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Abstract
Epilepsy is a chronic brain disease with a global prevalence of 70 million people. According to the World Health Organi-
zation, roughly 5 million new cases are diagnosed every year. Anti-seizure drugs are the treatment of choice. However, in 
roughly one third of the patients, these drugs fail to produce the desired effect. As a result, finding novel treatments for 
epilepsy becomes inevitable. Recently, angiotensin receptor blockers have been proposed as a treatment to reduce the over-
excitation of neurons in epilepsy. For this purpose, we conducted a review using Medline/PubMed and Google Scholar using 
the relevant search terms and extracted the relevant data in a table. Our review suggests that this novel approach has a very 
high potential to treat epilepsy, especially in those patients who fail to respond to conventional treatment options. However, 
more extensive and human-based trials should be conducted to reach a decisive conclusion. Nevertheless, the use of ARBs 
in patients with epilepsy should be carefully monitored keeping the adverse effects in mind.
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Introduction

Epilepsy is one of the most common chronic brain diseases, 
with a prevalence of about 1–2% across the globe. Globally, 
70 million people are estimated to have epilepsy, and accord-
ing to the World Health Organization, 5 million new cases 
are diagnosed yearly [1–3]. It occurs due to disruption of the 
regular electrical activity in the brain and is characterized 
by recurrent seizures—which are sudden, short-lived, exces-
sive, and result due to rapid firing of the neurons leading to 
transient alterations of brain function such as rhythmic mus-
cular contractions, loss of tone, and loss of consciousness 
[4]. While a seizure is a single event of transitory signs and 

symptoms, it is usually termed epilepsy only when multiple 
seizures occur [3]. The epileptic seizures can be classified 
based on their appearance and the part of the cerebral cortex 
involved and can be focal or generalized in onset [5].

The diagnostic criteria for epilepsy include two or more 
unprovoked seizures 24 h apart, complete recovery between 
the two episodes, a single unprovoked seizure with a greater 
than 60% risk of another attack in the next 10 years, or those 
with epilepsy syndrome [3]. It is investigated using a diverse 
spectrum of investigations, including electroencephalogram 
(EEG), CT scan/MRI of the brain, intensive monitoring, 
genetic testing, and biochemical markers such as brain pro-
teins like S100B or neuronal specific enolase, and neuroin-
flammatory proteins[6–8]. Epilepsy is considered a benign 
condition; in most cases, treatment is effective without any 
significant complications. Generally, the prognosis depends 
upon multiple factors such as the cause, type, and number 
of seizures; EEG abnormalities; early response to treatment; 
and other neurological symptoms [9].

The initial approach to managing epilepsy is using anti-
seizure medications (ASMs). There are over 20 types of anti-
seizure drugs available for use in various types of epilepsy 
syndromes with the aim to attain seizure freedom in about 
two-thirds of the patients [10, 11]. These drugs can be clas-
sified into narrow-spectrum and broad-spectrum agents and 
include the traditional phenytoin, phenobarbital, primidone, 
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carbamazepine, valproic acid, and ethosuximide. The nar-
row-spectrum agents work only for certain types of seizures 
and worsen the prognosis for absence and myoclonic sei-
zures, whereas broad-spectrum agents have better efficacy. 
The older agents have more adverse effects including fatigue, 
gastrointestinal symptoms, cognitive dysfunction, and mood 
changes. The choice of drug depends upon the type of sei-
zure, the etiology, tolerance, and response in the patient, 
and the impact of side effects compared with the therapeu-
tic effect [7]. Other treatment options include resection sur-
gery, neuromodulation therapies such as deep brain stimu-
lation (DBS) and vagus nerve stimulation (VNS), precision 
medicine, gene therapy, stem cell therapy, and anti-seizure 
devices for neurostimulation. However, these modalities 
have benefitted very few individuals and are associated with 
severe and life-threatening adverse events [12, 13]. There is 
a need to search for novel drugs and therapeutic approaches 
because the current modalities fail to work in a staggering 
one third of patients with epilepsy who are forced to try 
unconventional procedures to find a cure for their condition 
[11]. Apart from the patients with drug-resistant epilepsy 
(DRE) suffer from premature death, poor quality of life, and 
psychosocial disturbances, and for them, the development of 
new drugs is of utmost importance.

Recently, angiotensin receptor blockers (ARBs) have 
emerged as a potential drug in preclinical studies to 
decrease the overfiring of the neurons. These agents alter 
the renin–angiotensin–aldosterone system (RAAS), influ-
encing the brain’s physiology and pathology. Furthermore, 
a genetic link between RAAS and epilepsy has also been 
established [14]. In a study conducted by Corina et al., 
involving 168,612 hypertensive patients treated with differ-
ent drug therapies, and among 42,153 patients who received 
ARB therapy, there was a significant reduction in the inci-
dence of epilepsy which highlights that fact that ARBs can 
be considered a novel approach in its therapeutic plan [15].

Methods

The relevant articles for this review were searched on Med-
line/PubMed and Google Scholar. Our search string com-
prised of “Angiotensin Receptor Blockers,” “ARBS,” “Epi-
lepsy,” “Seizures,” and “Recurrent Seizures.” Articles in any 
language other than English were excluded. The final list of 
articles was generated based on relevance to our topic.

Mechanism of action of angiotensin receptor 
blockers

Angiotensin receptor blockers are widely used in treating 
hypertension. As the name indicates, they block the angio-
tensin II type 1 (AT1) receptors and prevent angiotensin II 

from binding to it. In doing this, ARBs disrupt the RAAS, 
which contributes to the body’s fluid and electrolyte bal-
ance [16]. The juxtaglomerular apparatus in the distal con-
voluted tubule detects a decrease in renal blood flow which 
triggers the secretion of the enzyme renin from the kidney 
that acts on angiotensinogen released by the liver to produce 
angiotensin I (Ang I), which is then converted to angiotensin 
II (Ang II) by the angiotensin-converting enzyme (ACE). 
Angiotensin II has multiple effects ranging from vaso-
constriction to an increase in sympathetic activity and the 
release of aldosterone [17].

Even though the exact way these agents affect the brain is 
not known, they are now becoming famous for their neuro-
protective actions [18]. Various studies have now established 
that Ang II is also a pro-inflammatory, proliferative, and 
pro-fibrotic agent that mediates the release of cytokines; pro-
motes reactive oxygen species (ROS) production, apoptosis, 
cell growth migration, and differentiation; regulates gene 
expression and various intracellular signaling pathways; 
activates NFκB; and increases oxidative stress, etc.—mecha-
nisms that can precipitate tissue injury [19].

While RAAS is majorly a peripherally acting system, all 
components have been found to have an impact on the brain, 
where they actively regulate several mechanisms, including 
exploratory behavior, stress, anxiety, learning, and memory 
acquisition [20]. Hence, Ang II is also considered a signifi-
cant neurotransmitter because of its action on AT1 and AT2 
receptors found in various brain regions [21]. A study from 
2016 also discusses the presence of AT4 apart from AT1 
and AT2 receptors in different areas of the brain, e.g., the 
area postrema, amygdala, caudate putamen, cerebellum, cor-
tex, globus pallidus, hippocampus, lateral and medial septal 
areas, mesencephalon, and thalamus [22].

As depicted in Fig. 1, ARBs have been shown to improve 
cerebral blood flow, reduce cerebral hemorrhage, main-
tain the function of the blood–brain barrier, ameliorate the 
inflammatory effects, and protect neurons from apoptosis. 
By acting as a barrier between the AT1 receptor and angio-
tensin II, ARBS prevents damage to the brain and exerts a 

Neuroprotective
effects of Angiotensin

Receptor Blockers
(ARBs)

Improves cerebral blood flow

Anti inflammatory action

Reduces fibrosis and apoptosis

Maintains blood brain barrier

Decreases oxidative stress

Fig. 1  Neuroprotective effects of Angiotensin Receptor Blockers
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therapeutic effect that warrants their use in many brain disor-
ders, including epilepsy [23, 24]. These drugs also influence 
the release of certain neurotransmitters; for example, they 
suppress the secretion of glutamate in response to oxygen-
glucose depletion and reduce the production of nitric oxide 
and reactive oxygen species, which can cause harm to brain 
tissue [25]. Alpha-synuclein, a protein that accumulates and 
manifests in degenerative disorders like Parkinson’s, also 
works through the AT1 receptor, increasing its expression 
multifold. The use of ARBs in such conditions shields the 
dopaminergic neurons from the harmful effects of the pro-
inflammatory cytokines TNF, IL-6, IL-1B, etc. [26].

Angiotensin system and epilepsy

Inevitably, RAAS would have a pathophysiological role in 
numerous neurodegenerative disorders as has been discov-
ered in Alzheimer’s, Parkinson’s [27], and Huntington’s [28] 
diseases. One of the recently established disorders display-
ing a role of RAAS is epilepsy, on which extensive clinical 
trials have been conducted over the last decade. Currently, 
data on the parts played by brain RAAS components on 
comorbid conditions in epilepsy is inadequate. Usually, the 
brain maintains a balance between excitation and inhibi-
tion—remaining receptive to stimuli as well as resistant to 
uncontrolled unsolicited activity—via γ-aminobutyric acid 
(GABA) and glycine as the primary inhibitory neurotrans-
mitters and glutamate as the main stimulatory transmitter. 
The upset of this narrowly regulated balance predisposes 
to dysfunctional neural action potential transmission and 
seizures resulting from high neuronal excitability. Over the 
last few years, scientists have collected growing evidence of 
upregulated levels of Ang II peptides, ACE molecules, Ang 
II receptors, and mRNA expression in limbic regions of the 
brain, creating a lower threshold for seizures, e.g., in the hip-
pocampus of both genetic rat models [29] and those with an 
acquired temporal lobe epilepsy induced by pilocarpine [30], 
as well as human patients with temporal lobe epilepsies [31].

Further research has discovered that Ang II has a dual 
effect on predisposition to seizures, depending upon the lev-
els present in brain RAAS. At physiological levels, in acute 
seizure tests and naive subjects of the experiment, Ang II, 
Ang III, and Ang IV displayed anticonvulsant activity [32]. 
Particularly, Ang II and AT1 receptors alleviated seizure 
susceptibility [29, 33, 34]. However, chronic administra-
tion of intracerebroventricular Ang II in status epilepticus 
rats decreased the latent state. It increased the frequency 
of seizures [32], reiterating that increased levels of RAAS 
components cause a lower threshold of seizure vulnerability.

With Ang II as the major active peptide of RAAS medi-
ating numerous mechanisms, it is crucial to understand its 
role in nervous action potential transmission. Interestingly, 
Ang II has been discovered to have a dual effect in terms 

of neuronal excitability, depending on the type of recep-
tor it will activate. While AT1 is excitatory in nature, AT2 
is inhibitory, as reviewed in [35–37]. A study from 2019 
[38] explains the pathological role of RAAS in epilepsy 
as hyperactivating AT1 and ACE signaling in neuronal 
cells, e.g., astrocytes, oligodendrocytes, and microglia via 
its pro-inflammatory properties and blood–brain barrier 
dysfunction.

While anticonvulsants are the mainstay of therapy, they 
are primarily for symptom control rather than cure. Apart 
from this, there are reports of adverse effects involving 
behavioral changes, metabolic upset, and neurotoxicity [38].

With the established upregulation of Ang II in brain 
RAAS associated with seizures, it opens new gateways to 
intervene in the pathophysiological mechanisms that medi-
ate a seizure, i.e., by administering agents to block the 
effect of brain RAAS active peptides. Recent research has 
explored the effectiveness of using Ang II receptor blockers 
(ARBs) to control the vulnerability to epileptic syndromes 
by blocking the inflammatory and tissue toxic effects of Ang 
II. The AT1 receptor antagonists have anticonvulsant, anti-
inflammatory, antioxidant, behavioral, and neuroprotective 
properties in the epileptic state [32].

Evidence of ARBs in epilepsy

Traumatic or non-traumatic brain injury stands out as a 
highly concerning global health concern, often accompanied 
by significantly worrisome delayed neurological complica-
tions. Among these complications, post-traumatic epilepsy 
emerges as a particularly challenging condition (37). As 
mentioned earlier, brain injury has been associated with 
the gradual breakdown of the blood–brain barrier as well 
as an upregulation of ATR1 resulting in increased activa-
tion of the serum-derived albumin-induced TGF-β signaling 
pathways. Due to the absence of a specific FDA-approved 
TGF-β antagonist, losartan was initially used because of its 
inhibitory potential on this signaling pathway based on pre-
vious studies [14, 39]. ARBs antagonize the ATR1 and the 
TGF-β, resulting in a delayed breakdown and suppressing 
neuroinflammation. Evidence is obtained via several studies 
indicating a reduction in seizure frequency and epilepsy-
related comorbidities such as cognitive dysfunction. A study 
conducted on rats suggested that the use of losartan curtails 
the neurotoxicity and oxidative stress in the ventrolateral 
medulla brought about by status epilepticus. Another study 
demonstrated longer seizure-free periods, reduced seizure 
frequency, and a better adaptation of epilepsy-associated 
behavioral changes with the use of losartan [40]. Not only 
this but losartan has also been hypothesized to reduce 
epilepsy-related mortality, in Sprague–Dawley rats, via 
the downregulation of superoxide anion generation [41]. 
Promising findings from the experiments demonstrate that 
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including an ARB, specifically losartan, in standard anti-
seizure treatment significantly reduces the occurrence of 
epileptic episodes by approximately 60%. A study involving 
rats and the amygdala kindling model discovered that admin-
istering losartan 1 h before inducing seizures effectively ele-
vated the threshold stimuli needed to trigger seizures. Addi-
tionally, a separate investigation observed increased kindling 
stimulations required to generate an epileptic state. Notably, 
some rats exhibited an inability to reach the epileptic condi-
tion altogether when treated with ARBs [42].

These neuroprotective effects of ARBs, especially in 
epileptic scenarios, have been explored in several animal 
models to establish the association of ARBs in mitigating 
epilepsy. Some of the recent animal and human studies are 
highlighted in Table 1. An animal study was conducted by 
Pereira et al. on Wistar rats and WARs (Wistar audiogenic 
rats) to explore the relationship between RAAS inhibitors 
and temporal lobe epilepsy in a controlled environment. 
The rats were divided into three groups, and each group was 
pre-treated orally with enalapril (ACE inhibitor), losartan 
(ARB), and vehicle (water), respectively, for 21 days. After 
7 days of treatment, acoustic stimulation was conducted until 
seizures appeared. These seizures were then gauged using 
the mesencephalic severity index and Racine’s scale. The 
results showed that losartan had a curbing effect on tem-
poral lobe epilepsy and tonic–clonic seizures in rats [29]. 
Hanael et al. conducted a similar animal study on dogs. Ten 
dogs with idiopathic epilepsy were treated with telmisar-
tan in addition to the antiepileptic protocol over 4 months. 
The pre- and post-treatment seizure frequencies were com-
pared, and their serum creatinine and mean arterial pressure 
were recorded regularly; the results showed that seven out 
of ten dogs had less frequent seizures after being treated 
with telmisartan with no significant side effects causing drug 
discontinuation [43]. The outcomes of both these studies 
were at par with one another; however, the study conducted 
by Łukawski et al. on rats had a different outcome. In this 
investigation, an assortment of ACE inhibitors (namely cap-
topril and enalapril), as well as AT1 antagonists (including 
losartan, telmisartan, and candesartan), was scrutinized in 
their efficacy against pentylenetetrazole (PTZ)-induced sei-
zures in male Swiss mice. Several animals, with eight mice 
per group, were administered various doses of PTZ alone 
or in conjunction with anti-hypertensive medications. The 
rodents were individually situated and closely monitored 
for a duration of 30 min to observe the manifestation of 
clonic seizures. Among the examined drugs, solely capto-
pril exhibited a discernible protective effect against convul-
sions brought about by PTZ, while the ARBs administered 
showed insignificant anticonvulsant effects [44]. To delve 
into the effect of ARBs in inhibiting TGF-β, an experiment 
was conducted. This experiment aimed to investigate the 
molecular mechanisms underlying albumin-induced TGF-β 

signaling in the brain and evaluate the efficacy of losartan 
as a preventive treatment for epilepsy. The study utilized 
primary neuronal cortical cultures and astrocytic cultures in 
rat models. Various reagents, including losartan and albu-
min, were employed. Protein and gene expression analysis 
techniques were utilized to assess the effects of albumin 
and TGF-β signaling. The outcomes revealed that albu-
min-induced TGF-β signaling led to rapid transcriptional 
changes, astrocytic transformation, inflammatory signaling, 
and downregulation of GABA-related genes, increasing net-
work excitability. Losartan, an FDA-approved angiotensin II 
type 1 receptor antagonist, showed potential as a blocker of 
TGF-β signaling and preventive treatment for epilepsy [45].

To scrutinize this association with humans, a cohort 
study was conducted on patients with established underly-
ing hypertension on one or more anti-hypertensive drugs. 
The IQVIA database was used to obtain data from around 
168,612 patients. Propensity score matching was performed, 
and a Cox regression model was used to analyze the effec-
tiveness of ARBs on hypertensive epileptic patients. The 
study’s results demonstrated a noteworthy reduction in the 
occurrence of epileptic episodes with the use of ARB in con-
trast to other anti-hypertensives [15]. Contrary to all these 
in vivo studies, an in vitro experiment conducted in 2019 on 
brain slices produced contrasting results. In this experiment, 
35 human brain slices were obtained from 8 hippocampi 
surgically resected from patients with drug-resistant tempo-
ral lobe epilepsy. The slices were closely evaluated for the 
effect of losartan, and the amplitudes, rates, and duration of 
the epileptic events were recorded using glass electrodes. 
According to this experiment, losartan had no significant 
effect on the epileptiform activity in the human brain slices, 
and the mean amplitudes, rates, and durations remained 
unchanged. The unpredictable results of this experiment may 
be owed to its in vitro nature since multiple pathophysiologi-
cal pathways influence in vivo studies [46].

Synergistic drug interactions of ARBs in epilepsy

Drug metabolism plays a crucial role in drug interac-
tions, and some drugs alter the activity of certain enzymes 
involved in drug metabolism such as cytochrome P450 
(CYP) [48]. It is mostly expressed in liver cells, but other 
organs including kidney, skin, and adrenal glands are also 
known to express it [49]. According to the available litera-
ture, it has been found that pharmacokinetic interactions of 
losartan with other drugs are mainly mediated via CYP2C9 
and CYP3A4. Similarly, the role played by these enzymes 
in the metabolism of valsartan, candesartan, irbesartan, and 
azilsartan is moderate, whereas CYP has practically no role 
in the metabolism of telmisartan, eprosartan, and olmesartan 
[48].
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The interaction between ARBs (particularly losartan 
and telmisartan) and anti-seizure drugs (AED), both old 
and new, was investigated in a model of maximal elec-
troshock in mice conducted by Łukawski et al. [50, 51]. 
ARBs failed to enhance the action of phenobarbital, phe-
nytoin, and carbamazepine. Still, telmisartan and losartan 
profoundly increased the anticonvulsant activity of val-
proate by its pharmacodynamic action (total AED concen-
tration in the brain remained unchanged) [50]. Similarly, 
newer anti-seizure drugs also showed variable results. 
Losartan potentiated the positive effects of lamotrigine 
(via pharmacodynamics) [51] and gabapentin (via pharma-
cokinetics) [52], while telmisartan yielded a similar result 
with topiramate (via pharmacokinetics) [51]. The phar-
macokinetic effect led to an increase in the anti-seizure 
drug’s total brain and plasma concentration. Oxcarbaz-
epine and tiagabine failed to show any change in their 
activity when it was given with losartan and telmisartan. 
Likewise, levetiracetam did not exhibit any increase in its 
anticonvulsant activity when it was given with losartan 
and candesartan [53].

Coadministration of gabapentin and losartan demon-
strated an increased risk of neurotoxicity and warranted 
more caution in its use. Similarly, tiagabine, when given 
with either losartan or telmisartan, showed a greater risk 
of developing motor impairment [14].

Conclusion

This review has identified the potential role of ARBs in 
treating patients with epilepsy which if explored further 
can be groundbreaking. However, our study was limited by 
the absence of human-based trials, and still, there is a long 
way to consider ARBs for epilepsy. More in-depth research 
on pharmacokinetics and pharmacodynamics along with 
a focus on human trials must be carried out to accurately 
extrapolate and navigate the efficacy of these drugs on 
epileptic patients. Another important practical implication 
is that both short- and long-term adverse effects along with 
appropriate dosing must be reported to evaluate the safety 
and tolerability of ARBs for epilepsy.
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