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Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease, which is characterized by 
the selective loss of the upper and lower motor neurons. The pathogenesis of ALS remains to be elucidated and has been 
connected to genetic, environmental and immune conditions. Evidence from clinical and experimental studies has suggested 
that the immune system played an important role in ALS pathophysiology. Autoantibodies are essential components of the 
immune system. Several autoantibodies directed at antigens associated with ALS pathogenesis have been identified in the 
serum and/or cerebrospinal fluid of ALS patients. The aim of this review is to summarize the presence and clinical signifi-
cance of autoantibodies in ALS.

Keywords Amyotrophic lateral sclerosis · Neuroinflammation · Immune system · Autoantibodies · Positive rate · Clinical 
significance

Introduction

Amyotrophic lateral sclerosis (ALS) is a relentlessly pro-
gressive and universally fatal disease, which is the most 
common phenotype of motor neuron disease (MND). It is 
characterized by the selective degeneration of upper and 
lower motor neurons within the brain and spinal cord. The 
clinical manifestations of ALS are heterogeneous regarding 
age and site of disease onset, progression rate, and survival 
time. Efficacious treatments to significantly slow the pro-
gression of ALS are still lacking. The etiology of ALS has 
not been completely clarified despite extensive research. 

Epidemiological investigation revealed that about 10% of 
total ALS cases were familial ALS, of which 20% were 
linked to a point mutation of Cu/Zn superoxide dismutase 
(SOD1) [1]. The remaining 90% are sporadic ALS without 
apparent genetic abnormalities. Numerous environmental 
and occupational factors have been associated with ALS, 
including exposure to metals, chemicals, pesticides, and 
unhealthy lifestyles, such as smoking and excessive physical 
exercise [1]. It is becoming increasingly evident that various 
cellular and molecular processes mediate the neurodegenera-
tion of ALS, including glutamatergic excitotoxicity, RNA 
and protein metabolism, mitochondrial dysfunction, oxida-
tive stress, and immune response [2–5].

Understanding how the immune system participates in 
the pathogenesis of ALS has attracted substantial attention. 
Both peripheral and central immune systems are activated 
in the progression of ALS, which leads to a chronic proin-
flammatory microenvironment [6]. The chronic proinflam-
matory microenvironment is characterized by activated 
resident microglia and astrocytes in the central nervous 
system (CNS) and proinflammatory lymphocytes, mono-
cytes, and mast cells in the periphery [5]. Antibody produc-
tion is the most widely recognized role of B lymphocytes, 
which are key regulators in the inflammatory process [7]. 
Several autoantibodies have been identified in the serum 
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and cerebrospinal fluid (CSF) of ALS patients and showed 
a correlation with disease progression [8]. These antibodies 
may serve as potential biomarkers for monitoring the ALS 
disease progression and diagnostics. A reliable and quantifi-
able biomarker will not only serve as an indicator of disease 
severity and prognosis, but also help to increase our under-
standing of ALS pathogenesis and facilitate the assessment 
of the response to pharmacologic intervention.

The aim of this review is to summarize the presence and 
clinical significance of autoantibodies in ALS. We begin 
with a brief presentation of immune dysregulation in ALS, 
followed by an overview of various autoantibodies in ALS.

Immune dysregulation in ALS

Cumulative data demonstrated active participation of the 
immune system in the pathogenesis of ALS [9]. The local 
immune system of CNS mainly comprises the activation of 
microglia and astrocytes, while peripheral immune system 
comprises the innate and adaptive immune system. Dys-
regulation of both central and peripheral immune systems 
has been reported in ALS [5]. A growing number of stud-
ies have also revealed the breakdown of blood-brain barrier 
and blood-spinal cord barrier in ALS patients, which led to 
functional crosstalk between peripheral immune cells and 
CNS [6].

In CNS, microglia and astrocytes play dual roles at dif-
ferent disease stages of ALS progression. At the onset/early 
stage, both microglia and astrocytes present neuroprotective 
function via secreting neurotrophic and anti-inflammatory 
mediators, while at the terminal stage, the activated micro-
glia and astrocytes shift to a pro-inflammatory phenotype 
and aggravate neuron damage [6, 10]. Dysregulation of 
innate immune system components has been indicated and 

regarded as hallmarks for ALS disease monitor or progres-
sion to some extent, such as monocytes and macrophages 
[11]. So were the components of adaptive immune system 
in ALS patients. Elevated levels of classical complement 
pathway (C1q and C4) and downstream complement com-
ponents (C3 and C5b-9) were found in the spinal cord and 
motor cortex of ALS patients [12]. Mice injected with IgG 
purified from the sera of ALS patients led to the gradual 
loss of spinal motor neurons, along with decreasing muscle 
strength in the limbs [13]. Besides, elevated senescent and 
late memory T and B lymphocytes showed a correlation with 
fast-progressing ALS and bulbar involvement [14]. Antibod-
ies generation is the main way for B lymphocytes to regulate 
immune system. Furthermore, multiple kinds of antibodies 
have been detected in the sera or CSF of ALS patients. In the 
next part, we will give a detailed description of the autoan-
tibodies detected in ALS patients.

The presence and clinical significance 
of autoantibodies in ALS

We performed a literature search until 31 August, 2023 in 
PubMed, with the following terms ("motor neuron disease" 
OR "MND" OR "amyotrophic lateral sclerosis" OR "ALS") 
AND ("antibody" OR "antibodies" OR "autoantibody" OR 
"autoantibodies"). Titles and abstracts were screened, and 
relevant full-text articles were retrieved. The summary of 
the results from the literature search is presented in Fig. 1.

Totally twenty-nine kinds of autoantibodies have been 
detected in the body fluids of ALS patients. We divided these 
autoantibodies into the following categories according to 
different antigens: paraneoplastic antibodies, neuron-related 
antibodies, peripheral nerve-related antibodies, neuromus-
cular junction-related antibodies, muscle-related antibodies, 

Fig. 1  Summary of the results 
from the literature search. The 
literature search was until 31 
August, 2023 in the database 
Pubmed. The literature search 
was conducted using terms 
("motor neuron disease" OR 
"MND" OR "amyotrophic lat-
eral sclerosis" OR "ALS") AND 
("antibody" OR "antibodies" 
OR "autoantibody" OR "autoan-
tibodies"). Titles and abstracts 
were screened, and full-text 
articles were retrieved
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and pathophysiology-related antibodies (Table 1). We will 
comprehensively describe the positive rate and clinical sig-
nificance of different autoantibodies in ALS patients.

Paraneoplastic antibodies

Paraneoplastic antibodies are strongly associated with both 
paraneoplastic neurologic syndromes and cancers [68]. Sev-
eral kinds of paraneoplastic antibodies have been detected in 
the body fluid specimens of ALS patients. In an MND cohort 
of 145 patients, none of the sera revealed high anti-neuronal 
antigen (HuD/Yo/Ri/CV2/CRMP5/Ma2/Amphiphysin) reac-
tivity, while five sera showed a very weak reactivity [15]. 
However, another MND cohort revealed that 9% (13/138) 
of patients had positive paraneoplastic antibodies to VGCC 
(n=4), striated muscle (n=4), VGKC (n=3), GAD65 (n=3) 
and gAChR (n=2) [16]. Donaldson et al. conducted a study 
in 405 MND patients, which reported that one or more cation 
channel antibodies (VGKC, VGCC, gAChR) were detected 
in 6.9% of patients, mostly at low titers. Furthermore, the 
presence of cation channel antibodies exerted no effects on 
disease progression in MND patients [17]. Victoria et al. 
investigated the presence of VGKC antibodies in ALS 
patients compared to that in a cohort of peripheral nervous 
system disorders. The abnormal antibody level (VGKC anti-
body titer≥100pmol/L) was more common in ALS, while 
it failed to reach statistical significance (16/54 vs. 6/41, 
p=0.08). None of ALS patients with abnormal antibody 
titer demonstrated clinical or electrodiagnostic evidence of 
myokymia or neuromyotonia [18]. Godani et al. explored the 
prevalence of VGKC antibody in 20 MND patients, which 
reported that 25% (5/20) of patients had VGKC-complex 
antibody>100pmol/L. Furthermore, patients with slow-
progression MND showed a higher prevalence of VGKC-
complex antibodies than those with a typical course [19]. 
Yang et al. reported an ALS patient with serum antibodies 
against both Sry-like high mobility group box 1 (SOX1) and 
glutamic acid decarboxylase 65 (GAD65). However, immu-
notherapy failed to alleviate symptoms [20].

Neuron‑related antibodies

Anti‑neurofilament antibody

Neurofilaments (NF) are the major components of the neu-
ronal cytoskeleton, which can be divided into neurofilament 
heavy chain (NfH), neurofilament medium chain (NfM), and 
neurofilament light chain (NfL). NfL concentration has been 
regarded as a potential marker of neuronal injury in various 
neurodegenerative diseases. Increased CSF NfL concentra-
tion has been found to correlate with disease severity and 
progression in ALS [69].

The presence of anti-NF antibody has been found in the 
serum and/or CSF of ALS patients. In 1995, an ALS patient 
with anti-NF antibody has been reported [34]. A sporadic 
ALS cohort revealed an elevated percentage (24.7%, 21/85) 
of serum anti-NF antibody compared to healthy controls 
(6.1%, 6/98) and unrelated neurological disease controls 
(12.6%, 10/79). Surprisingly, the level of anti-NF antibody 
was significantly correlated with a slow rate of progres-
sion [21]. Fialová et al. measured IgG antibodies against 
NfL and NfM by ELISA in paired CSF and serum sam-
ples from 38 ALS patients and 20 controls [22]. The level 
of anti-NfL antibody in serum was significantly elevated 
in ALS patients, while serum levels of anti-NfM antibody 
was only significantly elevated in bulbar-onset subgroup of 
ALS. There were no significant differences in CSF levels 
of anti-NfL and anti-NfM antibodies between ALS patients 
and controls. Furthermore, serum anti-NfL/CSF anti-NfM 
levels and ALS Functional Rating Scale (ALSFRS) showed 
a weak correlation.

The clinical significance of anti-NF antibodies has also 
been explored. Puentes et  al. measured antibodies and 
immune complexes against NfL, NfM, NfH, and poly-(GP)-
(GR) dipeptide repeats in serum from the ALS Biomark-
ers cohort (n=107), the phenotype–genotype biomarker 
cohort (n=129) and in normal controls (n=140). The results 
revealed a significantly higher concentration of anti-NfH and 
NfL immune complexes in ALS, especially in those with a 
faster progressing rate. The longitudinal study among dif-
ferent time points suggested that increasing levels of anti-
NF antibodies and immune complexes were observed in 
faster-progressing ALS [24]. Furthermore, Puentes et al. 
reported that higher plasma anti-NF level was suggestive of 
the advanced stage in a cohort of 73 ALS [23].

Plasma anti-NF antibody level was significantly increased 
in ALS and varied with the disease progression stage. The 
determination of anti-NF antibody levels in plasma could be 
a potential disease-monitoring biomarker for ALS.

Anti‑IgLON5 antibody

IgLON5 is the fifth member of the IgLON family, which 
belongs to the immunoglobulin superfamily of neuronal 
cell adhesion molecules [70]. IgLON5 plays a key role in 
neuroplasticity/neurogenesis and the maintenance of blood-
brain barrier integrity [71, 72]. The IgLON5 antibody was 
first detected in patients with the sleep-breathing disorder. 
Anti-IgLON5 disease is a rare autoimmune encephalitis with 
anti-IgLON5 antibodies in serum and/or CSF, which was 
first described in 2014 [73]. However, a growing spectrum 
of clinical manifestations is being recognized in association 
with anti-IgLON5 autoimmunity, including recent reports 
of MND-like phenotype.
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Sista et al. presented 4 cases with seropositive IgLON5-
IgG (3 possible ALS and 1 definite ALS), manifesting as 
ALS-like phenotype with parasomnias, vocal cord dys-
function, or hyperkinetic movements. Furthermore, the 
team evaluated the positive rate of IgLON5-IgG by indirect 
immunofluorescence assay and cell-based assay (CBA) in 
a cohort of 109 probable or definite ALS patients. None 
experienced with laryngeal dysfunction, rapid eye move-
ment sleep behavior disorder (RBD) and involuntary move-
ment disorder. Meanwhile, all were IgLON5-IgG seronega-
tive [25]. The first anti-IgLON5 seropositive patient with 
MND-like phenotype was reported in 2018 [26]. The patient 
also presented with prominent sleep abnormalities and invol-
untary movement. Werner et al. reported 5 anti-IgLON5-
seropositive cases with bulbar MND-like phenotype, mostly 
accompanied by sleep-related breathing disorders, parasom-
nias, and laryngeal dysfunction [27].

Anti-IgLON5 antibody could be detected in MND 
patients, especially cases with laryngeal dysfunction, sleep-
related breathing disorders, parasomnias or involuntary 
movement disorder. From the perspective of neuropathology, 
it is not surprising that MND-like phenotype is associated 
with anti-IgLON5 disease as neuron-specific tau deposits. 
The accumulation of hyperphosphorylated tau preferentially 
involved the hypothalamus, and more severely the tegmen-
tal nuclei of the brainstem with a cranio-caudal gradient of 
severity until the upper cervical cord [74].

Anti‑Transglutaminase 6 antibody

Tissue transglutaminase 6 (TG6) was abundantly expressed 
in the septal region, basal ganglia, hypothalamus, and brain-
stem [75]. Anti-TG6 antibody (IgA and/or IgG) was detected 
positive in 62% of patients with gluten ataxia [76], a neuro-
logical manifestation of Celiac disease. Several independent 
cases with an initial diagnosis of ALS that ultimately were 
identified as Celiac disease have been reported [77–80]. 
Gadoth et al. detected the Celiac disease-related antibod-
ies and anti-TG6 antibody in ALS patients. Compared to 
the healthy control [4.3% (5/115)], the TG6 IgA antibody 
was detected positive in 15.3% (23/150) of ALS patients 
[28]. However, there were no significant differences in the 
clinical presentation between anti-TG6 IgA antibody sero-
positive and seronegative patients [28]. In contrast to IgA, 
anti-TG6 IgG antibody positivity or concentration did not 
differ significantly from healthy control. The study indicated 
that ALS related to gluten sensitivity might occur in a sub-
group of patients and that anti-TG6 IgA antibody might be 
a potential marker for identifying gluten-sensitive patients. 
The authors recommended that a strict gluten-free diet might 
be therapeutically indicated in early-identified ALS patients 
with gluten sensitivity.

Peripheral nerve‑related antibodies

Anti‑Gangliosides antibodies

Gangliosides are sialic acid containing glycosphingolipids, 
which are expressed on the surface of all vertebrate cells and 
particularly abundant in mammalian nerve tissue. According 
to the unique structure, gangliosides are named differently 
by the number of sialic acid residues. G at the beginning of 
each ganglioside name indicates the belonging to the gan-
glio-series of glycosphingolipids. A, M, D, and T indicate 
the presence of zero, one, two, and three sialic acid residues, 
respectively [81]. As reported, more than 90% of the brain 
gangliosides were constituted by the same four structures 
(GM1, GD1a, GD1b, and GT1b) [82]. Gangliosides play 
an important role in maintaining the stability and regen-
eration of axon, regulating synaptic plasticity and cellular 
differentiation.

As early as the 1980s, abnormal gangliosides composi-
tion in ALS has been reported, along with reports of unusual 
gangliosides and additional complex found in CSF, brains 
and spinal cords of ALS patients [83]. Rapport et al. con-
ducted a postmortem study suggested that marked aberra-
tions in brain ganglioside profiles were present in 17 of 21 
patients with ALS [84]. The aberrations were detected both 
in motor cortex and in non-motor regions such as frontal, 
temporal, and parahippocampal gyrus cortex. However, 
Dawson failed to detect the major quantitative difference of 
the ganglioside between spinal cords from 9 patients with 
clinically diagnosed ALS and 9 normal spinal cords [85]. 
Furthermore, Dodge et al. reported increased levels of GM3 
and GM1 in spinal cords of ALS patients and SOD1 (G93A) 
transgenic mouse model of ALS [86]. These results sug-
gested that gangliosides might be important participants in 
ALS pathogenesis and merited further analysis as potential 
drug targets. However, clinical trials of exogenous bovine 
gangliosides in ALS treatment yielded inconclusive results 
[87–90].

Furthermore, anti-gangliosides antibodies have also been 
detected in serum or CSF of ALS patients. From a theoreti-
cal perspective, antibodies against gangliosides are able to 
inhibit nerve regeneration, synaptic plasticity, neurotrans-
mission, and axonal growth, which are crucial for the func-
tion of the nervous system. The presence and significance of 
anti-gangliosides antibodies in ALS have been investigated. 
Cobanet al. reported that anti-gangliosides antibodies were 
detected in 2 out of 35 (5.7%) ALS patients [29]. Kollewe 
et al. determined IgG/IgM antibodies to the six gangliosides 
(asialoGM1 (GA1), GM1, GM2, GD1a, GD1b, GQ1b) in 
serum of 84 ALS patients. Anti-gangliosides antibodies were 
seropositive in 22 ALS patients (26.2%). In detail, IgG and 
IgM antibodies were respectively detected in 9/84 (10.7%) 
and 15/84 (17.9%) of ALS patients. There was no significant 
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correlation between age, gender, onset site or survival and 
anti-ganglioside-positive/-negative titers in ALS patients [8].

Anti-GM1 antibody is the mostly detected anti-ganglio-
side antibody in ALS patients. GM1 is enriched at paranodal 
regions of Ranvier nodes in myelinated axons. As early as 
1988, Pestronk et al. reported that polyclonal anti-GM1 IgM 
antibody was present in 42 of 74 (57%) ALS patients [30]. 
Furthermore, anti-GM1 antibody was particularly common 
in patients with prominent lower motor neuron signs (41/59; 
69%) [30]. Shy et al. [31] and Lamb et al. [33] found a simi-
larly higher positive rate (59% and 44%, respectively) of 
anti-GM1 antibody in MND patients. However, relatively 
lower positive rate of anti-GM1 was reported in other ALS 
cohorts. Adams et al. [32] and Taylor et al. [36] reported that 
anti-GM1 antibody presented in 9/43 (21%) or 1/121 (0.8%) 
ALS patients. The discrepancies might be ascribed to a wide 
variation in sensitivity of detection methods and possible 
bias of patient selection. Haggiag S. et al traced the titers 
changes of anti-GM1 in three ALS patients. Interestingly, 
they found that the originally negative anti-GM1 antibody 
became positive during follow-up [35].

In addition to anti-GM1 antibody, the presence of other 
anti-gangliosides antibodies in ALS patients has also been 
investigated. Pestronk et al. reported that anti-GD1a anti-
body was detected in 42 of 73 (58%) patients with ALS 
[37]. Furthermore, the anti-GD1a antibody was prevalent 
when upper motor neuron sign was prominent [37]. Niebroj-
Dobosz et al. investigated the titers of anti-AGM1 antibody 
and anti-sulfatide antibody in serum and CSF of an ALS 
cohort [38]. In the serum of 103 ALS patients, elevated 
titers of anti-AGM1 and anti-sulfatide were present in 18% 
(32/103) and 11% (11/103), respectively [38]. Meanwhile, 
increased titers of anti-AGM1 and anti-sulfatide were pre-
sent 15% (12/79) in sera and 8% (6/79) in CSF, respectively 
[38]. Furthermore, seropositive ALS patients with anti-
GM2, anti-GD2, anti-GalNAc-GD1a, or anti-GQ1b antibody 
have also been reported [39–41].

Generally speaking, various kinds of anti-ganglioside 
antibodies have been detected in ALS patients. However, 
the presence of anti-gangliosides antibodies is of limited 
significance for ALS patients, despite few studies demon-
strating that anti-GM1 antibody was associated with lower 
motor neuron signs, anti-GD1a antibody was related to 
upper motor neuron signs [30, 37].

Anti‑sulfoglucuronyl paragloboside antibody

Sulfoglucuronyl paragloboside (SGPG) is a unique gly-
colipid presented in both peripheral nerve and vascular 
endothelial cells, which are important structures of the 
blood-brain barrier and blood-nerve barrier. E-election and 
P-selections are biomarkers of activated endothelial cells. 
Anti-SGPG antibody could be detected in 34.7% (25/72) 

of ALS patients [42]. Furthermore, most anti-SGPG sero-
positive patients were lower limbs-onset [42]. Another 
study suggested that anti-SGPG antibody was detected in 
28% (7/25) of ALS patients [43]. Interestingly, ALS patients 
with positive anti-SGPG antibody presented with a higher 
level of serum soluble E-selectin, which was regarded as a 
biomarker of activated endothelial cells [43]. In a large-size 
ALS cohort, serum anti-SGPG antibody was found in 13.3% 
(15/113) of ALS patients [44]. More importantly, multiple 
logistic regression analysis suggested that anti-SGPG pres-
ence was positively correlated with age and negatively corre-
lated with ALSFRS [44]. Hence, serum anti-SGPG antibody 
might represent a potential diagnostic biomarker of ALS.

Anti‑neurofascin 186 (NF186) antibody

Neurofascin, a family of cell adhesion molecules, is criti-
cal for the formation and maintenance of Ranvier nodes 
[91]. As an isoform of neurofascin, NF186 is located in 
the axonal initial segment of Ranvier nodes. Owing to the 
expression site of NF186, anti-NF186 can be detected in 
autoimmune nodopathy, multiple sclerosis, and multifocal 
motor neuropathy.

The first case of ALS patient with serum anti-NF186 
positivity was reported in 2023. The female patient pre-
sented with progressive weakness and amyotrophy of the 
upper limbs, and then gradually aggravated and presented 
upper motor neuron signs. Anti-NF186 antibody was posi-
tive at a titer of 1:100 throughout the whole course of the 
disease despite the treatment with intravenous immuno-
globulins [45]. The absence of upper motor neuron signs 
in early stage made it easier to misdiagnose as peripheral 
neuropathy, especially when the anti-NF186 antibody was 
positive. However, the exact role of anti-NF186 antibody in 
ALS remains unknown. Further studies with large sample 
sizes are needed to evaluate the percentage and clinical sig-
nificance of anti-NF186 antibody in ALS.

Neuromuscular junction‑related antibodies

Signal transduction at the neuromuscular junction (NMJ) 
is impaired in various NMJ disorders. Signaling molecules 
including acetylcholine (ACh)-acetylcholine receptor 
(AChR), lipoprotein-related protein 4 (LRP4), agrin, etc. 
ensure the efficient signal transduction at the NMJ. Mount-
ing evidence has suggested that ALS was characterized by 
progressive loss of motor neurons and degradation of NMJ. 
Pathological changes of the NMJ were reported to occur 
before the onset of clinical symptoms, which supported the 
dying-back hypothesis of motor neurons in ALS [92, 93]. 
Reasonably, anti-AChR, anti-LRP4, and anti-agrin antibod-
ies were detected in the body fluid of ALS patients.
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Anti‑AChR antibody

The AChR is expressed at the postsynaptic membrane, which 
promotes muscle excitation after binding with the ACh 
released from the presynaptic membrane. As early as 1980, 
anti-AChR antibody was first reported in 9 of 68 (13.2%) 
ALS patients. Interestingly, the seven anti-AChR seroposi-
tive ALS patients with high antibody titers (1.4-50nM, cut-
off: <0.25nM) all experienced modified-neurotoxin therapy 
(snake venom). The remaining two patients had low anti-
body titers (0.39-0.54nM, cutoff: <0.25nM) [46]. Ashizawa 
et al. reported that anti-AChR antibody was positive in 9/102 
(8.8%) MND patients [47]. Besides, Okuyama et al. reported 
a 73-year-old ALS female with anti-AChR antibody. It was 
worth noting that the level of anti-AChR antibody in serum 
displayed a weak fluctuation during ALS progression [94].

Furthermore, a few cases with a concomitant diagnosis 
of ALS and myasthenia gravis (MG) have been reported 
[95–99]. Retrospectively, Del Mar Amador et al. identified 
six cases (total n=4757, 0.15%) with ALS-MG coexistence 
in a French cohort during twelve years [100]. Similarly, 
0.75% (5/671) of ALS patients were also affected by MG in 
an Italian cohort over six years [101]. In another Swedish 
nationwide register-based study, the percentage of concomi-
tant diagnosis of MG in ALS patients was 0.48% (17/3561) 
[102]. The underlying mechanism of ALS-MG overlap is 
still elusive. It is speculated that this association may be 
triggered by immunological mechanisms and alterations in 
the NMJ.

Anti‑agrin and anti‑LRP4 antibody

Agrin is released by motor neurons. LRP4 is located at the 
postsynaptic membrane of the NMJ and motor neurons of 
the brain and spinal cord. Agrin-LRP4-MuSK signaling 
plays a critical role in promoting AChR clustering and mus-
cle excitation [103].

Several studies have demonstrated the presence of anti-
agrin antibody and anti-LRP4 antibody in ALS patients. 
Rivner et al. found that 9 of 65 (13.8%) ALS patients were 
positive with anti-agrin antibody [48]. Furthermore, anti-
agrin seropositive ALS patients were slightly younger 
than seronegative ALS patients [48]. As for anti-LRP4 
antibody, it was detected serological positive in 23.4% 
(24/104) of patients from two sporadic ALS cohorts 
(Greek and Italian). Meanwhile, CSF anti-LRP4 antibody 
was positive in 85.7% (6/7) of anti-LRP4 seropositive ALS 
patients, while none of 17 CSF samples from anti-LRP4 
seronegative ALS patients was positive [49]. However, no 
significant differences in clinical patterns were revealed 
between the anti-LRP4-positive and anti-LRP4-negative 
ALS patients [49]. Tüzün et al. reported an approximate 
positive rate (23.5%, 4/17) of anti-LRP4 in ALS patients 

and confirmed that serum anti-LRP4 antibody in ALS 
patients was able to interact with brain neurons [51]. 
Rivner et al. reported a relatively lower percentage (9.8%, 
8/82) of anti-LRP4 antibody in an American ALS cohort 
[48]. Lei et al. investigated the presence of anti-LRP4 anti-
body in a Chinese ALS cohort and explored the correla-
tion between anti-LRP4 and repetitive nerve stimulation 
study [52]. Serum anti-LRP4 antibody was detected by 
cell-based assay in 5.4% (3/56) of Chinese ALS patients 
and all three seropositive patients had a positive repeti-
tive nerve stimulation response, while 50.9% (27/53) of 
the seronegative patients also had impaired neuromuscular 
transmission [52]. Interestingly, Takahashi et al. reported 
two anti-LRP4 seropositive probable ALS patients (the 
Awaji criteria) with myasthenic symptoms that were par-
tially improved by immunotherapies [50].

The discrepancy in the positive rate of anti-LRP4 among 
different cohorts might be ascribed to the differences in 
detection assays and patient demographics. Further studies 
should be performed to investigate the percentage of anti-
LRP4 antibody in different ethnic groups and to determine 
its pathogenic significance.

Muscle‑related antibodies

Anti‑cytosolic 5'‑nucleotidase 1A (cN1A) antibody

Autoantibody recognizing cN1A has been recognized as 
a biomarker for the diagnosis of inclusion body myositis 
(IBM) [104]. Furthermore, in vitro and in vivo studies sug-
gested that anti-cN1A antibody might exert an influence 
on protein degradation in myofibers [105]. Liewluck et al. 
reported 2 MND patients with seropositive anti-cN1A anti-
body [53]. The significance of anti-cN1A antibody in MND 
remains elusive. Margotta et al. investigated the impact of 
skeletal muscle dysregulation on the phenotypic character-
istics in ALS transgenic mice [106]. The results suggested 
that immune-mediated myogenesis played a pivotal role in 
skeletal muscle homeostasis and promoted a slow disease 
progression in ALS transgenic mice [106].

Pathophysiology‑related antibodies

Although the detailed mechanisms remain unclear, the 
pathophysiological processes in ALS are roughly classified 
into four major parts: impaired RNA metabolism, altered 
proteostasis or autophagy, cytoskeletal or trafficking defects, 
and mitochondrial dysfunction [107]. Besides, the effects 
of environmental exposure cannot be neglected [108]. So 
far, several pathophysiology-related antibodies have been 
reported in ALS patients.
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Anti‑Fas antibody

Fas is a type I membrane protein, which belongs to the tumor 
necrosis factor receptor family. It can combine with anti-
Fas antibody to transmit the programmed cell death signal. 
Serum anti-Fas antibody was detected by ELISA in 8 of 31 
ALS (26%). Besides, anti-Fas antibody in serum of ALS 
patients could induce neuronal apoptosis [54]. In another 
cohort, anti-Fas antibody was detected in 25% (13/52) spo-
radic ALS and 22% (2/9) familial ALS patients [55]. How-
ever, there was no statistical correlation between antibody 
level and disease duration or severity [55].

Anti‑annexin V antibody

Annexins belong to a family of multi-functional membrane 
and Ca(2+)-binding proteins, which play a pivotal role in 
various cellular activities. The elevated level of anti-annexin 
V antibody has been reported in several autoimmune dis-
eases [109]. In an ALS cohort, positive anti-annexin V anti-
body was detected in 16% (4/25) of the CSF samples and 8% 
(2/25) of the serum samples, respectively [56].

Anti‑High Mobility Group Box 1 (HMGB1) antibody

The damage-associated molecular pattern HMGB1 can 
initiate and perpetuate immune response in noninfec-
tious inflammatory processes. Casula et al. found elevated 
HMGB1 levels in the spinal cord of ALS patients [110]. 
Further investigation suggested that serum level of anti-
HMGB1 antibody in ALS was significantly higher than that 
in patients with Alzheimer's disease, Parkinson's disease, 
and healthy control subjects. More importantly, the level 
of anti-HMGB1 antibody was significantly correlated with 
disease severity [57].

Anti‑LG72 antibody

G72 is a primate-specific gene, which has been regarded 
as a susceptibility gene that exerted significant functions 
in various neurodegenerative diseases, schizophrenia and 
major depression [111]. LG72, the longest G72 splice vari-
ant protein, induces the production of mitochondrial reactive 
oxygen species via interaction and aggregation with SOD1 
[112]. The potency of serum anti-LG72 antibody as a bio-
marker for ALS diagnosis has been investigated [113]. The 
serum anti-LG72 antibody concentration was lower in ALS 
patients than in healthy controls and other neurodegenerative 
diseases. Furthermore, the concentration of anti-LG72 anti-
body did not differ significantly among subgroups of ALS 
patients [113]. The authors speculated that the anti-LG72 

antibody was neutralized by endogenous LG72 in ALS 
patients and anti-LG72 antibody might serve as a surrogate 
biomarker for ALS.

Anti‑gamma‑synuclein antibody

Gamma-synuclein is a cytosolic protein, which is abundant 
in the perikarya, presynaptic terminals, and particularly 
within neuronal axons [114]. Motor neurons express higher 
levels of gamma-synuclein [115]. Gamma-synuclein patho-
logical aggregation might contribute to ALS pathogenesis, 
which has been demonstrated by immunostaining on trans-
verse spinal cord sections and sequential protein extraction 
from postmortem neural samples [116]. Further study inves-
tigated the presence of anti-gamma-synuclein antibody in 
ALS patients. Anti-gamma-synuclein antibody was positive 
in 4.9% (2/41) ALS patients, while the positive rate was 
13.2% (5/38) in other neurological diseases group and 0% 
(0/19) in healthy control [58]. The authors concluded that 
anti-gamma-synuclein antibody was not a characteristic bio-
marker of ALS.

Anti‑Proteasome subunit alpha type 7 (PSMA7) antibody

PSMA7 is an alpha-type subunit of the 20S proteasome core 
complex, which participates in protein degeneration via the 
ubiquitin-proteasome pathway (UPP). UPP is a pathway 
that plays an essential role in the regulation of antigen pro-
cessing, apoptosis, and neural and muscular regeneration, 
which has been demonstrated to participate in ALS pathol-
ogy [117]. The presence of anti-PSMA7 antibody has been 
investigated in ALS patients. Anti-PSMA7 antibody was 
positive in 38 of 71 ALS patients and significantly higher in 
ALS patients than in control group [59]. The anti-PSMA7 
level was negatively correlated with ALS duration, which 
indicated that anti-PSMA7 positivity might be a disease-pro-
moting factor in early-stage ALS [59]. Besides, anti-PSMA7 
titers were positively related to the level of creatine kinase 
[59]. Thus, the results raised the possibility that anti-PSMA7 
antibody might be a potential diagnostic marker for ALS. 
The authors concluded that anti-PSMA7 antibody might 
participate in ALS pathogenesis, possibly via its regulation 
of the UPP.

Anti‑ß‑actin antibody

Beat-actin (ACTB) is one of two non-muscle cytoskeletal 
forms of actin, which locates not only in the cytoskeleton 
sytosolic and compartment but also in the plasma membrane 
and extracellular space. The ACTB isoforms play a specific 
role in the spatial regulation of actin dynamics and stabil-
ity in axons of developing motoneurons [118]. Anti-ACTB 
antibody was detected positive in 33 out of 70 (47.1%) ALS 
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patients. The correlation analysis suggested that the level of 
anti-ACTB antibody was positively correlated with clinical 
disease stage and disease duration. Meanwhile, there was a 
negative correlation between the anti-ACTB antibody level 
and ALSFRS-R score [60]. The results indicated that anti-
ACTB antibody might be a potential biomarker of ALS. 
However, the mechanism of anti-ACTB antibody production 
remains unclear. Further researches are needed to elucidate 
the clinical values and the underlying mechanisms of anti-
ACTB antibody in ALS.

Anti‑TAR DNA‑binding protein 43 autoantibody

TAR DNA-binding protein 43 (TDP-43) is a highly con-
served and essential DNA/RNA binding protein coded by 
the TARDBP gene. The neuropathological hallmark of 
ALS is the intracellular deposition of insoluble TDP-43 
in degenerating motor neurons and glial cells. As normal 
blood components, naturally autoantibodies (NAbs) play a 
central role in clearing debris and maintaining homeosta-
sis in multiple neurodegenerative diseases, including ALS 
[61, 119]. However, previous investigation on the role of 
anti-TDP-43 NAb in ALS have yielded inconsistent results. 
Nielsen et al. reported that anti-TDP-43 NAb level was sig-
nificantly reduced in ALS patients and negatively correlated 
with disease severity [61]. However, Conti et al. and Simula 
et al. found elevated level of anti-TDP-43 NAb in different 
ALS cohorts [62, 63]. Besides, Ramachandran et al. failed 
to find significant differences in anti-TDP-43 NAb levels 
between ALS patients and controls [64]. Hence, the signifi-
cance of anti-TDP-43 NAb in the diagnosis of ALS needs to 
be further investigated.

Anti‑HERV‑K antibody

Human endogenous retroviruses (HERVs) are genomic 
sequences of retroviral origin that constitute around 8% of 
the human genome. HERVs of the K family (HERV-K) is 
the most transcriptionally active subgroup among HERVs. 
The expression of HERV-K is modulated by TDP-43. Aber-
rant HERV-K expression has been identified in ALS [120]. 
The in vitro study revealed that HERV-K could regulate the 
function of peripheral blood immune cells in ALS patients, 
mainly via generating pro-inflammatory mediators [66]. In 
addition, the immune response against HERV-K has been 
investigated in ALS patients. Anti-HERV-K envelope sur-
face 19-37 antibody was found in 81% (17/21) of serum and 
86% (18/21) of CSF from ALS patients [65]. The level of 
anti-HERV-K envelope surface 19-37 antibody in serum and 
CSF was significantly correlated with disease severity [65]. 
A study from the same team revealed that anti-HERV-K anti-
body was seropositive in 78.2% (43/55, envelope surface 
19-37 antibody) and 76.4% (42/55, envelope surface 109-126 

antibody) of ALS patients [66]. Simula et al. founded that 
anti-HERV-K envelope surface 30-38 antibody was positive in 
40% (18/45) of ALS patients [63]. In another cohort of 243 
ALS patients, 55.14% (134/243) were anti-HERV-K sero-
positive (against envelope peptide VWVPGPTDDRCPA-
KPEEEG). More importantly, the level of anti-HERV-K in 
definite ALS (EL Escorial criteria) patients was lower than 
that in non-definite ALS patients. In addition, the lower level 
of anti-HERV-K was associated with a lower predicted and 
observed survival time [67]. Hence, anti-HERV-K antibody 
might be a potential biomarker for ALS diagnosis and exerts 
a protective role against ALS progression.

Conclusions

The majority of the clinical and pathological abnormali-
ties in ALS can be ascribed to the injury of motor neurons 
in motor cortex, brainstem and spinal cord. However, the 
onset site of ALS remains elusive. Figuring out the relation-
ship between upper and lower motor neuron dysfunction, 
particularly the site of disease onset, is critical in under-
standing of ALS pathogenesis. Dying-forward hypothesis 
proposed that the original site of ALS was cortico-fugal, 
and the pathogenesis of ALS was a dying forward process 
primarily starting in the corticomotoneuronal system. On the 
contrary, dying-back hypothesis supposed that lower motor 
neuron initially died, following which ALS process spread 
to upper motor neuron [121]. The positivity of antibodies 
indicated the impairment of the integrity in nervous system, 
including upper and lower motor neuron. However, whether 
the appearance of special antibodies might imply the early 
site of ALS onset remains to be investigated.

A number of studies have suggested that immune dys-
regulation might participate in ALS pathogenesis. Published 
cohort studies or case reports have shed light on the presence 
and clinical significance of autoantibodies in ALS patients. 
However, current research have several limitations. First, 
several autoantibodies directed against antigens can be found 
in ALS, however, published investigations showed widely 
differing proportions of positive antibodies in ALS patients. 
Possible explanations for the discrepancy of results include 
different detection assays, incubation temperature, purity of 
different proteins, different cut-off values and so on. In the 
future, autoantibodies should be tested by better standard-
ized commercial tests (such as fixed cell-based assay, live 
cell-based assay and so on) and validated with a second 
technique (ELISA, tissue-based assay and so on). Second, 
the clinical significance of autoantibodies in ALS remains 
elusive. It is necessary to determine whether the presence of 
autoantibodies is associated with a particular clinical phe-
notype or different survival time. Last but not least, a still 
undetermined question is whether the autoantibodies are 
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produced secondary to nervous system damage or the trig-
ger of neuronal damage, and whether they are relevant to the 
ALS pathogenesis or represent an epiphenomenon. Regard-
ing the pathogenicity, further in vivo and in vitro studies are 
needed to identify the exact role of autoantibodies in ALS.
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