterized by activated
resident microglia and astrocytes in the central nervous
system (CNS) and proinflammatory lymphocytes, mono-
cytes, and mast cells in the periphery [5]. Antibody produc-
tion is the most widely recognized role of B lymphocytes,
which are key regulators in the inflammatory process [7].
Several autoantibodies have been identified in the serum
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and cerebrospinal fluid (CSF) of ALS patients and showed
a correlation with disease progression [8]. These antibodies
may serve as potential biomarkers for monitoring the ALS
disease progression and diagnostics. A reliable and quantifi-
able biomarker will not only serve as an indicator of disease
severity and prognosis, but also help to increase our under-
standing of ALS pathogenesis and facilitate the assessment
of the response to pharmacologic intervention.

The aim of this review is to summarize the presence and
clinical significance of autoantibodies in ALS. We begin
with a brief presentation of immune dysregulation in ALS,
followed by an overview of various autoantibodies in ALS.

Immune dysregulation in ALS

Cumulative data demonstrated active participation of the
immune system in the pathogenesis of ALS [9]. The local
immune system of CNS mainly comprises the activation of
microglia and astrocytes, while peripheral immune system
comprises the innate and adaptive immune system. Dys-
regulation of both central and peripheral immune systems
has been reported in ALS [5]. A growing number of stud-
ies have also revealed the breakdown of blood-brain barrier
and blood-spinal cord barrier in ALS patients, which led to
functional crosstalk between peripheral immune cells and
CNS [6].

In CNS, microglia and astrocytes play dual roles at dif-
ferent disease stages of ALS progression. At the onset/early
stage, both microglia and astrocytes present neuroprotective
function via secreting neurotrophic and anti-inflammatory
mediators, while at the terminal stage, the activated micro-
glia and astrocytes shift to a pro-inflammatory phenotype
and aggravate neuron damage [6, 10]. Dysregulation of
innate immune system components has been indicated and

regarded as hallmarks for ALS disease monitor or progres-
sion to some extent, such as monocytes and macrophages
[11]. So were the components of adaptive immune system
in ALS patients. Elevated levels of classical complement
pathway (Clq and C4) and downstream complement com-
ponents (C3 and C5b-9) were found in the spinal cord and
motor cortex of ALS patients [12]. Mice injected with IgG
purified from the sera of ALS patients led to the gradual
loss of spinal motor neurons, along with decreasing muscle
strength in the limbs [13]. Besides, elevated senescent and
late memory T and B lymphocytes showed a correlation with
fast-progressing ALS and bulbar involvement [14]. Antibod-
ies generation is the main way for B lymphocytes to regulate
immune system. Furthermore, multiple kinds of antibodies
have been detected in the sera or CSF of ALS patients. In the
next part, we will give a detailed description of the autoan-
tibodies detected in ALS patients.

The presence and clinical significance
of autoantibodies in ALS

We performed a literature search until 31 August, 2023 in
PubMed, with the following terms ("motor neuron disease"
OR "MND" OR "amyotrophic lateral sclerosis" OR "ALS")
AND ("antibody" OR "antibodies" OR "autoantibody" OR
"autoantibodies"). Titles and abstracts were screened, and
relevant full-text articles were retrieved. The summary of
the results from the literature search is presented in Fig. 1.
Totally twenty-nine kinds of autoantibodies have been
detected in the body fluids of ALS patients. We divided these
autoantibodies into the following categories according to
different antigens: paraneoplastic antibodies, neuron-related
antibodies, peripheral nerve-related antibodies, neuromus-
cular junction-related antibodies, muscle-related antibodies,

Fig. 1 Summary of the results
from the literature search. The
literature search was until 31
August, 2023 in the database
Pubmed. The literature search

Pubmed (n=3022):
Search terms used were ("motor neuron disease" OR "MND" OR
"amyotrophic lateral sclerosis" OR "ALS") AND ("antibody" OR
"antibodies" OR "autoantibody" OR "autoantibodies")

was conducted using terms
("motor neuron disease" OR
"MND" OR "amyotrophic lat-
eral sclerosis" OR "ALS") AND
("antibody" OR "antibodies"

| Excluded (n=2955):
“|+  After screen of titles/abstracts

v

OR "autoantibody" OR "autoan-
tibodies"). Titles and abstracts

Fulltext articles included (n=67) |

were screened, and full-text
articles were retrieved

Excluded (n=11):

.|+ No English text availuable (n=1)

"+ Case report/series were excluded when
>2 cohort study availuable (n=10)
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Fulltext articles included (n=56) |
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and pathophysiology-related antibodies (Table 1). We will
comprehensively describe the positive rate and clinical sig-
nificance of different autoantibodies in ALS patients.

Paraneoplastic antibodies

Paraneoplastic antibodies are strongly associated with both
paraneoplastic neurologic syndromes and cancers [68]. Sev-
eral kinds of paraneoplastic antibodies have been detected in
the body fluid specimens of ALS patients. In an MND cohort
of 145 patients, none of the sera revealed high anti-neuronal
antigen (HuD/Yo/Ri/CV2/CRMP5/Ma2/Amphiphysin) reac-
tivity, while five sera showed a very weak reactivity [15].
However, another MND cohort revealed that 9% (13/138)
of patients had positive paraneoplastic antibodies to VGCC
(n=4), striated muscle (n=4), VGKC (n=3), GAD65 (n=3)
and gAChR (n=2) [16]. Donaldson et al. conducted a study
in 405 MND patients, which reported that one or more cation
channel antibodies (VGKC, VGCC, gAChR) were detected
in 6.9% of patients, mostly at low titers. Furthermore, the
presence of cation channel antibodies exerted no effects on
disease progression in MND patients [17]. Victoria et al.
investigated the presence of VGKC antibodies in ALS
patients compared to that in a cohort of peripheral nervous
system disorders. The abnormal antibody level (VGKC anti-
body titer>100pmol/L) was more common in ALS, while
it failed to reach statistical significance (16/54 vs. 6/41,
p=0.08). None of ALS patients with abnormal antibody
titer demonstrated clinical or electrodiagnostic evidence of
myokymia or neuromyotonia [18]. Godani et al. explored the
prevalence of VGKC antibody in 20 MND patients, which
reported that 25% (5/20) of patients had VGKC-complex
antibody>100pmol/L. Furthermore, patients with slow-
progression MND showed a higher prevalence of VGKC-
complex antibodies than those with a typical course [19].
Yang et al. reported an ALS patient with serum antibodies
against both Sry-like high mobility group box 1 (SOX1) and
glutamic acid decarboxylase 65 (GAD65). However, immu-
notherapy failed to alleviate symptoms [20].

Neuron-related antibodies
Anti-neurofilament antibody

Neurofilaments (NF) are the major components of the neu-
ronal cytoskeleton, which can be divided into neurofilament
heavy chain (NfH), neurofilament medium chain (NfM), and
neurofilament light chain (NfL). NfL concentration has been
regarded as a potential marker of neuronal injury in various
neurodegenerative diseases. Increased CSF NfL concentra-
tion has been found to correlate with disease severity and
progression in ALS [69].

The presence of anti-NF antibody has been found in the
serum and/or CSF of ALS patients. In 1995, an ALS patient
with anti-NF antibody has been reported [34]. A sporadic
ALS cohort revealed an elevated percentage (24.7%, 21/85)
of serum anti-NF antibody compared to healthy controls
(6.1%, 6/98) and unrelated neurological disease controls
(12.6%, 10/79). Surprisingly, the level of anti-NF antibody
was significantly correlated with a slow rate of progres-
sion [21]. Fialova et al. measured IgG antibodies against
NfL and NfM by ELISA in paired CSF and serum sam-
ples from 38 ALS patients and 20 controls [22]. The level
of anti-NfL antibody in serum was significantly elevated
in ALS patients, while serum levels of anti-NfM antibody
was only significantly elevated in bulbar-onset subgroup of
ALS. There were no significant differences in CSF levels
of anti-NfL and anti-NfM antibodies between ALS patients
and controls. Furthermore, serum anti-NfL/CSF anti-NfM
levels and ALS Functional Rating Scale (ALSFRS) showed
a weak correlation.

The clinical significance of anti-NF antibodies has also
been explored. Puentes et al. measured antibodies and
immune complexes against NfL, NfM, NfH, and poly-(GP)-
(GR) dipeptide repeats in serum from the ALS Biomark-
ers cohort (n=107), the phenotype—genotype biomarker
cohort (n=129) and in normal controls (n=140). The results
revealed a significantly higher concentration of anti-NfH and
NfL immune complexes in ALS, especially in those with a
faster progressing rate. The longitudinal study among dif-
ferent time points suggested that increasing levels of anti-
NF antibodies and immune complexes were observed in
faster-progressing ALS [24]. Furthermore, Puentes et al.
reported that higher plasma anti-NF level was suggestive of
the advanced stage in a cohort of 73 ALS [23].

Plasma anti-NF antibody level was significantly increased
in ALS and varied with the disease progression stage. The
determination of anti-NF antibody levels in plasma could be
a potential disease-monitoring biomarker for ALS.

Anti-IlgLONS5 antibody

IgLLONS is the fifth member of the IgLON family, which
belongs to the immunoglobulin superfamily of neuronal
cell adhesion molecules [70]. IgLONS plays a key role in
neuroplasticity/neurogenesis and the maintenance of blood-
brain barrier integrity [71, 72]. The IgLONS antibody was
first detected in patients with the sleep-breathing disorder.
Anti-IgL.LONS disease is a rare autoimmune encephalitis with
anti-IglLONS antibodies in serum and/or CSF, which was
first described in 2014 [73]. However, a growing spectrum
of clinical manifestations is being recognized in association
with anti-IgLONS5 autoimmunity, including recent reports
of MND-like phenotype.
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Sista et al. presented 4 cases with seropositive [gLONS5-
IgG (3 possible ALS and 1 definite ALS), manifesting as
ALS-like phenotype with parasomnias, vocal cord dys-
function, or hyperkinetic movements. Furthermore, the
team evaluated the positive rate of [gLONS5-IgG by indirect
immunofluorescence assay and cell-based assay (CBA) in
a cohort of 109 probable or definite ALS patients. None
experienced with laryngeal dysfunction, rapid eye move-
ment sleep behavior disorder (RBD) and involuntary move-
ment disorder. Meanwhile, all were IgLONS5-IgG seronega-
tive [25]. The first anti-IgLONS seropositive patient with
MND-like phenotype was reported in 2018 [26]. The patient
also presented with prominent sleep abnormalities and invol-
untary movement. Werner et al. reported 5 anti-IgLONS-
seropositive cases with bulbar MND-like phenotype, mostly
accompanied by sleep-related breathing disorders, parasom-
nias, and laryngeal dysfunction [27].

Anti-IgLONS5 antibody could be detected in MND
patients, especially cases with laryngeal dysfunction, sleep-
related breathing disorders, parasomnias or involuntary
movement disorder. From the perspective of neuropathology,
it is not surprising that MND-like phenotype is associated
with anti-IgLLONS disease as neuron-specific tau deposits.
The accumulation of hyperphosphorylated tau preferentially
involved the hypothalamus, and more severely the tegmen-
tal nuclei of the brainstem with a cranio-caudal gradient of
severity until the upper cervical cord [74].

Anti-Transglutaminase 6 antibody

Tissue transglutaminase 6 (TG6) was abundantly expressed
in the septal region, basal ganglia, hypothalamus, and brain-
stem [75]. Anti-TG6 antibody (IgA and/or IgG) was detected
positive in 62% of patients with gluten ataxia [76], a neuro-
logical manifestation of Celiac disease. Several independent
cases with an initial diagnosis of ALS that ultimately were
identified as Celiac disease have been reported [77-80].
Gadoth et al. detected the Celiac disease-related antibod-
ies and anti-TG6 antibody in ALS patients. Compared to
the healthy control [4.3% (5/115)], the TG6 IgA antibody
was detected positive in 15.3% (23/150) of ALS patients
[28]. However, there were no significant differences in the
clinical presentation between anti-TG6 IgA antibody sero-
positive and seronegative patients [28]. In contrast to IgA,
anti-TG6 IgG antibody positivity or concentration did not
differ significantly from healthy control. The study indicated
that ALS related to gluten sensitivity might occur in a sub-
group of patients and that anti-TG6 IgA antibody might be
a potential marker for identifying gluten-sensitive patients.
The authors recommended that a strict gluten-free diet might
be therapeutically indicated in early-identified ALS patients
with gluten sensitivity.
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Peripheral nerve-related antibodies
Anti-Gangliosides antibodies

Gangliosides are sialic acid containing glycosphingolipids,
which are expressed on the surface of all vertebrate cells and
particularly abundant in mammalian nerve tissue. According
to the unique structure, gangliosides are named differently
by the number of sialic acid residues. G at the beginning of
each ganglioside name indicates the belonging to the gan-
glio-series of glycosphingolipids. A, M, D, and T indicate
the presence of zero, one, two, and three sialic acid residues,
respectively [81]. As reported, more than 90% of the brain
gangliosides were constituted by the same four structures
(GM1, GDl1a, GD1b, and GT1b) [82]. Gangliosides play
an important role in maintaining the stability and regen-
eration of axon, regulating synaptic plasticity and cellular
differentiation.

As early as the 1980s, abnormal gangliosides composi-
tion in ALS has been reported, along with reports of unusual
gangliosides and additional complex found in CSF, brains
and spinal cords of ALS patients [83]. Rapport et al. con-
ducted a postmortem study suggested that marked aberra-
tions in brain ganglioside profiles were present in 17 of 21
patients with ALS [84]. The aberrations were detected both
in motor cortex and in non-motor regions such as frontal,
temporal, and parahippocampal gyrus cortex. However,
Dawson failed to detect the major quantitative difference of
the ganglioside between spinal cords from 9 patients with
clinically diagnosed ALS and 9 normal spinal cords [85].
Furthermore, Dodge et al. reported increased levels of GM3
and GM1 in spinal cords of ALS patients and SOD1 (G93A)
transgenic mouse model of ALS [86]. These results sug-
gested that gangliosides might be important participants in
ALS pathogenesis and merited further analysis as potential
drug targets. However, clinical trials of exogenous bovine
gangliosides in ALS treatment yielded inconclusive results
[87-90].

Furthermore, anti-gangliosides antibodies have also been
detected in serum or CSF of ALS patients. From a theoreti-
cal perspective, antibodies against gangliosides are able to
inhibit nerve regeneration, synaptic plasticity, neurotrans-
mission, and axonal growth, which are crucial for the func-
tion of the nervous system. The presence and significance of
anti-gangliosides antibodies in ALS have been investigated.
Cobanet al. reported that anti-gangliosides antibodies were
detected in 2 out of 35 (5.7%) ALS patients [29]. Kollewe
et al. determined IgG/IgM antibodies to the six gangliosides
(asialoGM1 (GA1), GM1, GM2, GD1a, GD1b, GQ1b) in
serum of 84 ALS patients. Anti-gangliosides antibodies were
seropositive in 22 ALS patients (26.2%). In detail, IgG and
IgM antibodies were respectively detected in 9/84 (10.7%)
and 15/84 (17.9%) of ALS patients. There was no significant
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correlation between age, gender, onset site or survival and
anti-ganglioside-positive/-negative titers in ALS patients [8].

Anti-GM1 antibody is the mostly detected anti-ganglio-
side antibody in ALS patients. GM1 is enriched at paranodal
regions of Ranvier nodes in myelinated axons. As early as
1988, Pestronk et al. reported that polyclonal anti-GM1 IgM
antibody was present in 42 of 74 (57%) ALS patients [30].
Furthermore, anti-GM1 antibody was particularly common
in patients with prominent lower motor neuron signs (41/59;
69%) [30]. Shy et al. [31] and Lamb et al. [33] found a simi-
larly higher positive rate (59% and 44%, respectively) of
anti-GM1 antibody in MND patients. However, relatively
lower positive rate of anti-GM1 was reported in other ALS
cohorts. Adams et al. [32] and Taylor et al. [36] reported that
anti-GM1 antibody presented in 9/43 (21%) or 1/121 (0.8%)
ALS patients. The discrepancies might be ascribed to a wide
variation in sensitivity of detection methods and possible
bias of patient selection. Haggiag S. et al traced the titers
changes of anti-GM1 in three ALS patients. Interestingly,
they found that the originally negative anti-GM1 antibody
became positive during follow-up [35].

In addition to anti-GM1 antibody, the presence of other
anti-gangliosides antibodies in ALS patients has also been
investigated. Pestronk et al. reported that anti-GD1a anti-
body was detected in 42 of 73 (58%) patients with ALS
[37]. Furthermore, the anti-GD1a antibody was prevalent
when upper motor neuron sign was prominent [37]. Niebroj-
Dobosz et al. investigated the titers of anti-AGM1 antibody
and anti-sulfatide antibody in serum and CSF of an ALS
cohort [38]. In the serum of 103 ALS patients, elevated
titers of anti-AGM1 and anti-sulfatide were present in 18%
(32/103) and 11% (11/103), respectively [38]. Meanwhile,
increased titers of anti-AGM1 and anti-sulfatide were pre-
sent 15% (12/79) in sera and 8% (6/79) in CSF, respectively
[38]. Furthermore, seropositive ALS patients with anti-
GM2, anti-GD2, anti-GalNAc-GD1a, or anti-GQ1b antibody
have also been reported [39—41].

Generally speaking, various kinds of anti-ganglioside
antibodies have been detected in ALS patients. However,
the presence of anti-gangliosides antibodies is of limited
significance for ALS patients, despite few studies demon-
strating that anti-GM1 antibody was associated with lower
motor neuron signs, anti-GD1a antibody was related to
upper motor neuron signs [30, 37].

Anti-sulfoglucuronyl paragloboside antibody

Sulfoglucuronyl paragloboside (SGPG) is a unique gly-
colipid presented in both peripheral nerve and vascular
endothelial cells, which are important structures of the
blood-brain barrier and blood-nerve barrier. E-election and
P-selections are biomarkers of activated endothelial cells.
Anti-SGPG antibody could be detected in 34.7% (25/72)

of ALS patients [42]. Furthermore, most anti-SGPG sero-
positive patients were lower limbs-onset [42]. Another
study suggested that anti-SGPG antibody was detected in
28% (7/25) of ALS patients [43]. Interestingly, ALS patients
with positive anti-SGPG antibody presented with a higher
level of serum soluble E-selectin, which was regarded as a
biomarker of activated endothelial cells [43]. In a large-size
ALS cohort, serum anti-SGPG antibody was found in 13.3%
(15/113) of ALS patients [44]. More importantly, multiple
logistic regression analysis suggested that anti-SGPG pres-
ence was positively correlated with age and negatively corre-
lated with ALSFRS [44]. Hence, serum anti-SGPG antibody
might represent a potential diagnostic biomarker of ALS.

Anti-neurofascin 186 (NF186) antibody

Neurofascin, a family of cell adhesion molecules, is criti-
cal for the formation and maintenance of Ranvier nodes
[91]. As an isoform of neurofascin, NF186 is located in
the axonal initial segment of Ranvier nodes. Owing to the
expression site of NF186, anti-NF186 can be detected in
autoimmune nodopathy, multiple sclerosis, and multifocal
motor neuropathy.

The first case of ALS patient with serum anti-NF186
positivity was reported in 2023. The female patient pre-
sented with progressive weakness and amyotrophy of the
upper limbs, and then gradually aggravated and presented
upper motor neuron signs. Anti-NF186 antibody was posi-
tive at a titer of 1:100 throughout the whole course of the
disease despite the treatment with intravenous immuno-
globulins [45]. The absence of upper motor neuron signs
in early stage made it easier to misdiagnose as peripheral
neuropathy, especially when the anti-NF186 antibody was
positive. However, the exact role of anti-NF186 antibody in
ALS remains unknown. Further studies with large sample
sizes are needed to evaluate the percentage and clinical sig-
nificance of anti-NF186 antibody in ALS.

Neuromuscular junction-related antibodies

Signal transduction at the neuromuscular junction (NMJ)
is impaired in various NMJ disorders. Signaling molecules
including acetylcholine (ACh)-acetylcholine receptor
(AChR), lipoprotein-related protein 4 (LRP4), agrin, etc.
ensure the efficient signal transduction at the NMJ. Mount-
ing evidence has suggested that ALS was characterized by
progressive loss of motor neurons and degradation of NMJ.
Pathological changes of the NMJ were reported to occur
before the onset of clinical symptoms, which supported the
dying-back hypothesis of motor neurons in ALS [92, 93].
Reasonably, anti-AChR, anti-LRP4, and anti-agrin antibod-
ies were detected in the body fluid of ALS patients.
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Anti-AChR antibody

The AChR is expressed at the postsynaptic membrane, which
promotes muscle excitation after binding with the ACh
released from the presynaptic membrane. As early as 1980,
anti-AChR antibody was first reported in 9 of 68 (13.2%)
ALS patients. Interestingly, the seven anti-AChR seroposi-
tive ALS patients with high antibody titers (1.4-50nM, cut-
off: <0.25nM) all experienced modified-neurotoxin therapy
(snake venom). The remaining two patients had low anti-
body titers (0.39-0.54nM, cutoff: <0.25nM) [46]. Ashizawa
et al. reported that anti-AChR antibody was positive in 9/102
(8.8%) MND patients [47]. Besides, Okuyama et al. reported
a 73-year-old ALS female with anti-AChR antibody. It was
worth noting that the level of anti-AChR antibody in serum
displayed a weak fluctuation during ALS progression [94].

Furthermore, a few cases with a concomitant diagnosis
of ALS and myasthenia gravis (MG) have been reported
[95-99]. Retrospectively, Del Mar Amador et al. identified
six cases (total n=4757, 0.15%) with ALS-MG coexistence
in a French cohort during twelve years [100]. Similarly,
0.75% (5/671) of ALS patients were also affected by MG in
an Italian cohort over six years [101]. In another Swedish
nationwide register-based study, the percentage of concomi-
tant diagnosis of MG in ALS patients was 0.48% (17/3561)
[102]. The underlying mechanism of ALS-MG overlap is
still elusive. It is speculated that this association may be
triggered by immunological mechanisms and alterations in
the NMJ.

Anti-agrin and anti-LRP4 antibody

Agrin is released by motor neurons. LRP4 is located at the
postsynaptic membrane of the NMJ and motor neurons of
the brain and spinal cord. Agrin-LRP4-MuSK signaling
plays a critical role in promoting AChR clustering and mus-
cle excitation [103].

Several studies have demonstrated the presence of anti-
agrin antibody and anti-LRP4 antibody in ALS patients.
Rivner et al. found that 9 of 65 (13.8%) ALS patients were
positive with anti-agrin antibody [48]. Furthermore, anti-
agrin seropositive ALS patients were slightly younger
than seronegative ALS patients [48]. As for anti-LRP4
antibody, it was detected serological positive in 23.4%
(24/104) of patients from two sporadic ALS cohorts
(Greek and Italian). Meanwhile, CSF anti-LRP4 antibody
was positive in 85.7% (6/7) of anti-LRP4 seropositive ALS
patients, while none of 17 CSF samples from anti-LRP4
seronegative ALS patients was positive [49]. However, no
significant differences in clinical patterns were revealed
between the anti-LRP4-positive and anti-LRP4-negative
ALS patients [49]. Tiiziin et al. reported an approximate
positive rate (23.5%, 4/17) of anti-LRP4 in ALS patients

@ Springer

and confirmed that serum anti-LRP4 antibody in ALS
patients was able to interact with brain neurons [51].
Rivner et al. reported a relatively lower percentage (9.8%,
8/82) of anti-LRP4 antibody in an American ALS cohort
[48]. Lei et al. investigated the presence of anti-LRP4 anti-
body in a Chinese ALS cohort and explored the correla-
tion between anti-LRP4 and repetitive nerve stimulation
study [52]. Serum anti-LRP4 antibody was detected by
cell-based assay in 5.4% (3/56) of Chinese ALS patients
and all three seropositive patients had a positive repeti-
tive nerve stimulation response, while 50.9% (27/53) of
the seronegative patients also had impaired neuromuscular
transmission [52]. Interestingly, Takahashi et al. reported
two anti-LRP4 seropositive probable ALS patients (the
Awaji criteria) with myasthenic symptoms that were par-
tially improved by immunotherapies [50].

The discrepancy in the positive rate of anti-LRP4 among
different cohorts might be ascribed to the differences in
detection assays and patient demographics. Further studies
should be performed to investigate the percentage of anti-
LRP4 antibody in different ethnic groups and to determine
its pathogenic significance.

Muscle-related antibodies
Anti-cytosolic 5'-nucleotidase 1A (cN1A) antibody

Autoantibody recognizing cN1A has been recognized as
a biomarker for the diagnosis of inclusion body myositis
(IBM) [104]. Furthermore, in vitro and in vivo studies sug-
gested that anti-cN1A antibody might exert an influence
on protein degradation in myofibers [105]. Liewluck et al.
reported 2 MND patients with seropositive anti-cN1A anti-
body [53]. The significance of anti-cN1A antibody in MND
remains elusive. Margotta et al. investigated the impact of
skeletal muscle dysregulation on the phenotypic character-
istics in ALS transgenic mice [106]. The results suggested
that immune-mediated myogenesis played a pivotal role in
skeletal muscle homeostasis and promoted a slow disease
progression in ALS transgenic mice [106].

Pathophysiology-related antibodies

Although the detailed mechanisms remain unclear, the
pathophysiological processes in ALS are roughly classified
into four major parts: impaired RNA metabolism, altered
proteostasis or autophagy, cytoskeletal or trafficking defects,
and mitochondrial dysfunction [107]. Besides, the effects
of environmental exposure cannot be neglected [108]. So
far, several pathophysiology-related antibodies have been
reported in ALS patients.
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Anti-Fas antibody

Fas is a type I membrane protein, which belongs to the tumor
necrosis factor receptor family. It can combine with anti-
Fas antibody to transmit the programmed cell death signal.
Serum anti-Fas antibody was detected by ELISA in 8 of 31
ALS (26%). Besides, anti-Fas antibody in serum of ALS
patients could induce neuronal apoptosis [54]. In another
cohort, anti-Fas antibody was detected in 25% (13/52) spo-
radic ALS and 22% (2/9) familial ALS patients [55]. How-
ever, there was no statistical correlation between antibody
level and disease duration or severity [55].

Anti-annexin V antibody

Annexins belong to a family of multi-functional membrane
and Ca(2+)-binding proteins, which play a pivotal role in
various cellular activities. The elevated level of anti-annexin
V antibody has been reported in several autoimmune dis-
eases [109]. In an ALS cohort, positive anti-annexin V anti-
body was detected in 16% (4/25) of the CSF samples and 8%
(2/25) of the serum samples, respectively [56].

Anti-High Mobility Group Box 1 (HMGB1) antibody

The damage-associated molecular pattern HMGB1 can
initiate and perpetuate immune response in noninfec-
tious inflammatory processes. Casula et al. found elevated
HMGBI levels in the spinal cord of ALS patients [110].
Further investigation suggested that serum level of anti-
HMGBI antibody in ALS was significantly higher than that
in patients with Alzheimer's disease, Parkinson's disease,
and healthy control subjects. More importantly, the level
of anti-HMGBI1 antibody was significantly correlated with
disease severity [57].

Anti-LG72 antibody

G72 is a primate-specific gene, which has been regarded
as a susceptibility gene that exerted significant functions
in various neurodegenerative diseases, schizophrenia and
major depression [111]. LG72, the longest G72 splice vari-
ant protein, induces the production of mitochondrial reactive
oxygen species via interaction and aggregation with SOD1
[112]. The potency of serum anti-LG72 antibody as a bio-
marker for ALS diagnosis has been investigated [113]. The
serum anti-LG72 antibody concentration was lower in ALS
patients than in healthy controls and other neurodegenerative
diseases. Furthermore, the concentration of anti-LG72 anti-
body did not differ significantly among subgroups of ALS
patients [113]. The authors speculated that the anti-LG72

antibody was neutralized by endogenous LG72 in ALS
patients and anti-LG72 antibody might serve as a surrogate
biomarker for ALS.

Anti-gamma-synuclein antibody

Gamma-synuclein is a cytosolic protein, which is abundant
in the perikarya, presynaptic terminals, and particularly
within neuronal axons [114]. Motor neurons express higher
levels of gamma-synuclein [115]. Gamma-synuclein patho-
logical aggregation might contribute to ALS pathogenesis,
which has been demonstrated by immunostaining on trans-
verse spinal cord sections and sequential protein extraction
from postmortem neural samples [116]. Further study inves-
tigated the presence of anti-gamma-synuclein antibody in
ALS patients. Anti-gamma-synuclein antibody was positive
in 4.9% (2/41) ALS patients, while the positive rate was
13.2% (5/38) in other neurological diseases group and 0%
(0/19) in healthy control [58]. The authors concluded that
anti-gamma-synuclein antibody was not a characteristic bio-
marker of ALS.

Anti-Proteasome subunit alpha type 7 (PSMA?7) antibody

PSMAY7 is an alpha-type subunit of the 20S proteasome core
complex, which participates in protein degeneration via the
ubiquitin-proteasome pathway (UPP). UPP is a pathway
that plays an essential role in the regulation of antigen pro-
cessing, apoptosis, and neural and muscular regeneration,
which has been demonstrated to participate in ALS pathol-
ogy [117]. The presence of anti-PSMA7 antibody has been
investigated in ALS patients. Anti-PSMA7 antibody was
positive in 38 of 71 ALS patients and significantly higher in
ALS patients than in control group [59]. The anti-PSMA?7
level was negatively correlated with ALS duration, which
indicated that anti-PSMA?7 positivity might be a disease-pro-
moting factor in early-stage ALS [59]. Besides, anti-PSMA7
titers were positively related to the level of creatine kinase
[59]. Thus, the results raised the possibility that anti-PSMA7
antibody might be a potential diagnostic marker for ALS.
The authors concluded that anti-PSMA7 antibody might
participate in ALS pathogenesis, possibly via its regulation
of the UPP.

Anti-B-actin antibody

Beat-actin (ACTB) is one of two non-muscle cytoskeletal
forms of actin, which locates not only in the cytoskeleton
sytosolic and compartment but also in the plasma membrane
and extracellular space. The ACTB isoforms play a specific
role in the spatial regulation of actin dynamics and stabil-
ity in axons of developing motoneurons [118]. Anti-ACTB
antibody was detected positive in 33 out of 70 (47.1%) ALS
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patients. The correlation analysis suggested that the level of
anti-ACTB antibody was positively correlated with clinical
disease stage and disease duration. Meanwhile, there was a
negative correlation between the anti-ACTB antibody level
and ALSFRS-R score [60]. The results indicated that anti-
ACTB antibody might be a potential biomarker of ALS.
However, the mechanism of anti-ACTB antibody production
remains unclear. Further researches are needed to elucidate
the clinical values and the underlying mechanisms of anti-
ACTB antibody in ALS.

Anti-TAR DNA-binding protein 43 autoantibody

TAR DNA-binding protein 43 (TDP-43) is a highly con-
served and essential DNA/RNA binding protein coded by
the TARDBP gene. The neuropathological hallmark of
ALS is the intracellular deposition of insoluble TDP-43
in degenerating motor neurons and glial cells. As normal
blood components, naturally autoantibodies (NAbs) play a
central role in clearing debris and maintaining homeosta-
sis in multiple neurodegenerative diseases, including ALS
[61, 119]. However, previous investigation on the role of
anti-TDP-43 NAb in ALS have yielded inconsistent results.
Nielsen et al. reported that anti-TDP-43 NAb level was sig-
nificantly reduced in ALS patients and negatively correlated
with disease severity [61]. However, Conti et al. and Simula
et al. found elevated level of anti-TDP-43 NAb in different
ALS cohorts [62, 63]. Besides, Ramachandran et al. failed
to find significant differences in anti-TDP-43 NAb levels
between ALS patients and controls [64]. Hence, the signifi-
cance of anti-TDP-43 NAb in the diagnosis of ALS needs to
be further investigated.

Anti-HERV-K antibody

Human endogenous retroviruses (HERVs) are genomic
sequences of retroviral origin that constitute around 8% of
the human genome. HERVs of the K family (HERV-K) is
the most transcriptionally active subgroup among HERVs.
The expression of HERV-K is modulated by TDP-43. Aber-
rant HERV-K expression has been identified in ALS [120].
The in vitro study revealed that HERV-K could regulate the
function of peripheral blood immune cells in ALS patients,
mainly via generating pro-inflammatory mediators [66]. In
addition, the immune response against HERV-K has been
investigated in ALS patients. Anti-HERV-K envelope sur-
face 957 antibody was found in 81% (17/21) of serum and
86% (18/21) of CSF from ALS patients [65]. The level of
anti-HERV-K envelope surface 4 3; antibody in serum and
CSF was significantly correlated with disease severity [65].
A study from the same team revealed that anti-HERV-K anti-
body was seropositive in 78.2% (43/55, envelope surface
19.37 antibody) and 76.4% (42/55, envelope surface 19126
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antibody) of ALS patients [66]. Simula et al. founded that
anti-HERV-K envelope surface 5, 35 antibody was positive in
40% (18/45) of ALS patients [63]. In another cohort of 243
ALS patients, 55.14% (134/243) were anti-HERV-K sero-
positive (against envelope peptide VW VPGPTDDRCPA-
KPEEEG). More importantly, the level of anti-HERV-K in
definite ALS (EL Escorial criteria) patients was lower than
that in non-definite ALS patients. In addition, the lower level
of anti-HERV-K was associated with a lower predicted and
observed survival time [67]. Hence, anti-HERV-K antibody
might be a potential biomarker for ALS diagnosis and exerts
a protective role against ALS progression.

Conclusions

The majority of the clinical and pathological abnormali-
ties in ALS can be ascribed to the injury of motor neurons
in motor cortex, brainstem and spinal cord. However, the
onset site of ALS remains elusive. Figuring out the relation-
ship between upper and lower motor neuron dysfunction,
particularly the site of disease onset, is critical in under-
standing of ALS pathogenesis. Dying-forward hypothesis
proposed that the original site of ALS was cortico-fugal,
and the pathogenesis of ALS was a dying forward process
primarily starting in the corticomotoneuronal system. On the
contrary, dying-back hypothesis supposed that lower motor
neuron initially died, following which ALS process spread
to upper motor neuron [121]. The positivity of antibodies
indicated the impairment of the integrity in nervous system,
including upper and lower motor neuron. However, whether
the appearance of special antibodies might imply the early
site of ALS onset remains to be investigated.

A number of studies have suggested that immune dys-
regulation might participate in ALS pathogenesis. Published
cohort studies or case reports have shed light on the presence
and clinical significance of autoantibodies in ALS patients.
However, current research have several limitations. First,
several autoantibodies directed against antigens can be found
in ALS, however, published investigations showed widely
differing proportions of positive antibodies in ALS patients.
Possible explanations for the discrepancy of results include
different detection assays, incubation temperature, purity of
different proteins, different cut-off values and so on. In the
future, autoantibodies should be tested by better standard-
ized commercial tests (such as fixed cell-based assay, live
cell-based assay and so on) and validated with a second
technique (ELISA, tissue-based assay and so on). Second,
the clinical significance of autoantibodies in ALS remains
elusive. It is necessary to determine whether the presence of
autoantibodies is associated with a particular clinical phe-
notype or different survival time. Last but not least, a still
undetermined question is whether the autoantibodies are



Neurological Sciences (2024) 45:4133-4149

4145

produced secondary to nervous system damage or the trig-
ger of neuronal damage, and whether they are relevant to the
ALS pathogenesis or represent an epiphenomenon. Regard-
ing the pathogenicity, further in vivo and in vitro studies are
needed to identify the exact role of autoantibodies in ALS.
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