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Abstract
Background Sporadic amyotrophic lateral sclerosis (sALS) is a severe neurodegenerative disease characterized by continuous 
diminution of motor neurons in the brain and spinal cord. Earlier studies indicated that the DPP6 gene variant has a role in 
the development of sALS. This meta-analysis was designed to uncover the role of rs10260404 polymorphism of the DPP6 
gene and its association with sALS.
Methods All case–control articles published prior to October 2022 on the association between DPP6 (rs10260404) poly-
morphism and sALS risk were systematically extracted from different databases which include PubMed, PubMed Central, 
and Google Scholar. Overall odds ratios (ORs) and “95% confidence intervals (CIs)” were summarized for various genetic 
models. Subgroup and heterogeneity assessments were performed. Egger’s and “Begg’s tests were applied to evaluate pub-
lication bias. Trial sequential analysis (TSA) and false-positive report probability (FPRP) were performed.
Results Nine case–control studies containing 4202 sALS cases and 4444 healthy controls were included in the meta-analysis. 
A significant association of the DPP6 (rs10260404) variant with an increased sALS risk in overall pooled subjects under 
allelic model [C allele vs. T allele, OR = 1.149, 95% CI (1.010–1.307), p-value = 0.035], dominant model [CC + CT vs. 
TT, OR = 1.165, 95% CI (1.067–1.273), p-value = 0.001], and homozygote comparison [CC vs. TT, OR = 1.421, 95% CI 
(1.003–2.011), p-value = 0.048] were observed. Moreover, in subgroup analysis by nationality, remarkable associations were 
detected in Dutch, Irish, American, and Swedish under allelic, dominant, and homozygote models. Additionally, stratifica-
tion analysis by ethnicity exhibited an association with sALS risk among Caucasians and Americans under different genetic 
models. Interestingly, none of the models found any significant association with Asians.
Conclusion The present meta-analysis indicates that DPP6 (rs10260404) polymorphism could be a candidate risk factor 
for sALS predisposition.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a severe disabling 
and lethal disorder characterized by progressive death of 
motor neurons in the spinal cord, brainstem, and cerebral 

cortex. The loss of motor neurons narrows the central nerv-
ous system (CNS) ability to control voluntary muscle move-
ments, which leads to muscle decimating and eventually 
death due to respiratory failure [1]. The peak time of ALS 
onset lies between age 50 and 75 [2] and most ALS patients 
survive about 3–5 years after disease onset [3]. ALS can 
be descended genetically from ancestors as an autosomal 
dominant, autosomal recessive, or X-linked manner [4]. 
Approximately 5–10% of cases are thought as familial ALS 
(fALS), whereas the remaining cases seem to be sporadic 
ALS (sALS) with no family history of ALS [5]. The cause 
of sporadic ALS (sALS) is primarily unknown, although 
familial and epidemiological statistics reveal that genetic 
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components may promote its pathogenesis [6]. As of now, 
several modifier loci and related genes have been involved 
and a number of polymorphic variants have been suggested 
as risk factors for developing sALS [7]. Despite this, no 
particular gene has been clearly shown to cause sALS, as 
endeavors to determine genetic variants associated with spo-
radic ALS utilizing candidate gene approaches have often 
generated dissatisfying results [8]. The pathogenesis of spo-
radic ALS remains an ambiguity [9].

Environmental and genetic ingredients consider as the 
acknowledged pathogens of sALS. Infections through 
viruses and bacteria are appraised as the potential environ-
mental factors for the development of sALS [10–12]. Other 
environmental factors such as organophosphate, organo-
chlorine [13, 14], heavy metal exposure [15], intense physi-
cal activity [16], smoking, electromagnetic fields, electric 
shocks, cyanotoxins, and military service [17] may also 
produce significant impact for the pathogenesis of sALS. 
However, none of the recognized environmental risk ele-
ments has been conclusively certified, and no definite con-
clusions have been worked out until now [18]. If environ-
mental factors are precisely a conducive risk factor in sALS 
occurrence, the genetic predisposition would be expected 
to amplify the possibility of sALS development because of 
exposure to environmental agents [19]. Therefore, genetic 
factors have drawn considerable attention in the investiga-
tion of sALS pathogenesis since the revelation of dipepti-
dyl-peptidase 6 (DPP6) mutations in sALS. During the last 
decade, the advancement of molecular genetic technologies 
has rapidly expanded our knowledge relating to the genetic 
pathogenesis of sALS. The occurrence of fALS has been 
ascribed to mutations in at least 24 independent genes. Spe-
cific mutations responsible for fALS generation have been 
detected also in patients with sALS [20]. Thus, sALS has 
been thought a complicated gene-related disease. However, 
recently it has been determined that the rs10260404 poly-
morphism in the DPP6 gene is strongly merged with the 
susceptibility to sALS among diverse populations of Euro-
pean origin and in a group of American patients [21]. The 
rs10260404 is located in the centre of intron 3, at position 
154,513,713 of the DPP6 gene on chromosome 7 encoding 
the dipeptidyl-peptidase 6 protein. The rs10260404 poly-
morphism in the DPP6 gene was reported to be a T > C vari-
ation that plays a crucial function in sALS susceptibility and 
progression [3]. In particular, the CC genotype and the C 
allele were excessive representation in patients compared 
to healthy participants and identified with an increased pos-
sibility of sALS in recessive association and allelic tests 
[5]. This observation was also inconsistent [3], remained 
inconclusive, and varied across studies. Therefore, a meta-
analysis of all appropriate studies for the rs10260404 poly-
morphism of the DPP6 gene and its association with the 
sALS risk was done to clarify a more rigorous assessment 

of this association and to scrutinize the root of heterogeneity 
and any hypothetical bias within these reports.

Materials and methods

In silico data analysis

Analysis of gene sequence of the DPP6 gene, its promoter, 
transcript variants because of alternative splicing, and syno-
nyms was performed by Ensembl (www. ensem bl. org), NCBI 
genome database (https:// www. ncbi. nlm. nih. gov/ genome/), 
Eukaryotic promoter database (https:// epd. epfl. ch/ cgi- bin/), 
and Genecards (www. genec ards. org), respectively. UniProt/
SwissProt (www. unipr ot. org) and Protter (http:// wlab. ethz. 
ch/ prott er/ start/) bio tools were used to retrieve predicted 
secondary structure of DPP6 protein, conserved domains, 
and essential functional motifs, whereas compartment soft-
ware (http:// compa rtmen ts. jense nlab. org/) was utilized to 
obtain subcellular localization of gene and protein isoforms. 
String database version 11.5 (https:// string- db. org/) was used 
to determine functional annotation of DPP6 protein along 
with functional protein–protein association networks with 
gene ontology of DPP6. Additionally, several other pro-
grams such as Ensembl.org, SNPedia, dbSNP, and GWAS 
catalogue were used to analyze genomic variance. Missense 
coding mutations as well as their distribution and molecular 
modifications were also analyzed.

Study search and selection

This study was prepared to follow the guidelines of 
“Meta-analysis of Observational Studies in Epidemiology 
(MOOSE)” [22]. The study results were reported in accord-
ance with “Preferred reporting items for systematic reviews 
and meta-analyses protocols (PRISMA-P)” [23]. An inde-
pendent duplicated systematic exploration was conducted 
by dual researchers. The PubMed, PubMed Central, and 
Google Scholar databases were explored to retrieve the arti-
cles related to the genetic polymorphisms/variants of DPP6 
(rs10260404) with an increased probability of sALS prior 
to October 2022. The search procedure was accomplished 
by pursuing a combination of the following terms and Med-
ical Subjects Headings (MeSHs) including (1) DPP6, (2) 
GWAS, (3) polymorphisms, (4) genetic variant, (5) mutation 
or SNPs, (6) rs10260404, (7) case–control study, and (8) 
sALS. No limitations for publication time, language, terri-
tory, sample size, and ethnicity were confirmed to curb the 
impact of publication bias. Manual exploration for the ref-
erence records of all the published papers and assessments 
was executed to identify and consider other related articles.

http://www.ensembl.org
https://www.ncbi.nlm.nih.gov/genome/
https://epd.epfl.ch/cgi-bin/
http://www.genecards.org
http://www.uniprot.org
http://wlab.ethz.ch/protter/start/
http://wlab.ethz.ch/protter/start/
http://compartments.jensenlab.org/
https://string-db.org/
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Eligibility criteria

Titles and abstracts of all the published articles were 
searched independently by two authors. Impertinent and 
incompatible articles were omitted primarily. The assem-
bled publications were selected based on the following 
explicit criteria: (1) “case–control” reports, (2) the study 
population was defined accurately, (3) the studies were 
on human beings, (4) the studies evaluated the relation of 
DPP6 (rs10260404) variant with sALS risk, (5) the arti-
cles were a genome-wide association study (GWAS), (6) 
complete information of allele frequency, (7) efficient data 
for “odds ratios” and 95% confidence intervals (ORs, 95% 
CIs)” estimation, and (9) the year of the study conducted was 
specified. However, the articles were eliminated (1) when 
the studies did not harmonize with the “case–control” pres-
entation, (2) with identical reports from previous studies, (3) 
when the publications were “reviews, editorials, abstracts, 
meta-analysis, conference meetings, case report, and non-
human researches”, and (4) with insufficient genotype data.

Data extraction

A structured data compilation form was executed to char-
acterize retrieved publications. The extracted data were 
organized from the selected text articles, where each study 
includes (1) the name of the first author, (2) the year of the 
published article, (3) the nationality, (4) ethnic origin, (5) 
the population size of the sALS cases and controls for the 
investigated variant, (6) the method of the genotyping, (7) 
the source of the control (“Hospital-based” or “Population-
based”), (8) the genotypes and alleles frequencies for the 
identified SNP among sALS cases, and the healthy volun-
teers, and (9) p-value of the Hardy–Weinberg equilibrium 
(HWE) within study controls, and also (10) the quality score.

Quality score assessment

The methodological quality of retrieved articles was evalu-
ated independently by dual investigators utilizing a set of 
established criteria based on the scale that was extracted and 
amended from a prior meta-analysis of molecular associa-
tion studies [24–26]. These revised sets encompassed the 
representativeness of sALS, reliability of controls, ascertain-
ment of sALS and controls, ALS Functional Rating Scale 
(ALSFRS) examination, matching of the case–control, qual-
ity control of the method of genotyping, the assessment of 
genotyping, specimens applied for confirming genotypes, 
HWE in controls, total population size, and association anal-
ysis. The quality scores varied from 0 (lowest) to 14 (high-
est), and the studies secured scores < 10 were categorized as 
“low quality,” while those with scores ≥ 10 were classified as 
“high quality” (Supplementary data, Table S1).

Trial sequential analysis (TSA)

TSA software (version 0.9.5.10 beta) [27] was applied 
to determine the statistical accuracy of the meta-analysis 
by integrating cumulative specimens of all the published 
studies, and to analyze the unexpected miscalculations and 
improve the weight of conclusions [28, 29]. Power fixed 
at 5% and 80% and two-sided tests with “type I error (α)” 
were employed [27, 30]. A significant level of accuracy 
is achieved and no additional trials are fundamental, if 
the “cumulative Z-curve” cut across the TSA supervising 
boundaries. Conversely, if the “Z- curve” fails to adjoin with 
the boundary edges, the evaluated sample size has not gained 
the expected threshold to draw satisfactory outcomes and 
additional investigations are required.

Statistical analysis

Initially, genotype, allele, and allele frequencies were 
determined and recorded from selected publications of 
different ethnic populations. HWE test in cases and con-
trols population was calculated using the online “Associa-
tion, Odds Ratios, and Relative Risks (AssociatORRR)” 
software (http:// www. genec alcs. weebly. com/ assoc iator rr. 
html) and validated through the chi-square experiment with 
p-value < 0.05 was assessed to be a disequilibrium condi-
tion [31]. After that, the DPP6 (rs10260404) polymorphism 
impact on sALS risk was evaluated by “a logistic regression 
approach.” The steps such as crude odds ratios (ORs) and 
corresponding 95% confidence intervals (CIs) were calcu-
lated to assess the association of DPP6 (rs10260404) with 
the risk of sALS. Pooled ORs were employed by utilizing a 
combination of various genetic models encompassing allelic 
model, recessive model, dominant comparison, homozy-
gote comparison, and heterozygote comparison. Moreover, 
pooled OR significance was evaluated by the “Z-test”, and 
p < 0.05 was appraised as statistically effective. Heteroge-
neity among different publications was estimated using the 
“chi-square-based Q-statistic” [32] and quantified using 
the I2 index [33]. p-value ≥ 0.10 for the “Q-test” and/or I2 
index < 50% were identified as no appreciable heterogene-
ity, thus “fixed-effects model” was utilized to determine 
the pooled odds ratios (ORs) of each article [34]; if not, 
the “random-effects model” was taken in consideration to 
calculate within-study sampling inaccuracies and between-
study variances [35]. Subgroup analyses were carried out 
by nationality, ethnicity, and source of controls. Moreover, 
“Begg’s funnel plot” and “Egger’s linear regression” assess-
ments were executed to evaluate quantitative evidence of 
publication bias [36]. Finally, false-positive report prob-
ability (FPRP) was studied to reveal whether any associa-
tions published earlier were false positives. All tests were 

http://www.genecalcs.weebly.com/associatorrr.html
http://www.genecalcs.weebly.com/associatorrr.html
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conducted using “Comprehensive Meta-Analysis (CMA)” 
version 3.0 software [37].

Results

In silico data analysis

Dipeptidyl-peptidase 6 protein is encoded by the DPP6 
gene (ENSG00000130226), which is positioned on chro-
mosome 7 long arm (7q36.2) (Supplementary data, Fig. S1), 
comprising by 26 exons (Fig. 1D), and spanning 1,146,153 
bases long on the plus strand (genomic site: chromosome 
7: 153,748,133–154,894,285, according to GRCh38/hg38). 
The gene has multiple synonyms, including DPPX, DPL1, 
dipeptidyl aminopeptidase-like protein 6, DPPVI, DPP6p, 
hDPP6, E9PDL2, E9PF59, MRD33, and VF2. The gene 
holds 23 transcripts, but only 9 of them can code for pro-
tein (Supplementary data, Table S2). 4826 base pairs con-
taining transcript (ID: ENST00000377770.8) of the DPP6 
gene has four promoters and position of those promoters 
are 4282 (P1), 3889 (P2), 3137 (P3), and 408 (P4). Fisher’s 
linear discriminant (LDF) value of P1 is + 4.926. TATA box 
position, score, and nucleotide sequence of TATA box are 
4250, + 8.954, and TAT ATA AA, respectively. Thus, LDF 
value, TATA box position, score, and sequence of TATA 
box of P2 are + 2.154, 3844, + 4.012, and CAT TAA AA. 
Likewise, LDF score of P3 is + 10.776 that corresponds to 
more reliable promoter. Similarly, P4 contains LDF score 
(+ 4.639), TATA box (381), box score (+ 6.000), and nucleo-
tide sequence of TATA box (TAT TAA AA). The rs10260404 
T > C SNP site with three-frame translate of the DPP6 gene 
is shown in Fig. 1C. The dipeptidyl-peptidase 6 protein 
(UniProtKB: P42658) is composed of 865 amino acids and 
has a molecular weight of 97.588 kilodaltons (kDa). It con-
tains 2 isoforms that are produced by alternative splicing 
and located mostly in the plasma membrane, membrane, 
and voltage-gated potassium channel complex with greater 
confidence (Supplementary data, Table S3 and Fig. S2). 
The protein functions as a peptidase S9B family domain and 
dipeptidyl-peptidase IV (DPPIV) N-terminal region at posi-
tion 195–561 (Fig. 1D). It also contains domains for the pro-
lyl oligopeptidase family (amino acids 642–848) (Fig. 1D). 
It acts as a locale of membrane-bound protein estimated to 
be outside the membrane, in the cytoplasm (amino acids 
1–195), and the extracellular region (amino acids 118–865). 
The top gene ontology (GO) annotation for biological pro-
cesses activates cell surface expression and regulates the 
activity and gating characteristics of the potassium channel 
KCND2. The functional annotation of the DPP6 protein and 
mRNA expression for DPP6 gene in normal human tissues 
are illustrated in Fig. 2 A and B.

Characteristics of qualified studies

We identified overall 401 appropriate records (PubMed = 86, 
Google Scholar & Web of Science = 315) based on search 
strategy and selection specification. Besides, the manual 
exploration for the quoted references within specified stud-
ies recognized twenty-one further records through additional 
sources. After eliminating 107 simulated records, a total of 
315 prospective studies were screened based on their titles 
and abstracts. After titles and abstracts reviewing, 142 perti-
nent articles were selected for supplementary full-text inves-
tigation. Thereafter, we eliminated 127 records for having no 
case–control representation, excluded 5 articles for overlap-
ping data and there was no meta-analysis record for exclu-
sion. Finally, a total of 9 publications [1, 3, 5, 6, 21, 38–41] 
satisfied the inclusion principle that was applied in the pre-
sent work for the evaluation of the DPP6 (rs10260404) poly-
morphism with increasing sALs risk (Fig. 3).

Scrutiny on the inclusion studies of the DPP6 
(rs10260404) polymorphism

A total of nine eligible case–control publications that 
explained DPP6 (rs10260404) association with sALS sus-
ceptibility were scrutinized meticulously to enlist potential 
data. The data from individual publication was organized 
as a distinct study. However, two of these selected studies 
incorporated data from seven different sets [21, 41] and 
these diverse sets were scrutinized independently. Therefore, 
the selected 9 publications encompassed 14 comparisons of 
case–control articles that involve 4202 sALS patients and 
4444 controls (Table 1). Among these significant studies, 
four experiments were conducted on Asians [3, 38–40], 
nine studies were established on Caucasians [1, 5, 6, 21, 
41], and one study was examined in American [21]. All 
evaluated published articles were carried out under certi-
fied genotyping procedures involving “Sequenom Massar-
ray, PCR-HRMA, SeqMan, Sequenom iPLEX Assay, Big-
Dye Terminator protocol, TaqMan, Infinium II HumanHap, 
TaqMan allelic discrimination Assay, Infinium HumanHap, 
and Allele specific PCR”. The sources of control of ten stud-
ies were found as population-based while four articles were 
hospital based. This meta-analysis investigation exhibited 
that all articles were accorded with HWE among healthy 
volunteers, and no studies attained disequilibrium with 
HWE. Moreover, nine articles obtained a high-quality score 
whereas, six articles secured a low-quality score.

Meta‑analysis of the association between DPP6 
(rs10260404) polymorphism and sALS risk

The association of the DPP6 (rs10260404) polymorphism 
with increasing sALS risk was recapitulated in Table 2. 
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Fig. 1  A Hundreds of studies related to the single-nucleotide variants 
of the DPP6 gene were published in different journals over the last two 
decades. B Variant inspection indicated amino acid position at 153 of 
the DPP6 protein (DPP6:D153int) and genomic position at chromo-
some 7: 154,475,037–154,540,533 of the DPP6 gene are the most cited 
loci. Approximately 82 published articles are highly involved between 
DPP6 (rs10260404) polymorphism and sALS risk (source: https:// 

maste rmind. genom enon. com/). C DPP6 (rs10260404) variant position 
at base level (chromosome 7: 154,513,713-T-C) with three-frame trans-
late reveals how amino acids sequence of the DPP6 protein are altered 
due to the polymorphism. D The tiny green balls of the DPP6 protein 
indicate missense mutations, yellow balls reflect splice mutations, and 
light-color black balls represent nonsense, nonstop, frameshift deletion, 
and frameshift insertion mutations

https://mastermind.genomenon.com/
https://mastermind.genomenon.com/
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Fig. 2  A Functional annotation of DPP6 protein and its network sta-
tistics are- number of nodes: 11, number of edges: 29, average node 
degree: 5.27, average local clustering coefficient: 0.853, expected 

number of edges: 11, PPI enrichment p-value: 2.4e-06. B DPP6 gene 
expression in normal human tissues
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Initially, the relation between DPP6 (rs10260404) variant and 
sALS risk was examined within the overall population, and 
then, the results were categorized according to nationality, 
race/ethnicity, and source of controls. Overall, the pooled ORs 
for all the subjects suggested that the DPP6 (rs10260404) 
polymorphism was remarkably related to increasing sALS 
risk for the allelic model [C allele vs. T allele, OR = 1.149, 
95% CI (1.010–1.307), p-value = 0.035] (Fig. 4A); dominant 
model [CC + CT vs. TT, OR = 1.165, 95% CI (1.067–1.273), 
p-value = 0.001] (Fig. 4B); and homozygote model [CC vs. 
TT, OR = 1.421, 95% CI (1.003–2.011), p-value = 0.048] 
(Fig. 4D). In contrast, there was no substantiation of the DPP6 
(rs10260404) association with increasing sALS risk in all 
pooled subjects under other models, including the recessive 
model [CC vs. CT + TT, OR = 1.312, 95% CI (0.929–1.852), 
p-value = 0.124] (Fig. 4C); and heterozygote comparison [CC 
vs. CT, OR = 1.238, 95% CI (0.879–1.744), p-value = 0.221] 
(Fig. 4E).

Subgroup analyses performed by nationality

The current meta-analysis exhibited a clear associa-
tion of the DPP6 (rs10260404) polymorphism and sALS 
risk among the Dutch population under four genetic 

models including the allelic model [C allele vs. T allele, 
OR = 1.290, 95% CI (1.115–1.492), p-value = 0.001]; 
recessive model [CC vs. CT + TT, OR = 1.438, 95% CI 
(1.091–1.895), p-value = 0.010]; dominant model [CC + CT 
vs. TT, OR = 1.376, 95% CI (1.114–1.699), p-value = 0.003]; 
homozygote comparison [CC vs. TT, OR = 1.664, 95% 
CI (1.228–2.257), p-value = 0.001]. In addition, the sub-
group investigations of the Irish population indicated that 
the DPP6 (rs10260404) variant was strongly associated 
with increasing sALS risk in allelic model [C allele vs. T 
allele, OR = 1.336, 95% CI (1.047–1.704), p-value = 0.020]; 
dominant model [CC + CT vs. TT, OR = 1.419, 95% 
CI (1.008–1.998), p-value = 0.045]; homozygote com-
parison [CC vs. TT, OR = 1.801, 95% CI (1.067–3.040), 
p-value = 0.028]. Likewise, the outcomes of the subgroup 
examinations of the American population signified that the 
DPP6 (rs10260404) polymorphism was highly associated 
with increasing sALS risk in the allelic model [C allele vs. T 
allele, OR = 1.411, 95% CI (1.104–1.803), p-value = 0.006]; 
recessive model [CC vs. CT + TT, OR = 1.671, 95% 
CI (1.029–2.714), p-value = 0.038]; dominant model 
[CC + CT vs. TT, OR = 1.518, 95% CI (1.073–2.146), 
p-value = 0.018]; and homozygote comparison [CC vs. 
TT, OR = 2.006, 95% CI (1.186–3.392), p-value = 0.009]. 

Fig. 3  Flowchart of articles 
search and screen for DPP6 
(rs10260404) polymorphism
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Moreover, a significant effect of DPP6 (rs10260404) with an 
increased sALS risk was detected among the Swedish under 
allelic model [C allele vs. T allele, OR = 1.293, 95% CI 
(1.068–1.566), p-value = 0.008]; dominant model [CC + CT 
vs. TT, OR = 1.371, 95% CI (1.049–1.790), p-value = 0.021]; 
homozygote comparison [CC vs. TT, OR = 1.672, 95% CI 
(1.108–2.524), p-value = 0.014] (Table 2).

On the other hand, the analyses data for the DPP6 
(rs10260404) polymorphism suggested that no remark-
able effect was determined among Chinese, Italian, Bel-
gian, and Polish under different genetic models such as, for 
Chinese, allelic model [C allele vs. T allele, OR = 0.906, 
95% CI (0.664–1.236), p-value = 0.533]; recessive model 
[CC vs. CT + TT, OR = 1.166, 95% CI (0.431–3.155), 
p-value = 0.762]; dominant model [CC + CT vs. TT, 
OR = 0.825, 95% CI (0.651–1.047), p-value = 0.114]; 
homozygote comparison [CC vs. TT, OR = 1.108, 95% CI 
(0.410–2.996), p-value = 0.840]; and heterozygote com-
parison [CC vs. CT, OR = 1.307, 95% CI (0.478–3.576), 
p-value = 0.602]; for Italian, allelic model [C allele vs. T 

allele, OR = 1.144, 95% CI (0.848–1.543), p-value = 0.379]; 
recessive model [CC vs. CT + TT, OR = 1.296, 95% CI 
(0.585–2.872), p-value = 0.523]; dominant model [CC + CT 
vs. TT, OR = 1.112, 95% CI (0.944–1.310), p-value = 0.202]; 
homozygote comparison [CC vs. TT, OR = 1.364, 95% CI 
(0.614–3.032), p-value = 0.446]; and heterozygote com-
parison [CC vs. CT, OR = 1.228, 95% CI (0.561–2.691), 
p-value = 0.607]; for Belgian, allelic model [C allele vs. T 
allele, OR = 1.225, 95% CI (0.985–1.523), p-value = 0.069]; 
recessive model [CC vs. CT + TT, OR = 1.329, 95% CI 
(0.866–2.039), p-value = 0.193]; dominant model [CC + CT 
vs. TT, OR = 1.290, 95% CI (0.948–1.755), p-value = 0.105]; 
homozygote comparison [CC vs. TT, OR = 1.491, 95% CI 
(0.937–2.373), p-value = 0.092]; and heterozygote com-
parison [CC vs. CT, OR = 1.207, 95% CI (0.767–1.898), 
p-value = 0.416]; and for Polish, allelic model [C allele vs. T 
allele, OR = 0.841, 95% CI (0.656–1.080), p-value = 0.174]; 
recessive model [CC vs. CT + TT, OR = 0.775, 95% CI 
(0.465–1.292), p-value = 0.328]; dominant model [CC + CT 
vs. TT, OR = 0.810, 95% CI (0.575–1.141), p-value = 0.228]; 

Fig. 4  Forest plots of rs10260404 in DPP6 gene and risk of sALS under different genetic models utilizing random effect model
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homozygote comparison [CC vs. TT, OR = 0.707, 95% CI 
(0.410–1.220), p-value = 0.213]; and heterozygote com-
parison [CC vs. CT, OR = 0.840, 95% CI (0.490–1.441), 
p-value = 0.527] (Table 2).

Subgroup analyses performed by race/ethnicity

The scrutinized data for the DPP6 (rs10260404) poly-
morphism showed that there was no significant impact 
on the Asian population under different genetic models. 
Interestingly, the subgroup analyses among Caucasians 
demonstrated that the DPP6 (rs10260404) polymorphism 
was appreciably associated with increasing sALS risk in 
the allelic model [C allele vs. T allele, OR = 1.185, 95% 
CI (1.044–1.344), p-value = 0.009]; dominant model 
[CC + CT vs. TT, OR = 1.224, 95% CI (1.082–1.384), 
p-value = 0.010]; homozygote comparison [CC vs. TT, 
OR = 1.413, 95% CI (1.051–1.898), p-value = 0.022]. 
Moreover, the subgroup analysis results among Ameri-
cans suggested that the DPP6 (rs10260404) polymorphism 

had significant interference with increasing sALS risk in 
the allelic model [C allele vs. T allele, OR = 1.411, 95% 
CI (1.104–1.803), p-value = 0.006]; recessive model 
[CC vs. CT + TT, OR = 1.671, 95% CI (1.029–2.714), 
p-value = 0.038]; dominant model [CC + CT vs. TT, 
OR = 1.518, 95% CI (1.073–2.146), p-value = 0.018]; and 
homozygote comparison [CC vs. TT, OR = 2.006, 95% CI 
(1.186–3.392), p-value = 0.009] (Table 2).

Subgroup analyses performed based on sources of controls

The investigated data revealed an increased sALS risk 
among hospital-based studies under four genetic mod-
els. For hospital-based studies, the allelic model [C 
allele vs. T allele, OR = 1.199, 95% CI (1.059–1.357), 
p-value = 0.004]; recessive model [CC vs CT + TT, 
OR = 1.405, 95% CI (1.090–1.811), p-value = 0.009]; 
dominant model [CC + CT vs. TT, OR = 1.205, 95% 
CI (1.018–1.427), p-value = 0.030]; homozygote com-
parison [CC vs. TT, OR = 1.600, 95% CI (1.214–2.108), 

Fig. 5  Funnel plots by Log odds ratio of the meta-analysis on the association between DPP6 (rs10260404) polymorphism and sALS risk for the 
overall population. The plots under different genetic models show no evidence of significant publication bias



3238 Neurological Sciences (2024) 45:3225–3243

p-value = 0.001]. On the contrary, three models among 
population-based studies showed an increased sALS 
risk including the allelic model [C allele vs. T allele, 
OR = 1.156, 95% CI (1.014–1.318), p-value = 0.030]; 
dominant model [CC + CT vs. TT, OR = 1.165, 95% 
CI (1.021–1.331), p-value = 0.024]; homozygote com-
parison [CC vs. TT, OR = 1.436, 95% CI (1.039–1.985), 
p-value = 0.029] (Table 2).

Heterogeneity analysis

Between studies, there was significant heterogeneity noticed 
in terms of DPP6 (rs10260404) polymorphism for the over-
all sALS allelic model [C allele vs. T allele, Q-test = 39.009, 
p-value = 0.000, I2 = 66.674%]; recessive model [CC vs. 
CT + TT, Q-test = 34.798, p-value = 0.001, I2 = 62.641%]; 
dominant model [CC + CT vs. TT, Q-test = 26.351, 

Fig. 6  Trial sequential 
analysis for DPP6 (rs10260404) 
polymorphism under the allelic 
model and dominant model
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p-value = 0.015, I2 = 50.666%]; homozygote comparison 
[CC vs. TT, Q-test = 36.616, p-value = 0.000, I2 = 64.497%]; 
and heterozygote comparison [CC vs. CT, Q-test = 27.392, 
p-value = 0.011, I2 = 52.542%]. To identify the root of het-
erogeneity subgroup analyses by nationality, ethnicity and 
sources of controls were executed. In the subgroup investi-
gations, heterogeneity was appreciably reduced in terms of 
nationality. The findings also suggested that the studies in 
Chinese, Italian, Asian ethnicity Caucasian ethnicity, popu-
lation-based sources of controls, and hospital-based sources 
of controls were the main causes of heterogeneity (Table 2).

Publication bias

The probability of the presence of publication bias within 
the studies was examined by Begg’s funnel plots. The con-
figurations of these funnel plots exhibited a corroboration 
of uniformity and represented the lack of publication bias 
within overall pooled subjects under different genetics 
models (Fig. 5). Moreover, Egger’s linear regression test 
estimated no evidence of appreciable publication bias in 
the allelic model [C allele vs. T allele, p-value = 0.683], 
recessive model [CC vs. CT + TT, p-value = 0.329], domi-
nant model [CC + CT vs. TT, p-value = 0.918], homozygote 
comparison [CC vs. TT, p-value = 0.462], and heterozygote 
comparison [CC vs. CT, p-value = 0.200] (Table 2). Addi-
tionally, no evidence of publication bias was detected in 
the case of subgroup analyses of nationality, ethnicity, and 
sources of controls (Table 2). However, a clear publication 
bias was observed among population-based studies for the 
DPP6 (rs10260404) polymorphism under the heterozygote 
model [Egger’s regression: p = 0.073] (Table 2).

Trial sequential analysis (TSA)

TSA test showed that the available specimens was 17,192 
subjects under an allelic model and 8646 subjects under a 
dominant model for the DPP6 (rs10260404) polymorphism 
(Fig. 6). TSA test also exhibited that the “Z-curve” crossed 
the trial sequential supervising circumference before reach-
ing the required sample size, suggesting that the cumulative 
outcome was satisfactory and no further tests were required 
to certify the results.

False‑positive report probability

We executed FPRP to estimate whether associations 
described earlier were false positives. We specified FPRP at 
0.2 to define biological significance and a prior probability 
of 0.01 to identify the remarkable OR [42]. The odds ratio 
fixed at 1.5 to calculate statistical power and FPRP [43]. 
Fixation of OR at 1.5 is considered as a rational value to 
detect important biological effects [44, 45]. The association 

containing the FPRP value less than 0.2 was considered 
as significant [46]. According to the above discussion, the 
DPP6 (rs10260404) polymorphism remarkably increased 
the overall risk of sALS. Also, the DPP6 (rs10260404) poly-
morphism notably increased the risk of sALS in Caucasian 
and American patients. Additionally, the rs10260404 variant 
significantly increased sALS risk among Dutch, Irish, and 
Swedish patients (Table 3).

Discussion

We conducted a statistical meta-analysis study to evaluate 
the relation between DPP6 (rs10260404) polymorphism and 
the risk of sALS more precisely. A total of 14 case–control 
comparisons for DPP6 (rs10260404) polymorphism (4202 
sALS patients and 4444 healthy controls) were analyzed 
in this meta-analysis study. Surprisingly, a notable relation 
of DPP6 (rs10260404) polymorphism with the propen-
sity to sALS in overall pooled subjects was noticed among 
the allelic model (C allele vs. T allele), dominant model 
(CC + CT vs. TT), and homozygote comparison (CC vs. 
TT), which signifies that the C allele has significant asso-
ciation with the sALS. Moreover, stratification analysis 
revealed a sign of association of this variant with increas-
ing sALS risk among Dutch, Irish, American, and Swedish 
under allelic, dominant, and homozygote models, which 
reveals that the C allele is expressed significantly among 
Dutch, Irish, American, and Swedish. Stratification analy-
sis also indicated a remarkable relation of this variant with 
an increased sALS risk among Dutch and American under 
the recessive model (CC vs. CT + TT) although C allele is 
recessive. Additionally, stratification examination explicated 
a significant association with an increased sALS risk for 
DPP6 (rs10260404) polymorphism among the ethnicities of 
Caucasian and American under the allelic model, dominant 
model, and homozygote comparison, which reveals that the 
risk C allele expression is more prominent in Caucasians 
and Americans. Furthermore, stratification analysis in terms 
of sources of controls elucidated an association of DPP6 
(rs10260404) polymorphism with susceptibility to sALS 
among population-based and hospital-based studies under 
allelic, dominant, and homozygote models.

One study reported a positive association between DPP6 
(rs10260404) and sALS in the Italian population [5], while 
another study showed inconclusive findings in Italians [1] 
but the current updated meta-analysis study demonstrated 
no association of DPP6 (rs10260404) with sALS in Italian 
population under different genetic models, which illustrates 
that the C allele is not significantly expressed in Italians to 
generate sALS. Zhang et al. reported that the rs10260404 
in the DPP6 gene was significantly associated with sALS 
in the Han Ancestry from Mainland China (HACM) [3] 
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which was totally contraposition with other studies among 
Chinese [38–40]. However, our meta-analysis findings 
suggested no relation of DPP6 (rs10260404) variant with 
sporadic amyotrophic lateral sclerosis in the Chinese 
population under allelic, recessive, dominant, homozygote, 
and heterozygote models, which indicates that the risk 
C allele is not highly expressed in Chinese. Similarly, 
consistent with our outcome, one study exhibited that Polish 
populations were less susceptible to sALS for the DPP6 
(rs10260404) polymorphism due to the overrepresentation 
of the non-risk T allele.

van Es et  al. identified that variation in the DPP6 
(rs10260404) is highly related to sALS susceptibility in 

Caucasian populations [21]. Interestingly, our current 
meta-analysis study found DPP6 (rs10260404) polymor-
phism with an increased sALS risk in European descent. 
Perhaps the most unanticipated outcome from our updated 
meta-analysis is the lack of association between the DPP6 
(rs10260404) polymorphism and sALS risk in the Asian 
descent.

The aforementioned illustration represented an 
important suggestion that the DPP6 gene is a potential 
probable factor for the genesis of sALS. Now expression 
analysis is indispensable to explore the causation of the 
rs10260404 SNP in the DPP6 gene for the development 
of sALS. Network analysis or Mendelian randomization 

Table 3  Results of false-positive report probability (FPRP) analysis for remarkable findings

OR, odds ratio; CI, confidence interval
a Statistical power was computed utilizing the number of observations in each subgroup and the corresponding ORs and p values in this table
b The level of false-positive report probability threshold was set at 0.2 and significant findings are presented

Genotype and variables OR (95% CI) Statistical  powera Prior probability

0.25 0.1 0.01 0.001 0.0001 0.00001

rs10260404 and overall
  C vs. T 1.149 [1.010–1.307] 1.000 0.094b 0.238 0.774 0.972 0.997 1.000
  CC + CT vs. TT 1.165 [1.067–1.273] 1.000 0.002b 0.007b 0.068b 0.423 0.880 0.987
  CC vs. CT + TT 1.312 [0.929–1.852] 0.777 0.321 0.587 0.940 0.994 0.999 1.000
  CC vs. TT 1.421 [1.003–2.011] 0.620 0.186b 0.407 0.883 0.987 0.999 1.000
  CC vs. CT 1.238 [0.879–1.744] 0.864 0.435 0.698 0.962 0.996 1.000 1.000

rs10260404 and Caucasian
  C vs. T 1.185 [1.044–1.344] 1.000 0.024b 0.069b 0.449 0.892 0.988 0.999
  CC + CT vs. TT 1.224 [1.082–1.384] 0.999 0.004b 0.011b 0.111b 0.558 0.927 0.992
  CC vs. CT + TT 1.288 [0.983–1.687] 0.866 0.186b 0.407 0.883 0.987 0.999 1.000
  CC vs. TT 1.413 [1.051–1.898] 0.654 0.090b 0.230 0.766 0.971 0.997 1.000
  CC vs. CT 1.190 [0.921–1.538] 0.962 0.364 0.632 0.950 0.995 0.999 1.000

rs10260404 and American
  C vs. T 1.411 [1.104–1.803] 0.688 0.025b 0.072b 0.460 0.896 0.989 0.999
  CC + CT vs. TT 1.518 [1.073–2.146] 0.473 0.103b 0.256 0.791 0.975 0.997 1.000
  CC vs. CT + TT 1.671 [1.029–2.714] 0.331 0.256 0.508 0.919 0.991 0.999 1.000
  CC vs. TT 2.006 [1.186–3.392] 0.139 0.168b 0.378 0.870 0.985 0.999 1.000
  CC vs. CT 1.439 [0.862–2.402] 0.563 0.466 0.724 0.966 0.997 1.000 1.000

rs10260404 and Dutch
  C vs. T 1.290 [1.115–1.492] 0.979 0.002b 0.006b 0.057b 0.380 0.860 0.984
  CC + CT vs. TT 1.376 [1.114–1.699] 0.789 0.011b 0.033b 0.274 0.792 0.974 0.997
  CC vs. CT + TT 1.438 [1.091–1.895] 0.618 0.046b 0.126b 0.613 0.941 0.994 0.999
  CC vs. TT 1.664 [1.228–2.257] 0.252 0.012b 0.036b 0.294 0.807 0.977 0.998

rs10260404 and Irish
  C vs. T 1.336 [1.047–1.704] 0.825 0.067b 0.176b 0.702 0.960 0.996 1.000
  CC + CT vs. TT 1.419 [1.008–1.998] 0.625 0.178b 0.393 0.877 0.986 0.999 1.000
  CC vs. TT 1.801 [1.067–3.040] 0.247 0.251 0.502 0.917 0.991 0.999 1.000

rs10260404 and Swedish
  C vs. T 1.293 [1.068–1.566] 0.936 0.027b 0.076b 0.475 0.901 0.989 0.999
  CC + CT vs. TT 1.371 [1.049–1.790] 0.746 0.076b 0.197b 0.730 0.965 0.996 1.000
  CC vs. TT 1.672 [1.108–2.524] 0.303 0.125b 0.300 0.825 0.979 0.998 1.000
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procedure was used by some scientists to identify single or 
multiple disorders regulating genes or SNPs [47–53]. The 
identification of direct or indirect effect of the SNPs can be 
a potential biological marker to detect the disease-causing 
genes [54]. The cis-acting factors may play a significant 
role to develop the disease because SNPs alter the gene’s 
function by occurring within a gene or in a regulatory 
region. The trans-acting factors that occur in the remote 
regions of the disease-causing genes are thought as non-
causal risk factors for the generation of the disorders 
[55]. The SNPs remain unexpressed if it occurs within the 
noncoding areas or may alter the encoded amino acids if 
it occurs within the coding areas. The SNPs may develop 
genetic disorders by controlling promoter or enhancer 
functions, mRNA firmness, and subcellular locations of 
messenger RNAs and/or proteins. However, a functional 
disease prognostic model may be established by utilizing 
an appropriate machine learning approach if SNP records 
are available for sALS cases and controls. For instance, 
the SNP-based genetic disorder prognostic models were 
established by some earlier studies [56, 57].

The current meta-analysis experienced some constraints. 
First, this study assessed unadjusted estimation for the 
association of the DPP6 (rs10260404) variant with an 
increased sALS risk. The unadjusted estimation had been 
performed due to the lack of information relating to the 
adjusted estimation described by the published studies. 
Second, possible covariates bias was revealed within the 
qualified articles, including inadequate data relating to age, 
gender, alcohol consumption and smoking, ethnic history, 
family background, histopathological data, and dietary 
routines. Moreover, other subjects might associate between 
the DPP6 (rs10260404) polymorphism and the sensitivity 
to sALS involving gene–gene and gene-environmental 
communications. Finally, diverseness and publication bias 
were noticed in this meta-analysis study.

Conclusion

Results from this meta-analysis study illustrated precise 
evidence of association for rs10260404 polymorphism 
in DPP6 gene with increasing sALS risk based on 14 
case–control publications. The subgroup analyses by 
nationality exhibited a clear evidence of association 
between DPP6 (rs10260404) polymorphism and sALS 
risk among Dutch, Irish, American, and Swedish under 
different genetic models. Moreover, stratified analyses based 
on race showed a strong relation of DPP6 (rs10260404) 
variant with increasing sALS risk among Caucasians and 
Americans under allelic, dominant and homozygote models. 

Surprisingly, none of the comparisons demonstrated any 
particular association with Asians. In future, further work 
would be necessary to validate the findings and to disclose 
the etiopathogenesis of sALS.
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