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Abstract
Purpose  To compare the peripapillary retinal nerve fiber layer (pRNFL), retinal nerve fiber layer (RNFL), and ganglion 
cell complex (GCC) thickness measurement in early-onset Alzheimer’s disease (EOAD) and controls using spectral domain 
optical coherence tomography (SD-OCT). We also assessed the relationship between SD-OCT measurements and cognitive 
measures, serum biomarkers for Alzheimer’s disease (AD), and cerebral microstructural volume.
Methods  pRNFL, RNFL, and GCC thicknesses were measured in 43 EOAD and 42 controls using SD-OCT. Montreal 
Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE) were used to assess cognitive status, magnetic 
resonance imaging (MRI) tool was used to quantify cerebral microstructural volume, and serum biomarkers were quantified 
from peripheral blood.
Results  EOAD patients had thinner pRNFL (P < 0.001), RNFL (P = 0.008), and GCC (P = 0.018) thicknesses compared to 
controls after adjusting for multiple factors. pRNFL thickness correlated (P = 0.016) with serum t-tau level. Serum Aβ42 
(P < 0.05) concentration correlated with RNFL thickness. Importantly, occipital lobe volume (P = 0.010) correlated with 
GCC thicknesses in EOAD patients.
Conclusion  Our findings suggest that retinal thickness may be useful markers for assessing neurodegenerative process in 
EOAD.

Keywords  Early-onset Alzheimer’s disease · Retinal thickness · Optical coherence tomography · Serum biomarker · 
Cognition

Introduction

Early-onset Alzheimer’s disease (EOAD), defined as Alzhei-
mer’s disease (AD) occurring before age 65, is significantly less 
well studied than the late-onset form (LOAD). However, EOAD 
often presents with high genetic predisposition, greater neuro-
pathological burden, atypical clinical manifestations, and bad 
prognosis [1–4]. It may take a long time before EOAD is diag-
nosed, probably reflecting missed or delayed diagnosis or diffi-
culties in diagnosis [5]. Currently, the diagnosis of AD primarily 

Why carry out this study?   
1. The association of between retinal sublayer thickness and AD-
related typical blood-based biomarkers and quantitative brain 
volume measures is underexplored in EOAD patients.
2. Could retinal thickness reflect established AD-related markers 
changes in blood and neuroimaging?

What was learned from the study?   
1. Thickness of pRNFL correlated with serum t-tau level, 
serum Aβ42 concentration correlated with RNFL thickness, and 
occipital lobe volume correlated with GCC thicknesses in EOAD 
patients.
2. Thickness of pRNFL may be a useful marker for assessing 
serum t-tau level and GCC thickness may be a reflection of 
occipital lobe atrophy in EOAD.
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relies on the detection of amyloid β (Aβ) and tau levels in cer-
ebrospinal fluid (CSF), as well as the identification of elevated 
depositions of Aβ and tau proteins in the cortex through positron 
emission tomography (PET). Although these clinical examina-
tions have improved clinical diagnostic accuracy of AD, these 
modalities are invasive, time-consuming, and expensive. There-
fore, it is urgent to develop a non-invasive, widely accessible, 
and cost-effective marker for the diagnosis of AD.

The cortex and the retina share many characteristics, 
including embryologic origin, precise neuronal cell layers, 
and microvasculature [6, 7]. Remarkably, the hallmark bio-
markers of AD—amyloid beta (Aβ) plaques, and neurofibril-
lary tangles (NFTs) composed of the protein tau—have been 
identified in the retina of individuals with AD [8, 9]. Recently, 
optical coherence tomography (OCT) technology allows us 
to image and visualize retinal sub-layer structures in vivo 
with high resolution. Due to the benefits of retinal imaging, 
accumulating reports [10–14] focused on the identification, 
development, and validation of diagnostic and prognostic reti-
nal biomarkers for Alzheimer’s disease. However, findings 
of retinal thickness in AD have been inconsistent [7, 15–17]. 
Moreover, the exploration of retinal thickness in EOAD has 
been notably scarce, with conflicting results [18] further com-
plicating the current state of research. Additionally, although 
some reports have indicated a correlation between retinal thin-
ning and cerebral cortical atrophy in EOAD evaluated using 
visual assessment scales [18], few studies have explored the 
relationship between retinal thickness and MRI-based quanti-
fication of cerebral microstructural volume in EOAD.

Recent studies [19, 20] suggest blood-based biomarkers 
of AD provide satisfactory performance in the diagnosis 
and prediction of disease progression and correlated well 
with cerebral pathological burden of AD. Studies [21, 22] 
suggested Aβ42/Aβ40 ratio in blood has shown satisfac-
tory accuracies to detect AD from control. Phosphorylated 
tau (p-tau) 181 has also shown excellent diagnostic perfor-
mances to detect and differentiate AD from other neurode-
generative diseases [23]. A previous study revealed retinal 
thickness correlated with tau and Aβ42 levels in CSF [24]. 
Nevertheless, the connection between retinal thickness and 
blood-based biomarkers even remains unknown.

Our study aims to address these gaps by examining reti-
nal structural changes in EOAD patients and exploring the 
relationship between retinal structural thickness and cerebral 
microstructural volume and commonly used blood-based 
biomarkers in EOAD.

Methods

This observational, cross-sectional study was conducted 
as part of an ongoing prospective study that recruits AD 
patients from the Neurology Department of West China 

Hospital, Sichuan University. The study was approved by the 
Biomedical Research Ethics Committee and the Committee 
on Human Research of West China Hospital, Sichuan Uni-
versity (Ethics Number: 2020–104) and followed the Dec-
laration of Helsinki. Informed consent was obtained from 
participants or their guardians.

Sixty-eight patients diagnosed with EOAD were enrolled 
according to a prospective screening protocol from the Mem-
ory and Aging Unit of the Neurology Department between 
May 2020 and June 2021. Diagnosis of EOAD fulfilled the 
NIA-AA criteria [25]. Inclusion criteria were as follows: (1) 
provide informed consent and (2) ability to cooperate and 
complete MR imaging, OCT imaging, blood draw, and neu-
ropsychological assessment. Controls were individuals who 
had their annual health checkups at our hospital and con-
sented to enroll in the study. These individuals were matched 
in age with the EOAD group and did not exhibit impairment 
in any of the cognitive domains during the cognitive assess-
ment. Exclusion criteria for all participants are psychiatric or 
neurological disorders (stroke, Parkinson’s disease, multiple 
sclerosis, autoimmune encephalitis, drug addiction, depres-
sion, and schizophrenia) and severe systemic disease such 
as heart failure and renal insufficiency.

All participants received the Mini-Mental State Examina-
tion (MMSE) and Montreal Cognitive Assessment (MoCA), 
which are brief dementia screening examinations with a total 
score of 30 and a higher score indicating better cognition. 
Medical histories including cardiovascular risk factors such 
as smoking status, previous stroke, hypertension, and dia-
betes mellitus and currently prescribed medications were 
recorded.

Blood samples were procured from the peripheral blood 
of individuals and examined at the West China Hospital of 
Sichuan University [26]. Serum Aβ40, serum Aβ42, and 
serum total tau (t-tau) were analyzed using Quanterix Simoa 
Human Neurology 3-Plex E essays, and p-tau 181 was meas-
ured using Quanterix Simoa p-tau 181 of the human tau 
protein. Assays were done using Simoa-HD1 according to 
the manufacturer’s manual as previously reported [26]. All 
samples were analyzed at the same time.

All participants underwent magnetic resonance imag-
ing (MRI) as previously reported [27]. Briefly, MRI was 
performed on a 3-T magnetic resonance (MR) system 
(Magnetom Trio, Siemens Medical Systems, Erlangen, 
Germany). The scanning protocol was as follows: (i) whole-
brain 3 D-T1 BRAVO sequence (TR/TE 8.5/3.2 ms; prep 
time 450 ms, flip angle 12°, voxel size 1.0 × 1.0 × 1.0 mm); 
(ii) T2 FLAIR (TR/TE/TI 9,000/95/2,474 ms; voxel size 
0.93 × 0.93 × 5.0 mm; gap 1 mm); (iii) T2 propeller (TR/
TE 5,039/110 ms; voxel size 0.58 × 0.58 × 5.0 mm; gap 
1 mm); and (iv) 3D-ASL (TR/TE 4,809/10.7 ms; slice thick-
ness 4 mm; post-label delay 2,024 ms; arms 8; number of 
excitation 3); during resting state, subjects were told not 
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to concentrate on any particular subject, but just to relax 
with their eyes closed. The complete scanning protocol 
took 20 min. Automated brain volumetry analyses were per-
formed for all the included subjects with AccuBrain® on 3D 
T1-weighted (T1W) MRI scans. In detail, given the T1W 
MRI data, several brain structures and three major brain tis-
sues are segmented automatically based on prior anatomi-
cal knowledge specified by experienced radiologists. The 
anatomical information is automatically transformed into 
the individual brain. Then, the volume of the frontal lobe, 
temporal lobe, parietal lobe, and occipital lobe were auto-
matically generated by the AccuBrain™ brain structure tool.

All participants underwent complete ophthalmic evaluation: 
a slit-lamp examination of the anterior chamber of the eye and 
optic nerve head (ONH) and fundus imaging using fundus pho-
tography. Photographs of the ONH were evaluated by an ophthal-
mologist (Dr. Ruilin Wang), and patients with ophthalmic dis-
orders such as exudates, retinal hemorrhages, microaneurysms, 
cotton wool spots, and blurred optic discs were excluded.

Retinal structural imaging with the OCT tool

The imaging was performed using an Avanti RTVue-XR 
OCT device (Optovue, Fremont, California, USA; software 
version 2017.1.0.151). The OCT device had an axial speed 
of 100 kHz and an 840-nm wavelength with a tuning range 
of 100 nm. The image resolution was 5.3 mm axially and 
18 mm laterally with a scan speed of 70,000 A-scans per 
second. The peripapillary retinal nerve fiber layer (pRNFL) 
was obtained using the optic nerve head (ONH) map proto-
col, which covered 3.45 mm around the optic disc (Fig. 1). 
RNFL thickness was recorded from the ONH report, and 

the protocol involved obtaining a disc cube scan consisting 
of 128 B-scans of a 6 × 6 mm area centered on the optic 
nerve head. The built-in software was used to obtain a top-
ographical map of the ONH and measure the nerve fiber 
layer thickness. The ganglion cell complex (GCC) thick-
ness was obtained using the GCC scanning protocol, gener-
ated through scans centered 1 mm temporal to the fovea and 
covering a square grid on the central macula (7 × 7 mm) as 
shown in Fig. 1. The mean pRNFL, RNFL, and GCC thick-
nesses generated by the OCT device were used in the study, 
with the mean values of the OCT parameters representing 
the average values of the four quadrants. OCT data displayed 
in our study followed the OSCAR-IB quality criteria [28] 
and APOSTEL recommendation [29]. Exclusion criteria 
were as follows: retinal hemorrhage, retinal occlusion, a 
history of retinal surgery, age-macular degeneration, severe 
cataract, optic neuritis, diabetic retinopathy, and glaucoma. 
If a participant presented with any of these disorders in one 
eye, the other eye was used; if both eyes had the disorders, 
the participant was excluded from the study.

Statistical analysis

The normality of continuous variables was assessed using 
the Shapiro–Wilk test. For normally distributed variables, 
means ± standard deviation was reported, while skewed 
distributions were described using medians and inter-
quartile ranges. Categorical variables were presented 
as frequencies and percentages. Demographic and clini-
cal characteristic differences, as well as disparities in 
blood biomarkers and volume parameters between the 
EOAD and controls, were analyzed using the t-test and 

Fig. 1   Differences of retinal pRNFL and RNFL thickness between EOAD patient and control. pRNFL peripapillary retinal nerve fiber layer, 
RNFL retinal nerve fiber layer
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Mann–Whitney U test for continuous variables and the 
chi-square test for categorical variables. Linear regres-
sion with generalized estimating equation (GEE) was 
employed to investigate differences in retinal structure 
thicknesses (pRNFL, RNFL, and GCC) between EOAD 
and controls. This analysis was adjusted for age, gender, 
education, vascular risk factors (hypertension, diabetes 
mellitus), and inter-eye dependencies. GEE was also uti-
lized to explore the associations between OCT param-
eters, blood serum biomarkers, and cognitive measures, 
adjusting for potential confounding factors such as age, 
gender, education, hypertension, diabetes mellitus, and 
inter-eye dependencies. Additionally, GEE was applied to 
assess the association between OCT parameters and cer-
ebral microstructural volume while adjusting for potential 
confounders, including age, gender, TMV, hypertension, 
diabetes mellitus, and inter-eye dependencies. All statis-
tical analyses were conducted using R version 4.2.1 and 
R Studio version 2022.06.0. Statistical significance was 
defined as P values less than 0.05 (P < 0.05).

Results

Figure 2 shows the flow chart of our study. Our final data 
analysis included 43 EOAD (59.77 ± 6.93 years; 48.84% 
males) and 42 controls (57.95 ± 6.86 years; 52.38% males).

Table 1 shows the demographics and clinical information 
of our study participants. EOAD patients showed reduced 
cerebral microstructural volume, increased serum biomark-
ers concentrations, and lower cognitive scores compared 
to controls. Moreover, EOAD patients had thinner pRNFL 
(P < 0.001), RNFL (P = 0.008), and GCC thicknesses 
(P = 0.018) compared to controls.

Table  2 shows the association of structural retinal 
parameters with cognitive scores and AD-related serum 
biomarkers in EOAD patients. pRNFL thicknesses cor-
related (P = 0.016) with serum t-tau level, while RNFL 
thickness correlated (P = 0.048) with serum Aβ42 level. 
After adjusting for multiple comparisons, the associa-
tion remained significant. However, no significant cor-
relation was seen between structural retinal parameters 

Fig. 2   Flow chart illustrating the process of inclusion and exclusion of our study participants
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(pRNFL, RNFL, and GCC) and cognitive scores (MMSE 
and MoCA).

Table 3 shows the association of cerebral volumetric meas-
ures and OCT structural retinal parameters in EOAD patients. 

GCC thickness correlated with occipital lobe volume (P = 0.010) 
in EOAD patients after adjusting for potential confounding fac-
tors. No significant correlation (P > 0.05) was seen between 
pRNFL, RNFL thickness, and cerebral volumetric parameters.

Table 1   Demographics and 
clinical information of EOAD 
and controls

MMSE Mini-Mental State Examination, MoCA Montreal Cognitive Assessment, GMV gray matter vol-
ume, WMV white matter volume, TMV total volume of brain parenchyma without cerebrospinal fluid, 
pRNFL peripapillary retinal nerve fiber layer, RNFL retinal nerve fiber layer, GCC​ ganglion cell complex. 
*Adjusted for age, gender, education, hypertension, diabetes mellitus. †Adjusted for age, gender, education, 
hypertension, diabetes mellitus, and inter-eye dependencies

EOAD Controls P

    Number, n 43 42
    Age, years 59.77 ± 6.93 57.95 ± 6.86 0.229

 Gender, males, % 21(48.84) 22(52.38) 0.913
 Education, years 9(9–12) 9(6–12) 0.421

Hypertension, n 3(6.98%) 2(4.76%) 1
    Diabetes, n 0 0
  MMSE score 16(11–20) 29(28–30)  < 0.001*
  MoCA score 8(6–14) 28(26–29)  < 0.001*
    GMV, cm3 565.75 ± 55.25 615.03 ± 43.82  < 0.001*
    TMV, cm3 1040.99 ± 92.02 1115.06 ± 89.16  < 0.001*
    WMV, cm3 475.24 ± 47.53 500.03 ± 49.36 0.025*

Hippocampus, cm3 5.66 ± 0.91 6.67 ± 0.92  < 0.001*
Frontal lobe, cm3 88.49 ± 13.13 159.34 ± 16.30  < 0.001*
Occipital lobe, cm3 53.71 ± 6.91 66.78 ± 7.42  < 0.001*
Temporal lobe, cm3 39.46 ± 4.93 102.19 ± 10.73  < 0.001*
Parietal lobe, cm3 48.31 ± 7.66 78.50 ± 8.34  < 0.001*

    t-tau, pg/mL 0.75(0.52–1.17) 0.60(0.33–0.78) 0.001*
    Aβ42, pg/mL 8.21(6.32–16.48) 2(0.61–5.72) 0.002*
    Aβ40, pg/mL 179.66(28.16–136.94) 41.03(21.08–71.64)  < 0.001*
    Aβ42/Aβ40 0.07(0.06–0.14) 0.07(0.03–0.10) 0.018*

p-tau181, pg/mL 2(1.53–3.29) 0.42(0.29–0.60)  < 0.001*
    pRNFL, μm 110.56 ± 9.76 120.89 ± 11.21  < 0.001†

     RNFL, μm 101.19 ± 7.37 105.24 ± 7.91 0.008†

      GCC, μm 96.81 ± 5.85 99.96 ± 7.50 0.018†

Table 2   Correlation between 
retinal thickness, cognition, and 
serum biomarkers in EOAD

MMSE Mini-Mental State Examination, MoCA Montreal Cognitive Assessment, GMV gray matter volume, 
WMV white matter volume, TMV total volume of brain parenchyma without cerebrospinal fluid, pRNFL 
peripapillary retinal nerve fiber layer; RNFL retinal nerve fiber layer; GCC​ ganglion cell complex. B beta 
coefficient; SE standard error. P value was adjusted for age, gender, education, hypertension, and diabetes 
mellitus

pRNFL, μm RNFL, μm GCC, μm

B SE P value B SE P value B SE P value

MMSE 0.102 0.225 0.651 0.037 0.173 0.832  − 0.049 0.130 0.706
MoCA  − 0.233 0.226 0.306  − 0.175 0.175 0.321  − 0.181 0.130 0.167
t-tau, pg/mL  − 5.308 2.148 0.016*  − 1.973 1.620 0.228  − 0.718 1.301 0.583
Aβ42, pg/mL 0.048 0.024 0.052 0.037 0.018 0.048* 0.024 0.015 0.113
Aβ40, pg/mL  − 0.024 0.018 0.177  − 0.023 0.013 0.075  − 0.012 0.010 0.220
Aβ42/Aβ40 0.234 0.150 0.124 0.204 0.114 0.079 0.064 0.092 0.487
p-tau181, pg/mL 0.211 0.617 0.734 0.086 0.443 0.848 0.075 0.373 0.841
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Discussion

In this study, EOAD patients displayed notable reductions 
in the pRNFL, RNFL, and GCC thickness, when compared 
to the control group. Notably, a negative association was 
identified between pRNFL thickness in EOAD patients and 
serum total tau levels, while RNFL thickness exhibited a 
positive correlation with serum Aβ42 levels. Furthermore, 
our study uncovered a correlation between occipital lobe 
volume and GCC thickness in EOAD patients.

While prior research has identified thinning retinal thick-
ness in AD or LOAD [6, 8, 17], the retinal thickness changes 
associated with EOAD remain underexplored. Several stud-
ies with small sample sizes [18, 30, 31] have reported that 
retinal thickness did not exhibit significant differences 
between individuals with EOAD and controls. In contrast, 
our study has revealed that EOAD patients manifest thinner 
pRNFL, RNFL, and GCC thicknesses compared to controls. 
It is suggested that structural changes in the retinal structure 
may reflect neurodegenerative and microvascular changes 
within the brain, as observed in postmortem pathology of 
dementia and/or AD [8, 32]. These measurements of retinal 
structure thickness serve as markers for the integrity of reti-
nal cells and axons, with thinner retinal thickness indicat-
ing the loss of neuroaxonal and neuronal components of the 
retina [33]. Consequently, we propose that thinner retinal 
thickness observed in EOAD patients may mirror the ongo-
ing neurodegenerative processes within the brain during the 
progression of the EOAD.

We first discovered pRNFL thickness was negatively cor-
related with serum t-tau levels, while RNFL thickness was 
positively correlated with serum Aβ42 concentrations. A 
previous study from Santangelo et al. [24] reported RNFL 
thickness was correlated with CSF tau and Aβ42 concen-
trations providing robust support for our findings. Autopsy 
study [32, 34] revealed that AD patients with substantial 
brain amyloid plaque deposition also exhibited amyloid pro-
tein deposits in the retina. Previous study [32] further rein-
forced this observation by demonstrating a higher amyloid 

burden in the brain may be associated with a higher one in 
retina. Notably, lower concentrations of serum Aβ42 and 
elevated serum t-tau levels were identified as indicators 
of increased brain amyloid protein deposition and neuro-
degeneration resulting from amyloid protein accumulation 
[35], respectively. Our investigation revealed reduced Aβ42 
concentrations and elevated serum t-tau levels were asso-
ciated with the thinning of the retinal nerve fiber layer in 
the optic disc region. Consequently, we contend that RNFL 
thickness in the optic disc holds the potential to emerge as a 
non-invasive, cost-effective, and easily accessible biomarker 
for both diagnosing and monitoring disease progression of 
EOAD on a large scale in the future.

In our study, we observed EOAD patients exhibited 
reduced cerebral volumetric measures compared to controls, 
consistent with previous reports [36, 37]. Noteworthy find-
ings from other studies have highlighted alterations in retinal 
nerve fiber layer (RNFL) and retinal ganglion cells (RGC) in 
occipital lobe stroke patients [38], significant loss of optic 
radiation fibers, and damage to the visual cortex in glaucoma 
and optic neuritis patients [39, 40]. These studies indicate a 
plausible link between the retina and the visual cortex, pro-
posing trans-synaptic degeneration as the underlying mecha-
nism driving this association within the visual pathway [39]. 
However, our current study revealed a negative correlation 
between GCC thickness and occipital lobe volume in EOAD 
patients. Similarly, other studies have demonstrated a posi-
tive association between degree of brain amyloid positivity 
and total retinal thickness in cognitively healthy people [41]. 
Given the known roles of the occipital lobe and GCC in 
visual processing and vision, our findings may offer insights 
into the mechanisms underlying visual symptoms in EOAD 
patients. The progression of Alzheimer’s disease is marked 
by increasing cerebral atrophy and brain amyloid burden. 
However, the longitudinal trends of GCC thickness through-
out the course of AD remain unclear. Based on our results, 
we speculate that thicker GCC thickness may be related to 
more severe cerebral atrophy and advanced stages of AD. 
The GCC represents the three innermost retinal layers, 

Table 3   Correlation between 
cerebral lobe volume, and 
retinal thickness in EOAD

GMV gray matter volume, WMV white matter volume. B beta coefficient; SE standard error. P value was 
adjusted for age, gender, TMV, hypertension, and diabetes mellitus

pRNFL, μm RNFL, μm GCC, μm

(cm3) B SE P value B SE P value B SE P value
GMV 0.042 0.051 0.413 0.016 0.040 0.686 0.022 0.030 0.461
WMV  − 0.042 0.051 0.413  − 0.016 0.040 0.686  − 0.022 0.030 0.461
Hippocampus 2.927 2.202 0.189 2.576 1.589 0.111 0.424 1.386 0.761
Frontal lobe  − 0.236 0.120 0.054  − 0.054 0.094 0.572  − 0.128 0.071 0.073
Occipital lobe  − 0.231 0.204 0.263  − 0.124 0.158 0.435  − 0.305 0.115 0.010*
Temporal lobe 0.223 0.317 0.485  − 0.131 0.242 0.591  − 0.104 0.186 0.576
Parietal lobe  − 0.166 0.237 0.486  − 0.085 0.183 0.646 0.097 0.142 0.496
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encompassing the nerve fiber layer, the ganglion cell layer 
(GCL), and the inner plexiform layer (IPL). The IPL, being 
more susceptible to amyloid deposition compared to other 
retinal layers, is predominantly composed of capillaries 
[41]. This association may be attributed to retinal vascular 
abnormalities and neovascularization, previously shown to 
be associated with brain amyloid load [42]. Additionally, in 
response to injury, increased inflammation and activation of 
Müller cells in the retina were observed in mice [43]. Our 
findings emphasize the retinal thickness may be a useful 
biomarker to monitor the progression of EOAD.

Our study did not reveal a significant correlation between 
retinal thickness (pRNFL, RNFL, and GCC) and MMSE and 
MoCA scores among EOAD patients. While prior studies 
have suggested a link between retinal thickness and cogni-
tive performance in AD and older people [16, 24, 44–46], 
our findings align with the finding of Jurre den Haan et al. 
[15], who also reported no correlation between retinal thick-
ness and MMSE score in EOAD. The potential factors con-
tributing to conflicting results encompass participant hetero-
geneity, an overrepresentation of positive studies, variations 
in diagnostic criteria, and the diverse stages of the disease. 
To resolve these discrepancies, there is a pressing need 
for large-scale, standardized, and well-phenotyped EOAD 
cohorts with confirmed amyloid pathology to further eluci-
date the relationship between retinal structure and cognitive 
performance in EOAD.

Strength of study

This study focuses on EOAD, a distinctive form of AD with 
challenges in early diagnosis and a generally unfavorable 
prognosis. Notably, the mean age of EOAD is lower com-
pared to those with LOAD dementia, diminishing the influ-
ence of aging—an important factor in AD. To ensure the 
accuracy of our findings, a certified ophthalmologist was 
engaged to systematically exclude participants with oph-
thalmic diseases, thereby mitigating potential confounding 
variables. Significantly, this research represents the inaugu-
ral exploration of the correlation between retinal thickness 
and blood biomarkers in EOAD. The outcomes may furnish 
additional evidence affirming the pivotal role of retinal bio-
markers in enhancing the diagnostic capabilities for EOAD.

Limitation

First, the limitation of this study is its small number of 
patients and its cross-sectional design. To further assess 
the evolving characteristics of retinal structure and its rela-
tionship with Alzheimer’s disease pathological markers, 

a larger and longitudinal cohort is needed. Second, future 
studies ought to incorporate the results of amyloid β and 
tau protein PET. Finally, individuals with ophthalmic or neu-
rological conditions were excluded from our study, poten-
tially introducing selection bias and leading to an underes-
timation of the effect sizes.

Conclusion

In EOAD, we found peripapillary retinal nerve fiber layer 
thickness and retinal nerve fiber layer thickness correlated 
with serum t-tau and Aβ42 level respectively. Additionally, 
ganglion cell complex thickness associated with occipital 
lobe atrophy in EOAD. Taken together, these findings indi-
cate that retinal imaging holds promise as a non-invasive, 
widely accessible, and cost-effective diagnostic tool for 
EOAD.
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